
Chapter �

Introduction

In our modern society Electronic Digital Computer Systems� commonly referred to as computer

systems or computers� are everywhere� We �nd them in o�ces� factories� hospitals� schools�
stores� libraries� and now in many homes� Computers show up in sometimes unexpected places
� in your car� your television and your microwave� for example� We use computers to perform
tasks in science� engineering� medicine� business� government� education� entertainment� and many
other human endeavors� Computers are in demand wherever complex and�or high speed tasks are
to be performed�

Computers have become indispensable tools of modern society� They work at high speed� are
able to handle large amounts of data with great accuracy� and have the ability to carry out a
speci�ed sequence of operations� i�e� a program without human intervention and are able to
change from one program to another on command�

Computer systems are general purpose information processing machines used to solve problems�
Solving these problems may involve processing information �i�e�� data	 which represent numbers�
words� pictures� sounds� and many other abstractions� Because we are talking about digital
computers� the information to be processed must be represented as discrete values selected from a
�possibly very large but �nite	 set of individual values� For example� integer numbers �the counting
numbers	 can be represented in a computer by giving a unique pattern to each integer up to the
maximum number of patterns available to the particular machine� We will see how these patterns
are de�ned in a later section of this Chapter� This mapping of an internal machine pattern to a
meaning is refered to as a data type�

Given a representation of information� we would like to be able to perform operations on this
data such as addition or comparison� The fundamental operations provided in a computer are
very simple logical and arithmetic operations
 however� these simple operations can be combined
to perform more complex operations� For example� multiplication can be performed by doing
repeated additions� The basic operations provided by a particular computer are called instruc�

tions and a well de�ned sequence of these instructions is called a program� It is the job of the
programmer� then� to represent the information of the problem using the data types provided and
to specify the sequence of operations which must be performed to solve the problem� As we will

�

� CHAPTER �� INTRODUCTION

Hardware

Software

Word Processing Spread Sheet Etc�

Applications

� �� �Peripherals CPU
Memory

Main

Memory

Secondary

Shell Editor Compiler File System

Scheduler Memory Manager I�O System Protection

Operating System

Utilities

User Programs

Figure ���
 Computer System Block Diagram

see in Section ������ because of the simple nature of the operations available� specifying the proper
sequence of instructions to perform a task can be a very complex and tedious task� Fortunately
for us� this task has been made simpler these days �using the computers themselves	 through the
use of high level programming languages� It is one of these languages� the C language that we will
discuss in this text�

��� Computer System Organization

Before we look at the C language� let us look at the overall organization of computing systems�
Figure ��� shows a block diagram of a typical computer system� Notice it is divided into two
major sections
 hardware and software�

����� Computer Hardware

The physical machine� consisting of electronic circuits� is called the hardware� It consists of
several major units
 the Central Processing Unit �CPU	� Main Memory� Secondary Memory and
Peripherals�

The CPU is the major component of a computer
 the �electronic brain� of the machine� It
consists of the electronic circuits needed to perform operations on the data� Main Memory is
where programs that are currently being executed as well as their data are stored� The CPU

���� COMPUTER SYSTEM ORGANIZATION �

fetches program instructions in sequence� together with the required data� from Main Memory
and then performs the operation speci�ed by the instruction� Information may be both read
from and written to any location in Main Memory so the devices used to implement this block
are called random access memory chips �RAM	� The contents of Main Memory �often simply
called memory	 are both temporary �the programs and data reside there only when they are
needed	 and volatile �the contents are lost when power to the machine is turned o�	�

The Secondary Memory provides more long term and stable storage for both programs and
data� In modern computing systems this Secondary Memory is most often implemented using
rotating magnetic storage devices� more commmonly called disks �though magnetic tape may also
be used	
 therefore� Secondary Memory is often referred to as the disk� The physical devices
making up Secondary Memory� the disk drives� are also known as mass storage devices because
relatively large amounts of data and many programs may be stored on them�

The disk drives making up Secondary Memory are one form of Input�Output �I�O	 device since
they provide a means for information to be brought into �input	 and taken out of �output	 the CPU
and its memory� Other forms of I�O devices which transfer information between humans and the
computer are represented by the Peripherals box in Figure ���� These Peripherals include of devices
such as terminals � a keyboard �and optional mouse	 for input and a video screen for output� high�
speed printers� and possibly �oppy disk drives and tape drives for permanent� removable storage of
data and programs� Other I�O devices may include high�speed optical scanners� plotters� multiuser
and graphics terminals� networking hardware� etc� In general� these devices provide the physical
interface between the computer and its environment by allowing humans or even other machines
to communicate with the computer�

����� Computer Software � The Operating System

Hardware is called �hard� because� once it is built� it is relatively di�cult to change� However�
the hardware of a computer system� by itself� is useless� It must be given directions as to what
to do� i�e� a program� These programs are called software
 �soft� because it is relatively easy to
change both the instructions in a particular program as well as which program is being executed
by the hardware at any given time� When a computer system is purchased� the hardware comes
with a certain amount of software which facilitates the use of the system� Other software to run
on the system may be purchased and�or written by the user� Some major vendors of computer
systems include
 IBM� DEC� HP� AT�T� Sun� Compaq� and Apple�

The remaining blocks in Figure ��� are typical software layers provided on most computing
systems� This software may be thought of as having a hierarchical� layered structure� where each
layer uses the facilities of layers below it� The four major blocks shown in the �gure are the
Operating System� Utilities� User Programs and Applications�

The primary responsibility of the Operating System �OS	 is to �manage� the �resources� pro�
vided by the hardware� Such management includes assigning areas of memory to di�erent programs
which are to be run� assigning one particular program to run on the CPU at a time� and con�
trolling the peripheral devices� When a program is called upon to be executed �its operations

� CHAPTER �� INTRODUCTION

performed	� it must be loaded� i�e� moved from disk to an assigned area of memory� The OS may
then direct the CPU to begin fetching instructions from this area� Other typical responsibilities
of the OS include Secondary Storage management �assignment of space on the disk	� a piece of
software called the �le system� and Security �protecting the programs and data of one user from
activities of other users that may be on the same system	�

Many mainframe machines normally use proprietary operating systems� such as VM and CMS
�IBM	 and VAX VMS and TOPS �� �DEC	� More recently� there is a move towards a standard�
ized operating system and most workstations and desktops typically use Unix �AT�T and other
versions	� A widely used operating system for IBM PC and compatible personal computers is DOS
�Microsoft	� Apple Macintosh machines are distinguished by an easy to use proprietary operating
system with graphical icons�

����� Utility Programs

The layer above the OS is labeled Utilities and consists of several programs which are primarily
responsible for the logical interface with the user� i�e� the �view� the user has when interacting
with the computer� �Sometimes this layer and the OS layer below are considered together as the
operating system	� Typical utilities include such programs as shells� text editors� compilers� and
�sometimes	 the �le system�

A shell is a program which serves as the primary interface between the user and the operating
system� The shell is a �command interpreter�� i�e� is prompts the user to enter commands for
tasks which the user wants done� reads and interprets what the user enters� and directs the OS to
perform the requested task� Such commands may call for the execution of another utility �such as
a text editor or compiler	 or a user program or application� the manipulation of the �le system� or
some system operation such as logging in or out� There are many variations on the types of shells
available� from relatively simple command line interpreters �DOS	 or more powerful command line
interpreters �the Bourne Shell� sh� or C Shell� csh in the Unix environment	� to more complex� but
easy to use graphical user interfaces �the Macintosh or Windows	� You should become familiar
with the particular shell�s	 available on the computer you are using� as it will be your primary
means of access to the facilities of the machine�

A text editor �as opposed to a word processor	 is a program for entering programs and data
and storing them in the computer� This information is organized as a unit called a �le similar to a
�le in an o�ce �ling cabinet� only in this case it is stored on the disk� �Word processors are more
complex than text editors in that they may automatically format the text� and are more properly
considered applications than utilities	� There are many text editors available �for example vi and
emacs on Unix systems	 and you should familiarize yourself with those available on your system�

As was mentioned earlier� in today�s computing environment� most programming is done in
high level languages �HLL	 such as C� However� as we shall see in Section ������ the computer
hardware cannot understand these languages directly� Instead� the CPU executes programs coded
in a lower level language called the machine language� A utility called a compiler is program
which translates the HLL program into a form understandable to the hardware� Again� there are

���� REPRESENTING DATA AND PROGRAM INTERNALLY �

many variations in compilers provided �for di�erent languages� for example	 as well as facilities
provided with the compilers �some may have built�in text editors or debugging features	� Your
system manuals can describe the features available on your system�

Finally� another important utility �or task of the operating system	 is to manage the �le system
for users� A �le system is a collection of �les in which a user keeps programs� data� text material�
graphical images� etc� The �le system provides a means for the user to organize �les� giving them
names and gathering them into directories �or folders	 and to manage their �le storage� Typical
operations which may be done with �les include creating new �les� destroying� renaming� and
copying �les�

����� User Programs and Applications

Above the utilities in Figure ��� is the block labeled User Programs� It is at this level where a
computer becomes specialized to perform a task to solve a user�s problem� Given a task that
needs to be performed� a programmer can design and code a program to perform that task using
the text editors� compilers� debuggers� etc� The program so written may make use of operating
system facilities� for example to do I�O to interact with the program user� It is at this level that
the examples� exercises and problems in this text will be written�

However� not everyone who uses a computer is a programmer or desires to be a programmer� As
well� if every time a new task was presented to be programmed� one had to start from scratch with
a new program� the utility and ease of using the computers would be reduced� These days packages
of prede�ned software� or Applications� are available from many vendors in the industry� Highly
functional word processors� desktop publishing packages� spread sheet and data base programs and�
yes� games are readily available for computer users as well as programmers� In fact� perhaps most
computer users these days access their machines exclusively through these application programs�

A computer system is typically purchased with an operating system� a variety of utilities �such
as compilers for high level languages and text editors	 and application programs� Without the
layers of software in modern computers� computer systems would not be as useful and popular as
they are today� While the complexity of these underlying layers has increased greatly in recent
years� the net e�ect has been to make computers easier for people to use�

In the remainder of this Chapter we will take a more detailed look at how data and programs
are represented within the machine� We �nally discuss the design of programs and their coding in
the C language before beginning a detailed description in Chapter ��

��� Representing Data and Program Internally

In a computer� it is the hardware discussed in the previous section that stores data items and
programs and that performs operations on these items� This hardware is implemented using
electronic circuits called gates which� because we are talking about digital computers� represent

� CHAPTER �� INTRODUCTION

information using only two values
 True and False� In most machines� these two values are
represented by two di�erent voltages with in the circuit
 for example � Volts representing a False
value� and �� Volts representing a True value� One such value is called a binary digit or bit
and each such bit can be considered to be a symbol for a piece of information� However� in
computer applications we need to represent information that can have more than just two values�
i�e� we have more than � symbols� So bits are grouped together and the pattern of values on
the group is used to represent a symbol� For example� a group of � bits� called a byte can have
��� di�erent patterns �we will see how below	 and therefore represent ��� di�erent symbols� In
modern computers� groupings of bytes �usually � or �	� called words can represent larger �chunks�
of information�

Simply representing symbols in a computer� however� is not su�cient� We also need to process
the information� i�e� perform operations on it� The designers of the hardware make use of an
algebra� called Boolean Algebra� which uses two values� � and �� and logical operations �AND�
OR and NOT	 to design the circuits that perform more complex operations on bytes and words
of data� These complex operations are the instruction set of the computer and are the basic
tools the programmer has to write software for the computer� All executable programs must be
sequences of instructions from this set which includes basic arithmetic� logical� store and retrieve�
and program control instructions� The instructions themselves can also be represented in the
machine as patterns of bits�

This section �rst discusses how di�erent types of data are represented using patterns of bits�
then describes how data� as well as instructions� are stored in memory� and �nally gives a short
example of how instructions are represented�

����� Representing Data

Standard methods for representing commonly used numeric and non�numeric data have been
developed and are widely used� While a knowledge of internal binary representation is not required
for programming in C� an understanding of internal data representation is certainly helpful�

Binary Representation of Integers

As mentioned above� all data� including programs� in a computer system is represented in terms
of groups of binary digits� A single bit can represent one of two values� � or �� A group of two
bits can be used to represent one of four values

�� ��� �

�� ��� �

�� ��� �

�� ��� �

If we have only four symbols to represent� we can make a one�to�one correspondence between the
patterns and the symbols� i�e�� one and only one symbol is associated with each binary pattern�

���� REPRESENTING DATA AND PROGRAM INTERNALLY �

For example� the numbers �� �� �� and � are mapped to the patterns above�

Such a correspondence is called a code and the process of representing a symbol by the
corresponding binary pattern is called coding or encoding� Three binary digits can be used to
represent eight possible distinct values using the patterns

��� ���

��� ���

��� ���

��� ���

A group of k binary digits �bits	 can be used to represent �k symbols� Thus� � bits are used to
represent �� � ��� values� �� bits to represent ��� � ���� values� and so on� It should be clear by
now that powers of two play an important role because of the binary representation of all data�
The number ���� is close to one thousand� and it is called �K� where K stands for Kilo
 nK equals
n � ����� and if n � �m� then nK is �����m��

We will �rst present a standard code for natural numbers� i�e�� unsigned integers �� �� �� �� ��
etc� There are several ways to represent these numbers as groups of bits� the most natural way
is analogous to the method we use to represent decimal numbers� Recall� a decimal �or base ��	
representation uses exactly ten digit symbols �� �� �� �� �� �� �� �� �� and �� Any decimal number
is represented using a weighted positional notation�

For example� a single digit number� say �� represents just nine� because the weight of the
rightmost position is �� A two digit number� say ��� represents thirty plus nine� The rightmost
digit has a weight �� and the next digit to the left has a weight of ��� So� we multiply � by ���
and add � multiplied by �� Thus� for decimal notation the weights for the digits starting from the
rightmost digit and moving to the left are �� ��� ���� and so on� as shown below�

� � � � � � digit position
������ ����� ���� ��� �� � position weight

Thus�

���� � �� � �	 � �� � ��	 � �� � ���	 � �� � ����	

The positional weights are the powers of the base value ��� with the rightmost position having
the weight of ���� the next positions to the left having in succession the weight of ���� ���� ����
and so on� Such an expression is commonly written as a sum of the contribution of each digit�
starting with the lowest order digit and working toward the largest weight
 that is� as sums of
contributions of digits starting from the rightmost position and working toward the left�

Thus� if i is an integer written in decimal form with digits dk

� CHAPTER �� INTRODUCTION

i � dn��dn�� � � � d�d�d�

then i represents the sum

i �
n��X

k	�

dk � ��k

where n is the total number of digits� and dk is the kth digit from the rightmost position in the
decimal number�

Binary representation of numbers is written in exactly the same manner� The base is �� and
a number is written using just two digits symbols� � and �� The positional weights� starting from
the right are now powers of the base �� The weight for the rightmost digit is �� � �� the next digit
has the weight of �� � �� the next digit has the weight of �� � �� and so on� Thus� the weights for
the �rst ten positions from the right are as follows

�� � � � � � � � � � � position
���� ��� ��� ��� �� �� �� � � � � pos� weights

A natural binary number is written using these weights� For example� the binary number

� � � � �

represents the number whose decimal equivalent is

�� � �
 � � � �� � ��

and the binary number
� � � � � � � �

represents the number whose decimal equivalent is

�� � �� � �� � � � �� � ��� � ���

When a binary number is stored in a computer word with a �xed number of bits� unused bits
to the left �leading bits	 are set to �� For example� with a �� bit word� the binary equivalent of
��� is

���� ���� ���� ����

We have shown the bits in groups of four to make it easier to read�

In general� if i is an integer written in binary form with digits bk

i � bn��bn�� � � � b�b�b�

���� REPRESENTING DATA AND PROGRAM INTERNALLY �

then its decimal equivalent is

i �
n��X

k	�

bk � �k

As we said� a word size of k bits can represent �k distinct patterns� We use these patterns to
represent the unsigned integers from � to �k � �� For example� � bits have �� distinct patterns
representing the equivalent decimal unsigned integers � to ��� � bits for decimal numbers � through
���� and so forth�

Given this representation� we can perform operations on these unsigned integers� Addition of
two binary numbers is straightforward� The following examples illustrate additions of two single
bit binary numbers�

� � � �

�� �� �� ��

��� ��� ��� ���

� � � ��

The last addition� � � �� results in a sum digit of � and a carry forward of �� Similarly� we can
add two arbitrary binary numbers� b� and b�

������ �carry forward �

b� ������ �base �� value	
��

�b� ������� �base �� value	 ���

��� ��������

sum ������ �base �� value	 �
�

Decimal to Binary Conversion

We have seen how� given a binary representation of a number� we can determine the decimal
equivalent� We would also like to go the other way
 given a decimal number� �nd the corresponding
binary pit pattern representing this number� In general� there are two approaches
 one generates
the bits from the most signi�cant �the leftmost bit	 to the least signi�cant
 the other begins with
the rightmost bit and proceeds to the leftmost�

In the �rst case� to convert a decimal number� n� to a binary number� determine the highest
power� k� of � that can be subtracted from n

r � n� �k

�� CHAPTER �� INTRODUCTION

and place a � in the kth binary digit position� The process is repeated for the remainder r� and
so forth until the remainder is zero� All other binary digit positions have a zero� For example�
consider a decimal number ���� The largest power of � less than ��� is �� ��
	

��� � �
 � ��� � �� � ��
�� � �� � �� � �� � �
� � �� � � � � � �
� � �� � � � � � �
� � �� � � � � � �

So we get

weights ��� �
 �� �� �
 � �

� � � � �

which� for an � bit representation give

���� ����

In the alternate method� we divide n by �� using integer division �discarding any fractional
part	� and the remainder is the next binary digit moving from least signi�cant to most� In the
example below� the � operation is called mod and is the remainder from integer division�

��� � � � � ��� � � � ��
�� � � � � �� � � � ��
�� � � � � �� � � � ��
�� � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

Reading the bits top to bottom �lling right to left� the number is

���� ����

Representing Signed Integers

The binary representation discussed above is a standard code for storing unsigned integer numbers�
However� most computer applications use signed integers as well
 i�e� integers that may be either
positive or negative� There are several methods used for representing signed numbers�

The �rst� and most obvious� is to represent signed numbers as we do in decimal� with an
indicator for the sign followed by the magnitude of the number as an unsigned quantity� For
example� we write

����

����

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

In binary we can use one bit within a representation �usually the most signi�cant or leading bit	
to indicate either positive ��	 or negative ��	� and store the unsigned binary representation of the
magnitude in the remaining bits� So for an �� bit word� we can represent the above numbers as

����
 ���� ���� ���� ����

����
 ���� ���� ���� ����

However
 for reasons of ease of design of circuits to do arithmetic on signed binary numbers
�e�g� addition and subtraction	� a more common representation scheme is used called two�s

complement� In this scheme� positive numbers are represented in binary� the same as for unsigned
numbers� On the other hand� a negative number is represented by taking the binary representation
of the magnitude� complementing all bits �changing ��s to ��s and ��s to ��s	� and adding � to the
result�

Let us examine the ��s complement representation of ���� and ���� using �� bits� For �����
the result is the same as for unsigned numbers

����
 ���� ���� ���� ����

For ����� we begin with the unsigned representation of ���

���� ���� ���� ����

complement each bit

���� ���� ���� ����

and add � to the above to get ��s complement

����
 ���� ���� ���� ����

This operation is reversible� that is� the magnitude �or absolute value	 of a two�s complement
representation of a negative number can be obtained with the same procedure
 complement all
bits

���� ���� ���� ����

and add �

���� ���� ���� ����

In a two�s complement representation� we can still use the most signi�cant bit to determine
the sign of the number
 � for positive� and � for negative� Let us determine the decimal value of
a negative ��s complement number

���� ���� ���� ����

This is a negative integer since the leading bit is �� so to �nd its magnitude we complement all
bits
�

���� ���� ���� ����

�� CHAPTER �� INTRODUCTION

and add �

���� ���� ���� ����

The decimal magnitude is ��� and the sign is negative� so� the original integer represents decimal
����

In determining the range of integers that can be represented by k bits� we must allow for the
sign bit� Only k � � bits are available for positive integers� and the range for them is � through
��k���� �� The range of negative integers representable by k bits is �� through ���k���� Thus� the
range of integers representable by k bits is ���k��� through ��k���� �� For example� for � bits� the
range of signed integers is ������� through ������ � �� or ���� to �����

It can be seen from the above analysis that� due to a �nite number of bits used to represent
numbers� there are limits to the largest and�or smallest numbers that can be represented in the
computer� We will discuss this further in Chapter ��

Octal and Hexadecimal Representations

One important thing to keep in mind at this point is that we have been discussing di�erent
representations for numbers� Whether a number is expressed in binary� e�g� ������� or decimal�
��� it is still the same number� namely nineteen� It is simply more convenient for people to
think in decimal and for the computer to use binary� However� converting the computer binary
representation to the human decimal notation is somewhat tedious� but at the same time writing
long strings of bits is also inconvenient and error prone� So two other representation schemes
are commonly used in working with binary representations� These schemes are call octal and
hexadecimal �sometimes called hex	 representations and are simply positional number systems
using base � and ��� respectively�

In general� an unsigned integer� i� consisting of n digits di written as

i � dn��dn�� � � � d�d�d�d�

in any base is interpreted as the sum

i �
n��X

k	�

dk � basek

If the base is � �binary	� the symbols which may be used for the digits di are �� �!� If the base
is �� �decimal	 the digit symbols are �� �� �� �� �� �� �� �� �� �!� Likewise� for base � �octal	 the
digit symbols are �� �� �� �� �� �� �� �!
 and for hexadecimal �base ��	 they are �� �� �� �� �� �� ��
�� �� �� a� b� c� d� e� f!� The letter symbols� a� b� c� d� e� f! �upper case A� B� C� D� E� F! may
also be used	 give us the required �� symbols and correspond to decimal values ��� ��� ��� ��� ���
��! respectively� Using the above sum� it should be clear that the following are representations for
the same number

Base ��
 ���
Base �
 ���� ���� ���� ����
Base �
 ������
Base ��
 ��A�

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

For hexadecimal numbers� the positional weights are� starting from the right� �� ��� ���� etc�
Here are a few examples of converting hex to decimal

Hexadecimal Decimal
�� � " � � � " �� � ��
�E �� " � � � " �� � ��

�C� � " � � �� " �� � � " ��� � ���

Similarly� octal numbers are base � numbers with weights �� �� ��� etc� The following are some
examples of converting octal to decimal

Octal Decimal
�� � " � � � " � � �
�� � " � � � " � � ��

��� � " � � � " � � � " �� � ���

The reason octal and hex are so common in programming is the ease of converting between
these representations and binary� and vice versa� For hexadecimal numbers� exactly four bits are
needed to represent the symbols � through F� Thus� segmenting any binary number into � bit
groups starting from the right� and converting each group to its hexadecimal equivalent gives the
hexadecimal representation�

Binary
 ���� ����
Hex
 A �

�� " �� � � " �
Decimal
 ���

As a side e�ect� conversion from binary to decimal is much easier by �rst converting to hex and
then to decimal� as shown above�

Similarly� segmenting a binary number into three bit groups starting from the right gives us
the octal representation� Thus� the same number can be expressed in octal as

Binary
 �� ��� ���
Octal
 � � �

� " �� � � " � � � " �
Decimal
 ���

Conversion of base � or base �� numbers to binary is very simple
 for each digit� its binary
representation is written down� Conversion between octal and hex is easiest done by converting
to binary �rst

�� CHAPTER �� INTRODUCTION

Decimal ��� ��� �� ��

Binary �������� �������� ������ ������

Hexadec� ���� ���� ���� ���� ���� ���� ���� ����

�X
A �XC
 �X�� �X�F

Octal �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ���

��
� ���
 ��� �

Table ���
 Number Representations

Hex
 � f �
Binary
 ���� ���� ����

Binary
 ��� ��� ��� ���
Octal
 � � � �

Some additional examples of equivalent hexadecimal� octal� binary� and decimal numbers are
shown in Table ��� In a programming language we need a way to distinguish numbers written in
di�erent bases �base �� ��� ��� or �	� In C source programs� a simple convention is used to write
constants in di�erent bases� Decimal numbers are written without leading zeros� Octal numbers
are written with a leading zero� e�g� ���� is octal ���� Hexadecimal numbers are written with
a leading zero followed by an x or X� followed by the hexadecimal digits� Thus� �xA� will mean
hexadecimal A�� �Binary numbers are not used in source programs	�

Representing Other Types of Data

So far we have discussed representations of integers� signed and unsigned
 however� many appli�
cations make use of other types of data in their processing� In addition� some applications using
integers require numbers larger than can be stored in the available number of bits� To address
these problems� another representation scheme� called �oating point is used� This scheme allows
representation of numbers with fractional parts �real numbers	 as well as numbers that may be
very large or very small�

Representation of �oating point numbers is analogous to decimal scienti�c notation� For
example

����� � �� � �

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

����� � �� � �

By adjusting the decimal place� as in the last case above� a number of this form consists of
just three parts
 a fractional part called the mantissa� a base� and an exponent� Over the years�
several schemes have been devised for representing each of these parts and storing them as bits in
a computer� However� in recent years a standard has been de�ned by the Institute for Electrical
and Electronics Engineers �IEEE Standard ���	 which is gaining in acceptance and use in many
computers� A detailed description of these schemes� and their relative tradeo�s� is beyond the
scope of this text
 however� as programmers� it is su�cient that we realize that we can express
�oating point numbers either in decimal with a fractional part

���������

or using exponential form

���������E � �

���������E � �

where E or e refers to exponent of the base ��� in this case	� As with integers� due to the �xed
number of bits used in the representation� there are limits to the range �largest and smallest
numbers	 and the precision �number of digits of accuracy	 for the numbers represented�

Another widely used data type is character data which is non�numeric and includes all the sym�
bols normally used to represent textual material such as letters� digits and punctuation� Chapter
� discusses the representation of character data in detail� however� the principle is the same
 some
pattern of bits is selected to represent each symbol to be stored�

These are the principle data types provided by programming languages� but as we will see
in future Chapters� languages also provide a means for the programmer to de�ne their own data
types and storage schemes�

����� Main Memory

Now that we have seen that information �data	 can be represented in a computer using binary
patterns� we can look at how this information is stored within the machine� An electronic circuit
that can be switched ON or OFF can represent one binary digit or one bit of information� A
class of such devices �called �ip��ops	 which can retain the value of a bit� even after the input
to them changes �though only as long as power is applied to them	� can be used to store a bit�
The Main Memory block of Figure ��� is constructed of many of these devices� organized so that
data �and instructions	 may be stored there and subsequently accessed� Memory in present day
computers is usually organized as a sequence of bytes �a byte is a group of eight bits	� Each byte
in memory is given a unique unsigned integer address� which may be considered its �name�� �See
Figure ���	� A row of houses on a street with street addresses or a row of numbered mailboxes
are reasonable analogies to memory addresses� The CPU �or any other device wishing to access
memory	 may place an address on a set of wires connected to the memory �called the address
bus	 in order to either read �load	 or write �store	 information in memory� Once information

�� CHAPTER �� INTRODUCTION

���� ���� ���� ����

���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����

���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����

FFFF

���B
���A
����

����
����
����
����
����
����

Binary Hex

Address

Memory

Bytes

� � �

� � �

Figure ���
 Memory and Addresses

has been written to a particular location �address	 in memory� it will remain unchanged unless
a subsequent write is performed to the same address� Multiple bytes may be accessed �either
simultaneously or sequentially	 for data items large than a single byte� Like other information in
the computer� an address is represented internally in binary� In the �gure� we have shown the
addresses both in binary and in hexadecimal form�

Computers are often classi�ed by how many bits may be accessed simultaneously� e�g� �� bits
or �� bits� The maximum number of bytes directly addressable in a computer depends on the
number of bits in the memory address� A �� bit machine usually allows �� bits for address and a
�� bit machine usually allows anywhere form �� to �� bits for address� Since n bits can represent
�n values� �� bit addresses can address �� KBytes �i�e� ������ bytes from byte addresses � to
�����	 and �� bit addresses can address � GigaBytes �over ������������� bytes	 directly�

����� Representing Programs

As has been mentioned� in addition to data being stored in memory� the program to be executed is
also stored there in the form of a sequence of instructions� It is the CPU shown in Figure ��� that
is responsible for fetching instructions� one at a time� from memory and performing the speci�ed
operation on data� A more detailed picture of the CPU with its memory is shown in Figure ����
Within the CPU are several key components
 the ALU� a set of Registers� and a Control Unit�

The ALU �Arithmetic Logic Unit	 is a digital circuit which is designed to perform arithmetic

���� REPRESENTING DATA AND PROGRAM INTERNALLY ��

A
A�
� �

�
��A

A
AA

Opcode Address

� �

�

Control

Unit

Registers

Alu

CPU Memory

Instruction

Address

Data

Figure ���
 CPU and Memory Con�guration

�add� subtract	 operations as well as logic �AND� OR	 operations on data� The registers in the
CPU are a small scratchpad memory to temporarily store data while it is in use� The Control
Unit is another circuit which determines what operation is being requested by an instruction and
controls the other circuitry to carry out that operation
 i�e� the Control Unit directs all operations
within the machine�

Also shown in the �gure are the connections between the CPU and Memory� They consist of
an address bus� as mentioned in the previous Section� and a data bus� over which all information
�data and program	 passes between the CPU and Memory�

This Section describes how programs are stored in the machine as a sequence of instructions
coded in binary� Such an encoding is called the machine language of the computer and is
described below�

Machine Language

The basic operations that the CPU is capable of performing are usually quite simple and the set
of these operations provided on a particular computer is called the instruction set� Within this
set are instructions which can move data from one place to another� for example from memory to
a CPU register
 an operation called load� Similarly there are store instructions for moving data
from the CPU to a location in memory� In addition there are instructions directing arithmetic

�� CHAPTER �� INTRODUCTION

operations� such as add� on data values� There are also instructions which control the �ow of the
program
 i�e� that determine from where in memory the next instruction should be fetched� Nor�
mally instructions are fetched sequentially � the next instruction is fetch from the next memory
address
 however� these control instructions may test a condition and direct that the next instruc�
tion be fetched from somewhere else in memory instead� Finally� there may also be instructions in
the set for �housekeeping� operations within the machine� such as controlling external I�O devices�

To encode these instructions in binary form for storage in memory� some convention must be
adopted to describe the meaning of the bits in the instruction� Most of the instructions described
above require at least � pieces of information � a speci�cation of what particular instruction this
is� called the opcode or operation code� and the address of the data item on which to operate�
These parts can be seen in Figure ��� in the block labeled instruction�

Instructions coded in binary form are called machine language instructions and the col�
lection of these instructions that make up a program is called a machine language program�
Such a program is very di�cult for a person to understand or to write� Just imagine thinking in
terms of binary codes for very low level instructions and in terms of binary memory addresses for
data items� It is not practical to do so except for very trivial programs� Humans require a higher
level of programming languages that are more adapted to our way of thinking and communicating�
Therefore� at a level a little higher than machine language� is a programming language called as�
sembly language which is very close to machine language� Each assembly instruction translates
to one machine language instruction� The main advantage is that the instructions and memory
cells are not in binary form
 they have names� Assembly instructions include operational codes�
�i�e�� mnemonic or memory aiding names for instructions	� and they may also include addresses of
data� An example of a very simple program fragment for the machine described above is shown in
Figure ���� The �gure shows the machine language code and its corresponding assembly language
code� De�nitions of memory cells are shown below the program fragment�

The machine language code is shown in binary� It consists of � bits of opcode and �� bits of
address for each instruction� From the assembly language code it is a little easier to see what this
program does� The �rst instruction loads the data stored in memory at a location known as �Y�
into the CPU register �for CPU�s with only one register� this is often called the accumulator	� The
second instruction adds the data stored in memory at location �X� to the data in the accumulator�
and stores the sum back in the accumulator� Finally� the value in the accumulator is stored back
to memory at location �Y�� With the data values shown in memory in the �gure� at the end of
this program fragment� the location known as �Y� will contain the value ���

A utility program is provided to translate the assembly language code �arguably	 readable
by people into the machine language code readable by the CPU� This program is called the
assembler� The program in the assembly language or any other higher language is called the
source program� whereas the program assembled into machine language is called the object
program� The terms source code and object code are also used to refer to source and object
programs�

Assembly language is a decided improvement over programming in machine language� however�
we are still stuck with having to manipulate data in very simple steps such as load� store� add�
etc�� which can be a tedious� error prone process� Fortunately for us� programming languages at

���� DESIGNING PROGRAMS AND THE C LANGUAGE ��

Program Fragment	 Y � Y � X

Machine Language Code Assembly Language

�Binary Code� Code

Opcode Address

���� ���� ���� ���� ���� ���� LOAD Y

���� ���� ���� ���� ���� ���� ADD X

���� ���� ���� ���� ���� ���� STORE Y

Memory Cell Definitions	

Addr� Name Cell Contents

���� X ��

���� Y ��

Figure ���
 Machine and Assembly Language Program Fragment

higher levels still� languages closer to the way we think about programming� have been developed
along with translators �called compilers	 for converting to object programs� One such language
is C� which is the subject of this text and is introduced in the next Section�

��� Designing Programs and the C Language

We de�ned a program as an organized set of instructions stating the steps to be performed by
a computer to accomplish a task� Computer programming is the process of planning� im�
plementing� testing� and revising �if necessary	 the sequences of instructions in order to develop
successful programs� In writing computer programs we must specify with precise� unambiguous
instructions exactly what we want done and the order in which it should be done� Before we can
write the actual program� we must either know or develop a step�by�step procedure� or algorithm�
that will accomplish the task� We can then implement the algorithm by coding it into a source
language program�

����� Designing The Algorithm

An algorithm is a general solution of a problem which can be written as a verbal description of
a precise� logical sequence of actions� Cooking recipes� assembly instructions for appliances and

�� CHAPTER �� INTRODUCTION

pay

calculate

cum� total

update

pay

print

data

read

Payroll

Task

pay disbursed

print

� �� �

� �
�loop	

proc � empl�

Figure ���
 Structural Diagram for Payroll Task

toys� or precise directions to reach a friend�s house� are all examples of algorithms� A computer
program is an algorithm expressed in a speci�c programming language� An algorithm is the key
to developing a successful program�

Suppose a business o�ce requires a program for computing its payroll� There are several people
employed� They work regular hours� and sometimes overtime� The task is to compute pay for
each person as well as compute the total pay disbursed�

Given the problem� we may wish to express our recipe or algorithm for solving the payroll
problem in terms of repeated computations of total pay for several people� The logical modules
involved are easy to see�

Algorithm	 PAYROLL

Repeat the following while there is more data	

get data for an individual�

calculate the pay for the individual from the current data�

and� update the cumulative pay disbursed so far�

print the pay for the individual�

After the data is exhausted� print the total pay disbursed�

Figure ��� shows a structural diagram for our task� This is a layered diagram showing the
development of the steps to be performed to solve the task� Each box corresponds to some subtask
which must be performed� On each layer� it is read from left to right to determine the performance
order� Proceeding down one layer corresponds to breaking a task up into smaller component steps
� a re�nement of the algorithm� In our example� the payroll task is at the top and that box
represents the entire solution to the problem� On the second layer� we have divided the problem
into two subtasks
 processing a single employee�s pay in a loop �to be described below	� and

���� DESIGNING PROGRAMS AND THE C LANGUAGE ��

HHH���HH
H�
��more�

no
�

�
read data

start

�

�

�

�

�

�

�

calc pay

update

cum total

print pay

print pay

disbursed

read data

end

yes

Figure ���
 Flow Chart for Payroll Task

printing the total pay disbursed for all employees� The subtask of processing an individual pay
record is then further re�ned in the next layer� It consists of� �rst reading data for the employee�
then calculating the pay� updating a cumulative total of pay disbursed� and �nally printing the
pay for the employee being processed�

The structural diagram is useful in developing the steps involved in designing the algorithm�
Boxes are re�ned until the steps within the box are �doable�� Our diagram corresponds well with
the algorithm developed above� However� this type of diagram is not very good at expressing the
sequencing of steps in the algorithm� For example� the concept of looping over many employees
is lost in the bottom layer of the diagram� Another diagram� called a �ow chart is useful for
showing the control �ow of the algorithm� and can be seen in Figure ���� Here the actual �ow
of control for repetitions is shown explicitly� We �rst read data since the control �ow requires us
to test if there is more data� If the answer is �yes� we proceed to the calculation of pay for an
individual� updating of total disbursed pay so far� and printing of the individual pay� We then
read the next set of data and loop back to the test� If there is more data� repeat the process�
otherwise control passes to the printing of total disbursed pay and the program ends�

�� CHAPTER �� INTRODUCTION

From this diagram we can write our re�ned algorithm as shown below� However� one module
may require further attention
 the one that calculates pay� Each calculation of pay may involve
arithmetic expressions such as multiplying hours worked by the rate of pay� It may also involve
branching to alternate computations if the hours worked indicate overtime work� Incorporating
these speci�cs� our algorithm may be written as follows

Algorithm	 PAYROLL

get �first� data� e�g�� id� hours worked� rate of pay

while more data �repeat the following�

if hours worked exceeds
�

�then� calculate pay using overtime pay calculation

otherwise calculate pay using regular pay calculation

calculate cumulative pay disbursed so far

print the pay statement for this set of data

get �next� data

print cumulative pay disbursed

The algorithm is the most important part of solving di�cult problems� Structural diagrams
and �ow charts are tools that make the job of writing the algorithm easier� especially in complex
programs� The �nal re�ned algorithm should use the same type of constructs as most programming
languages� Once an algorithm is developed� the job of writing a program in a computer language
is relatively easy
 a simple translation of the algorithm steps into the proper statements for the
language� In this text� we will use algorithms to specify how tasks will be performed� Programs
that follow the algorithmic logic will then be easy to implement� Readers may wish to draw
structural diagrams and �ow charts as visual aids in understanding complex algorithms�

There is a common set of programming constructs provided by most languages useful for
algorithm construction� including

� Branching
 test a condition� and specify steps to perform for the case when the condition is
satis�ed �True	� and �optionally	 when the condition is not satis�ed �False	� This construct
was used in our algorithm as

if overtime hours exceed
�

then calculate pay using overtime pay calculation

otherwise calculate pay using regular pay calculation

� Looping
 repeat a set of steps as long as some condition is True� as seen in

while new data repeat the following

���

���� DESIGNING PROGRAMS AND THE C LANGUAGE ��

� Read or print data from�to peripheral devices� Reading of data by programs is called data
input and writing by programs is called data output� The following steps were used in our
algorithm

read data

write�print data� individual pay� disbursed pay

Languages that include the above types of constructions are called algorithmic languages

and include such languages as C� Pascal� and FORTRAN�

A program written in an algorithmic language must� of course� be translated into machine
language� A Utility program� called a compiler� translates source programs in algorithmic lan�
guages to object programs in machine language� One instruction in an algorithmic language� called
a statement� usually translates to several machine level instructions� The work of the compiler�
the translation process� is called compilation�

To summarize� program writing requires �rst formulating the underlying algorithm that will
solve a particular problem� The algorithm is then coded into an algorithmic language by the
programmer� compiled by the compiler� and loaded into memory by the operating system� Finally�
the program is executed by the hardware�

����� The C Language

In this text� our language of choice for implementing algorithms is C� C was originally developed
on a small machine �PDP���	 by Dennis Ritchie for implementing the UNIX operating system
at Bell Laboratories in Murray Hill� New Jersey ��������	� C is now used for a wide range of
applications including UNIX implementations� systems programming� scienti�c and engineering
computation� spreadsheets� and word processing� In fact� the popularity of C has encouraged the
development of a C standard by the American National Institute of Standards �ANSI	� This text
adheres to ANSI C� Major di�erences between ANSI C and �old C� are pointed out in Appendix
B� References at the end of this chapter include books by Kernighan and Ritchie �� �!� which
de�ne both traditional C and ANSI C as well as a reference to the proposed ANSI C standard by
Harbison and Steele �!�

In keeping with the original intent� C is a small language
 however� it features modern control
�ow and data structures and a rich set of operators� C provides a wealth of constructs� or state�
ments� which correspond to good algorithmic structures� C uses a standard library of functions to
perform many routine tasks such as input and output and string operations� Since C is oriented
towards the use of a library of functions� programs in C tend to be modular with numerous small
functional modules� It is also possible for users to develop their own libraries of functions to
improve program development�

C is fairly standard
 programs written in C are easily moved from one machine to another� Such
portability of programs is a major advantage in that applications developed on one computer can be

�� CHAPTER �� INTRODUCTION

used elsewhere� This allows one to write clear and algorithmically well structured programs� Such a
structured programming approach is very important in developing complex� error�free applications�

C provides low level logic operations� normally available only in machine language or assembly
language� Low level operations are required for systems programming� such as writing operating
systems and other programs at the system level� Today� many operating systems are written in C�
C is also suitable for writing scienti�c and engineering programs� for example it provides double
precision computations of real numbers� as well as long integer computation which can be useful
in many applications where a large range of integers is required�

As a �rst programming language C has some weaknesses
 however� they can be overcome by
discipline in writing programs� In the text� we will indicate items that beginning programmers
need to watch out for�

��� Summary

In this Chapter we have given a brief overview of modern computing systems� including both the
hardware and software� We had described how information is represented in these machines� both
data and programs� We have discussed the development of algorithms as the �rst� and probably
most important step in writing a program� As we shall see� programming is a design process
 an
algorithm is written� coded� and tested followed by iteration� Programs are not written in one
step � initial versions are developed and then re�ned and improved�

One brief note about the organization of chapters in the text� In this chapter �following the
References	 are two sections labeled Exercises and Problems� These are very important sections in
learning to program� because the only way to learn and improve programming skills is to program�
The exercises are designed to be done with pencil�and�paper� They test the key concepts and
language constructs presented in the chapter� The problems are generally meant to be computer
exercises� They present problems for which programs should be written� By writing these programs
you will increase your experience in the methods and thought processes that go into developing
ever more complex applications�

With the background of this Chapter� we are ready to begin looking at the speci�cs of the C
language� so

E ho#omaka k$akou�
�Let�s start��

���� REFERENCES ��

��� References

 �! Kernighan� Brian W�� and Ritchie� Dennis M� The C Programming Language� First Edition�
Englewood Cli�s� N�J�
 Prentice�Hall� �����

 �! Kernighan� Brian W�� and Ritchie� Dennis M� The C Programming Language� Second Edition�
Englewood Cli�s� N�J�
 Prentice�Hall� �����

 �! Harbison� Samuel P�� and Steele� Guy L� Jr�� C
 A Reference Manual� Second Edition� Engle�
wood Cli�s� N�J�
 Prentice�Hall� �����

�� CHAPTER �� INTRODUCTION

��� Exercises

�� Convert the following binary numbers into decimal values

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

�� Convert the following octal numbers into decimal

����
�

������

���

�� Convert the following hexadecimal numbers into decimal

�A

FF

��

�� Convert the following decimal integer values into binary� octal� and hexadecimal

���

��

���

�� Add the following binary numbers

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

�� Add the following octal numbers

����
�

������

���

�� Add the following hexadecimal numbers

�A

FF

��

�� How many distinct binary strings can be formed with n bits%

���� EXERCISES ��

�� Find the negative of the following binary numbers in a two�s complement representation

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

��� Represent the following in two�s complement form using �� bits

���

���

����

��� What is the largest positive integer that can be stored in n bits� with one leading bit reserved
for the sign bit% Explain� Negative integer% Assume two�s complement representations�

�� CHAPTER �� INTRODUCTION

��� Problems

�� Develop an algorithm for the calculation of the value of each stock and the total value of a
portfolio of stocks� Draw a structural diagram and write the algorithm using constructions
used in the text�

�� Develop an algorithm for calculating and printing the squares of a set of numbers� Draw a
structural diagram� a �ow chart� and write the algorithm�

�� Develop an algorithm for calculation of the grade point ratio for each student� i�e�� �total
grade points	 � �total credit hours	� Each student earns grades ����	 in a set of courses�
each course with di�erent credit hours ����	� Grade points in one course are given by the
product of the grade and the credit hours for the course� Draw a structural diagram and a
�ow chart�

�� Assume that an �add� operator is available� but not a �multiply� operator in a programming
language� Develop an algorithm that will multiply two positive integers using only the �add�
operator�

�� Assume that you are only able to read the numeric value of each successive digits of a decimal
integer one digit at a time� The objective is to �nd the overall numeric value of the number�
As each new digit is read� the overall numeric equivalent must be updated to allow for the
new digit� For example� if the digits read are ���� and �� the result printed should be ����
Extend the algorithm for a number in any speci�ed base�

�� Log in to the computer system available to you� Practice using the text editor available by
entering the following simple program and storing it in a �le

main��

�

printf��hello world�n���

�

�� Compile the program you entered in Problem �� Note which �le have been created during
compilation� Execute the compiled program�

�� Explore the computer you will be using� See what applications may be available to you such
as electronic mail� and news�

