
352  Chapter 7  Input/Output and Exception Handling

7.4  Exception Handling
There are two aspects to dealing with program errors: detection and handling. For
example, the Scanner constructor can detect an attempt to read from a non-existent
file. However, it cannot handle that error. A satisfactory way of handling the error
might be to terminate the program, or to ask the user for another file name. The Scan-
ner class cannot choose between these alternatives. It needs to report the error to
another part of the program.

In Java, exception handling provides a flexible mechanism for passing control from
the point of error detection to a handler that can deal with the error. In the following
sections, we will look into the details of this mechanism.

7.4.1  Throwing Exceptions

When you detect an error condition, your job is really easy. You just throw an appro-
priate exception object, and you are done. For example, suppose someone tries to
withdraw too much money from a bank account.

if (amount > balance)
{
 // Now what?
}

First look for an appropriate exception class. The Java library provides many classes
to signal all sorts of exceptional conditions. Figure 2 shows the most useful ones.
(The classes are arranged as a tree-shaped hierarchy, with more specialized classes at
the bottom of the tree. We will discuss such hierarchies in more detail in Chapter 9.)

Look around for an exception type that might describe your situation. How about
the ArithmeticException? Is it an arithmetic error to have a negative balance? No—Java
can deal with negative numbers. Is the amount to be withdrawn illegal? Indeed it is. It
is just too large. Therefore, let’s throw an IllegalArgumentException.

if (amount > balance)
{
 throw new IllegalArgumentException("Amount exceeds balance");
}

To signal an
exceptional
condition, use the
throw statement
to throw an
exception object.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
that demonstrates
throwing an
exception.

© Alex Slobodkin/iStockphoto.

Syntax 7.1	 Throwing an Exception

A new
exception object
is constructed,
then thrown.

if (amount > balance)
{
 throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

Most exception objects
can be constructed with
an error message.

This line is not executed when
the exception is thrown.

throw exceptionObject;Syntax

7.4  Exception Handling   353

Figure 2 
A Part of the Hierarchy
of Exception Classes

ClassNot
Found

Exception

IndexOut
OfBounds
Exception

Illegal
Argument
Exception

ClassCast
Exception

Arithmetic
Exception

Runtime
Exception

Exception

IOException

FileNotFound
Exception

MalformedURL
Exception

UnknownHost
Exception

NumberFormat
Exception

NullPointer
Exception

NoSuch
Element
Exception

Throwable

Error

InputMismatch
Exception

Import from
java.io

When constructing
a scanner or writer

with a non-existent �le

Import from
java.util

When calling
Integer.parseInt or

Double.parseDouble with
an illegal argument

When calling
next, nextInt, or nextDouble
 on a scanner and no input

is available

When calling
nextInt or nextDouble on a
scanner and the input is not

of the expected form

When you throw an exception, execution does not
continue with the next statement but with an exception
handler. That is the topic of the next section.

When you throw an exception, the normal control flow
is terminated. This is similar to a circuit breaker that

cuts off the flow of electricity in a dangerous situation.

© Lisa F. Young/iStockphoto.

When you throw
an exception,
processing
continues in an
exception handler.

©
 L

is
a

F.
 Y

ou
ng

/iS
to

ck
ph

ot
o.

354  Chapter 7  Input/Output and Exception Handling

7.4.2  Catching Exceptions

Every exception should be handled somewhere in your program. If an exception has
no handler, an error message is printed, and your program terminates. Of course,
such an unhandled exception is confusing to program users.

You handle exceptions with the try/catch statement. Place the statement into a
location of your program that knows how to handle a particular exception. The try
block contains one or more statements that may cause an exception of the kind that
you are willing to handle. Each catch clause contains the handler for an exception
type. Here is an example:

try
{
 String filename = . . .;
 Scanner in = new Scanner(new File(filename));
 String input = in.next();
 int value = Integer.parseInt(input);
 . . .
}
catch (IOException exception)
{
 exception.printStackTrace();
}
catch (NumberFormatException exception)
{
 System.out.println(exception.getMessage());
}

Place the statements
that can cause an
exception inside a
try block, and the
handler inside a
catch clause.

Syntax 7.2	 Catching Exceptions

try
{
 statement
 statement
 . . .
}
catch (ExceptionClass exceptionObject)
{
 statement
 statement
 . . .
}

Syntax

This constructor can throw a
FileNotFoundException.

try
{
 Scanner in = new Scanner(new File("input.txt"));
 String input = in.next();
 process(input);
}
catch (IOException exception)
{
 System.out.println("Could not open input file");
}
catch (Exception except)
{
 System.out.println(except.getMessage());
}

This is the exception that was thrown.

A FileNotFoundException
is a special case of an IOException.

When an IOException is thrown,
execution resumes here.

Additional catch clauses
can appear here. Place
more speci�c exceptions
before more general ones.

7.4  Exception Handling   355

Three exceptions may be thrown in this try block:

•	 The Scanner constructor can throw a FileNotFound-
Exception.

•	 Scanner.next can throw a NoSuchElementException.

•	 Integer.parseInt can throw a NumberFormatException.

If any of these exceptions is actually thrown, then the
rest of the instructions in the try block are skipped.
Here is what happens for the various exception types:

•	 If a FileNotFoundException is thrown, then the catch clause for the IOException is
executed. (If you look at Figure 2, you will note that FileNotFoundException is a
descendant of IOException.) If you want to show the user a different message for a
FileNotFoundException, you must place the catch clause before the clause for an
IOException.

•	 If a NumberFormatException occurs, then the second catch clause is executed.

•	 A NoSuchElementException is not caught by any of the catch clauses. The exception
remains thrown until it is caught by another try statement.

Each catch clause contains a handler. When the catch (IOException exception) block is
executed, then some method in the try block has failed with an IOException (or one of
its descendants).

In this handler, we produce a printout of the chain of method calls that led to the
exception, by calling

exception.printStackTrace()

In the second exception handler, we call exception.getMessage() to retrieve the mes-
sage associated with the exception. When the parseInt method throws a NumberFormat
Exception, the message contains the string that it was unable to format. When you
throw an exception, you can provide your own message string. For example, when
you call

throw new IllegalArgumentException("Amount exceeds balance");

the message of the exception is the string provided in the constructor.
In these sample catch clauses, we merely inform the user of the source of the prob-

lem. Often, it is better to give the user another chance to provide a correct input—see
Section 7.5 for a solution.

7.4.3  Checked Exceptions

In Java, the exceptions that you can throw and catch fall into three categories.

•	 Internal errors are reported by descendants of the type Error. One example is the
OutOfMemoryError, which is thrown when all available computer memory has been
used up. These are fatal errors that happen rarely, and we will not consider them
in this book.

•	 Descendants of RuntimeException, such as as IndexOutOfBoundsException or Illegal
ArgumentException indicate errors in your code. They are called unchecked
exceptions.

© Andraz Cerar/iStockphoto.

You should only catch those
exceptions that you can handle.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code to down-
load a program that
demonstrates catch-
ing exceptions.

© Alex Slobodkin/iStockphoto.

©
 A

nd
ra

z
C

er
ar

/iS
to

ck
ph

ot
o.

356  Chapter 7  Input/Output and Exception Handling

•	 All other exceptions are checked exceptions. These exceptions indicate that
something has gone wrong for some external reason beyond your control. In
Figure 2, the checked exceptions are shaded in a darker color.

Why have two kinds of exceptions? A checked exception describes a problem that
can occur, no matter how careful you are. For example, an IOException can be caused
by forces beyond your control, such as a disk error or a broken network connection.
The compiler takes checked exceptions very seriously and ensures that they are han-
dled. Your program will not compile if you don’t indicate how to deal with a checked
exception.

The unchecked exceptions, on the other hand, are your fault. The compiler does
not check whether you handle an unchecked exception, such as an IndexOutOfBounds
Exception. After all, you should check your index values rather than install a handler
for that exception.

If you have a handler for a checked exception in the same method that may throw
it, then the compiler is satisfied. For example,

try
{
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile); // Throws FileNotFoundException
 . . .
}
catch (FileNotFoundException exception) // Exception caught here
{
 . . .
}

However, it commonly happens that the current method cannot handle the excep-
tion. In that case, you need to tell the compiler that you are aware of this exception
and that you want your method to be terminated when it occurs. You supply a
method with a throws clause.

public static String readData(String filename) throws FileNotFoundException
{
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 . . .
}

The throws clause signals the caller of your method that it may encounter a
FileNotFoundException. Then the caller needs to make the same decision—han
dle the exception, or declare that the exception may be thrown.

It sounds somehow irresponsible not to handle an exception when you
know that it happened. Actually, the opposite is true. Java provides an
exception handling facility so that an exception can be sent to the appropri-
ate handler. Some methods detect errors, some methods handle them, and
some methods just pass them along. The throws clause simply ensures that no
exceptions get lost along the way.

Just as trucks with large or hazardous loads carry warning signs,
the throws clause warns the caller that an exception may occur.

Checked exceptions
are due to external
circumstances that
the programmer
cannot prevent.
The compiler
checks that your
program handles
these exceptions.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
that demonstrates
throwing and
catching checked
exceptions.

© Alex Slobodkin/iStockphoto.

Add a throws clause
to a method that
can throw a checked
exception.

© tillsonburg/iStockphoto.

©
 ti

lls
on

bu
rg

/iS
to

ck
ph

ot
o.

7.4  Exception Handling   357

7.4.4 

Syntax 7.3	 The throws Clause

You may also list unchecked exceptions.You must specify all checked exceptions
that this method may throw.

public static String readData(String filename)
 throws FileNotFoundException, NumberFormatException

modi�ers returnType methodName(parameterType parameterName, . . .)
 throws ExceptionClass, ExceptionClass, . . .

Syntax

Closing Resources

When you use a resource that must be closed, such as a PrintWriter, you need to be
careful in the presence of exceptions. Consider this sequence of statements:

PrintWriter out = new PrintWriter(filename);
writeData(out);
out.close(); // May never get here

Now suppose that one of the methods before the last line throws an exception. Then
the call to close is never executed! This is a problem—data that was written to the
stream may never end up in the file.

The remedy is to use the try-with-resources statement. Declare the PrintWriter
variable in a try statement, like this:

try (PrintWriter out = new PrintWriter(filename))
{
 writeData(out);
} // out.close() is always called

When the try block is completed, the close method is called on the variable. If no
exception has occurred, this happens when the writeData method returns. However, if
an exception occurs, the close method is invoked before the exception is passed to its
handler.

The try-with-
resources statement
ensures that a
resource is closed
when the statement
ends normally or due
to an exception.

Syntax 7.4	 The try-with-resources Statement

try (Type1 variable1 = expression1; Type2 variable2 = expression2; . . .)
{
 . . .
}

Syntax

try (PrintWriter out = new PrintWriter(filename))
{
 writeData(out);
}

At this point, out.close() is called,
even when an exception occurs.

This code may
throw exceptions.

Implements the
AutoCloseable
interface.

358  Chapter 7  Input/Output and Exception Handling

You can declare multiple variables in a try-with-resources statement, like this:
try (Scanner in = new Scanner(inFile); PrintWriter out = new PrintWriter(outFile))
{
 while (in.hasNextLine())
 {
 String input = in.nextLine();
 String result = process(input);
 out.println(result);
 }
} // Both in.close() and out.close() are called here

Use the try-with-resources statement whenever you work with a Scanner or Print-
Writer to make sure that these resources are closed properly.

More generally, you can declare variables of any
class that implements the AutoCloseable interface in a
try-with-resources statement. The classes in the Java
library that you use for working with files, network
connections, and database connections all imple-
ment the AutoCloseable interface.

All visitors to a foreign country have to go through passport
control, no matter what happened on their trip. Similarly,
the try-with-resources statement ensures that a resource

 is closed, even when an exception has occurred.

16.	 Suppose balance is 100 and amount is 200. What is the value of balance after these
statements?
if (amount > balance)
{
 throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

17.	 When depositing an amount into a bank account, we don’t have to worry about
overdrafts—except when the amount is negative. Write a statement that throws
an appropriate exception in that case.

18.	 Consider the method
public static void main(String[] args)
{
 try
 {
 Scanner in = new Scanner(new File("input.txt"));
 int value = in.nextInt();
 System.out.println(value);
 }
 catch (IOException exception)
 {
 System.out.println("Error opening file.");
 }
}

Suppose the file with the given file name exists and has no contents. Trace the
flow of execution.

© archives/iStockphoto.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
that demonstrates
closing resources.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

©
 a

rc
hi

ve
s/

iS
to

ck
ph

ot
o.

7.4  Exception Handling   359

19.	 Why is an ArrayIndexOutOfBoundsException not a checked exception?
20.	 Is there a difference between catching checked and unchecked exceptions?
21.	 What is wrong with the following code, and how can you fix it?

public static void writeAll(String[] lines, String filename)
{
 PrintWriter out = new PrintWriter(filename);
 for (String line : lines)
 {
 out.println(line.toUpperCase());
 }
 out.close();
}

Practice It	 Now you can try these exercises at the end of the chapter: R7.8, R7.9, R7.10.

Throw Early, Catch Late

When a method detects a problem that it cannot solve, it is better
to throw an exception rather than try to come up with an imperfect
fix. For example, suppose a method expects to read a number from a
file, and the file doesn’t contain a number. Simply using a zero value
would be a poor choice because it hides the actual problem and per-
haps causes a different problem elsewhere.

Conversely, a method should only catch an exception if it can
really remedy the situation. Otherwise, the best remedy is simply to have the exception propa-
gate to its caller, allowing it to be caught by a competent handler.

These principles can be summarized with the slogan “throw early, catch late”.

Do Not Squelch Exceptions

When you call a method that throws a checked exception and you haven’t specified a handler,
the compiler complains. In your eagerness to continue your work, it is an understandable
impulse to shut the compiler up by squelching the exception:

try
{
 Scanner in = new Scanner(new File(filename));
 // Compiler complained about FileNotFoundException
 . . .
}
catch (FileNotFoundException e) {} // So there!

The do-nothing exception handler fools the compiler into thinking that the exception has
been handled. In the long run, this is clearly a bad idea. Exceptions were designed to transmit
problem reports to a competent handler. Installing an incompetent handler simply hides an
error condition that could be serious.

Programming Tip 7.1

© Eric Isselé/iStockphoto.

Throw an exception
as soon as a
problem is detected.
Catch it only
when the problem
can be handled.

Programming Tip 7.2

© Eric Isselé/iStockphoto.

360  Chapter 7  Input/Output and Exception Handling

Do Throw Specific Exceptions

When throwing an exception, you should choose an exception class that describes the situ-
ation as closely as possible. For example, it would be a bad idea to simply throw a Runtime
Exception object when a bank account has insufficient funds. This would make it far too diffi-
cult to catch the exception. After all, if you caught all exceptions of type RuntimeException, your
catch clause would also be activated by exceptions of the type NullPointerException, Array
IndexOutOfBoundsException, and so on. You would then need to carefully examine the exception
object and attempt to deduce whether the exception was caused by insufficient funds.

If the standard library does not have an exception class that describes your particular error
situation, simply provide a new exception class.

Assertions

An assertion is a condition that you believe to be true at all times in a particular program loca-
tion. An assertion check tests whether an assertion is true. Here is a typical assertion check:

public double deposit(double amount)
{
 assert amount >= 0;
 balance = balance + amount;
}

In this method, the programmer expects that the quantity amount can never be negative. When
the assertion is correct, no harm is done, and the program works in the normal way. If, for
some reason, the assertion fails, and assertion checking is enabled, then the assert statement
throws an exception of type AssertionError, causing the program to terminate.

However, if assertion checking is disabled, then the assertion is never checked, and the pro-
gram runs at full speed. By default, assertion checking is disabled when you execute a program.

To execute a program with assertion checking turned on, use this command:

java -enableassertions MainClass

You can also use the shortcut -ea instead of -enableassertions. You should turn assertion
checking on during program development and testing.

The try/finally Statement

You saw in Section 7.4.4 how to ensure that a resource is closed when an exception occurs. The
try-with-resources statement calls the close methods of variables declared within the state-
ment header. You should always use the try-with-resources statement when closing resources.

It can happen that you need to do some cleanup other than calling a close method. In that
case, use the try/finally statement:

public double deposit (double amount)
try
{
 . . .
}
finally
{
 Cleanup. // This code is executed whether or not an exception occurs
}

If the body of the try statement completes without an exception, the cleanup happens. If an
exception is thrown, the cleanup happens and the exception is then propagated to its handler.

Programming Tip 7.3

© Eric Isselé/iStockphoto.

Special Topic 7.6

© Eric Isselé/iStockphoto.

Special Topic 7.7

© Eric Isselé/iStockphoto.

7.5  Application: Handling Input Errors   361

The try/finally statement is rarely required because most Java library classes that require
cleanup implement the AutoCloseable interface.

Computing & Society 7.2  The Ariane Rocket Incident

The European Space
Agency (ESA), Europe’s

counterpart to NASA, had developed a
rocket model called Ariane that it had
successfully used several times to
launch satellites and scientific experi-
ments into space. However, when a new
version, the Ariane 5, was launched on
June 4, 1996, from ESA’s launch site in
Kourou, French Guiana, the rocket
veered off course about 40 seconds
after liftoff. Flying at an angle of more
than 20 degrees, rather than straight
up, exerted such an aerodynamic force
that the boosters separated, which trig-
gered the automatic self-destruction
mechanism. The rocket blew itself up.

The ultimate cause of this accident
was an unhandled exception! The
rocket contained two identical devices
(called inertial reference systems) that
processed flight data from measuring
devices and turned the data into infor
mation about the rocket position.

The onboard computer used the
position information for controlling the
boosters. The same inertial reference
systems and computer software had
worked fine on the Ariane 4.

However, due to design changes
to the rocket, one of the sensors mea-
sured a larger acceleration force than
had been encountered in the Ariane 4.
That value, expressed as a floating-
point value, was stored in a 16-bit
integer (like a short variable in Java).
Unlike Java, the Ada language, used
for the device software, generates an
exception if a floating-point number is
too large to be converted to an integer.
Unfortunately, the programmers of the
device had decided that this situation
would never happen and didn’t provide
an exception handler.

When the overflow did happen, the
exception was triggered and, because
there was no handler, the device shut
itself off. The onboard computer sensed

the failure and switched over to the
backup device. However, that device
had shut itself off for exactly the same
reason, something that the designers
of the rocket had not expected. They
figured that the devices might fail for
mechanical reasons, and the chance of
two devices having the same mechani-
cal failure was considered remote. At
that point, the rocket was without reli-
able position information and went off
course. Perhaps it would have been
better if the software hadn’t been so
thorough? If it had ignored the over-
flow, the device wouldn’t have been
shut off. It would have computed bad
data. But then the device would have
reported wrong position data, which
could have been just as fatal. Instead,
a correct implementation should have
caught overflow exceptions and come
up with some strategy to recompute
the flight data. Clearly, giving up was
not a reasonable option in this context.

The advantage of
the exception-handling
mechanism is that it
makes these issues
explicit to program-
mers—something to
think about when you
curse the Java compiler
for complaining about
uncaught exceptions.

© Media Bakery.

© AP/Wide World Photos.
The Explosion of the Ariane Rocket

7.5  Application: Handling Input Errors
This section walks through an example program that includes exception handling.
The program, DataAnalyzer.java, asks the user for the name of a file. The file is expected
to contain data values. The first line of the file should contain the total number of val-
ues, and the remaining lines contain the data. A typical input file looks like this:

3
1.45
-2.1
0.05

©
 A

P
/W

id
e

W
or

ld
 P

ho
to

s.

362  Chapter 7  Input/Output and Exception Handling

What can go wrong? There are two principal risks.

•	 The file might not exist.
•	 The file might have data in the wrong format.

Who can detect these faults? The Scanner constructor will throw an exception when
the file does not exist. The methods that process the input values need to throw an
exception when they find an error in the data format.

What exceptions can be thrown? The Scanner constructor throws a FileNot
FoundException when the file does not exist, which is appropriate in our situation.
When there are fewer data items than expected, or when the file doesn’t start with the
count of values, the program will throw an NoSuchElementException. Finally, when there
are more inputs than expected, an IOException should be thrown.

Who can remedy the faults that the exceptions report? Only the main method of
the DataAnalyzer program interacts with the user, so it catches the exceptions, prints
appropriate error messages, and gives the user another chance to enter a correct file:

// Keep trying until there are no more exceptions
boolean done = false;
while (!done)
{
 try
 {
 Prompt user for file name.

 double[] data = readFile(filename);

 Process data.

 done = true;
 }
 catch (FileNotFoundException exception)
 {
 System.out.println("File not found.");
 }
 catch (NoSuchElementException exception)
 {
 System.out.println("File contents invalid.");
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

The first two catch clauses in the main method give a human-readable error report if
bad data was encountered or the file was not found. However, if another IOException
occurs, then it prints a stack trace so that a programmer can diagnose the problem.

The following readFile method constructs the Scanner object and calls the readData
method. It does not handle any exceptions. If there is a problem with the input file, it
simply passes the exception to its caller.

public static double[] readFile(String filename) throws IOException
{
 File inFile = new File(filename);
 try (Scanner in = new Scanner(inFile))
 {
 return readData(in);

When designing
a program, ask
yourself what kinds
of exceptions can
occur.

For each exception,
you need to decide
which part of
your program
can competently
handle it.

7.5  Application: Handling Input Errors   363

 }
}

Note how the try-with-resources statement ensures that the file is closed even when
an exception occurs.

Also note that the throws clause of the readFile method need not include the File-
NotFoundException class because it is a special case of an IOException.

The readData method reads the number of values, constructs an array, and fills it
with the data values.

public static double[] readData(Scanner in) throws IOException
{
 int numberOfValues = in.nextInt(); // May throw NoSuchElementException
 double[] data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)
 {
 data[i] = in.nextDouble(); // May throw NoSuchElementException
 }

 if (in.hasNext())
 {
 throw new IOException("End of file expected");
 }
 return data;
}

As discussed in Section 7.2.7, the calls to the nextInt and nextDouble methods can throw
a NoSuchElementException when there is no input at all or an InputMismatchException if the
input is not a number. As you can see from Figure 2 on page 340, an InputMismatch
Exception is a special case of a NoSuchElementException.

You need not declare the NoSuchElementException in the throws clause because it is not
a checked exception, but you can include it for greater clarity.

There are three potential errors:

•	 The file might not start with an integer.
•	 There might not be a sufficient number of data values.
•	 There might be additional input after reading all data values.

In the first two cases, the Scanner throws a NoSuchElementException. Note again that this
is not a checked exception—we could have avoided it by calling hasNextInt/hasNext-
Double first. However, this method does not know what to do in this case, so it allows
the exception to be sent to a handler elsewhere.

When we find that there is additional unexpected input, we throw an IOException.
To see the exception handling at work, look at a specific error scenario.

1.	main calls readFile.
2.	readFile calls readData.
3.	readData calls Scanner.nextInt.
4.	There is no integer in the input, and Scanner.nextInt throws a NoSuchElement

Exception.
5.	readData has no catch clause. It terminates immediately.

6.	readFile has no catch clause. It terminates immediately when leaving the
try-with-resources statement.

364  Chapter 7  Input/Output and Exception Handling

7.	The first catch clause in main is for a FileNotFoundException. The exception that
is currently being thrown is a NoSuchElementException, and this handler doesn’t
apply.

8.	The next catch clause is for a NoSuchElementException, and execution resumes
here. That handler prints a message to the user. Afterward, the user is given
another chance to enter a file name. Note that the statements for processing the
data have been skipped.

This example shows the separation between error detection (in the readData method)
and error handling (in the main method). In between the two is the readFile method,
which simply passes the exceptions along.

sec05/DataAnalyzer.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.IOException;
4 import java.util.Scanner;
5 import java.util.NoSuchElementException;
6
7 /**
8 This program processes a file containing a count followed by data values.
9 If the file doesn’t exist or the format is incorrect, you can specify another file.

10 */
11 public class DataAnalyzer
12 {
13 public static void main(String[] args)
14 {
15 Scanner in = new Scanner(System.in);
16
17 // Keep trying until there are no more exceptions
18
19 boolean done = false;
20 while (!done)
21 {
22 try
23 {
24 System.out.print("Please enter the file name: ");
25 String filename = in.next();
26
27 double[] data = readFile(filename);
28
29 // As an example for processing the data, we compute the sum
30
31 double sum = 0;
32 for (double d : data) { sum = sum + d; }
33 System.out.println("The sum is " + sum);
34
35 done = true;
36 }
37 catch (FileNotFoundException exception)
38 {
39 System.out.println("File not found.");
40 }
41 catch (NoSuchElementException exception)
42 {
43 System.out.println("File contents invalid.");

7.5  Application: Handling Input Errors   365

44 }
45 catch (IOException exception)
46 {
47 exception.printStackTrace();
48 }
49 }
50 }
51
52 /**
53 Opens a file and reads a data set.
54 @param filename the name of the file holding the data
55 @return the data in the file
56 */
57 public static double[] readFile(String filename) throws IOException
58 {
59 File inFile = new File(filename);
60 try (Scanner in = new Scanner(inFile))
61 {
62 return readData(in);
63 }
64 }
65
66 /**
67 Reads a data set.
68 @param in the scanner that scans the data
69 @return the data set
70 */
71 public static double[] readData(Scanner in) throws IOException
72 {
73 int numberOfValues = in.nextInt(); // May throw NoSuchElementException
74 double[] data = new double[numberOfValues];
75
76 for (int i = 0; i < numberOfValues; i++)
77 {
78 data[i] = in.nextDouble(); // May throw NoSuchElementException
79 }
80
81 if (in.hasNext())
82 {
83 throw new IOException("End of file expected");
84 }
85 return data;
86 }
87 }

22.	 Why doesn’t the readFile method catch any exceptions?
23.	 What happens to the Scanner object if the readData method throws an exception?
24.	 What happens to the Scanner object if the readData method doesn’t throw an

exception?
25.	 Suppose the user specifies a file that exists and is empty. Trace the flow of execu-

tion in the DataAnalyzer program.
26.	 Why didn’t the readData method call hasNextInt/hasNextDouble to ensure that the

NoSuchElementException is not thrown?

Practice It	 Now you can try these exercises at the end of the chapter: R7.16, R7.17, E7.12.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

