
Chapter �

Designing Programs Top Down

As program tasks become more complex� it is easier to think about the problem and design the
algorithm for the task at hand by breaking the complex task into smaller and simpler subtasks

and then solve each of the subtasks independently� We do this all the time in everyday life� for
example� suppose you need milk for your kid�s dinner� A complete algorithm for solving this
problem might begin�

find the car keys

go to the garage

get in the car

put the key in the ignition

start the car

back the car out of the driveway

���

However� when we are worried about feeding the kids� we do not plan our algorithm in such detail�
Instead our algorithm might be�

drive to the store

buy milk

drive home

where each of the steps in this algorithm is a subtask that may involve many steps itself�

We can do the same kind of modular design for our programming tasks� begin by thinking at a
more abstract level about the major steps to be done� and then for each of these subtasks� design a
separate algorithm to solve it� Each program subtask may then be implemented either by a set of
statements or by a separate function� The advantages of a function are that it hides details of the
actual computations from the main body of the code� and it can even be called upon to perform
a subtask repeatedly by one or more other functions� In particular� well designed functions can

��

�	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

pay

calculate

cum� total

update

pay

print

data

read

Payroll

Task

pay disbursed

print

� �� �

� �

loop�

proc � empl�

Figure ��� Structural Diagram for Payroll Task

be used in a variety of programs�
An example from the above might be driving� it is the same
operation in the �rst and last steps of our algorithm� only the start and destination are di�erent��

In this chapter we will discuss this method of modular design of algorithms and the programs
that implement them� We will see how functions may be used in a C program� and how new
functions may be de�ned in the program� As usual� we will look at both the syntax and semantics
of this programming construct� Next we will look in more detail at the macro facilities provided by
the C preprocessor
brie�y discussed in Chapter �� and how these can be used to make programs
more readable� The we describe how your programs can interact with the Operating System to
perform I�O� Finally we continue our discussion of guidelines for debugging and common errors�

��� Designing the Algorithm with Functions

As mentioned above� for complex problems our goal is to divide the task into smaller and simpler
tasks during algorithm design� We have seen this technique already in Chapter � in our use of
a structural diagram while developing the algorithm� Figure �� repeats the structural diagram
for our payroll task� Here we have divided the payroll task at �rst into � subtasks� processing
employees one at a time in a loop� and printing the results� The �processing one employee� subtask
is then further divided into four steps� reading data� calculating pay� updating the cumulative total�
and printing the pay� In the �nal implementation of our algorithm� pay��c� we implemented each
step using a sequence of statements� The resulting code grew to be rather large� especially for
the �calculate pay� step where we had to consider details such as overtime and regular pay� Such
details are not important to our understanding of the overall logic of the program� However it is
to be done� all that we want to do in that step is calculate the pay for one employee as is simply
and clearly stated in the algorithm� Calculating pay is an ideal candidate for being implemented
as a function�

���� DESIGNING THE ALGORITHM WITH FUNCTIONS ��

We will show how to do this shortly� but �rst it should be pointed out that we have already
been using functions to hide the details of tasks in the code we have written� For both the �read
data� and �print pay� blocks in the diagram
and the corresponding steps in the algorithm� we
have used the built�in library functions� scanf�� and printf��� Many operations are involved in
reading the user�s typed in data� converting it to its internal representation� and storing it in a
variable� however all of this processing is hidden by the function scanf��� At this point� we do
not need to know
and maybe don�t care� how it is done� just that it is done correctly�

The important thing here is that top level program logic can use functions without regard to
their details� At the next lower level� each function used in the top level program logic can be
written in terms of yet lower level functions� and so on� The goal is to arrive at subtasks that
are simple to implement with relatively few statements� This approach is called the top down
approach or modular programming� A top down approach is an excellent aid to program
development� If the subtasks are simple enough� it also helps produce bug�free reliable programs�

����� Implementing the Program with Functions

Abstractly� a function can be viewed a a piece of code which� when given su�cient information�
performs some subtask and returns the result� a value� Returning to our example� if a function�
calc pay��� is used to calculate pay� it will need enough information to perform the computation�
In this case the data it needs is the number of hours worked and the rate of pay� As we have stated
before� variables� such as hours worked and rate of pay� de�ned in a block are only known� i�e�
can be accessed� within that block� So we cannot give calc pay�� direct access to variables de�ned
in other functions� in this case main��� However� calc pay�� does not need direct access to the
variables� it only needs the values to be used for the computation� So we can give a function the
values it needs by passing them as arguments� We can do this by writing an expression� called a
function call� giving the name of the function and expressions for the values of the arguments�
e�g��

calc�pay�hours�worked� rate�of�pay�

The arguments passed are the values of hours worked as the �rst argument� and rate of pay as
the second argument� Given this data we know
or at this point simply believe� that the function
does the right thing and returns with a value� the total pay� We say that the function call evaluates
to a value just as any other expression� The function calc pay�� can now be used in main�� as
follows�

total�pay � calc�pay�hours�worked� rate�of�pay�	

In summary� the function main�� calls calc pay�� to perform a task using a set of values� The
values are passed as a parenthesized list of data items
which can be any valid expressions� sepa�
rated by commas� The expressions that appear in such a statement calling the function are called
arguments� The values of these arguments are received by the called function� calc pay��� which

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

uses them to perform the desired subtask� Finally� calc pay�� returns the value of total pay to
the calling function� main��� where it is assigned to the variable� total pay�

The value returned by calc pay��will be the total pay calculated using the values of arguments
passed to it� Here are a few additional examples of function calls used in an assignment expression�

total�pay � calc�pay�
���� �����	 � calc�pay�� returns
����� �

� which is stored in total�pay� �

total�pay � calc�pay������ �����	 � total�pay is assigned ������ �

A function call is an expression and has a value� Just as we had to declare the data types of
variables to the compiler� we must also declare the data type of a function� This declaration also
includes the number of arguments the function requires and their types� For example� here is a
declaration for calc pay���

float calc�pay�float hours� float rate�	

The declaration states that calc pay�� is a function because the identi�er calc pay is followed
by a parenthesized list of arguments� that it requires two float arguments� and that it is of
float type� i�e� it returns a float value� This declaration statement for a function
notice it
is terminated by a semi�colon� is called a prototype statement because it gives the prototype

or the form� for calls to the function� In general� we will refer to the list of data expected to be
passed to a function as speci�ed in the prototype statement as a parameter list and an individual
data item in this list as a parameter�
Sometimes� however� the terms parameter and argument
are used interchangeably�� The names of the parameters in a prototype statment are optional�
but including well chosen names for parameters can make the declaration more meaningful� These
parameter names are dummy names which have no relation to the names of arguments in a function
call or parameters in the function de�nition
described in the next section��

Let us implement the top level program logic using the function calc pay�� to calculate pay�
The code is shown in Figure �� and for simplicity� we have not included calculation of gross and
average pay�

Figure � shows the behavior of the function call pictorially� The box labeled main�� rep�
resents the function main�� in our program and contains memory cells for variables declared in
main�� labeled with their names
e�g� hours worked�� The box labeled calc pay�� represents
the function calc pay��� At this point we do not know anything about the internals of this box
such as what variables are declared� and what statements will be executed� but at this point we
do not need to know this information� The box shows all of the information we need to know�
namely that the function expects two float type arguments to be passed and will return a float
type result� The dashed lines in the �gure show that� for the call we have written in main���

total�pay � calc�pay�hours�worked� rate�of�pay�	

���� DESIGNING THE ALGORITHM WITH FUNCTIONS �

� File� pay��c

Programmer� Programmer Name

Date� Current Date

The program gets payroll data� calculates pay� and prints out

the results for a number of people� A separate function is used

to calculate total pay�

�

�define REG�LIMIT ����

�define OT�FACTOR ���

main��

�

� declarations �

int id�number	

float hours�worked� rate�of�pay� total�pay	

float calc�pay�float hours� float rate�	

� print title �

printf�����Pay Calculation����n��	

� initialize loop variables �

printf���nType ID Number� zero to quit� ��	

scanf���d�� �id�number�	

while �id�number � �� �

� read data into variables �

printf��Hours Worked� ��	

scanf���f�� �hours�worked�	

printf��Hourly Rate� ��	

scanf���f�� �rate�of�pay�	

� calculate pay �

total�pay � calc�pay�hours�worked� rate�of�pay�	

� print data and results �

printf���nID Number � �d�n�� id�number�	

printf��Hours Worked � �f� Rate of Pay � �����f�n��

hours�worked� rate�of�pay�	

printf��Total Pay � ������f�n�� total�pay�	

� update loop variables �

printf���nType ID Number� zero to quit� ��	

scanf���d�� �id�number�	

�

�

Figure ��� Code for pay��c driver

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

calc pay� �oat �oat �

id number hours worked rate of pay total pay

�

�

�

�oat

main��

Figure �� Function Call to calc pay��

the �rst argument� the value of hours worked� is passed to the �rst parameter of calc pay��� and
the second argument� the value of rate of pay� is passed to the second parameter� The return
value from calc pay�� is placed in the variable total pay by main���

In summary� the function main�� represents the overall logic of the program� The details of
how pay is actually computed does not change the overall logic� Of course� the program in Figure
�� is not yet complete since we have not written the function calc pay��� If an attempt is made
to compile the program at this point� there will be a linker error message stating that the function
calc pay�� cannot be found� Only when the function is written is the program complete and may
be compiled and executed�

��� De�ning Functions

A function is de�ned by writing the source code for it� Just as for main��� de�ning the function
consists of giving a function header and a function body� The code for calc pay�� is shown in
Figure ���
It is included in the same source �le as the code in Figure ���� Let us look at the
function header �rst�

���� DEFINING FUNCTIONS ��

� File� pay��c � continued �

� Function calculates and returns total pay �

float calc�pay�float hours� float rate�

� float regular� overtime� total	

printf���ndebug�entering calc�pay��� hours � �f� rate � �f�n��

hours� rate�	

if �hours � REG�LIMIT� �

regular � REG�LIMIT � rate	

overtime � OT�FACTOR � rate � �hours � REG�LIMIT�	

�

else �

regular � hours � rate	

overtime � �	

�

total � regular � overtime	

printf��debug�returning from calc�pay��� �f�n�� total�	

return total	

�

Figure ��� Code for calc pay��

float calc�pay�float hours� float rate�

The header speci�es that the name of the function is calc pay� and that the function returns
a float value� It also lists the parameters and their types� in this case there are two formal
parameters� hours and rate� each of type float� Notice that the function header is very similar
to the prototype statement for the function� with two notable exceptions� First� there is no semi�
colon at the end� indicating that this is the de�nition of the function� not a declaration� Second� in
the function header� the variable names in the parameter list are required� and this list is sometimes
called the formal parameter list� These formal parameters act as variable declarations for the
function with the additional feature that they receive initial values from the arguments when the
function is called� the �rst parameter gets the value of the �rst argument� the second parameter
the value of second argument� and so on� The formal parameters in a function de�nition behave
in the same manner as automatic variables� and their scope is limited to the function itself� The
names in this list are the names used within the function body to access these values�

The body of the function is de�ned� as with main��� within brackets� f and g and consists
of the variable declarations for the block followed by the executable statements to perform the
subtask of the function� In our case� we declare variables regular� overtime� and total which
are called local variables because their scope is local� i�e� limited to within the function� We
then calculate regular pay� overtime pay and total pay as before� but we use the formal parameter
names and the names of the local variables in our computations� Finally� since a function can

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

return only one value� we return only the value of total pay�

return total	

The above return statement returns the value of the variable� total� to the calling function� In
general� a return statement can be used to return the value of any expression� When the return
statement is executed� the program control returns immediately to the calling function where the
function call evaluates to the returned value�

When a function is �rst written� it is a good practice to include debug statements in the function
de�nition showing the name of the function entered� the values of the parameters received� and the
value returned by the function� When the program is run� these debug statements will produce a
trace of all function calls and returns and as such are invaluable for debugging� particularly when
a program uses many functions� We have included printf�� statements for this purpose in the
code for calc pay�� shown in the �gure�

The above function� together with main�� in the �le pay��c� forms a complete program which
may be compiled and executed� A sample session shown below is similar to the one for pay��c�
The only change is that calc pay�� calculates and returns total pay� whereas in pay��c total pay
was calculated in main���

���Pay Calculation���

Type ID Number� zero to quit� ���

Hours Worked� ��

Hourly Rate� ���

debug�entering calc pay��� hours � ���������� rate � ��������

debug�returning from calc pay��� ����������

ID Number � ��

Hours Worked � ���������� Rate of Pay � � ����

Pay � � ������

Type ID Number� zero to quit� �

The debug printing clearly shows argument values at entry to calc pay�� and the returned value�
If there are any bugs in a function� such debug printing helps detect and remove them�

����� Passing Data to and from Functions

As we can see from the above description� and also in Figure ��� information is passed to a
function as arguments speci�ed in the calling expression� This information is received by the
function in the cells reserved for the formal parameters� In our case� the values of hours worked

���� DEFINING FUNCTIONS ��

id number rate of pay total payhours worked

main��

�

�
calc pay� �oat �oat �

hours

regular overtime total

rate

�oat

return value

��� ���� 	�
 �
���

�
��� ��� �
���

���� 	�

�
���

Figure ��� Function Call Trace

and rate of pay
the arguments of the call� are copied to the cells called hours and rate within
the function calc pay��� Remember� these names are only known internally to the function� All
that main�� sees of the function is a black box as was shown in Figure ��

The names of the formal parameters are arbitrary� For example� calc pay�� may be de�ned
with any names for formal arguments�

float calc�pay�float x� float y�

�

if �x � REG�LIMIT� ���

�

or�

float calc�pay�float hours�worked� float rate�of�pay�

�

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

if �hours�worked � REG�LIMIT� ���

�

As long as the function uses the formal parameters names internally for computations� the function
de�nitions behave the same� In the last case� even though the formal parameters have the same
names as variables de�ned in main��� they represent distinctly di�erent variables� as shown in
Figure ��� In summary� the scope of automatic variables de�ned in a block is local to that block�
i�e� the objects can be directly accessed by name only within that block and in blocks nested
within it�

As we stated earlier� the arguments in a function call can be any valid expressions� Only the
values of the argument expressions are passed to the called function� For example� these are valid
function calls�

printf��Pay � �f�n�� hours�worked � rate�of�pay�	

printf��Pay � �f�n�� calc�pay�hours�worked� rate�of�pay��	

calc�pay�hours�worked� rate�of�pay � �����	

The argument in the �rst printf�� call is a product expression� The result of evaluating that
expression is passed to printf��� The second statement uses an argument that is itself a function
call� The function call evaluates to a value which is then passed to printf��� The second argument
in the last statement is an expression whose value is passed to calc pay���

Information is returned from a function using the return statement which can also return the
value of any valid expression� The syntax of the return statement is�

return �expression��

For example� we could have combined the last two statements in the function de�nition of
calc pay���

return regular � overtime	

where calc pay�� would then return the value of the expression regular � overtime�

When writing functions� tools such as shown in Figure �� can be very useful in tracing the
behavior of the function� Another way to check a function for bugs is to manually trace its
execution with representative values for the formal parameters� Figure �� shows such a trace for
calc pay��� Note� the variables hours and rate
the formal parameters� receive values during
the function calls� Other local variables get values as the function is executed�

In our payroll program� the overall logic can be made even more apparent if functions are used
to get the input data and to print the results� The driver� i�e� main��� can then follow the overall
logic and use function call statements to get the data� calculate the pay� and print the results� A
function that prints data is simple to write� Writing a function that reads data is somewhat more
involved� We will delay writing such functions until Chapter ��

���� DEFINING FUNCTIONS ��

hours rate regular overtime total

float calc�pay�float hours� float rate� ���� ��� �� �� ��

� float regular� overtime� total	

printf��debug�entering calc�pay��� hours � �f� rate � �f�n��

hours� rate�	

if �hours � REG�LIMIT� �

regular � REG�LIMIT � rate	

overtime � OT�FACTOR � rate �

�hours � REG�LIMIT�	

�

else �

regular � hours � rate	 ���� ��� ����� �� ��

overtime � �	 ���� ��� ����� ��� ��

�

total � regular � overtime	 ���� ��� ����� ��� �����

printf��debug�returning from calc�pay��� �f�n�� total�	

return total	

�

Figure ��� Trace for calc pay��

����� Call by Value and Local Variables

This section reviews and formalizes several features of variables that we have already encountered�
We know that direct access of objects is performed by using variable names in expressions� The
use of a variable on the left side of an assignment operator stores a new value in that object� the
use of a variable anywhere else retrieves the value of the object� Objects de�ned in one function
are not directly accessible to other functions� A calling function passes values of arguments to
a called function� Only the values of these arguments� and NOT the arguments themselves� are
available to the called function� The values of the arguments are stored in the parameters� and
only the called function has access to these parameters� When called functions have access only to
argument values� and not to arguments themselves� the function calls are termed call by value�
In C� all function calls are call by value� It is impossible for a called function to have direct access
to an object de�ned in the calling function� Let us examine the implications� Consider a program
that uses a function to increment the value of an argument�

� File� incr�c Program Trace

Program demonstrates call by value� x

�

�include stdio�h�

main��

� int x	 ��

int incr�int n�	

�		 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

printf�����Call by Value����n��	

x � �	 �

printf��Original value of x is �d�n�� x�	 �

printf��Value of incr�x� is �d�n�� incr�x��	 �

printf��The value of x is �d�n�� x�	 �

�

� Function increments n � n

int incr�int n� �

�

n � n � �	 !

return n	 !

�

Compiling and executing this programs gives the following sample session�

���Call by Value���

Original value of x is �

Value of incr�x� is !

The value of x is �

The program trace shows that x in main�� is assigned a value of � prior to a function call to
incr�� which increments its parameter to � and returns that value� After the function call� the
value of x in main�� is still �� unchanged because only the value of x is passed to incr��� It was
the cell� n� in incr�� that was incremented as seen in Figure ��

We see that a called function cannot directly change the value of an object de�ned in the calling
function� This is true even if the formal parameter in incr�� were called x� Formal parameters
represent new and distinct objects unrelated to any other objects de�ned elsewhere�

The variables declared at the beginning of a block
e�g� a function body� have all been of
a storage class called automatic� This means that these variables are automatically created
and destroyed each time the function is executed� When the execution of a function begins�
the variables declared at the beginning of the function block as well as the formal parameters
are created� i�e� memory cells for these variable names are allocated� When the execution of a
function is completed
e�g� when a return statement is executed�� the memory allocated for these
variables is freed� i�e� these variables and their values no longer exist�

Automatic variables can be de�ned at the beginning of any block within the primary function
block and exist only in the block in which they are de�ned� Memory for automatic variables
declared in a block is allocated when the block is entered� and freed when the block is exited�

���� DEFINING FUNCTIONS �	�

�

x

n

�

�
��
��
��
��
��
��
��
��
��
��
��
��
�

main��

incr� int �

return value

int

	

	 �

�

Figure ��� Call by value variable allocation

The scope of a variable is that part of the program where the variable is visible� i�e� where
the variable can be accessed directly by name� The scope of automatic variables is local to the
block in which they are de�ned as well as any blocks nested within it� Automatic variables are
frequently referred to as local variables� since their scope is local�

A variable of automatic storage class can be explicitly de�ned in a declaration by preceding it
with the keyword auto� Thus� the following declarations declare automatic variables�

auto int x� y	

auto float r	

If no storage class is speci�ed in a declaration� automatic storage class is assumed by default� In
all of our programs� so far� declarations have been for automatic variables by default� In general�
most variables used in programs are automatic� and the default declaration without the keyword
auto is a standard practice� Other storage classes will be discussed in Chapter ��� Until then� we
will use only automatic variables�

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

As we stated before� a declaration only allocates a memory cell and associates the name with
the cell� the value in that cell is� in general� unknown� However� it is possible to specify initial
values of automatic variables in the declaration statements� Examples include�

int x � � � �	

int y � isquare�� � x�	

float z � ��!	

The �rst declaration initializes x to �	� and the second initializes y to the value returned by the
function call isquare�� � x�� If the function isquare�� returns the square of its argument� then
y in this case� is initialized to �		� i�e� the square of � � x� Finally� the last declaration initializes
the variable z to the value ����

The syntax for a declaration statement with initialization is�

�type speci�er��var name� ���init expr�� �� �var name� ���init expr��� � � ��

The declaration allocates memory for each �var name� of a type indicated by �type speci�er��
and initializes the variable to the value of the initializer expression� �init�expr�� The initializer
expression can be any C expression including function calls�

Consider the following example in which automatic variables are declared in nested blocks�

� File� auto�c

Program shows declarations of automatic variables in nested

blocks� Scope of automatic variables is the block in which they

are defined�

�

main��

� � outer block �

auto int x � ��� z � ��	 � x and z are allocated and initialized �

printf�����Automatic Variables and Scope����n�n��	

� � inner block �

int x � ��� y �
�	 � new variables x and y are allocated �

� only the new x can be accessed �

printf��In the inner block� �n��	

printf��x � �d� y � �d� z � �d�n��

x� y� z�	 � new x and y� and z are printed �

� � new x and y are freed �

printf��In the outer block��n��	

printf��x � �d� z � �d�n�� x� z�	 � only the old x can be �

� accessed in the outer block��

� printf��y � �d�n�� y�	 error� y is not visible here� �

�

���� DEFINING FUNCTIONS �	

x

main��

x

z

y

�� �

�� ��

Figure ��� Local Variables in Blocks

The program contains an outer block� which is the function body for main��� and an inner block�
The scope rules say that an inner block can access variables declared within it plus any variables
declared in an enclosing block� However� if the same variable name is used in an inner and an outer
block� the local variable in the inner block is accessed� The outer block cannot access variables
de�ned in an inner block�

In the example� variables x and z are declared in the outer block and assigned values� The
outer block can access only these variables� Variables x and y are declared in the inner block and
assigned values� The inner block can access the variables z� y� and that x which is de�ned in the
inner block� As shown in a comment� if the outer block tried to access y� a compile time error
would occur� This behavior can be seen in Figure ��� The allocation of storage is shown when
the program is executing within the inner block as can be seen by the nested box containing x

and y� When this block is completed� the inner box� and all variables inside� is freed� A sample
output of the program shows the results�

���Automatic Variables and Scope���

In the inner block�

x � ��� y �
�� z � ��

In the outer block�

x � ��� z � ��

It is also possible to qualify an automatic variable as a constant using the keyword const� A
const quali�er allows initialization of a variable but the variable may not be otherwise changed
within the program� Here is an example�

const int x � ���	

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

In the above case� x is initialized to �		 and quali�ed as a constant� Its value may not be changed
elsewhere in the program� e�g� in an assignment statement� Constant quali�ers are used to ensure
that certain variable values are not altered by oversight�

Let us consider a somewhat more meaningful example that declares a variable in an inner
block� The task is to swap values of two objects� x and y� We need a temporary variable to save
one of the values� otherwise� assigning the value of y to x would overwrite the original value of x�
We can declare the temporary value in an inner block�

� File� swap�c

This program swaps values of two objects� It defines and uses a

temporary variable in an inner block�

�

�include stdio�h�

main��

� int x � ��� y � ��	

printf�����Swap Values����n�n��	

printf��Original values� x � �d� y � �d�n�� x� y�	

� int temp	

temp � x	

x � y	

y � temp	

�

printf��Swapped Values� x � �d� y � �d�n�� x� y�	

�

Here is the output of the program�

���Swap Values���

Original values� x � ��� y � ��

Swapped Values� x � ��� y � ��

De�ning variables in blocks other than a primary function block is not recommended unless
there are good reasons for it� In the above example� a temporary variable is declared closest to
its use and has no logical role in the rest of the program� When a function uses many variables�
declaring variables closest to their use may make it easier to understand the program behavior�
For the most part� we will declare all variables at the beginning of primary function blocks�

The formal parameters of a function are also variables that are automatically allocated during
a function call� and into which the argument values are passed� Their values� just like those of
any other variables� may be changed in the function� The scope of the formal parameters is the
body of the function� i�e� the scope is local to the function body�

���� CODING PROGRAMS FOR READABILITY �	�

��� Coding Programs for Readability

In the previous sections we have seen how to organize programs modularly� beginning with the
algorithm� and carrying that organization into the code using functions� This is a form of in�

formation hiding� i�e� the details of performing a particular operation are hidden from the more
abstract steps of the algorithm� Here we are hiding ideas or abstractions at the algorithm level�
Another form of information hiding at the source code level is described in this section� namely
hiding the details of the syntax of the language in order to make the source code more readable�

����� The C Preprocessor

We have already seen that in order for a program to be run� it must be compiled� i�e� translated
from the C language to the machine language of the computer being used� This compilation process
takes place in several steps� the source code is read from the �le� checked for proper syntax� and
analyized for the meaning of the statements in the code� The proper machine language steps
to perform these statements can then be generated
and optimized� and then linked with other
functions to produce the executable �le� At the beginning of this entire process� standard C
compilers provide an additional step called the preprocessor� The source code is read from the
�le and given to the preprocessor where it is translated into a modi�ed source code �le which
is then given to the compiler proper for translation to machine language� The transformations
performed by the preprocessor are directed by lines in the original source �le called compiler
directives� All such lines begin with the � character as the �rst non�white space character on the
line and are of one of three types of directives� macro de�nitions� �le inclusion� and conditional
compilation� Each of these are discussed in the following sections�

����� Macros

In Chapter � we introduced the define compiler directive which de�nes symbolic names for strings
of characters� Such a string of characters can be arbitrary� for example a sequence of characters
representing a numeric constant� These names can then be used anywhere in the program instead
of the string itself� The C preprocessor replaces these symbolic names with the speci�ed strings
prior to compiling the program� We have seen examples where using names for arbitrary strings
makes it easy to change all occurrences of these names by merely changing the de�nitions� It also
makes for easier reading and debugging of programs by allowing the programmer to use a name
which has some meaning rather than some �magic number��

The de�nition is called a macro and the preprocessor performs a macro expansion when it
substitutes the string for the name� A macro de�nition takes the form�

�de�ne �symbol name� �substitution string�

The macro names follow the same rules as identi�ers� however� a common convention observed

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

by most C programmers is to name macros in all upper case to distinguish them from program
variables� No quotation marks are used to delimit the string� nor is the directive terminated by a
semi�colon� Instead� the string extends to the end of the line
an escape character� n� can be used
to continue the string on the next line�� For example� the following are macro de�nitions�

�define PI
�����"

�define SIZE ����

�define RSQUARED radius � radius

�define AREA PI � RSQUARED

�define LONG This is a very long macro �

definition we continued to the next line

When directives such as these appear in the source �le� then the macros are said to have been
de�ned� We have de�ned macros for the symbols PI� SIZE� RSQUARED� AREA and LONG� With
the above de�nitions� the de�ned names may be used anywhere in program statements� The
preprocesser generates the expanded source code by string replacement� for example�

Original code Expanded code after preprocessing

circum � � � PI � radius	 circum � � �
�����" � radius	

y � x � SIZE	 y � x � ����	

printf��SIZE � ��SIZE�	 printf��SIZE � �������	

AREA	
�����" � radius � radius	

As can be seen� the preprocessor replaces the macro name with the speci�ed replacement string
in the entire source �le following the de�nition� The substitution is not made if a macro name�
occurs in double quotes as in the format string in the printf�� statement shown above�

The scope of the macro de�nition is the entire source �le following the de�nition line� The
de�nitions may be removed at any point in the program by a directive �undef� for example�

�undef SIZE

The above directive makes the preprocessor �forget� the previous de�nition for SIZE� If desired�
a new de�nition may be speci�ed for SIZE at this point� It is a common practice to put macro
de�nitions at the top of the source �le� unless the old de�nitions are removed at some point in the
source �le and new de�nitions are speci�ed�

�define SIZE �� � SIZE is define to be the string �� �

���

�undef SIZE � SIZE is undefine �

�define SIZE ��� � SIZE is defined to be ��� �

���� CODING PROGRAMS FOR READABILITY �	�

Identical de�nitions for identi�ers may appear in a �le without causing any problems� however�
two di�erent de�nitions for an identi�er represent an error�

�define SIZE ��

�define SIZE �� � OK �

�define SIZE ��� � ERROR �

The only way to make a new de�nition for an identi�er is to �rst unde�ne it� i�e� remove its �rst
de�nition�

Macros with Arguments

Macro de�nitions may also have formal parameters which are replaced by the actual arguments
given in the macro call� This is similar to parameters in function calls� however� macro arguments
are treated as strings of characters and are substituted for parameters by the preprocessor� no
evaluation takes place� Consider the example�

�define READ�FLT�fvar� scanf���f�� �fvar�

The macro encapsulates the expression for reading a float number� i�e� a macro call is replaced
by a string that represents a correct scanf�� function call to read a float number into an object
passed to the macro� The actual argument in a macro call replaces fvar in the replacement string�
In other words� every time the macro is called� the expanded code is substituted literally except
that fvar in the de�nition is replaced by the argument given in the actual call� Here are some
examples of macro calls with parameters together with the expanded code�

macro call Expanded Code

READ�FLT�x�	 scanf���f�� �x�	

READ�FLT�rate�	 scanf���f�� �rate�	

Macro calls in these cases expand to C statements� Such calls are said to expand to in�line

code� because the resulting code represents statements in the source code� These types of macro
calls can be used in place of function calls� for example� instead of writing a function to square a
number� we can de�ne a macro�

�define SQ�x� �x � x�

We can use such a macro in any expression� e�g��

y � SQ�radius�	

printf��Square of �d is �d�n�� radius� SQ�radius��	

�	� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

However� remember� macro calls are substitutions� and macro parameters are neither evaluated
nor checked for data type consistency� Therefore� proper placement of parentheses is important
in macro de�nitions� For example� consider the following macro call and expanded code�

SQ�x�y�

expanded becomes

�x � y � x � y�

The expanded code is not the square of �x � y�� as we would expect� By precedence rules� it is
a sum of three terms� x� y � x� and y� A proper de�nition of a macro for square should be�

�define SQ�x� ��x� � �x��

With this de�nition�

SQ�x�y�

will expand correctly to

��x � y� � �x � y��

Here is a simple example program�

� File� macro�c �

�define READ�FLT�fvar� scanf���f�� �fvar�

�define PI
�����"

�define SQ�x� ��x� � �x��

main��

�

float radius	

printf��Type Radius� ��	

READ�FLT�radius�	

printf��Area of a circle with radius ����f is ����f�n��

radius� PI � SQ�radius��	

�

The output of a sample run is�

���� CODING PROGRAMS FOR READABILITY �	�

Type Radius� ��

Area of a circle with radius ����� is
�����

Why use macros with arguments when functions will serve the same purpose� The advantage
is practical� NOT logical� When a function is called� there is a certain amount of run time
overhead� i�e� extra time needed during execution� The overhead comes from passing arguments�
transferring control� returning a value� and returning control� If a function is called just a few
times� the overhead is negligible� However� if a function is used numerous times� e�g� in a loop
executed many times� then the overhead can become signi�cant�

A macro on the other hand has no run time overhead� It is expanded at compile time into
in�line code which has no overhead at run time� If execution time for a program is a problem
because of a frequently used routine� then writing a macro for that routine makes good sense� as
long as the operation can be simply expressed as a macro�

An Example Program

Let us look at another example program to make use of these new facilities�

Task

Read a set of high temperature readings for some number of days and to count the number of
nice days� bad days� and the average temperature for the period� Nice days are those days whose
temperature falls within some �comfort zone��

The high level algorithm for this task is straight forward�

prompt the user and read first temperature

while there are more days to read

process one day#s temperature

accumulate total temperature

read the next temperature

print results

With this algorithm� we next consider what information we will be working with in this program�
We read daily temperatures� so we will need a variable for that� and variables to count the number
of nice and bad days� Since we compute the average temperature� we accumulate the total of all
the daily temperatures� so we need a variable for that� Next we consider how we will implement
the algorithm using functions to hide details� For example� the step to print results� printing
the number of nice and bad days as well as computing and printing the average temperature can
be done in a function� print results��� which is given the number of nice days� bad days� and
the cumulative total of temperatures� The step of processing one day�s temperature is another
candidate� however� this step involves updating our counts of nice and bad days� Since� as we

��	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

have seen� functions cannot access variables local to main� we re�ne our algorithm to �ll in some
of the details of this step�

prompt the user and read first temperature

while there are more days to read

if it#s a nice day� count a nice day

otherwise count a bad day

accumulate total temperature

read the next temperature

print results

We can use a function to test if a day is nice� thus hiding the details of this operation� We are
now ready to write the code for main�� as shown in Figure ��� It should be noted we have made
an additional design decision here� we use a zero value for the temperature read in as the loop
termination� Also not that we have provided prototype statements for our functions� nice day��

and print results��� This is su�cient information about these functions when considering the
logic of main���
We have speci�ed the return value of print results as type int� but the function
has no real meaningful return value��

We next turn out attention to the function� nice day��� This function is given the temperature
and should return True if this quali�es as a nice day� and False otherwise� The task speci�ed that
the temperature of a nice day is to fall within some �comfort zone�� i�e� not too cold and not too
hot� We can write the algorithm for this function from this information�

if temperature is too cold� return False

if temperature is too hot� also return False

otherwise� this is a nice day� return true

We choose to implement the too cold and too hot tests using macro�

�define TOO�COLD !�

�define TOO�HOT "�

�define HOT�DAY�t� ��t� � TOO�HOT�

�define COLD�DAY�t� ��t� TOO�COLD�

Coding of the function is straight forward� Similarly� for print results��� the algorithm is�

print number of nice days and bad days

if there are any days counted

compute the average temperature

print the average temperature

���� CODING PROGRAMS FOR READABILITY ���

� File� niceday�c

Programmer� Programmer Name

Date� Current Date

This program counts the number of nice days in a set of high

temperature data�

�

int nice�day�int temp�	

int print�results�int nice� int bad� int temp�sum�	

main��

� � declarations �

int temperature� � daily temperature �

total � �� � cumulative total �

num�nice�days � ��

num�bad�days � �	

� print title and prompt �

printf�����Count Nice Days����n�n��	

printf��Type daily high temperature readings �� to quit�� ��	

� read the first temperature �

scanf���d�� �temperature�	

while �temperature $� �� �

� process one temperature �

if � nice�day�temperature��

num�nice�days � num�nice�days � �	

else

num�bad�days � num�bad�days � �	

� accumulate total of temperatures �

total � total � temperature	

� read next temperature �

scanf���d�� �temperature�	

�

print�results�num�nice�days� num�bad�days� total�	

�

Figure ��� Driver for niceday�c

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

� File� niceday�c �continued� �

�define TRUE �

�define FALSE �

�define TOO�COLD !�

�define TOO�HOT "�

�define HOT�DAY�t� ��t� � TOO�HOT�

�define COLD�DAY�t� ��t� TOO�COLD�

�define ANY�DAYS�n�b� ���n� � �b�� � ��

� Function to test for a nice day given the temperature �

int nice�day�int temp�

�

if� COLD�DAY�temp�� return FALSE	

if� HOT�DAY�temp�� return FALSE	

return TRUE	

�

� Function to print results given number of nice and bad days �

� and total of temperatures �

int print�results� int nice�days� int bad�days� int total�

�

float average�temp	

printf��There were �d nice days and �d bad days�n��

nice�days� bad�days�	

if � ANY�DAYS� nice�days� bad�days�� �

average�temp � �float� total �float� �nice�days � bad�days�	

printf��The average temperature for �d days was �f�n��

nice�days � bad�days� average�temp�	

�

�

Figure ��	� Functions for niceday�c

���� CODING PROGRAMS FOR READABILITY ��

The resulting code for these functions is shown in Figure ��	

Compiling and executing this program with some sample data produces the following sample
session�

���Count Nice Days���

Type daily high temperature readings �� to quit�� 	�

	�

		

�

�

	�

	�

	�

�

�

There were � nice days and
 bad days

The average temperature for " days was !�������

����� Including Header Files

The second feature provided by the preprocessor allows us to break our source �les into smaller
pieces to be reassembled at compile time� Using functions to hide details of algorithms and macros
to hide the syntax and �magic numbers� to make our programs more readable often results in
many function prototype statements and macro de�nitions at the beginning of source code �les�
These may also be hidden in separate �les� and included in the source �le by the preprocessor�
The �les containing this information to be included are called include �les or header �les� and
by convention� are named with a �h extension on the �le name� Header �les are also often used to
provide common macro de�nitions and prototype statements that may be useful in may programs

or as we shall see later� in many �les making up a single program�� An example of the later case
are the standard library functions provided in C� the prototype statements for these functions
should be available to any program which chooses to use the functions� In many of our programs
so far� we have used the library functions printf�� and scanf��� Where are the prototypes for
these� As well as providing the code for library functions� all standard C implementations provide
a set of �h �les with this information� The �le stdio�h contains the prototypes and macros
needed to use the I�O library�
We have not needed this �le before because the compiler will make
assumptions about functions if prototypes are not provided� Sometimes these assumptions are
�safe�� but often they are not� It is a good idea� from now on� to include stdio�h in any program
using the I�O library��

The statements and directives in an include �le are inserted in a source �le when the preproces�
sor encounters an �include directive in the original source �le� To include stdio�h the directive
is�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

�include stdio�h�

The angle brackets� � and �� surrounding the �lename indicate to the preprocessor that the �le�
stdio�h� is to be found in �the usual place� where standard header �les are kept on the system

this is system dependent�� and its contents placed in the source code in place of the �include

directive� Any other directives within the included �le
such as �define or other �include

directives� are also processed at this time�

Besides the standard header �les� as a programmer you can create and include your own header
�les for your programs� For example� in our niceday�c program� we de�ned macros for TRUE and
FALSE� These macros are very common in many programs� so it would be convenient if we could
enter those de�nitions in a single header �le and simply include that header �le in any program
the uses those macros� This header �le might be called tfdef�h and contain�

� File� tfdef�h

Programmer� Programmer Name

This file contains the definitions of TRUE and FALSE

�

�define TRUE �

�define FALSE �

To include these de�nitions in a �c source �le� use the directive�

�include �tfdef�h�

Notice in this instance that the �le name is surrounded by double quote� �� characters rather than
the angle brackets used before� This syntax tells the preprocessor that the header �le is to be
found in the same directory as the �c source �le currently being processed�

Again� in our nice day program� all of the other macro de�nitions and prototypes relating just
to this program may also be placed in a header �le� say niceday�h�

� File� niceday�h

Programmer� Programmer Name

This file contains the definitions of macros and prototypes

for functions used by the niceday program�

�

�define TOO�COLD !�

�define TOO�HOT "�

���� CODING PROGRAMS FOR READABILITY ���

�define HOT�DAY�t� ��t� � TOO�HOT�

�define COLD�DAY�t� ��t� TOO�COLD�

�define ANY�DAYS�n�b� ���n� � �b�� � ��

int nice�day�int temp�	

int print�results�int nice� int bad� int temp�sum�	

and replaced in niceday�c with�

�include �niceday�h�

Thus� the beginning of niceday�c has been reduced to�

� File� niceday�c

Programmer� Programmer Name

Date� Current Date

This program counts the number of nice days in a set of high

temperature data�

�

�include stdio�h�

�include �tfdef�h�

�include �niceday�h�

main��

� ���

Notice we include stdio�h at the head of the source �le� Its contents are available for use by the
entire source �le� We also declare the function prototypes for nice day�� and print results��

in the �le niceday�h outside main��� A declaration outside a function is called an external
declaration� The scope of an external declaration is the entire �le from the point of the declaration�
i�e� all code that follows the external declaration can use the declared item� Since stdio�h is
included outside main��� the declarations for scanf�� and printf�� are also external� External
declaration of functions is convenient since it avoids repeated declarations of the same function�
On the other hand� external declarations of variables leads to poorly structured programs and
destroys modularity of functions� External declarations of variables is strongly discouraged�

In summary� the syntax of the �include directive is�

�include ��lename�
�include ��lename�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

with the semantics that the contents of the �le� �lename� is to be inserted in the source �le in place
of the �include directive�
Note� here the angle brackets are part of the syntax of the directive��
Other directives in the included �le are also processed� In the �rst form of the directive� the header
�le is searched for in the �usual place� for system header �les� and in the second case� it is to be
found in the current directory� The advantages of using the �include directive are twofold�

�� Information such as macro de�nitions and prototype statements that are useful in multiple
program �les need only be entered in a single place and then included where needed� This
also facilitates changes� the change need be made only in a single place�

�� Details of macro de�nitions and prototypes are hidden from the view of the reader� thus alle�
viating clutter and information overload and allowing a reader of the program to concentrate
on the logic of the code itself�

����� Conditional Compilation

The third useful facility provided by the preprocessor is conditional compilation� i�e� the
selection of lines of source code to be compiled and those to be ignored� While conditional
compilation can be used for many purposes� we will illustrate its use with debug statements� In
our previous programming examples� we have discussed the usefulness of printf�� statements
inserted in the code for the purpose of displaying debug information during program testing�
Once the program is debugged and accepted as �working�� it is desirable to remove these debug
statements to use the program� Of course� if later an undetected bug appears during program use�
we would like to put some or all debug statements back in the code to pinpoint and �x the bug�
One approach to this is to simply �comment out� the debug statements� i�e� surround them with
comment markers� so that if they are needed again� they can be �uncommented�� This is a vast
improvement over removing them and later having to type them back� However� this approach
does require going through the entire source �le
s� to �nd all of the debug statements and comment
or uncomment them�

The C preprocessor provides a better alternative� namely conditional compilation� Lines of
source code that may be sometimes desired in the program and other times not� are surrounded
by �ifdef��endif directive pairs as follows�

�ifdef DEBUG

printf��debug�x � �d� y � �f�n�� x� y�	

���

�endif

The �ifdef directive speci�es that if DEBUG exists as a de�ned macro� i�e� is de�ned by means of
a �define directive� then the statements between the �ifdef directive and the �endif directive
are retained in the source �le passed to the compiler� If DEBUG does not exist as a macro� then
these statements are not passed on to the compiler�

Thus to �turn on� debugging statements� we simply include a de�nition�

���� CODING PROGRAMS FOR READABILITY ���

�define DEBUG �

in the source �le� and to �turn o�� debug we remove
or comment� the de�nition� In fact� the
replacement string of the macro� DEBUG is not important� all that matters is the fact that its
de�nition exists� Therefore�

�define DEBUG

is a su�cient de�nition for conditional compilation purposes� During the debug phase� we de�ne
DEBUG at the head of a source �le� and compile the program� All statements appearing anywhere
between �ifdef and matching �endif directives will be compiled as part of the program� When
the program has been debugged� we take out the DEBUG de�nition� and recompile the program�
The program will be compiled excluding the debug statements� The advantage is that debug
statements do not have to be physically tracked down and removed� Also� if a program needs
modi�cation� the debug statements are in place and can simply be reactivated�

In general� conditional compilation directives begin with an if�part and end with an endif�part�
Optionally� an else�part or an elseif�part may be present before the endif�part� The keywords for
the di�erent parts are�

ifpart	 if� ifdef� ifndef
elsepart	 else
elseifpart	 elif
endifpart	 endif

The syntax is�

��if�part�
�statements�

� � �elseif�part�
�statements� �

� ��else�part�
�statements� �

��endif�part�

If the if�part is True� then all the statements until the next �else�part�� �elseif�part� or �endif�
part� are compiled� otherwise� if the �else�part� is present� the statements between the �else�
part� and the �endif�part� are compiled�

We have already discussed the keyword ifdef� The keyword ifndef means �if not de�ned�� If the
identi�er following it is NOT de�ned� then the statements until the next �else�part�� �elseif�part�
or �endif�part� are compiled�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

The keyword if must be followed by a constant expression� i�e� an expression made up of
constants and operators� If the constant expression is True� the statements until the next else�
part� elseif�part or endif�part are compiled� In fact� the keyword ifdef is just a special case of the if
form� The directive�

�ifdef ident

is equivalent to�

�if defined ident

We can also use �if to test for the presence of a device� for example� so that if it is present�
we can include an appropriate header �le�

�if DEVICE �� MOUSE

�include mouse�h

�endif

Here� both DEVICE and MOUSE are assumed to be constant identi�ers�

The �elif provides a multiway branching in conditional compilation analogous to else � � � if

in C� Suppose� we wish to write a program that must work with any one of a variety of printers�
We need to include in the program a header �le to support the use of a speci�c printer� Let us
assume that the speci�c printer used in an installation is de�ned by a macro DEVICE� We can then
write conditional compilation directives to include the appropriate header �le�

�if DEVICE �� IBM

�include ibmdrv�h

�elif DEVICE �� HP

�include hpdrv�h

�else

�include gendrv�h

�endif

Only constant expressions are allowed in conditional compilation directives� Therefore� in the
above code� DEVICE� IBM� and HP must be be de�ned constants�

The niceday Example Again

Using compiler directives is a convenience for the programmer and makes program source �les
easier to understand� One goal in understandable �les is to make them small� the less a reader
has to look at in trying to understand a program� the better� Good programming style includes

���� INTERACTING WITH THE OPERATING SYSTEM ���

the hiding of details at the algorithm level with functions� at the source code level using macros�
and at the source �le level using header �les and conditional compilation� One comment should
be made about header �les� The information stored in header �les is meant to be directives and
prototype statements� NOT code statements or function de�nitions� Also DO NOT�

�include �somefile�c�

The syntax of the �include directive allows these� but it is considered bad style� A �nal version
of our �le niceday�c using these compiler directives is shown in Figure ����

��� Interacting with the Operating System

In the programs we have developed so far� we have used C library functions scanf�� and printf��

to perform the input and output for our programs� These library routines are simply functions
that call on the facilities of the operating system to cause data to be the read from the keyboard
and written to the screen� In this section we look in more detail at these features of the operating
system�

����� Standard Files and EOF

In our payroll programs� we used a sentinel value of id number� namely 	� to indicate the end of
input data� There are many instances when it is not possible to use a special sentinel value of input
data to terminate the input� For example� suppose we wish to read a sequence of numbers and
determine the largest of them� It is impossible to select any one number as a signal to terminate
input since any selected number may be one of the valid numbers in our sequence and may appear
before the entire sequence of numbers is exhausted� We need a way to indicate that the end of
input is reached without entering any special value of input which may also be valid data�

C provides such mechanism to indicate the end of data input through the way it handles all
input and output� All data read by a C program or written from a program can be considered to
be simply a stream or sequence of characters� i�e� symbols we use to type or print information�
alphabetic letters� digits� punctuations� etc� This stream of characters is called a �le and is
organized like any other �le in the system� Three �les� called standard input� standard output�
and standard error� are prede�ned �les available to all programs� By default� standard input
is the keyboard� and standard ouput is the screen� The function scanf�� reads data from the
standard input �le� and printf��writes data to the standard output �le� Run time error messages
are written to standard error� which is also the screen� by default�

The end of a �le is indicated by a special marker which is an unusual character not commonly
used for any other purpose� When input is typed at the keyboard� an end of �le mark is indicated
by what is called a control character� A control character is typed by pressing the control key�

CTRL�� and pressing another key while keeping CTRL key pressed� For example� control�A is

��	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

� File� niceday�c

Programmer� Programmer Name

Date� Current Date

This program counts the number of nice days in a set of high

temperature data�

�

�include stdio�h�

�include �tfdef�h�

�include �niceday�h�

main��

� � declarations �

int temperature� � daily temperature �

total � �� � cumulative total �

num�nice�days � ��

num�bad�days � �	

� print title and prompt �

printf�����Count Nice Days����n�n��	

printf��Type daily high temperature readings �� to quit�� ��	

� read the first temperature �

scanf���d�� �temperature�	

while �temperature $� �� �

� process one temperature �

if � nice�day�temperature��

num�nice�days � num�nice�days � �	

else

num�bad�days � num�bad�days � �	

� accumulate total of temperatures �

total � total � temperature	

�ifdef DEBUG

printf��debug� �d temps read� total � �d�n��

num�nice�days � num�bad�days� total�	

�endif

� read next temperature �

scanf���d�� �temperature�	

�

print�results�num�nice�days� num�bad�days� total�	

�

���� INTERACTING WITH THE OPERATING SYSTEM ���

� Function to test for a nice day given the temperature �

int nice�day�int temp�

�

if� COLD�DAY�temp�� return FALSE	

if� HOT�DAY�temp�� return FALSE	

return TRUE	

�

� Function to print results given number of nice and bad days �

� and total of temperatures �

int print�results� int nice�days� int bad�days� int total�

�

float average�temp	

printf��There were �d nice days and �d bad days�n��

nice�days� bad�days�	

if � ANY�DAYS�nice�days�bad�days�� �

average�temp � �float� total �float� �nice�days � bad�days�	

printf��The average temperature for �d days was �f�n��

nice�days � bad�days� average�temp�	

�

�

Figure ���� Using Directives in niceday�c

entered by pressing CTRL and pressing A while keeping CTRL pressed� Control characters are
displayed on screen or paper by a caret followed by a letter� For example� control�A is written as
�A� The Control character entered on a keyboard to indicate an end of �le is �D on most Unix
machines and �Z on DOS machines� A keyboard �le
stream� with an end of �le keystroke is
shown in Figure ���� Here� three lines of input are represented� followed by the end of �le marker
as if the user had typed�

	

�	

�

�D

How does scanf�� inform the calling function that an end of �le has been reached� It does
so by returning a special value to indicate an end of �le� The function scanf�� is just like any

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

nnnnnn nn� � � � � EOF

Figure ���� End of File Marker

other function in C� it has arguments passed to it and it returns a value� So far� we have simply
ignored whatever value has returned� Normally� when scanf�� reads data� it returns a value to
indicate the number of data items read successfully� We can save this value returned by scanf��

and examine whether all data items have been read� For example� consider�

flag � scanf���d�� �n�	

flag � scanf���d �f �d�� �n� �y� �id�	

Assuming that both the above statements read data items successfully� then the �rst scanf�� will
return � since it reads one decimal integer� and the second will return since it reads three data
items� two int�s and a float� We have not used this value so far� but we can use it to check if a
correct number of items are read�

When scanf�� detects the special end of �le marker� it returns a value of either 	 or ��

depending on implementation�� The actual value returned is de�ned as a macro called EOF in the
�le stdio�h�

We can now write a loop that terminates when the end of standard input �le is reached�

�include stdio�h�

���

flag � scanf��	

while �flag $� EOF� �

���

flag � scanf��	

�

The value returned by scanf�� is saved in the variable flag� The loop repeats until flag receives
the value EOF� The above code is portable to any implementation since the correct value of EOF is
de�ned in stdio�h in every implementation� We can now write a program that uses end of �le to
terminate reading of data�

Task

BIG� Find the largest absolute value in a sequence of integers typed in by the user� An end of �le
keystroke terminates the input�

���� INTERACTING WITH THE OPERATING SYSTEM ��

The algorithm maintains the current largest absolute value� Each time a new number is read�
the absolute value of the item read is compared with the largest value� and if necessary the largest
value is updated� The algorithm uses a loop that is terminated when an end of �le keystroke is
typed� Here is the algorithm�

initialize largest to �

read first integer� n

while there is still data

compare absolute value of n and largest� update largest

read next integer

print largest

We will need a function absolute�� which takes an integer argument n� and returns its absolute
integer value� Notice we initialize our largest absolute value to 	� since that is the smallest absolute
value we can ever encounter� The entire program is shown in Figure �� and a sample session is�

���Largest Absolute Integer���

Type integers� EOF to quit� %Z for DOS� %D for Unix

��

�

��

��

�D

Largest absolute value � ��

In our program� main�� �rst prompts the user to type integers� and it also tells the user how
to terminate the input� It is best to assume that the user does not know how to press a keystroke
for EOF
however� in the future we will omit this reminder and assume the user knows the correct
EOF character�� The prompt is written by�

printf��Type integers� EOF to quit� �

�%Z for DOS� %D for Unix�n��	

Observe that the argument of printf�� consists of two adjoining strings of characters� each
in double quotes� When the compiler encounters two adjoining strings� it replaces them by a
concatenated string� i�e� it joins them together into a single string�

�Type integers� EOF to quit� %Z for DOS� %D for Unix�n�

When a string gets too large� it is best to split it into two adjoining strings� since strings cannot
be broken across lines�

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

� File� maxabs�c

Programmer� Programmer Name

Date� Current Date

This program reads in a sequence of integers until an end of file�

Among the numbers read� the program determines the largest absolute value�

�

�include stdio�h�

int absolute�int n�	

main��

� int largest � ��

n� flag	

printf�����Largest Absolute Integer����n�n��	

printf��Type integers� EOF to quit� ��	

�%Z for DOS� %D for Unix�n��	

flag � scanf���d�� �n�	

while �flag $� EOF� �

if �absolute�n� � largest�

largest � absolute�n�	

flag � scanf���d�� �n�	

�

printf��Largest absolute value � �d�n�� largest�	

�

� Function returns the absolute value of n �

int absolute�int n�

�

if �n ��

return �n	

else

return n	

�

Figure ��� Code for maxabs�c

���� INTERACTING WITH THE OPERATING SYSTEM ���

After the prompt� main�� reads the �rst integer� The while loop tests for the end of the
input and compares the value of largest and the absolute value of the last number read� n� If
necessary largest is updated� a new number is read� and so forth� The loop is terminated when
an end of �le character
�D or �Z� is encountered by the function scanf�� and it returns a value
EOF� Remember� only the value of flag� NOT that of n� gets the value� EOF� The value of n will
remain unchanged from its previous value when scanf�� encounters end of �le� Finally� the largest
absolute value is printed out�

We have seen that scanf�� returns a value of items read or EOF� It also performs the task
of reading one or more items� converting them to internal form� and storing them at speci�ed
addresses� This additional task does not directly contribute to the returned value and is called a
side e�ect� Functions may be used solely for their side e�ects� solely for their returned values�
or for both side e�ects and returned values� For example� we use printf�� for its side e�ect and
ignore its value� We also frequently ignore the value of scanf��� In this section� we have used
scanf�� for both its side e�ect as well as its return value�

����� Standard Files and Redirection

As we stated� normally the standard input and standard output �les are de�ned by default to be
the keyboard and the screen� This may not always be convenient� For example� in our nice day
program� we might want to gather statistics for an entire year of temperature data� or an entire
decade� While we may have all this data readily available in a �le� to use our program we would
have to type it all in at the keyboard again
and what happens if we make a mistake and have to
start all over�� Operating systems such as Unix and MS�DOS allow a user to redirect the standard
input and output �les to �les other than the keyboard and screen�

If our program in �le� niceday�c were compiled using the command�

cc �o niceday niceday�c

producing the executable �le niceday� we can execute the program with input data from a �le
called temperatures by typing the following command to the shell�

niceday temperatures

The symbol � in the command redirects the standard input to come from the �le temperatures
instead of the keyboard�

Similarly� we can redirect the standard input to our payroll program� pay�� from a �le con�
taining monthly data for many employees�

pay� pay�data�march

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

However� in this case� unless we can read very fast� most of the output generated by the program
will scroll past the screen before we can read it� In addition� we might want to save the results of
our program execution in a �le to send to a printer for a hard copy� A similar redirection of the
standard output to a �le can be done with the symbol � as follows�

pay� pay�data�march � pay�results�march

One problem remains with this technique� all output generated by the program from printf��

statements will be redirected to the �le� including the prompts we put in the program� In this
case� the prompts are not necessary since the data is coming from a �le� not from the user at the
keyboard� For programs who�s input and output are meant to be redirected from�to �les� it is
best to remove the printf�� statements which produce prompts� We might even consider using
conditional compilation to include or exclude the prompts� but remember� the program must be
recompiled to change from one which prompts to one which does not� and vice versa�

��� Debugging Guidelines

As programs become large� �nding bugs and debugging become a time consuming job� Debugging
is an art that can be learned and developed� However� it requires plenty of experience in writing
and debugging programs� The structured� top down approach to writing programs discussed in
this chapter is one valuable tool for producing quality� working programs� However� there is no
substitute for extensive programming experience and the best way to gain programming experience
is to write� test� and debug programs� write� test� and debug programs�write� test� and
debug programs� etc� etc�

Certain debugging guidelines are presented here to make the learning process easier�

�� The �rst step cannot be emphasized enough� Spend plenty of time in preparing the algorithm�
A logically clear algorithm is much easier to debug than an ad hoc algorithm with many
�xes for previously found bugs� Trial and error programming may never be bug free�

�� Use top down development for your algorithms� and use modular programming for your
implementation� Top down development makes logic transparent at each stage and hides
unnecessary details by relegating them to later stages� Modular programming localizes errors
in small functions� which can be easily debugged�

� Document your program using comments as you write it� It is a poor habit to delay docu�
menting a program until it is done� Frequently� the very process of documenting a program
makes the logic clearer and may well eliminate sources of errors�

�� Trace your program �ow manually� This means� examine what happens to values of key
variables at key points in the program� Use judicious starting values for these variables�
Particularly� check values of variables at critical points� such as loop beginnings and ends�
function calls� and other key points in the program�

���� COMMON ERRORS ���

�� If your compiler comes with a symbolic debugger� learn to use it� The time spent to learn
the use of a debugger makes debugging of most programs an easier task�

�� Otherwise� use trace statements in your program� That is� use statements to print out values
of key variables at key positions in the program to help pin�point the program segment where
the bug may be located� The program segment containing a bug can be narrowed until the
exact one or two lines of code are pin�pointed� It is then easier to spot the error and correct
it� Trace statements are also called debug statements�

�� Pin�point the functions which generate errors� Rewrite the functions if they are overly
complex or long� Many times� it is easier to rewrite a function than to rectify poor logic�

�� In program development� initially we need debug statements� Later� once a program is
debugged� the debug statements must be removed� C provides conditional compilation which
was discussed above� One use of conditional compilation is to conditionally compile debug
statements� Initially the program� including debug statements� is compiled� Later� when the
program has been debugged� it can be compiled without compiling the debug statements�
Debug statements need not be removed from the code�

��� Common Errors

This section contains a list of common errors made by programmers � things to watch out for in
your programming�

�� The wrong value is tested for EOF instead of the returned value of scanf���

flag � scanf���d�� �n�	

while �n $� EOF� � should be� while �flag $� EOF� �

���

The value read is stored at the address given by �n� i�e� it is stored in n� The statement
scanf���d�� �n� evaluates to a returned value which is either the number of data items
read or EOF� In the above case� if an integer data item is read� the value returned will be ��
If no data item is read� scanf�� returns EOF� The value returned by scanf�� is stored in
the variable flag� NOT in n� Test flag for EOF� NOT n�

�� An attempt is made by a called function to access a variable de�ned in the calling function�

�include stdio�h�

�define TRUE �

main��

� int x� square�int x�	

x �
	

square�x�	 � x cannot be unchanged by square�� �

��� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

printf��x � �d�n�� x�	 � prints� x �
 �

�

int square�int x� � x is a new object� with initial value �

� passed by an argument in the function call �

�

x � x � x	 � new x is changed �

return TRUE	 � a value is returned as the value of square�� �

�

The variable x in main�� is a di�erent object from x in square��� The value of the local
cell� x� is changed in square��� but that does not a�ect the cell x in main��� The cell� x� in
main�� will still have the value after the function call to square��� If main�� needs the
squared value of x� then square�� should return the squared value of x� NOT TRUE� This
returned value should be saved in a local variable in main��� For example� if the return

statement in square�� is�

return x	

then the returned value can be saved in main���

x � square�x�	

� A function is not declared with a prototype statement� Without a prototype� the compiler
will not be able to check for consistency in usage of the function� When a function is declared�
the compiler checks for a correct number of arguments in function calls and checks for correct
types�

�� A default declaration of a function assumes an integer type function value� If the actual
de�nition of that function returns a non�integer type� then the compiler will consider it an
attempt to redeclare a function� The compiler will �ag it as an error�

�� An erroneous keystroke is entered when an end of �le is to be entered� For example� an
attempt is made to enter 	 or �� for an end of �le� These values are not the end of �le
keystrokes� they represent the possible values returned by scanf�� when an end of �le
keystroke
�D or �Z� is encountered�

��	 Summary

This chapter has presented a key concept in the design of good programs� namely� top down design�
Beginning with the algorithm� complex programming tasks are divided into logical subtasks which
themselves may be further divided� This structured design is a form of information hiding �
hiding the details of an operation in its abstraction� We have described how these logical subtasks
may be implemented using functions in C� A function is a block of code� which when given some
information� performs some operations on the data and returns a value� To invoke
call� a function�
use a statement with the form�

���� SUMMARY ���

�function name�
 ��argument����argument�� � � �� �

where each argument may be an arbitrary expression� A function is de�ned by specifying a
function header and a function body� A function header takes the form�

�function name�
 ��parameter����parameter�� � � �� �

and a function body is simply a block containing local variable declarations followed by executable
statements to perform the task of the function�

We saw that the �parameter��s in the function header are really just special forms of variable
declarations� containing a type speci�er and an identi�er� They declare additional local variables
within the function which are initialized to the values passed as arguments in the call� We also
saw how declaration statements can initialize variables when a block is entered�

�type speci�er��var name� ���init expr�� �� �var name� ���init expr��� � � ��

Remember� all local variables local to a function may be accessed ONLY within the body of the
function� not by functions calling this function and not by functions called by this function�

The value returned by a function is speci�ed in a return statement of the form�

return �expression��

If the last statement of the function is reached without executing a return statement� the function
returns with an unknown return value�

Next we discussed another form of information hiding using compiler directives processed by
the C preprocessor� These included macros� with and without arguments� including header �les�
and conditional compilation�

�de�ne �symbol name� �substitution string�

�include ��lename�
�include ��lename�

�ifdef �identi�er�

and other variations of the �if directive��

Finally� we described the relationship between I�O in C and �les� including end of �le and
redirection of standard input and output �les�

�	 CHAPTER �� DESIGNING PROGRAMS TOP DOWN

��
 Exercises

�� What will the following code do�

�define SQ�x� x � x	

printf���d�n�� SQ�
��	

�� What will the following code do�

�define SQ�x� x � x	

printf���d�n�� SQ���
��	

� What will be the output of the following code�

�define DEBUG �

�define TWICEZ z � z

main��

� int z � �	

�ifdef DEBUG

printf���d�n�� TWICEZ � ��	

�endif

�

�� Check the following program for errors� if any� and use a manual trace to verify the program
averages two numbers�

�include stdio�h�

main��

� float x� y� average	

printf��Type two numbers� ��	

scanf���f �f�� �x� �y�	

calc�avg�x� y�	

printf��Average of �f and �f is �f�n�� x� y� average�	

�

calc�avg�float a� float b�

�

return a � b �	

�

�� Check the following program for errors� if any� and manually trace its execution�

��	� EXERCISES ��

main��

� float x� y� average	

printf��Type numbers�n��	

scanf���f�� �x�	

while �x $� EOF� �

printf��Number read � �f�n�� x�	

scanf���f�� �x�	

�

�

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

��� Problems

�� Write a function float speed mph�float distance� float time�	 where distance trav�
eled is speci�ed in feet and time interval is in seconds� The function should return the speed
in miles per hour� A mile is ���	 feet� Show a manual trace�

�� Write a program that prints out an integer and its square for all integers in the range from
� through ��� Use a function to calculate the square of an integer� Show a manual trace�

� Write a program to sum all input numbers until end of �le� The program should keep a count
of the numbers entered and compute an average of the input numbers� Show a manual trace
for the �rst three numbers�

�� Write a function float max�float n�� float n��	 that returns the greater of n� and n��
Write a function float min�float n�� float n��	 that returns the lesser of n� and n��
Write a program that reads in numbers and uses the above functions to �nd the maximum
and the minimum of all the numbers� The end of input occurs when zero is typed� Zero is
a valid number for determining the maximum and the minimum� Use debug statements to
ensure that the maximum and the minimum are updated correctly�

�� Write a program that generates a table of equivalent Celsius
C� and Fahrenheit
F� tem�
peratures from 	 to ��� degrees F� The table entries should be at �ve degree
F� intervals�
Use a function to convert degrees F to C� The conversion between the two is given by�

C � �F �
�� � ��� "��

�� Write a program that uses a function to determine if a given year is a leap year� A year is
a leap year if it is divisible by �		� or if it is divisible by � and it is not divisible by �		�

�� Write a function float sum rec n�int n�	 which returns the sum of the reciprocals of
integers from � through n� Write a program that reads positive integers until end of �le� For
each positive integer� x� read� it prints sum rec n�x�� Reciprocals must be float values�
Use a cast operator to convert an integer to float before the reciprocal is calculated�

�� Modify the pay calculation program of Figure �� so that a function print data�� prints
out the input data as well as the pay� The function print data�� should return the number
of items it writes to the output�

�� Assume that C does not provide a multiply operator� Write a function� int multiply�int

n�� int n��	 that multiplies two integers n� and n�� and returns their product� Write a
driver to test the function�

�	� Write a function� int factors�int n�� where n is a positive integer� The function prints
the smallest integer factors of n� excluding � and itself� For example� if n is ��	� then
factors�n� will print �� �� �� � �� The function returns TRUE if n has no factors and
FALSE otherwise�

��� Write a program that reads a positive integer and tests if it is a prime number by using
factors�� from Problem �	

��
� PROBLEMS �

��� Write a function int gcd�int n� int m�	 that returns the greatest common divisor
GCD�
of non�negative integers n and m� A GCD may be obtained as follows� if m is zero� then GCD
is n� otherwise� replace current n by the current m and replace current m by �n � m�� Repeat
until m becomes zero and GCD is found�

�� Assume that C does not have a divide operator� Write a function int divide�� with two
integer arguments that returns an integer quotient when the �rst argument is divided by the
second argument�

��� Assume that C does not have a modulus operator� Write a function modulus�� with two
integer arguments that returns the remainder when the �rst argument is divided by the
second�

��� Write a program that prints the accumulated value of an initial investment invested at a
speci�ed annual interest and compounded annually for a speci�ed number of years� Annual
compounding means that the entire annual interest is added at the end of a year to the
invested amount� The new accumulated amount then earns interest� and so forth� If the
accumulated amount at the start of a year is acc amount� then at the end of one year the
accumulated amount is�

acc�amount � acc�amount � acc�amount � annual�interest

Use a function that returns the accumulated value given the amount� interest� and years�
The prototype is�

float calc�acc�amt�float acc�amount� float annual�interest� int years�	

��� Modify the function in Problem �� so that the interest may be compounded annually�
monthly� or daily� Assume �� days in the year� Hint� Use an argument to specify annual�
monthly� or daily compounding of interest� If interest is not to be compounded annually�
the annual interest must be converted to monthly
i�e�� interest � ��� or daily interest
i�e��
interest � ���� The interest must then be compounded each year� each month� or each day
as the case may be�

��� Write a function that calculates the factorial of an integer n� Use a driver to test the
function for values of n from � to �� Factorial of a positive integer� n� is given by the product
of positive integers from � through n� Use a variable that stores the value of the cumulative
product� The cumulative product is multiplied by a new value of an integer each time a loop
is executed�

cum�prod � cum�prod � i	

The initial value of the cumulative product should be � so the �rst multiple accumulates
correctly�

��� Write a function� float pos power�float base� int exponent�	 which returns the value
of base raised to a positive exponent� For example� if base is ��	 and exponent is � the
function should return ��	� If the exponent is negative� the function should return 	�

�� CHAPTER �� DESIGNING PROGRAMS TOP DOWN

��� Write a function� neg power��� which returns base raised to a negative exponent�

�	� Modify the functions in Problems �� and �� to write a function float power�float base�

int exponent�	 which returns an exponent power of base� where exponent may be positive
or negative� If the exponent is zero� it should return ��

��� Write a function int weight�int n�	 where n is a positive integer� The function returns
the weight of the most signi�cant digit� i�e�� the highest power of ten which does not exceed
n� For example� if n is ���� weight�n� returns �			� Assume n is less than �				�

��� Write a function� int sig dig value�int n�	 that returns the integer value of the most sig�
ni�cant digit of a positive integer n less than �				� For example� if n is ���� sig dig value�n�

returns integer ��

�� Write a function� int suppress msd�int n�	 that returns an integer value of a positive in�
teger after the most signi�cant digit is removed� For example� if n is ���� suppress msd�n�

returns ���

��� Use Problems �� and � to write a function� print dig int�int n�	 that prints successive
integer values of digits of a positive integer n� Each digit value is printed on a separate line�
For example� if n is ���� print dig int�n� prints � on one line� on the next� � on the
next� and � on the last line�

��� Write a function print dig float�float x�	 that writes the value of each digit of a �oating
point number x� For example� if x is �������� then print dig float�x� will print integer
values of digits �� � �� �� �� �� � and � in succession�

��� Write a macro to evaluate the sum of the squares of two parameters� Make sure the macro
can be called with any argument expressions� Write a program that reads two values and
uses the above macro to print the sum of the squares�

