
7C H A P T E R

331

James King-Holmes/Bletchley Park Trust/Photo Researchers, Inc.To read and write text files

To process command line arguments

To throw and catch exceptions

To implement programs that propagate checked exceptions

CHAPTER GOALS

CHAPTER CONTENTS

7.1  READING AND WRITING
TEXT FILES  332

CE 1 	 Backslashes in File Names  335
CE 2 	 Constructing a Scanner with a String  335
ST 1 	 Reading Web Pages  335
ST 2 	 File Dialog Boxes  335
ST 3 	 Reading and Writing Binary Data  336

7.2  TEXT INPUT AND OUTPUT  337

ST 4 	 Regular Expressions  344
ST 5 	 Reading an Entire File  344
VE 1 	 Computing a Document’s Readability 

© Alex Slobodkin/iStockphoto.
7.3  COMMAND LINE ARGUMENTS  345

HT 1 	 Processing Text Files  348
WE 1 	 Analyzing Baby Names 

© Alex Slobodkin/iStockphoto.C&S 	 Encryption Algorithms  351

7.4  EXCEPTION HANDLING  352

SYN 	 Throwing an Exception  352
SYN 	 Catching Exceptions  354
SYN 	 The throws Clause  357
SYN 	 The try-with-resources Statement  357

PT 1 	 Throw Early, Catch Late  359
PT 2 	 Do Not Squelch Exceptions  359
PT 3 	 Do Throw Specific Exceptions  360
ST 6 	 Assertions  360
ST 7 	 The try/finally Statement  360
C&S 	 The Ariane Rocket Incident  361

7.5  APPLICATION: HANDLING
INPUT ERRORS  361

VE 2 	 Detecting Accounting Fraud 
© Alex Slobodkin/iStockphoto.

INPUT/OUTPUT
AND EXCEPTION
HANDLING

James King-Holmes/Bletchley ParkTrust/Photo Researchers, Inc.

332

In this chapter, you will learn how to read and write
files—a very useful skill for processing real world data. As
an application, you will learn how to encrypt data. (The
Enigma machine shown here is an encryption device used
by Germany in World War II. Pioneering British computer
scientists broke the code and were able to intercept
encoded messages, which was a significant help in winning
the war.) The remainder of this chapter tells you how your
programs can report and recover from problems, such as
missing files or malformed content, using the exception-
handling mechanism of the Java language.

7.1  Reading and Writing Text Files
We begin this chapter by discussing the common task of reading and writing files that
contain text. Examples of text files include not only files that are created with a simple
text editor, such as Windows Notepad, but also Java source code and HTML files.

In Java, the most convenient mechanism for reading text is to use the Scanner class.
You already know how to use a Scanner for reading console input. To read input from
a disk file, the Scanner class relies on another class, File, which describes disk files and
directories. (The File class has many methods that we do not discuss in this book; for
example, methods that delete or rename a file.)

To begin, construct a File object with the name of the input file:

File inputFile = new File("input.txt");

Then use the File object to construct a Scanner object:

Scanner in = new Scanner(inputFile);

This Scanner object reads text from the file input.txt. You can use the Scanner methods
(such as nextInt, nextDouble, and next) to read data from the input file.

For example, you can use the following loop to process numbers in the input file:

while (in.hasNextDouble())
{
 double value = in.nextDouble();
 Process value.
}

To write output to a file, you construct a PrintWriter object with the desired file name,
for example

PrintWriter out = new PrintWriter("output.txt");

If the output file already exists, it is emptied before the new data are written into it. If
the file doesn’t exist, an empty file is created.

The PrintWriter class is an enhancement of the PrintStream class that you already
know—System.out is a PrintStream object. You can use the familiar print, println, and
printf methods with any PrintWriter object:

out.println("Hello, World!");
out.printf("Total: %8.2f%n", total);

Use the Scanner class
for reading text files.

When writing
text files, use the
PrintWriter class and
the print/println/
printf methods.

James King-Holmes/Bletchley Park Trust/Photo Researchers, Inc.

James King-Holmes/Bletchley ParkTrust/Photo Researchers, Inc.

7.1  Reading and Writing Text Files   333

When you are done processing a file, be sure to close the Scanner or PrintWriter:

in.close();
out.close();

If your program exits without closing the PrintWriter, some of the output may not be
written to the disk file.

The following program puts these concepts to work. It reads a file containing
numbers, and writes the numbers to another file, lined up in a column and followed
by their total.

For example, if the input file has the contents

32 54 67.5 29 35 80
115 44.5 100 65

then the output file is

 32.00
 54.00
 67.50
 29.00
 35.00
 80.00
 115.00
 44.50
 100.00
 65.00
Total: 622.00

There is one additional issue that we need to tackle. If the input or output file for a
Scanner doesn’t exist, a FileNotFoundException occurs when the Scanner object is con-
structed. The compiler insists that we specify what the program should do when that
happens. Similarly, the PrintWriter constructor generates this exception if it cannot
open the file for writing. (This can happen if the name is illegal or the user does not
have the authority to create a file in the given location.) In our sample program, we
want to terminate the main method if the exception occurs. To achieve this, we label
the main method with a throws declaration:

public static void main(String[] args) throws FileNotFoundException

You will see in Section 7.4 how to deal with exceptions in a more professional way.
The File, PrintWriter, and FileNotFoundException classes are contained in the java.io

package.

sec01/Total.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;
5
6 /**
7 This program reads a file with numbers, and writes the numbers to another
8 file, lined up in a column and followed by their total.
9 */

10 public class Total
11 {
12 public static void main(String[] args) throws FileNotFoundException
13 {

Close all files
when you are done
processing them.

334  Chapter 7  Input/Output and Exception Handling

14 // Prompt for the input and output file names
15
16 Scanner console = new Scanner(System.in);
17 System.out.print("Input file: ");
18 String inputFileName = console.next();
19 System.out.print("Output file: ");
20 String outputFileName = console.next();
21
22 // Construct the Scanner and PrintWriter objects for reading and writing
23
24 File inputFile = new File(inputFileName);
25 Scanner in = new Scanner(inputFile);
26 PrintWriter out = new PrintWriter(outputFileName);
27
28 // Read the input and write the output
29
30 double total = 0;
31
32 while (in.hasNextDouble())
33 {
34 double value = in.nextDouble();
35 out.printf("%15.2f%n", value);
36 total = total + value;
37 }
38
39 out.printf("Total: %8.2f%n", total);
40
41 in.close();
42 out.close();
43 }
44 }

1.	 What happens when you supply the same name for the input and output files to
the Total program? Try it out if you are not sure.

2.	 What happens when you supply the name of a nonexistent input file to the Total
program? Try it out if you are not sure.

3.	 Suppose you wanted to add the total to an existing file instead of writing a new
file. Self Check 1 indicates that you cannot simply do this by specifying the same
file for input and output. How can you achieve this task? Provide the pseudo-
code for the solution.

4.	 How do you modify the program so that it shows the average, not the total, of
the inputs?

5.	 How can you modify the Total program so that it writes the values in two
columns, like this:
 32.00 54.00
 67.50 29.00
 35.00 80.00
 115.00 44.50
 100.00 65.00
Total: 622.00

Practice It	 Now you can try these exercises at the end of the chapter: R7.1, R7.2, E7.1.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

7.1  Reading and Writing Text Files   335

Backslashes in File Names

When you specify a file name as a string literal, and the name contains backslash characters (as
in a Windows file name), you must supply each backslash twice:

File inputFile = new File("c:\\homework\\input.dat");

A single backslash inside a quoted string is an escape character that is combined with the
following character to form a special meaning, such as \n for a newline character. The \\ com-
bination denotes a single backslash.

When a user supplies a file name to a program, however, the user should not type the back-
slash twice.

Constructing a Scanner with a String

When you construct a PrintWriter with a string, it writes to a file:

PrintWriter out = new PrintWriter("output.txt");

However, this does not work for a Scanner. The statement

Scanner in = new Scanner("input.txt"); // Error?

does not open a file. Instead, it simply reads through the string: in.next() returns the string
"input.txt". (This is occasionally useful—see Section 7.2.4.)

You must simply remember to use File objects in the Scanner constructor:

Scanner in = new Scanner(new File("input.txt")); // OK

Reading Web Pages

You can read the contents of a web page with this sequence of commands:

String address = "http://horstmann.com/index.html";
URL pageLocation = new URL(address);
Scanner in = new Scanner(pageLocation.openStream());

Now simply read the contents of the web page with the Scan-
ner in the usual way. The URL constructor and the openStream
method can throw an IOException, so you need to tag the main
method with throws IOException. (See Section 7.4.3 for more
information on the throws clause.)

The URL class is contained in the java.net package.

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops

Common Error 7.1

© John Bell/iStockphoto.

Common Error 7.2

© John Bell/iStockphoto.

Special Topic 7.1

© Eric Isselé/iStockphoto.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
that reads data from
a web page.

© Alex Slobodkin/iStockphoto.

Special Topic 7.2

© Eric Isselé/iStockphoto.

336  Chapter 7  Input/Output and Exception Handling

up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFileChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = chooser.getSelectedFile();
 in = new Scanner(selectedFile);
 . . .
}

Reading and Writing Binary Data

You use the Scanner and PrintWriter classes to read and write text files. Text files contain
sequences of characters. Other files, such as images, are not made up of characters but of bytes.
A byte is a fundamental storage unit in a computer—a number consisting of eight binary
digits. (A byte can represent unsigned integers between 0 and 255 or signed integers between
–128 and 127.) The Java library has a different set of classes, called streams, for working with
binary files. While modifying binary files is quite challenging and beyond the scope of this
book, we give you a simple example of copying binary data from a web site to a file.

You use an InputStream to read binary data. For example,

URL imageLocation = new URL("http://horstmann.com/java4everyone/duke.gif");
InputStream in = imageLocation.openStream();

To write binary data to a file, use a FileOutputStream:

FileOutputStream out = new FileOutputStream("duke.gif");

The read method of an input stream reads a single byte and returns –1 when no further input is
available. The write method of an output stream writes a single byte.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
that demonstrates
how to use a file
chooser.

© Alex Slobodkin/iStockphoto.

A JFileChooser Dialog Box

Call with
showOpenDialog

method

Button is “Save” when
showSaveDialog method

is called

Special Topic 7.3

© Eric Isselé/iStockphoto.

7.2  Text Input and Output   337

The following loop copies all bytes from an input stream to an output stream:

boolean done = false;
while (!done)
{
 int input = in.read(); // –1 or a byte between 0 and 255
 if (input == -1) { done = true; }
 else { out.write(input); }
}

7.2  Text Input and Output
In the following sections, you will learn how to process text with complex contents,
and you will learn how to cope with challenges that often occur with real data.

7.2.1  Reading Words

The next method of the Scanner class reads the next string. Consider the loop
while (in.hasNext())
{
 String input = in.next();
 System.out.println(input);
}

If the user provides the input:
Mary had a little lamb

this loop prints each word on a separate line:
Mary
had
a
little
lamb

However, the words can contain punctuation marks and other symbols. The next
method returns any sequence of characters that is not white space. White space
includes spaces, tab characters, and the newline characters that separate lines. For
example, the following strings are considered “words” by the next method:

snow.
1729
C++

(Note the period after snow—it is considered a part of the word because it is not white
space.)

Here is precisely what happens when the next method is executed. Input characters
that are white space are consumed—that is, removed from the input. However, they
do not become part of the word. The first character that is not white space becomes
the first character of the word. More characters are added until either another white
space character occurs, or the end of the input file has been reached. However, if the
end of the input file is reached before any character was added to the word, a “no such
element exception” occurs.

The next method
reads a string that
is delimited by
white space.

338  Chapter 7  Input/Output and Exception Handling

 Sometimes, you want to read just the words and discard anything that isn’t a letter.
You achieve this task by calling the useDelimiter method on your Scanner object:

Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+");

Here, we set the character pattern that separates words to “any sequence of charac-
ters other than letters”. (See Special Topic 7.4.) With this setting, punctuation and
numbers are not included in the words returned by the next method.

7.2.2  Reading Characters

Sometimes, you want to read a file one character at a time. You will see an example in
Section 7.3 where we encrypt the characters of a file. You achieve this task by calling
the useDelimiter method on your Scanner object with an empty string:

Scanner in = new Scanner(. . .);
in.useDelimiter("");

Now each call to next returns a string consisting of a single character. Here is how you
can process the characters:

while (in.hasNext())
{
 char ch = in.next().charAt(0);
 Process ch.
}

7.2.3  Classifying Characters

When you read a character, or when you analyze the characters in a word or line,
you often want to know what kind of character it is. The Character class declares sev-
eral useful methods for this purpose. Each of them has an argument of type char and
returns a boolean value (see Table 1).

For example, the call
Character.isDigit(ch)

returns true if ch is a digit ('0' . . . '9' or a digit in another writing system—see
Computing & Society 2.2), false otherwise.

Table 1 Character Testing Methods

Method
Examples of

 Accepted Characters

isDigit 0, 1, 2

isLetter A, B, C, a, b, c

isUpperCase A, B, C

isLowerCase a, b, c

isWhiteSpace space, newline, tab

The Character
class has methods
for classifying
characters.

7.2  Text Input and Output   339

7.2.4  Reading Lines

When each line of a file is a data record, it is often best to read entire lines with the
nextLine method:

String line = in.nextLine();

The next input line (without the newline character) is placed into the string line. You
can then take the line apart for further processing.

The hasNextLine method returns true if there is at least one more line in the input,
false when all lines have been read. To ensure that there is another line to process, call
the hasNextLine method before calling nextLine.

Here is a typical example of processing lines in a file. A file with population data
from the CIA Fact Book site (https://www.cia.gov/library/publications/the-world-
factbook/index.html) contains lines such as the following:

China 1330044605
India 1147995898
United States 303824646
. . .

Because some country names have more than one word, it would be tedious to read
this file using the next method. For example, after reading United, how would your pro-
gram know that it needs to read another word before reading the population count?

Instead, read each input line into a string:
while (in.hasNextLine())
{
 String line = nextLine();
 Process line.
}

Use the isDigit and isWhiteSpace methods introduced to find out where the name ends
and the number starts.

Locate the first digit:
int i = 0;
while (!Character.isDigit(line.charAt(i))) { i++; }

Then extract the country name and population:
String countryName = line.substring(0, i);
String population = line.substring(i);

However, the country name contains one or more spaces at the end. Use the trim
method to remove them:

countryName = countryName.trim();

setatSdetinU 3 0 3 8 2 4 6 4 6

i starts here i ends here
Use trim to

remove this space.

countryName

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

population

The trim method returns the string with all white space at the beginning and end
removed.

The nextLine method
reads an entire line.

340  Chapter 7  Input/Output and Exception Handling

There is one additional problem. The population is stored in a string, not a num-
ber. In Section 7.2.6, you will see how to convert the string to a number.

7.2.5  Scanning a String

In the preceding section, you saw how to break a string into parts by looking at
individual characters. Another approach is occasionally easier. You can use a Scanner
object to read the characters from a string:

Scanner lineScanner = new Scanner(line);

Then you can use lineScanner like any other Scanner object, reading words and
numbers:

String countryName = lineScanner.next(); // Read first word
// Add more words to countryName until number encountered
while (!lineScanner.hasNextInt())
{
 countryName = countryName + " " + lineScanner.next();
}
int populationValue = lineScanner.nextInt();

7.2.6  Converting Strings to Numbers

Sometimes you have a string that contains a number, such as the population string
in Section 7.2.4. For example, suppose that the string is the character sequence
"303824646". To get the integer value 303824646, you use the Integer.parseInt method:

int populationValue = Integer.parseInt(population);
 // populationValue is the integer 303824646

To convert a string containing floating-point digits to its floating-point value, use the
Double.parseDouble method. For example, suppose input is the string "3.95".

double price = Double.parseDouble(input);
 // price is the floating-point number 3.95

You need to be careful when calling the Integer.parseInt and Double.parseDouble meth-
ods. The argument must be a string containing the digits of an integer, without any
additional characters. Not even spaces are allowed! In our situation, we happen to
know that there won’t be any spaces at the beginning of the string, but there might be
some at the end. Therefore, we use the trim method:

int populationValue = Integer.parseInt(population.trim());

How To 7.1 on page 348 continues this example.

7.2.7  Avoiding Errors When Reading Numbers

You have used the nextInt and nextDouble methods of the Scanner class many times, but
here we will have a look at what happens in “abnormal” situations. Suppose you call

int value = in.nextInt();

The nextInt method recognizes numbers such as 3 or -21. However, if the input is not
a properly formatted number, an “input mismatch exception” occurs. For example,
consider an input containing the characters

If a string contains
the digits of a
number, you use the
Integer.parseInt or
Double.parseDouble
method to obtain the
number value.

7.2  Text Input and Output   341

2 1 s t c e n t u r y

White space is consumed and the word 21st is read. However, this word is not a prop-
erly formatted number, causing an input mismatch exception in the nextInt method.

If there is no input at all when you call nextInt or nextDouble, a “no such element
exception” occurs. To avoid exceptions, use the hasNextInt method to screen the input
when reading an integer. For example,

if (in.hasNextInt())
{
 int value = in.nextInt();
 . . .
}

Similarly, you should call the hasNextDouble method before calling nextDouble.

7.2.8  Mixing Number, Word, and Line Input

The nextInt, nextDouble, and next methods do not consume the white space that follows
the number or word. This can be a problem if you alternate between calling nextInt/
nextDouble/next and nextLine. Suppose a file contains country names and population
values in this format:

China
1330044605
India
1147995898
United States
303824646

Now suppose you read the file with these instructions:
while (in.hasNextLine())
{
 String countryName = in.nextLine();
 int population = in.nextInt();
 Process the country name and population.
}

Initially, the input contains

400331\nanihC 4 6 0 \n5 I n d i a \n

After the first call to the nextLine method, the input contains

400331 4 6 0 \n5 I n d i a \n

After the call to nextInt, the input contains

\n I n d i a \n

Note that the nextInt call did not consume the newline character. Therefore, the sec-
ond call to nextLine reads an empty string!

The remedy is to add a call to nextLine after reading the population value:
String countryName = in.nextLine();
int population = in.nextInt();
in.nextLine(); // Consume the newline

The call to nextLine consumes any remaining white space and the newline character.

342  Chapter 7  Input/Output and Exception Handling

7.2.9  Formatting Output

When you write numbers or strings, you often want to control how they appear. For
example, dollar amounts are usually formatted with two significant digits, such as

Cookies: 3.20

You know from Section 2.3.2 how to achieve this output with the printf method. In
this section, we discuss additional options of the printf method.

Suppose you need to print a table of items and prices, each stored in an array, such
as this one:

Cookies: 3.20
Linguine: 2.95
Clams: 17.29

Note that the item strings line up to the left, whereas the numbers line up to the right.
By default, the printf method lines up values to the right. To specify left alignment,
you add a hyphen (-) before the field width:

System.out.printf("%-10s%10.2f", items[i] + ":", prices[i]);

Here, we have two format specifiers.

•	 %-10s formats a left-justified string. The string items[i] + ":" is padded with spaces
so it becomes ten characters wide. The - indicates that the string is placed on the
left, followed by sufficient spaces to reach a width of 10.

•	 %10.2f formats a floating-point number, also in a field that is ten characters wide.
However, the spaces appear to the left and the value to the right.

C l a m s : 1 7 . 2 9

Two digits after
the decimal point

A left-justi�ed
string width 10 width 10

A construct such as %-10s or %10.2f is called a format specifier: it describes how a value
should be formatted.

Table 2 Format Flags

Flag Meaning Example

- Left alignment 1.23 followed by spaces

0 Show leading zeroes 001.23

+ Show a plus sign for positive numbers +1.23

(Enclose negative numbers in parentheses (1.23)

, Show decimal separators 12,300

^ Convert letters to uppercase 1.23E+1

7.2  Text Input and Output   343

Table 3 Format Types

Code Type Example

d Decimal integer 123

f Fixed floating-point 12.30

e Exponential floating-point 1.23e+1

g General floating-point
(exponential notation is used for
very large or very small values)

12.3

s String Tax:

A format specifier has the following structure:

•	 The first character is a %
•	 Next, there are optional “flags” that modify the format, such as - to indicate left

alignment. See Table 2 for the most common format flags.
•	 Next is the field width, the total number of characters in the field (including the

spaces used for padding), followed by an optional precision for floating-point
numbers.

•	 The format specifier ends with the format type, such as f for floating-point values
or s for strings. There are quite a few format types—Table 3 shows the most
important ones.

6.	 Suppose the input contains the characters Hello, World!. What are the values of
word and input after this code fragment?
String word = in.next();
String input = in.nextLine();

7.	 Suppose the input contains the characters 995.0 Fred. What are the values of
number and input after this code fragment?
int number = 0;
if (in.hasNextInt()) { number = in.nextInt(); }
String input = in.next();

8.	 Suppose the input contains the characters 6E6 $6,995.00. What are the values of x1
and x2 after this code fragment?
double x1 = in.nextDouble();
double x2 = in.nextDouble();

9.	 Your input file contains a sequence of numbers, but sometimes a value is not
available and is marked as N/A. How can you read the numbers and skip over the
markers?

10.	 How can you remove spaces from the country name in Section 7.2.4 without
using the trim method?

Practice It	 Now you can try these exercises at the end of the chapter: E7.4, E7.6, E7.7.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
that processes a file
containing a mixture
of text and numbers.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

344  Chapter 7  Input/Output and Exception Handling

Regular Expressions

A regular expression describes a character pattern. For example, numbers have a simple form.
They contain one or more digits. The regular expression describing numbers is [0-9]+. The set
[0-9] denotes any digit between 0 and 9, and the + means “one or more”.

The search commands of professional programming editors understand regular expres-
sions. Moreover, several utility programs use regular expressions to locate matching text. A
commonly used program that uses regular expressions is grep (which stands for “global regu-
lar expression print”). You can run grep from a command line or from inside some compila-
tion environments. Grep is part of the UNIX operating system, and versions are available for
Windows. It needs a regular expression and one or more files to search. When grep runs, it
displays a set of lines that match the regular expression.

Suppose you want to find all magic numbers (see Programming Tip 2.2) in a file.

grep [0-9]+ Homework.java

lists all lines in the file Homework.java that contain sequences of digits. That isn’t terribly useful;
lines with variable names x1 will be listed. OK, you want sequences of digits that do not imme-
diately follow letters:

grep [^A-Za-z][0-9]+ Homework.java

The set [^A-Za-z] denotes any characters that are not in the ranges A to Z and a to z. This works
much better, and it shows only lines that contain actual numbers.

The useDelimiter method of the Scanner class accepts a regular expression to describe delim-
iters—the blocks of text that separate words. As already mentioned, if you set the delimiter
pattern to [^A-Za-z]+, a delimiter is a sequence of one or more characters that are not letters.

There are two useful methods of the String class that use regular expressions. The split
method splits a string into an array of strings, with the delimiter specified as a regular expres-
sions. For example,

String[] tokens = line.split("\\s+");

splits input along white space. The replaceAll method yields a string in which all matches of
a regular expression are replaced with a string. For example, word.replaceAll("[aeiou]", "") is
the word with all vowels removed.

For more information on regular expressions, consult one of the many tutorials on the
Internet by pointing your search engine to “regular expression tutorial”.

Reading an Entire File

In the preceding section, you saw how to read lines, words, and characters from a file. Alter-
natively, you can read the entire file into a list of lines, or into a single string. To do so, use the
Files class, which provides methods to work with files and directories. The Files class requires
that you specify file paths as Path objects. The Paths.get method turns a string containing a file
path into such an object. Use these commands:

String filename = . . .;
List<String> lines = Files.readAllLines(Paths.get(filename));
String content = new String(Files.readAllBytes(Paths.get(filename)));

Special Topic 7.4

© Eric Isselé/iStockphoto.

Special Topic 7.5

© Eric Isselé/iStockphoto.

348  Chapter 7  Input/Output and Exception Handling

Step 1	 Understand the processing task.

As always, you need to have a clear understanding of the task before designing a solution. Can
you carry out the task by hand (perhaps with smaller input files)? If not, get more information
about the problem.

One important aspect that you need to consider is whether you can process the data as it
becomes available, or whether you need to store it first. For example, if you are asked to write
out sorted data, you first need to collect all input, perhaps by placing it in an array list. How-
ever, it is often possible to process the data “on the go”, without storing it.

In our example, we can read each file a line at a time and compute the density for each line
because our input files store the population and area data in the same order.

The following pseudocode describes our processing task.

While there are more lines to be read
	 Read a line from each file.
	 Extract the country name.
	 population = number following the country name in the line from the first file
	 area = number following the country name in the line from the second file
	 If area != 0
		 density = population / area
	 Print country name and density.

Step 2	 Determine which files you need to read and write.

This should be clear from the problem. In our example, there are two input files, the popula-
tion data and the area data, and one output file.

Step 3	 Choose a mechanism for obtaining the file names.

There are three options:
•	 Hard-coding the file names (such as "worldpop.txt").
•	 Asking the user:

Scanner in = new Scanner(System.in);
System.out.print("Enter filename: ");
String inFile = in.nextLine();

•	 Using command-line arguments for the file names.
In our example, we use hard-coded file names for simplicity.

© Steve Simzer/iStockphoto.

How To 7.1	 Processing Text Files

Processing text files that contain real data can be surprisingly challenging. This How To gives
you step-by-step guidance.

Problem Statement  Read two country data files,
worldpop.txt and worldarea.txt (supplied with the
book’s companion code). Both files contain the same
countries in the same order. Write a file world_pop_den-
sity.txt that contains country names and population
densities (people per square km), with the country
names aligned left and the numbers aligned right:

Afghanistan 	 50.56
Akrotiri 	 127.64
Albania 	 125.91
Algeria 	 14.18
American Samoa 	 288.92
. . . © Oksana Perkins/iStockphoto.

Singapore is one of the most densely
populated countries in the world.

©
 O

ks
an

a
Pe

rk
in

s/
iS

to
ck

ph
ot

o.

7.3  Command Line Arguments   349

Step 4	 Choose between line, word, and character-based input.

As a rule of thumb, read lines if the input data is grouped by lines. That is the case with tabular
data, such as in our example, or when you need to report line numbers.

When gathering data that can be distributed over several lines, then it makes more sense to
read words. Keep in mind that you lose all white space when you read words.

Reading characters is mostly useful for tasks that require access to individual characters.
Examples include analyzing character frequencies, changing tabs to spaces, or encryption.

Step 5	 With line-oriented input, extract the required data.

It is simple to read a line of input with the nextLine method. Then you need to get the data out
of that line. You can extract substrings, as described in Section 7.2.4.

Typically, you will use methods such as Character.isWhitespace and Character.isDigit to
find the boundaries of substrings.

If you need any of the substrings as numbers, you must convert them, using Integer.parseInt
or Double.parseDouble.

Step 6	 Use methods to factor out common tasks.

Processing input files usually has repetitive tasks, such as skipping over white space or extract-
ing numbers from strings. It really pays off to develop a set of methods to handle these tedious
operations.

In our example, we have two common tasks that call for helper methods: extracting the
country name and the value that follows. We will implement methods

public static String extractCountry(String line)
public static double extractValue(String line)

These methods are implemented as described in Section 7.2.4.
Here is the complete source code (how_to_1/PopulationDensity.java).

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;

/**
 This program reads data files of country populations and areas and prints the
 population density for each country.
*/
public class PopulationDensity
{
 public static void main(String[] args) throws FileNotFoundException
 {
 // Construct Scanner objects for input files

 Scanner in1 = new Scanner(new File("worldpop.txt"));
 Scanner in2 = new Scanner(new File("worldarea.txt"));

 // Construct PrintWriter for the output file

 PrintWriter out = new PrintWriter("world_pop_density.txt");

 // Read lines from each file

 while (in1.hasNextLine() && in2.hasNextLine())
 {
 String line1 = in1.nextLine();
 String line2 = in2.nextLine();

350  Chapter 7  Input/Output and Exception Handling

 // Extract country and associated value
 String country = extractCountry(line1);
 double population = extractValue(line1);
 double area = extractValue(line2);

 // Compute and print the population density
 double density = 0;
 if (area != 0) // Protect against division by zero
 {
 density = population / area;
 }
 out.printf("%-40s%15.2f%n", country, density);
 }

 in1.close();
 in2.close();
 out.close();
 }

 /**
 Extracts the country from an input line.
 @param line a line containing a country name, followed by a number
 @return the country name
 */
 public static String extractCountry(String line)
 {
 int i = 0; // Locate the start of the first digit
 while (!Character.isDigit(line.charAt(i))) { i++; }
 return line.substring(0, i).trim(); // Extract the country name
 }

 /**
 Extracts the value from an input line.
 @param line a line containing a country name, followed by a value
 @return the value associated with the country
 */
 public static double extractValue(String line)
 {
 int i = 0; // Locate the start of the first digit
 while (!Character.isDigit(line.charAt(i))) { i++; }
 // Extract and convert the value
 return Double.parseDouble(line.substring(i).trim());
 }
}

© Tom Horyn/iStockphoto.

Worked Example 7.1	 Analyzing Baby Names

In this Worked Example, you will use data from
the Social Security Administration to analyze the
most popular baby names. Go to wiley.com/go/
bjlo2examples and download Worked Example 7.1.

© Nancy Ross/iStockphoto.

©
 N

an
cy

 R
os

s/

iS
to

ck
ph

ot
o.

