Table 6.2 UNIX Signals

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the
user of that process is doing no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access
location outside its virtual address space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a
signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure




Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC INIT (int i)

At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v)

Read integer value of v

void atomic_set(atomic_t *v, int i)

Set the value of v to integer 1

void atomic_add(int i, atomic_t *v)

Additov

void atomic_sub(int i, atomic_t *v)

Subtract i from v

void atomic_inc(atomic_t *v)

Add1tov

void atomic_dec(atomic_t *v)

Subtract 1 from v

int atomic_sub_and test(int i, atomic_t
*v)

Subtract i from v; return 1 if the result is zero;
return O otherwise

int atomic_add_negative(int i, atomic_t
*v)

Add i to v; return 1 if the result is negative;
return O otherwise (used for implementing
semaphores)

int atomic_dec_and test(atomic_t *v)

Subtract 1 from v; return 1 if the result is zero;
return O otherwise

int atomic_inc_and test(atomic_t *v)

Add 1 to v; return 1 if the result is zero; return
0 otherwise

Atomic Bitmap Operations

void set bit(int nr, void *addr)

Set bit nr in the bitmap pointed to by addr

void clear_ bit(int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr

void change bit(int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr, void *addr)

Set bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and clear bit(int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and_change_bit(int nr, void
*addr)

Invert bit nr in the bitmap pointed to by addr;
return the old bit value

int test _bit(int nr, void *addr)

Return the value of bit nr in the bitmap pointed
to by addr




Table 6.6 Linux Memory Barrier Operations

rmb () Prevents loads from being reordered across the barrier

wmb () Prevents stores from being reordered across the barrier

mb () Prevents loads and stores from being reordered across the barrier
barrier () Prevents the compiler from reordering loads or stores across the barrier
smp_rmb() On SMP, provides a rmb ( ) and on UP provides a barrier ()
smp_wmb () On SMP, provides a wmb ( ) and on UP provides a barrier ()

smp _mb () On SMP, provides a mb ( ) and on UP provides a barrier ()

SMP = symmetric multiprocessor
UP = uniprocessor




