Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance
Approaches for Operating Systems [ISLOS80]

Approach Resource Allocation Policy Different Schemes Major Advantages Major Disadvantages
*Works well for processes that perform a eInefficient
Requesting all resources | single burst of activity *Delays process initiation
at once *No preemption necessary eFuture resource requirements
must be known by processes
ive: i *Convenient when applied to resources
Prevention (CORENEINER T i : PP *Preempts more often than
resources Preemption whose state can be saved and restored
. necessary
easily
Feasible to enforce via compile-time
. checks *Disallows incremental resource
Resource ordering . L
*Needs no run-time computation since requests
problem is solved in system design
eFuture resource requirements
Avoidance Midway between that of Manipulate to find at «No preemption necessar must be known by OS
detection and prevention least one safe path p P y *Processes can be blocked for
long periods
. Very liberal; requested resources | Invoke periodically to eNever delays process initiation .
Detection Y 4 P y S p eInherent preemption losses

are granted where possible

test for deadlock

eFacilitates online handling

Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed until it is
available

void spin lock irg(spinlock t *lock) Like spin_lock, but also disables interrupts on the local
processor

void spin lock irgsave(spinlock t *lock, unsigned long flags) Like spin_lock_irq, but also saves the current interrupt state in
flags

void spin lock bh(spinlock t *lock) Like spin_lock, but also disables the execution of all bottom
halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irqg(spinlock t *lock) Releases given lock and enables local interrupts

void spin_unlock_irqrestore(spinlock_t *lock, unsigned long Releases given lock and restores local interrupts to given

flags .

9s) previous state

void spin_unlock bh(spinlock_t *lock) Releases given lock and enables bottom halves

void spin lock init(spinlock t *lock) Initializes given spinlock

int spin_trylock(spinlock_t *lock) Tries to acquire specified lock; returns nonzero if lock is
currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero otherwise

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init(struct semaphore *sem, int count)

Initializes the dynamically created semaphore to the given count

void init MUTEX(struct semaphore *sem)

Initializes the dynamically created semaphore with a count of 1 (initially
unlocked)

void init MUTEX LOCKED(struct semaphore *sem)

Initializes the dynamically created semaphore with a count of O (initially
locked)

void down(struct semaphore *sem)

Attempts to acquire the given semaphore, entering uninterruptible sleep if
semaphore is unavailable

int down_interruptible(struct semaphore *sem)

Attempts to acquire the given semaphore, entering interruptible sleep if
semaphore is unavailable; returns -EINTR value if a signal other than the
result of an up operation is received.

int down_trylock(struct semaphore *sem)

Attempts to acquire the given semaphore, and returns a nonzero value if
semaphore is unavailable

void up(struct semaphore *sem)

Releases the given semaphore

Reader-Writer Semaphores

void init rwsem(struct rw_semaphore, *rwsem)

Initalizes the dynamically created semaphore with a count of 1

void down_ read(struct rw_semaphore, *rwsem)

Down operation for readers

void up read(struct rw_semaphore, *rwsem)

Up operation for readers

void down write(struct rw_semaphore, *rwsem)

Down operation for writers

void up write(struct rw_semaphore, *rwsem)

Up operation for writers

Table 6.7 Windows Synchronization Objects

Object Type Definition Set to Signaled State When Effect on Waiting Threads
Event AT IR Thread sets the event All released
event has occurred
A meghamsm th.a.t Prov1de§ mutual Owning thread or other thread
Mutex exclusion capabilities; equivalent One thread released
. releases the mutex
to a binary semaphore
A counter that regulates the
Semaphore number of threads that can use a Semaphore count drops to zero All released
resource
Waitable timer A counter that records the passage Set time arrives or time interval Al released

of time

expires

File change
notification

A notification of any file system
changes.

Change occurs in file system that
matches filter criteria of this object

One thread released

Console input

A text window screen buffer (e.g.,
used to handle screen I/O for an
MS-DOS application)

Input is available for processing

One thread released

An instance of an opened file or

Job 1/O device I/O operation completes All released
Memory resource A notification of change to a Specified type of change occurs
o O o . All released
notification memory resource within physical memory
A program invocation, including
Process the address space and resources Last thread terminates All released
required to run the program
Thread AN G SR vt e Thread terminates All released

process

Note: Colored rows correspond to objects that exist for the sole purpose of synchronization.

