
Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance
Approaches for Operating Systems [ISLO80]

Approach Resource Allocation Policy Different Schemes Major Advantages Major Disadvantages

Requesting all resources
at once

•Works well for processes that perform a
single burst of activity

•No preemption necessary

•Inefficient
•Delays process initiation
•Future resource requirements
must be known by processes

Preemption
•Convenient when applied to resources
whose state can be saved and restored
easily

•Preempts more often than
necessary

Prevention Conservative; undercommits
resources

Resource ordering

•Feasible to enforce via compile-time
checks

•Needs no run-time computation since
problem is solved in system design

•Disallows incremental resource
requests

Avoidance Midway between that of
detection and prevention

Manipulate to find at
least one safe path •No preemption necessary

•Future resource requirements
must be known by OS

•Processes can be blocked for
long periods

Detection Very liberal; requested resources
are granted where possible

Invoke periodically to
test for deadlock

•Never delays process initiation
•Facilitates online handling •Inherent preemption losses

Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed until it is
available

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables interrupts on the local
processor

void spin_lock_irqsave(spinlock_t *lock, unsigned long flags) Like spin_lock_irq, but also saves the current interrupt state in
flags

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables the execution of all bottom
halves

void spin_unlock(spinlock_t *lock) Releases given lock
void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables local interrupts
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long
flags)

Releases given lock and restores local interrupts to given
previous state

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables bottom halves
void spin_lock_init(spinlock_t *lock) Initializes given spinlock
int spin_trylock(spinlock_t *lock) Tries to acquire specified lock; returns nonzero if lock is

currently held and zero otherwise
int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero otherwise

Table 6.5 Linux Semaphores

Traditional Semaphores
void sema_init(struct semaphore *sem, int count) Initializes the dynamically created semaphore to the given count
void init_MUTEX(struct semaphore *sem) Initializes the dynamically created semaphore with a count of 1 (initially

unlocked)
void init_MUTEX_LOCKED(struct semaphore *sem) Initializes the dynamically created semaphore with a count of 0 (initially

locked)
void down(struct semaphore *sem) Attempts to acquire the given semaphore, entering uninterruptible sleep if

semaphore is unavailable
int down_interruptible(struct semaphore *sem) Attempts to acquire the given semaphore, entering interruptible sleep if

semaphore is unavailable; returns -EINTR value if a signal other than the
result of an up operation is received.

int down_trylock(struct semaphore *sem) Attempts to acquire the given semaphore, and returns a nonzero value if
semaphore is unavailable

void up(struct semaphore *sem) Releases the given semaphore
Reader-Writer Semaphores

void init_rwsem(struct rw_semaphore, *rwsem) Initalizes the dynamically created semaphore with a count of 1
void down_read(struct rw_semaphore, *rwsem) Down operation for readers
void up_read(struct rw_semaphore, *rwsem) Up operation for readers
void down_write(struct rw_semaphore, *rwsem) Down operation for writers
void up_write(struct rw_semaphore, *rwsem) Up operation for writers

Table 6.7 Windows Synchronization Objects

Object Type Definition Set to Signaled State When Effect on Waiting Threads

Event An announcement that a system
event has occurred Thread sets the event All released

Mutex
A mechanism that provides mutual
exclusion capabilities; equivalent
to a binary semaphore

Owning thread or other thread
releases the mutex One thread released

Semaphore
A counter that regulates the
number of threads that can use a
resource

Semaphore count drops to zero All released

Waitable timer A counter that records the passage
of time

Set time arrives or time interval
expires All released

File change
notification

A notification of any file system
changes.

Change occurs in file system that
matches filter criteria of this object One thread released

Console input
A text window screen buffer (e.g.,
used to handle screen I/O for an
MS-DOS application)

Input is available for processing One thread released

Job An instance of an opened file or
I/O device I/O operation completes All released

Memory resource
notification

A notification of change to a
memory resource

Specified type of change occurs
within physical memory All released

Process
A program invocation, including
the address space and resources
required to run the program

Last thread terminates All released

Thread An executable entity within a
process Thread terminates All released

Note: Colored rows correspond to objects that exist for the sole purpose of synchronization.

