EXAMPLE 695

Simple generator in Icon

EXAMPLE 6.96

A generator inside an
expression

Control Flow

6.5.4 Generators in Icon

As in Clu, Icon generators can be used for enumeration-controlled iteration. Our
canonical for loop example would be written as follows in Icon:

every i := first to last by step do {

}

Here ... to...by... is a built-in “mixfix” generator.

Because Icon is intended largely for string manipulation, most of its built-in
generators operate on strings. Find (substr, str), for example, generates the
positions (indices) within string str at which an occurrence of the substring
substr can be found. Upto(chars, str) generates the positions within string
str at which any character in chars appears. (The initial argument to find is a
string, delimited by double quote marks; the initial argument to upto is a cset
[character set], delimited by single quote marks.) The prefix operator ! generates
all elements of its operand, which can be a string, list, record, file, or table.

In comparison to Clu, however, the generators of Icon are more deeply embed-
ded in the semantics of the language. A generator can be used in any context that
expects an expression. The larger context is then capable of generating multiple
results. The following code will print all positions in s that follow a blank.

every i := 1 + upto(’ ’, s) do {
write (i)

¥
This can even be written as

every write(1 + upto(’ ’, s))

69-cD

70-cD Chapter 6 Control Flow

EXAMPLE 697

Generating in search of
success

EXAMPLE 698

Backtracking with multiple
generators

Generators in Icon are used not only for iteration, but also for goal-directed
search, implemented via backtracking. (Backtracking is also fundamental to Pro-
log, which we will study in Chapter 11.) Where most languages use Boolean ex-
pressions to control selection and logically controlled loops, Icon uses a more
general notion of success and failure. A conditional statement such as

if 2 < 3 then {

}

is said to execute not because the condition 2 < 3 is true, but because the com-
parison 2 < 3 succeeds. The distinction is important for generators, which are
capable of producing results repeatedly until one of them causes the surrounding
context to succeed (or until no more results can be produced). For example, in

if (i := find("abc", s)) > 6 then {

}

the body of the if statement will be executed only if the string "abc" appears
beyond the sixth position in s. Because find generates its results in order, i will
represent the first such position (if any). The execution model is as follows: find
is capable of generating all positions at which "abc" occurs in s. Suppose the
first such occurrence is at position 2. Then i is assigned the value 2, but the com-
parison 2 > 6 fails. Because there is a generator inside the failed expression, Icon
will resume that generator and reevaluate the expression for the next generated
value. It will continue this reevaluation process until the comparison succeeds,
or until the generator runs out of values, in which case it (the generator) fails, the
overall expression fails definitively, and the body of the if is skipped.

If a failed expression contains more than one generator, all possible values will
be explored systematically. The body of the following if, for example, will be
executed if and only if an x appears at the same position in both s and t, with i
denoting the first such matching position:

if (i := find("x", s)) = find("x", t) then {

}

If there is no matching position, then i will be set to the position of the final x
in s, but the body of the loop will be skipped. If the programmer wishes to avoid
changing i in the case where the overall test fails, then the reversible assignment
operator, <- can be used instead of :=. When Icon backtracks past a reversible
assignment, it restores the original value.

Any user-defined subroutine in Icon can be a generator if it uses the suspend
expr statement instead of return expr. Suspend is Icon’s equivalent of yield. If
the expression following suspend contains an invocation of a generator, then the
subroutine will suspend repeatedly, once for each generated value.

Chapter 6 Control Flow 71-CD

/CHECK YOUR UNDERSTANDING

48.

49.
50.
51.

Explain how Icon generators differ from the iterators of Clu or the iterator
objects of Euclid, C++, Java, and C#.

Describe the notions of success and failure in Icon.
What is backtracking? Why is it useful?

Name a language other than Icon in which backtracking plays a fundamental
role.

	Control Flow

