Chapter 1

Introduction

In our modern society Electronic Digital Computer Systems, commonly referred to as computer
systems or computers, are everywhere. We find them in offices, factories, hospitals, schools,
stores, libraries, and now in many homes. Computers show up in sometimes unexpected places
— in your car, your television and your microwave, for example. We use computers to perform
tasks in science, engineering, medicine, business, government, education, entertainment, and many
other human endeavors. Computers are in demand wherever complex and/or high speed tasks are
to be performed.

Computers have become indispensable tools of modern society. They work at high speed, are
able to handle large amounts of data with great accuracy, and have the ability to carry out a
specified sequence of operations, i.e. a program without human intervention and are able to
change from one program to another on command.

Computer systems are general purpose information processing machines used to solve problems.
Solving these problems may involve processing information (i.e., data) which represent numbers,
words, pictures, sounds, and many other abstractions. Because we are talking about digital
computers, the information to be processed must be represented as discrete values selected from a
(possibly very large but finite) set of individual values. For example, integer numbers (the counting
numbers) can be represented in a computer by giving a unique pattern to each integer up to the
maximum number of patterns available to the particular machine. We will see how these patterns
are defined in a later section of this Chapter. This mapping of an internal machine pattern to a
meaning is refered to as a data type.

Given a representation of information, we would like to be able to perform operations on this
data such as addition or comparison. The fundamental operations provided in a computer are
very simple logical and arithmetic operations; however, these simple operations can be combined
to perform more complex operations. For example, multiplication can be performed by doing
repeated additions. The basic operations provided by a particular computer are called instruc-
tions and a well defined sequence of these instructions is called a program. It is the job of the
programmer, then, to represent the information of the problem using the data types provided and
to specify the sequence of operations which must be performed to solve the problem. As we will

2 CHAPTER 1. INTRODUCTION

Applications

Word Processing Spread Sheet Etc.

User Programs

Utilities
Shell Editor Compiler File System
Software Operating System
Scheduler Memory Manager I/O System Protection
Peripherald . CPU |, > Main
Memory
Hardware
Secondary
Memory

Figure 1.1: Computer System Block Diagram

see in Section 1.2.3, because of the simple nature of the operations available, specifying the proper
sequence of instructions to perform a task can be a very complex and tedious task. Fortunately
for us, this task has been made simpler these days (using the computers themselves) through the
use of high level programming languages. It is one of these languages, the C language that we will
discuss in this text.

1.1 Computer System Organization

Before we look at the C language, let us look at the overall organization of computing systems.
Figure 1.1 shows a block diagram of a typical computer system. Notice it is divided into two
major sections; hardware and software.

1.1.1 Computer Hardware

The physical machine, consisting of electronic circuits, is called the hardware. It consists of
several major units: the Central Processing Unit (CPU), Main Memory, Secondary Memory and
Peripherals.

The CPU is the major component of a computer; the “electronic brain” of the machine. It
consists of the electronic circuits needed to perform operations on the data. Main Memory is
where programs that are currently being executed as well as their data are stored. The CPU

1.1. COMPUTER SYSTEM ORGANIZATION 3

fetches program instructions in sequence, together with the required data, from Main Memory
and then performs the operation specified by the instruction. Information may be both read
from and written to any location in Main Memory so the devices used to implement this block
are called random access memory chips (RAM). The contents of Main Memory (often simply
called memory) are both temporary (the programs and data reside there only when they are
needed) and volatile (the contents are lost when power to the machine is turned off).

The Secondary Memory provides more long term and stable storage for both programs and
data. In modern computing systems this Secondary Memory is most often implemented using
rotating magnetic storage devices, more commmonly called disks (though magnetic tape may also
be used); therefore, Secondary Memory is often referred to as the disk. The physical devices
making up Secondary Memory, the disk drives, are also known as mass storage devices because
relatively large amounts of data and many programs may be stored on them.

The disk drives making up Secondary Memory are one form of Input/Output (1/O) device since
they provide a means for information to be brought into (input) and taken out of (output) the CPU
and its memory. Other forms of I/O devices which transfer information between humans and the
computer are represented by the Peripherals box in Figure 1.1. These Peripherals include of devices
such as terminals — a keyboard (and optional mouse) for input and a video screen for output, high-
speed printers, and possibly floppy disk drives and tape drives for permanent, removable storage of
data and programs. Other [/O devices may include high-speed optical scanners, plotters, multiuser
and graphics terminals, networking hardware, etc. In general, these devices provide the physical
interface between the computer and its environment by allowing humans or even other machines
to communicate with the computer.

1.1.2 Computer Software — The Operating System

Hardware is called “hard” because, once it is built, it is relatively difficult to change. However,
the hardware of a computer system, by itself, is useless. It must be given directions as to what
to do, i.e. a program. These programs are called software; “soft” because it is relatively easy to
change both the instructions in a particular program as well as which program is being executed
by the hardware at any given time. When a computer system is purchased, the hardware comes
with a certain amount of software which facilitates the use of the system. Other software to run
on the system may be purchased and/or written by the user. Some major vendors of computer

systems include: IBM, DEC, HP, AT&T, Sun, Compaq, and Apple.

The remaining blocks in Figure 1.1 are typical software layers provided on most computing
systems. This software may be thought of as having a hierarchical, layered structure, where each
layer uses the facilities of layers below it. The four major blocks shown in the figure are the
Operating System, Utilities, User Programs and Applications.

The primary responsibility of the Operating System (OS) is to “manage” the “resources” pro-
vided by the hardware. Such management includes assigning areas of memory to different programs
which are to be run, assigning one particular program to run on the CPU at a time, and con-
trolling the peripheral devices. When a program is called upon to be executed (its operations

4 CHAPTER 1. INTRODUCTION

performed), it must be loaded, i.e. moved from disk to an assigned area of memory. The OS may
then direct the CPU to begin fetching instructions from this area. Other typical responsibilities
of the OS include Secondary Storage management (assignment of space on the disk), a piece of
software called the file system, and Security (protecting the programs and data of one user from
activities of other users that may be on the same system).

Many mainframe machines normally use proprietary operating systems, such as VM and CM$S
(IBM) and VAX VMS and TOPS 20 (DEC). More recently, there is a move towards a standard-
ized operating system and most workstations and desktops typically use Unix (AT&T and other
versions). A widely used operating system for IBM PC and compatible personal computers is DOS
(Microsoft). Apple Macintosh machines are distinguished by an easy to use proprietary operating
system with graphical icons.

1.1.3 Utility Programs

The layer above the OS is labeled Utilities and consists of several programs which are primarily
responsible for the logical interface with the user, i.e. the “view” the user has when interacting
with the computer. (Sometimes this layer and the OS layer below are considered together as the
operating system). Typical utilities include such programs as shells, text editors, compilers, and
(sometimes) the file system.

A shell is a program which serves as the primary interface between the user and the operating
system. The shell is a “command interpreter”, i.e. is prompts the user to enter commands for
tasks which the user wants done, reads and interprets what the user enters, and directs the OS to
perform the requested task. Such commands may call for the execution of another utility (such as
a text editor or compiler) or a user program or application, the manipulation of the file system, or
some system operation such as logging in or out. There are many variations on the types of shells
available, from relatively simple command line interpreters (DOS) or more powerful command line
interpreters (the Bourne Shell, sh, or C Shell, ¢sh in the Unix environment), to more complex, but
easy to use graphical user interfaces (the Macintosh or Windows). You should become familiar
with the particular shell(s) available on the computer you are using, as it will be your primary
means of access to the facilities of the machine.

A text editor (as opposed to a word processor) is a program for entering programs and data
and storing them in the computer. This information is organized as a unit called a file similar to a
file in an office filing cabinet, only in this case it is stored on the disk. (Word processors are more
complex than text editors in that they may automatically format the text, and are more properly
considered applications than utilities). There are many text editors available (for example vi and
emacs on Unix systems) and you should familiarize yourself with those available on your system.

As was mentioned earlier, in today’s computing environment, most programming is done in
high level languages (HLL) such as C. However, as we shall see in Section 1.2.3, the computer
hardware cannot understand these languages directly. Instead, the CPU executes programs coded
in a lower level language called the machine language. A utility called a compiler is program
which translates the HLL program into a form understandable to the hardware. Again, there are

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 5

many variations in compilers provided (for different languages, for example) as well as facilities
provided with the compilers (some may have built-in text editors or debugging features). Your
system manuals can describe the features available on your system.

Finally, another important utility (or task of the operating system) is to manage the file system
for users. A file system is a collection of files in which a user keeps programs, data, text material,
graphical images, etc. The file system provides a means for the user to organize files, giving them
names and gathering them into directories (or folders) and to manage their file storage. Typical
operations which may be done with files include creating new files, destroying, renaming, and
copying files.

1.1.4 User Programs and Applications

Above the utilities in Figure 1.1 is the block labeled User Programs. It is at this level where a
computer becomes specialized to perform a task to solve a user’s problem. Given a task that
needs to be performed, a programmer can design and code a program to perform that task using
the text editors, compilers, debuggers, etc. The program so written may make use of operating
system facilities, for example to do 1/0 to interact with the program user. It is at this level that
the examples, exercises and problems in this text will be written.

However, not everyone who uses a computer is a programmer or desires to be a programmer. As
well, if every time a new task was presented to be programmed, one had to start from scratch with
a new program, the utility and ease of using the computers would be reduced. These days packages
of predefined software, or Applications, are available from many vendors in the industry. Highly
functional word processors, desktop publishing packages, spread sheet and data base programs and,
yes, games are readily available for computer users as well as programmers. In fact, perhaps most
computer users these days access their machines exclusively through these application programs.

A computer system is typically purchased with an operating system, a variety of utilities (such
as compilers for high level languages and text editors) and application programs. Without the
layers of software in modern computers, computer systems would not be as useful and popular as
they are today. While the complexity of these underlying layers has increased greatly in recent
years, the net effect has been to make computers easier for people to use.

In the remainder of this Chapter we will take a more detailed look at how data and programs
are represented within the machine. We finally discuss the design of programs and their coding in
the C language before beginning a detailed description in Chapter 2.

1.2 Representing Data and Program Internally

In a computer, it is the hardware discussed in the previous section that stores data items and
programs and that performs operations on these items. This hardware is implemented using
electronic circuits called gates which, because we are talking about digital computers, represent

6 CHAPTER 1. INTRODUCTION

information using only two values: True and False. In most machines, these two values are
represented by two different voltages with in the circuit; for example 0 Volts representing a False
value, and +5 Volts representing a True value. One such value is called a binary digit or bit
and each such bit can be considered to be a symbol for a piece of information. However, in
computer applications we need to represent information that can have more than just two values,
i.e. we have more than 2 symbols. So bits are grouped together and the pattern of values on
the group is used to represent a symbol. For example, a group of 8 bits, called a byte can have
256 different patterns (we will see how below) and therefore represent 256 different symbols. In
modern computers, groupings of bytes (usually 2 or 4), called words can represent larger “chunks”
of information.

Simply representing symbols in a computer, however, is not sufficient. We also need to process
the information, i.e. perform operations on it. The designers of the hardware make use of an
algebra, called Boolean Algebra, which uses two values, 0 and 1, and logical operations (AND),
OR and NOT) to design the circuits that perform more complex operations on bytes and words
of data. These complex operations are the instruction set of the computer and are the basic
tools the programmer has to write software for the computer. All executable programs must be
sequences of instructions from this set which includes basic arithmetic, logical, store and retrieve,
and program control instructions. The instructions themselves can also be represented in the
machine as patterns of bits.

This section first discusses how different types of data are represented using patterns of bits,
then describes how data, as well as instructions, are stored in memory, and finally gives a short
example of how instructions are represented.

1.2.1 Representing Data

Standard methods for representing commonly used numeric and non-numeric data have been
developed and are widely used. While a knowledge of internal binary representation is not required
for programming in C, an understanding of internal data representation is certainly helpful.

Binary Representation of Integers

As mentioned above, all data, including programs, in a computer system is represented in terms
of groups of binary digits. A single bit can represent one of two values, 0 or 1. A group of two
bits can be used to represent one of four values:

00 --- 0
01 --- 1
10 --- 2
11 --- 3

If we have only four symbols to represent, we can make a one-to-one correspondence between the
patterns and the symbols, i.e., one and only one symbol is associated with each binary pattern.

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 7

For example, the numbers 0, 1, 2, and 3 are mapped to the patterns above.

Such a correspondence is called a code and the process of representing a symbol by the
corresponding binary pattern is called coding or encoding. Three binary digits can be used to
represent eight possible distinct values using the patterns:

000 100
001 101
010 110
011 111

A group of k binary digits (bits) can be used to represent 2% symbols. Thus, 8 bits are used to
represent 28 = 256 values, 10 bits to represent 2!° = 1024 values, and so on. It should be clear by
now that powers of two play an important role because of the binary representation of all data.
The number 1024 is close to one thousand, and it is called 1K', where K stands for Kilo; n K equals
n* 1024, and if n = 2™, then nK is 201047,

We will first present a standard code for natural numbers, i.e., unsigned integers 0, 1, 2, 3, 4,
etc. There are several ways to represent these numbers as groups of bits, the most natural way
is analogous to the method we use to represent decimal numbers. Recall, a decimal (or base 10)
representation uses exactly ten digit symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Any decimal number
is represented using a weighted positional notation.

For example, a single digit number, say 9, represents just nine, because the weight of the
rightmost position is 1. A two digit number, say 39, represents thirty plus nine. The rightmost
digit has a weight 1, and the next digit to the left has a weight of 10. So, we multiply 3 by 10,
and add 9 multiplied by 1. Thus, for decimal notation the weights for the digits starting from the
rightmost digit and moving to the left are 1, 10, 100, and so on, as shown below.

5 4 3 2 1 0 digit position
100000 10000 1000 100 10 1 position weight

Thus,

3456 = (6 % 1) + (5 * 10) + (4 % 100) + (3 * 1000)

The positional weights are the powers of the base value 10, with the rightmost position having
the weight of 10°, the next positions to the left having in succession the weight of 10', 10%, 107,
and so on. Such an expression is commonly written as a sum of the contribution of each digit,
starting with the lowest order digit and working toward the largest weight; that is, as sums of
contributions of digits starting from the rightmost position and working toward the left.

Thus, if ¢ is an integer written in decimal form with digits dj:

8 CHAPTER 1. INTRODUCTION

i — dn_ldn_g e d2d1d0

then ¢ represents the sum:

n—1

i=Y dy* 10F

k=0

where n is the total number of digits, and d, is the k' digit from the rightmost position in the
decimal number.

Binary representation of numbers is written in exactly the same manner. The base is 2, and
a number is written using just two digits symbols, 0 and 1. The positional weights, starting from
the right are now powers of the base 2. The weight for the rightmost digit is 2° = 1, the next digit
has the weight of 2! = 2, the next digit has the weight of 2% = 4, and so on. Thus, the weights for
the first ten positions from the right are as follows:

w9 8 7 6 5 4

0 position
1024 512 256 128 64 32 16 1

2 1
4 2 pos. weights

A natural binary number is written using these weights. For example, the binary number
10010
represents the number whose decimal equivalent is
2042'=2+16=18

and the binary number

10101000

represents the number whose decimal equivalent is

23 +2° 42" =8 +4+32+ 128 = 168

When a binary number is stored in a computer word with a fixed number of bits, unused bits
to the left (leading bits) are set to 0. For example, with a 16 bit word, the binary equivalent of
168 is

0000 0000 1010 1000

We have shown the bits in groups of four to make it easier to read.
In general, if 2 is an integer written in binary form with digits by:

i — bn—lbn—Z e bzblbo

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 9

then its decimal equivalent is:
n—1
i= > byx2F
k=0

As we said, a word size of k bits can represent 2* distinct patterns. We use these patterns to
represent the unsigned integers from 0 to 2% — 1. For example, 4 bits have 16 distinct patterns
representing the equivalent decimal unsigned integers 0 to 15, 8 bits for decimal numbers 0 through

255, and so forth.

Given this representation, we can perform operations on these unsigned integers. Addition of
two binary numbers is straightforward. The following examples illustrate additions of two single
bit binary numbers.

0 0 1 1
+0 +1 +0 +1
0 1 1 10

The last addition, 1 + 1, results in a sum digit of 0 and a carry forward of 1. Similarly, we can
add two arbitrary binary numbers, b1l and b2:

011100 (carry forward)
b1 101110 (base 10 value: 46)
+b2 +001011 (base 10 value: 11)
sum 111001 (base 10 value: 57)

Decimal to Binary Conversion

We have seen how, given a binary representation of a number, we can determine the decimal
equivalent. We would also like to go the other way; given a decimal number, find the corresponding
binary pit pattern representing this number. In general, there are two approaches; one generates
the bits from the most significant (the leftmost bit) to the least significant; the other begins with
the rightmost bit and proceeds to the leftmost.

In the first case, to convert a decimal number, n, to a binary number, determine the highest
power, k, of 2 that can be subtracted from n:

r=n—2k

10 CHAPTER 1. INTRODUCTION

and place a 1 in the k' binary digit position. The process is repeated for the remainder r, and
so forth until the remainder is zero. All other binary digit positions have a zero. For example,
consider a decimal number 103. The largest power of 2 less than 103 is 64 (2°):

103 — 26 = 103 — 64 = 39
39 — 28 = 39 — 32 = 7
T — 22 = T — 4 = 3
3 — 28 = 3 — 2 =1
1 — 20 = 1 — 1 = 0
So we get:
welghts 128 64 32 16 8 4 2 1
1 1 1 1 1
which, for an 8 bit representation give:
0110 0111

In the alternate method, we divide n by 2, using integer division (discarding any fractional
part), and the remainder is the next binary digit moving from least significant to most. In the
example below, the % operation is called mod and is the remainder from integer division.

103 %2 =1 103 /2 = 51
51 %2 =1 51 /2= 25
25 %2 =1 25 /2= 12
12 %2=0 12 /2= 6
6 %2 =0 6 /2= 3
3 %2 =1 3 /2= 1
1 %2 =1 1 /2= 0

Reading the bits top to bottom filling right to left, the number is

0110 0111

Representing Signed Integers

The binary representation discussed above is a standard code for storing unsigned integer numbers.
However, most computer applications use signed integers as well; i.e. integers that may be either
positive or negative. There are several methods used for representing signed numbers.

The first, and most obvious, is to represent signed numbers as we do in decimal, with an
indicator for the sign followed by the magnitude of the number as an unsigned quantity. For
example, we write:

+100
—100

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 11

In binary we can use one bit within a representation (usually the most significant or leading bit)
to indicate either positive (0) or negative (1), and store the unsigned binary representation of the
magnitude in the remaining bits. So for an 16 bit word, we can represent the above numbers as:

-+100 : 0000 0000 0110 0100

—100 : 1000 0000 0110 0100

However; for reasons of ease of design of circuits to do arithmetic on signed binary numbers
(e.g. addition and subtraction), a more common representation scheme is used called two’s
complement. In this scheme, positive numbers are represented in binary, the same as for unsigned
numbers. On the other hand, a negative number is represented by taking the binary representation
of the magnitude, complementing all bits (changing 0’s to 1’s and 1’s to 0’s), and adding 1 to the
result.

Let us examine the 2’s complement representation of +100 and —100 using 16 bits. For 4100,
the result is the same as for unsigned numbers:

+100 : 0000 0000 0110 0100
For —100, we begin with the unsigned representation of 100:

0000 0000 0110 0100

complement each bit:

1111 1111 1001 1011
and add 1 to the above to get 2’s complement:

—100: 1111 1111 1001 1100

This operation is reversible, that is, the magnitude (or absolute value) of a two’s complement
representation of a negative number can be obtained with the same procedure; complement all
bits:

0000 0000 0110 0011

and add 1:
0000 0000 0110 0100

In a two’s complement representation, we can still use the most significant bit to determine
the sign of the number; 0 for positive, and 1 for negative. Let us determine the decimal value of
a negative 2’s complement number:

1111 1111 1101 0110

This is a negative integer since the leading bit is 1, so to find its magnitude we complement all
bits:.
0000 0000 0010 1001

12 CHAPTER 1. INTRODUCTION

and add 1:
0000 0000 0010 1010

The decimal magnitude is 42, and the sign is negative, so, the original integer represents decimal
—42.

In determining the range of integers that can be represented by k bits, we must allow for the
sign bit. Only £ — 1 bits are available for positive integers, and the range for them is 0 through
2(k=1) _ 1. The range of negative integers representable by k bits is -1 through —2%=1 . Thus, the
range of integers representable by k bits is —2(*=1) through 2(*=1) — 1. For example, for 8 bits, the
range of signed integers is —28~Y through 2= — 1, or —128 to +127.

It can be seen from the above analysis that, due to a finite number of bits used to represent
numbers, there are limits to the largest and/or smallest numbers that can be represented in the
computer. We will discuss this further in Chapter 5.

Octal and Hexadecimal Representations

One important thing to keep in mind at this point is that we have been discussing different
representations for numbers. Whether a number is expressed in binary, e.g. 010011, or decimal,
19, it is still the same number, namely nineteen. It is simply more convenient for people to
think in decimal and for the computer to use binary. However, converting the computer binary
representation to the human decimal notation is somewhat tedious, but at the same time writing
long strings of bits is also inconvenient and error prone. So two other representation schemes
are commonly used in working with binary representations. These schemes are call octal and
hexadecimal (sometimes called hex) representations and are simply positional number systems
using base 8 and 16, respectively.

In general, an unsigned integer, ¢, consisting of n digits d; written as:
i — dn_ldn_g e d3d2d1d0

in any base is interpreted as the sum:

n—1

= Z dy, * base®

k=0
If the base is 2 (binary), the symbols which may be used for the digits d; are [0, 1]. If the base
is 10 (decimal) the digit symbols are [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Likewise, for base 8 (octal) the
digit symbols are [0, 1, 2, 3, 4, 5, 6, 7]; and for hexadecimal (base 16) they are [0, 1, 2, 3, 4, 5, 6,
7,8,9,a, b, c,d, e f]. The letter symbols, [a, b, ¢, d, e, f] (upper case [A, B, C, D, E, F] may
also be used) give us the required 16 symbols and correspond to decimal values [10, 11, 12, 13, 14,
15] respectively. Using the above sum, it should be clear that the following are representations for
the same number:

Base 10: 423
Base 2: 0000 0001 1010 0111
Base 8 000647

Base 16: 01A7

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 13

For hexadecimal numbers, the positional weights are, starting from the right, 1, 16, 256, etc.
Here are a few examples of converting hex to decimal:

Hexadecimal Decimal
30 0*1+4+3%*16 = 48
1E 14*1+1*16 = 30
1C2 2*%14+12%16 +1*256 = 450

Similarly, octal numbers are base 8 numbers with weights 1, 8, 64, etc. The following are some

examples of converting octal to decimal:

Octal Decimal

11 1*14+1%8 = 9
20 0*%14+2%*8 = 16
257 T*14+5*%84+2%64 = 175

The reason octal and hex are so common in programming is the ease of converting between
these representations and binary, and vice versa. For hexadecimal numbers, exactly four bits are
needed to represent the symbols 0 through F. Thus, segmenting any binary number into 4 bit
groups starting from the right, and converting each group to its hexadecimal equivalent gives the

hexadecimal representation.

Binary: 1010 1000

Hex: A 8
10*16 + 8*1

Decimal: 168

As a side effect, conversion from binary to decimal is much easier by first converting to hex and

then to decimal, as shown above.

Similarly, segmenting a binary number into three bit groups starting from the right gives us
the octal representation. Thus, the same number can be expressed in octal as:

Binary: 10 101 000
Octal: 2 5 0

2%64 + 5*8 4+ 0*1
Decimal: 168

Conversion of base 8 or base 16 numbers to binary is very simple; for each digit, its binary
representation is written down. Conversion between octal and hex is easiest done by converting

to binary first:

14 CHAPTER 1. INTRODUCTION

Decimal 122 199 21 63
Binary 01111010 11000111 010101 111111
Hexadec. 0111 1010 1100 0111 0001 0101 0011 1111

0XT7A 0XC7 0X15 0X3F
Octal 01 111 010 11 000 111 00 010 101 00 111 111
0172 0307 025 o077

Table 1.1: Number Representations

Hex: 2 f 3
Binary: 0010 1111 0011

Binary: 001 011 110 011
Octal: 1 3 6 3

Some additional examples of equivalent hexadecimal, octal, binary, and decimal numbers are
shown in Table 1.1 In a programming language we need a way to distinguish numbers written in
different bases (base 8, 16, 10, or 2). In C source programs, a simple convention is used to write
constants in different bases. Decimal numbers are written without leading zeros. Octal numbers
are written with a leading zero, e.g. 0250 is octal 250. Hexadecimal numbers are written with
a leading zero followed by an x or X, followed by the hexadecimal digits. Thus, 0xA8 will mean
hexadecimal A8. (Binary numbers are not used in source programs).

Representing Other Types of Data

So far we have discussed representations of integers, signed and unsigned; however, many appli-
cations make use of other types of data in their processing. In addition, some applications using
integers require numbers larger than can be stored in the available number of bits. To address
these problems, another representation scheme, called floating point is used. This scheme allows
representation of numbers with fractional parts (real numbers) as well as numbers that may be
very large or very small.

Representation of floating point numbers is analogous to decimal scientific notation. For
example:

1.234 10 4 2

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 15

1234 %1043

By adjusting the decimal place, as in the last case above, a number of this form consists of
just three parts: a fractional part called the mantissa, a base, and an exponent. Over the years,
several schemes have been devised for representing each of these parts and storing them as bits in
a computer. However, in recent years a standard has been defined by the Institute for Electrical
and Electronics Engineers (IEEE Standard 754) which is gaining in acceptance and use in many
computers. A detailed description of these schemes, and their relative tradeoffs, is beyond the
scope of this text; however, as programmers, it is sufficient that we realize that we can express
floating point numbers either in decimal with a fractional part:

325.54927

or using exponential form:

3.2554927F + 2
325549.27FK — 3

where E or e refers to exponent of the base (10 in this case). As with integers, due to the fixed
number of bits used in the representation, there are limits to the range (largest and smallest
numbers) and the precision (number of digits of accuracy) for the numbers represented.

Another widely used data type is character data which is non-numeric and includes all the sym-
bols normally used to represent textual material such as letters, digits and punctuation. Chapter
4 discusses the representation of character data in detail, however, the principle is the same; some
pattern of bits is selected to represent each symbol to be stored.

These are the principle data types provided by programming languages, but as we will see
in future Chapters, languages also provide a means for the programmer to define their own data
types and storage schemes.

1.2.2 Main Memory

Now that we have seen that information (data) can be represented in a computer using binary
patterns, we can look at how this information is stored within the machine. An electronic circuit
that can be switched ON or OFF can represent one binary digit or one bit of information. A
class of such devices (called flip-flops) which can retain the value of a bit, even after the input
to them changes (though only as long as power is applied to them), can be used to store a bit.
The Main Memory block of Figure 1.1 is constructed of many of these devices, organized so that
data (and instructions) may be stored there and subsequently accessed. Memory in present day
computers is usually organized as a sequence of bytes (a byte is a group of eight bits). Each byte
in memory is given a unique unsigned integer address, which may be considered its “name”. (See
Figure 1.2). A row of houses on a street with street addresses or a row of numbered mailboxes
are reasonable analogies to memory addresses. The CPU (or any other device wishing to access
memory) may place an address on a set of wires connected to the memory (called the address
bus) in order to either read (load) or write (store) information in memory. Once information

16 CHAPTER 1. INTRODUCTION

0000 0000 0000 0000 0000 L1111 1 1
0000 0000 0000 0001 0001 L1111 1 1
0000 0000 0000 0010 0002 L1111 1 1
0000 0000 0000 0011 0003 L1111 1 1
0000 0000 0000 0100 0004 L1111 1 1
0000 0000 0000 0101 0005 L1111 1 1
0000 0000 0100 1001 0049 L1111 1 1
0000 0000 0100 1010 004A L1111 1 1
0000 0000 0100 1011 004B L1111 1 1
1111 1111 1111 1111 FFFF L1111 1 1

Binary Hex Memory
Address Bytes

Figure 1.2: Memory and Addresses

has been written to a particular location (address) in memory, it will remain unchanged unless
a subsequent write is performed to the same address. Multiple bytes may be accessed (either
simultaneously or sequentially) for data items large than a single byte. Like other information in
the computer, an address is represented internally in binary. In the figure, we have shown the
addresses both in binary and in hexadecimal form.

Computers are often classified by how many bits may be accessed simultaneously, e.g. 16 bits
or 32 bits. The maximum number of bytes directly addressable in a computer depends on the
number of bits in the memory address. A 16 bit machine usually allows 16 bits for address and a
32 bit machine usually allows anywhere form 17 to 32 bits for address. Since n bits can represent
2" values, 16 bit addresses can address 64 KBytes (i.e. 65,536 bytes from byte addresses 0 to
65535) and 32 bit addresses can address 4 GigaBytes (over 4,000,000,000 bytes) directly.

1.2.3 Representing Programs

As has been mentioned, in addition to data being stored in memory, the program to be executed is
also stored there in the form of a sequence of instructions. It is the CPU shown in Figure 1.1 that
is responsible for fetching instructions, one at a time, from memory and performing the specified
operation on data. A more detailed picture of the CPU with its memory is shown in Figure 1.3.
Within the CPU are several key components; the ALU, a set of Registers, and a Control Unit.

The ALU (Arithmetic Logic Unit) is a digital circuit which is designed to perform arithmetic

1.2. REPRESENTING DATA AND PROGRAM INTERNALLY 17

Regist
Control CBISters
Ul’lit = >
Data
\ Alu / .
Address
Opcode Address
Instruction
CPU Memory

Figure 1.3: CPU and Memory Configuration

(add, subtract) operations as well as logic (AND, OR) operations on data. The registers in the
CPU are a small scratchpad memory to temporarily store data while it is in use. The Control
Unit is another circuit which determines what operation is being requested by an instruction and
controls the other circuitry to carry out that operation; i.e. the Control Unit directs all operations
within the machine.

Also shown in the figure are the connections between the CPU and Memory. They consist of
an address bus, as mentioned in the previous Section, and a data bus, over which all information
(data and program) passes between the CPU and Memory.

This Section describes how programs are stored in the machine as a sequence of instructions
coded in binary. Such an encoding is called the machine language of the computer and is

described below.

Machine Language

The basic operations that the CPU is capable of performing are usually quite simple and the set
of these operations provided on a particular computer is called the instruction set. Within this
set are instructions which can move data from one place to another, for example from memory to
a CPU register; an operation called load. Similarly there are store instructions for moving data
from the CPU to a location in memory. In addition there are instructions directing arithmetic

18 CHAPTER 1. INTRODUCTION

operations, such as add, on data values. There are also instructions which control the flow of the
program; i.e. that determine from where in memory the next instruction should be fetched. Nor-
mally instructions are fetched sequentially — the next instruction is fetch from the next memory
address; however, these control instructions may test a condition and direct that the next instruc-
tion be fetched from somewhere else in memory instead. Finally, there may also be instructions in
the set for “housekeeping” operations within the machine, such as controlling external I/O devices.

To encode these instructions in binary form for storage in memory, some convention must be
adopted to describe the meaning of the bits in the instruction. Most of the instructions described
above require at least 2 pieces of information — a specification of what particular instruction this
is, called the opcode or operation code, and the address of the data item on which to operate.
These parts can be seen in Figure 1.3 in the block labeled instruction.

Instructions coded in binary form are called machine language instructions and the col-
lection of these instructions that make up a program is called a machine language program.
Such a program is very difficult for a person to understand or to write. Just imagine thinking in
terms of binary codes for very low level instructions and in terms of binary memory addresses for
data items. It is not practical to do so except for very trivial programs. Humans require a higher
level of programming languages that are more adapted to our way of thinking and communicating.
Therefore, at a level a little higher than machine language, is a programming language called as-
sembly language which is very close to machine language. Each assembly instruction translates
to one machine language instruction. The main advantage is that the instructions and memory
cells are not in binary form; they have names. Assembly instructions include operational codes,
(i.e., mnemonic or memory aiding names for instructions), and they may also include addresses of
data. An example of a very simple program fragment for the machine described above is shown in
Figure 1.4. The figure shows the machine language code and its corresponding assembly language
code. Definitions of memory cells are shown below the program fragment.

The machine language code is shown in binary. It consists of 8 bits of opcode and 16 bits of
address for each instruction. From the assembly language code it is a little easier to see what this
program does. The first instruction loads the data stored in memory at a location known as “Y”
into the CPU register (for CPU’s with only one register, this is often called the accumulator). The
second instruction adds the data stored in memory at location “X” to the data in the accumulator,
and stores the sum back in the accumulator. Finally, the value in the accumulator is stored back
to memory at location “Y”. With the data values shown in memory in the figure, at the end of
this program fragment, the location known as “Y” will contain the value 48.

A utility program is provided to translate the assembly language code (arguably) readable
by people into the machine language code readable by the CPU. This program is called the
assembler. The program in the assembly language or any other higher language is called the
source program, whereas the program assembled into machine language is called the object
program. The terms source code and object code are also used to refer to source and object
programs.

Assembly language is a decided improvement over programming in machine language, however,
we are still stuck with having to manipulate data in very simple steps such as load, store, add,
etc., which can be a tedious, error prone process. Fortunately for us, programming languages at

1.3. DESIGNING PROGRAMS AND THE C LANGUAGE 19

Program Fragment: Y=Y +X

Machine Language Code Assembly Language
(Binary Code) Code
Opcode Address

1100 0000 0010 0000 0000 0000 LOAD Y

1011 0000 0001 0000 0000 0000 ADD X

1001 0000 0010 0000 0000 0000 STORE Y

Memory Cell Definitions:

Addr. Name Cell Contents
1000 X 32
2000 Y 16

Figure 1.4: Machine and Assembly Language Program Fragment

higher levels still, languages closer to the way we think about programming, have been developed
along with translators (called compilers) for converting to object programs. One such language
is C, which is the subject of this text and is introduced in the next Section.

1.3 Designing Programs and the C Language

We defined a program as an organized set of instructions stating the steps to be performed by
a computer to accomplish a task. Computer programming is the process of planning, im-
plementing, testing, and revising (if necessary) the sequences of instructions in order to develop
successful programs. In writing computer programs we must specify with precise, unambiguous
instructions exactly what we want done and the order in which it should be done. Before we can
write the actual program, we must either know or develop a step-by-step procedure, or algorithm,
that will accomplish the task. We can then implement the algorithm by coding it into a source
language program.

1.3.1 Designing The Algorithm

An algorithm is a general solution of a problem which can be written as a verbal description of
a precise, logical sequence of actions. Cooking recipes, assembly instructions for appliances and

20 CHAPTER 1. INTRODUCTION

Payroll
Task
Y y
(loop) print
proc 1 empl. pay disbursed
/ Y Y Y
read calculate update print
data pay cum. total pay

Figure 1.5: Structural Diagram for Payroll Task

toys, or precise directions to reach a friend’s house, are all examples of algorithms. A computer
program is an algorithm expressed in a specific programming language. An algorithm is the key
to developing a successful program.

Suppose a business office requires a program for computing its payroll. There are several people
employed. They work regular hours, and sometimes overtime. The task is to compute pay for
each person as well as compute the total pay disbursed.

Given the problem, we may wish to express our recipe or algorithm for solving the payroll
problem in terms of repeated computations of total pay for several people. The logical modules
involved are easy to see.

Algorithm: PAYROLL

Repeat the following while there is more data:
get data for an individual,
calculate the pay for the individual from the current data,
and, update the cumulative pay disbursed so far,
print the pay for the individual.
After the data is exhausted, print the total pay disbursed.

Figure 1.5 shows a structural diagram for our task. This is a layered diagram showing the
development of the steps to be performed to solve the task. Each box corresponds to some subtask
which must be performed. On each layer, it is read from left to right to determine the performance
order. Proceeding down one layer corresponds to breaking a task up into smaller component steps
— a refinement of the algorithm. In our example, the payroll task is at the top and that box
represents the entire solution to the problem. On the second layer, we have divided the problem
into two subtasks; processing a single employee’s pay in a loop (to be described below), and

1.3. DESIGNING PROGRAMS AND THE C LANGUAGE 21

start
|

read data

<L >

yes

calc pay

'

update
cum total

print pay

'

read data

]

—

print pay
disbursed

end

Figure 1.6: Flow Chart for Payroll Task

printing the total pay disbursed for all employees. The subtask of processing an individual pay
record is then further refined in the next layer. It consists of, first reading data for the employee,
then calculating the pay, updating a cumulative total of pay disbursed, and finally printing the
pay for the employee being processed.

The structural diagram is useful in developing the steps involved in designing the algorithm.
Boxes are refined until the steps within the box are “doable”. Our diagram corresponds well with
the algorithm developed above. However, this type of diagram is not very good at expressing the
sequencing of steps in the algorithm. For example, the concept of looping over many employees
is lost in the bottom layer of the diagram. Another diagram, called a flow chart is useful for
showing the control flow of the algorithm, and can be seen in Figure 1.6. Here the actual flow
of control for repetitions is shown explicitly. We first read data since the control flow requires us
to test if there is more data. If the answer is “yes” we proceed to the calculation of pay for an
individual, updating of total disbursed pay so far, and printing of the individual pay. We then
read the next set of data and loop back to the test. If there is more data, repeat the process,
otherwise control passes to the printing of total disbursed pay and the program ends.

22 CHAPTER 1. INTRODUCTION

From this diagram we can write our refined algorithm as shown below. However, one module
may require further attention; the one that calculates pay. Each calculation of pay may involve
arithmetic expressions such as multiplying hours worked by the rate of pay. It may also involve
branching to alternate computations if the hours worked indicate overtime work. Incorporating
these specifics, our algorithm may be written as follows:

Algorithm: PAYROLL

get (first) data, e.g., id, hours worked, rate of pay
while more data (repeat the following)
1f hours worked exceeds 40
(then) calculate pay using overtime pay calculation
otherwise calculate pay using regular pay calculation
calculate cumulative pay disbursed so far
print the pay statement for this set of data
get (next) data

print cumulative pay disbursed

The algorithm is the most important part of solving difficult problems. Structural diagrams
and flow charts are tools that make the job of writing the algorithm easier, especially in complex
programs. The final refined algorithm should use the same type of constructs as most programming
languages. Once an algorithm is developed, the job of writing a program in a computer language
is relatively easy; a simple translation of the algorithm steps into the proper statements for the
language. In this text, we will use algorithms to specify how tasks will be performed. Programs
that follow the algorithmic logic will then be easy to implement. Readers may wish to draw
structural diagrams and flow charts as visual aids in understanding complex algorithms.

There is a common set of programming constructs provided by most languages useful for

algorithm construction, including:

e Branching: test a condition, and specify steps to perform for the case when the condition is
satisfied (True), and (optionally) when the condition is not satisfied (False). This construct
was used in our algorithm as:

1f overtime hours exceed 40
then calculate pay using overtime pay calculation

otherwise calculate pay using regular pay calculation

o Looping: repeat a set of steps as long as some condition is True, as seen in:

while new data repeat the following

1.3. DESIGNING PROGRAMS AND THE C LANGUAGE 23

e Read or print data from/to peripheral devices. Reading of data by programs is called data
input and writing by programs is called data output. The following steps were used in our
algorithm:

read data
write/print data, individual pay, disbursed pay

Languages that include the above types of constructions are called algorithmic languages
and include such languages as C, Pascal, and FORTRAN.

A program written in an algorithmic language must, of course, be translated into machine
language. A Utility program, called a compiler, translates source programs in algorithmic lan-
guages to object programs in machine language. One instruction in an algorithmic language, called
a statement, usually translates to several machine level instructions. The work of the compiler,
the translation process, is called compilation.

To summarize, program writing requires first formulating the underlying algorithm that will
solve a particular problem. The algorithm is then coded into an algorithmic language by the
programmer, compiled by the compiler, and loaded into memory by the operating system. Finally,
the program is executed by the hardware.

1.3.2 The C Language

In this text, our language of choice for implementing algorithms is C. C was originally developed
on a small machine (PDP-11) by Dennis Ritchie for implementing the UNIX operating system
at Bell Laboratories in Murray Hill, New Jersey (1971-73). C is now used for a wide range of
applications including UNIX implementations, systems programming, scientific and engineering
computation, spreadsheets, and word processing. In fact, the popularity of C has encouraged the
development of a C standard by the American National Institute of Standards (ANSI). This text
adheres to ANSI C. Major differences between ANSI C and “old C” are pointed out in Appendix
B. References at the end of this chapter include books by Kernighan and Ritchie [1, 2], which
define both traditional C and ANSI C as well as a reference to the proposed ANSI C standard by
Harbison and Steele[3].

In keeping with the original intent, C is a small language; however, it features modern control
flow and data structures and a rich set of operators. C provides a wealth of constructs, or state-
ments, which correspond to good algorithmic structures. C uses a standard library of functions to
perform many routine tasks such as input and output and string operations. Since C is oriented
towards the use of a library of functions, programs in C tend to be modular with numerous small
functional modules. It is also possible for users to develop their own libraries of functions to
improve program development.

C is fairly standard; programs written in C are easily moved from one machine to another. Such
portability of programs is a major advantage in that applications developed on one computer can be

24 CHAPTER 1. INTRODUCTION

used elsewhere. This allows one to write clear and algorithmically well structured programs. Such a
structured programming approach is very important in developing complex, error-free applications.

C provides low level logic operations, normally available only in machine language or assembly
language. Low level operations are required for systems programming, such as writing operating
systems and other programs at the system level. Today, many operating systems are written in C.
C is also suitable for writing scientific and engineering programs, for example it provides double
precision computations of real numbers, as well as long integer computation which can be useful
in many applications where a large range of integers is required.

As a first programming language C has some weaknesses; however, they can be overcome by
discipline in writing programs. In the text, we will indicate items that beginning programmers
need to watch out for.

1.4 Summary

In this Chapter we have given a brieft overview of modern computing systems, including both the
hardware and software. We had described how information is represented in these machines, both
data and programs. We have discussed the development of algorithms as the first, and probably
most important step in writing a program. As we shall see, programming is a design process; an
algorithm is written, coded, and tested followed by iteration. Programs are not written in one
step — initial versions are developed and then refined and improved.

One brief note about the organization of chapters in the text. In this chapter (following the
References) are two sections labeled Frercises and Problems. These are very important sections in
learning to program, because the only way to learn and improve programming skills is to program.
The exercises are designed to be done with pencil-and-paper. They test the key concepts and
language constructs presented in the chapter. The problems are generally meant to be computer
exercises. They present problems for which programs should be written. By writing these programs
you will increase your experience in the methods and thought processes that go into developing
ever more complex applications.

With the background of this Chapter, we are ready to begin looking at the specifics of the C

language, so

E ho‘omaka kakou.
(Let’s start).

1.5. REFERENCES 25

1.5 References

[1] Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language, First Edition,
Englewood Cliffs, N.J.: Prentice-Hall, 1978.

[2] Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language, Second Edition,
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

[3] Harbison, Samuel P.; and Steele, Guy L. Jr., C: A Reference Manual, Second FEdition, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1987.

2% CHAPTER 1. INTRODUCTION
1.6 Exercises

1. Convert the following binary numbers into decimal values:

0000 0100 0110 1001
0011 0001 0111 1111
0101 0101 0101 0101

2. Convert the following octal numbers into decimal:

000345
000111
000777

3. Convert the following hexadecimal numbers into decimal:

1A
FF
21

4. Convert the following decimal integer values into binary, octal, and hexadecimal:

101
324
129

5. Add the following binary numbers:
0000 0100 0110 1001

0011 0001 0111 1111
0101 0101 0101 0101

6. Add the following octal numbers:
000345
000111
000777

7. Add the following hexadecimal numbers:
1A
FF
21

8. How many distinct binary strings can be formed with n bits?

1.6. EXERCISES 27

9. Find the negative of the following binary numbers in a two’s complement representation:

0000 0100 0110 1001
0011 0001 0111 1111
0101 0101 0101 0101

10. Represent the following in two’s complement form using 16 bits:

-29
165
-100

11. What is the largest positive integer that can be stored in n bits, with one leading bit reserved
for the sign bit? Explain. Negative integer? Assume two’s complement representations.

28 CHAPTER 1. INTRODUCTION

1.7 Problems

1. Develop an algorithm for the calculation of the value of each stock and the total value of a
portfolio of stocks. Draw a structural diagram and write the algorithm using constructions
used in the text.

2. Develop an algorithm for calculating and printing the squares of a set of numbers. Draw a
structural diagram, a flow chart, and write the algorithm.

3. Develop an algorithm for calculation of the grade point ratio for each student, i.e., (total
grade points) / (total credit hours). Each student earns grades (0-4) in a set of courses,
each course with different credit hours (1-3). Grade points in one course are given by the
product of the grade and the credit hours for the course. Draw a structural diagram and a
flow chart.

4. Assume that an “add” operator is available, but not a “multiply” operator in a programming
language. Develop an algorithm that will multiply two positive integers using only the “add”
operator.

5. Assume that you are only able to read the numeric value of each successive digits of a decimal
integer one digit at a time. The objective is to find the overall numeric value of the number.
As each new digit is read, the overall numeric equivalent must be updated to allow for the
new digit. For example, if the digits read are 3,2, and 5, the result printed should be 325.
Extend the algorithm for a number in any specified base.

6. Log in to the computer system available to you. Practice using the text editor available by
entering the following simple program and storing it in a file:

main()

{
printf("hello world\n");

b

7. Compile the program you entered in Problem 6. Note which file have been created during
compilation. Execute the compiled program.

8. Explore the computer you will be using. See what applications may be available to you such
as electronic mail, and news.

