Subroutines and Control Abstraction

EXAMPLE 8.75

Coroutine-based iterator
invocation

EXAMPLE 8.76

Coroutine-based iterator
implementation

8.6.3 Implementation of Iterators

Consider the following for loop from Example 6.68 (page 279).

for i in from_to_by(first, last, step) do

end

The compiler can translate this as

iter ;== new from_to_by(first, last, step, i, done, current_coroutine)

while not done do

transfer(iter)

destroy(iter)

After the loop completes, the implementation can reclaim the space consumed

by iter.

The definition of from_to_by itself is quite straightforward:

coroutine from_to_by(from_val, to_val, by_amt : int;
ref i :int; ref done : bool; caller : coroutine)

i ;= from_val
if by_amt > 0 then
done := from_val < to_val

detach

loop
i +:= by_amt
done :=i < to_val

transfer(caller)

——vyield i

135-cD

136-CD Chapter 8 Subroutines and Control Abstraction

EXAMPLE 877

Iterator usage in C#

else
done := from_val > to_val
detach
loop
i +:= by_amt
done =i > to_val
transfer(caller) ——vyieldi

Parameters i and done are passed by reference so that the iterator can modify
them in the caller’s context. The caller’s identity is passed as a final argument so
that the iterator can tell which coroutine to resume when it has computed the
next loop index. Because the caller is named explicitly, it is easy for iterators to
nest, as in Figure 6.5 (page 280).

Single-Stack Implementation

While coroutines suffice for the implementation of iterators, they are not nec-
essary. A simpler, single-stack implementation is also possible. Because a given
iterator (e.g., an instance of from_to_by) is always resumed at the same place in
the code (at the top of a given for loop), we can be sure that the subroutine call
stack will always contain the same frames whenever the iterator runs. Moreover,
since yield statements can appear only in the main body of the iterator (never
in nested routines), we can be sure that the stack will always contain the same
frames whenever the iterator transfers back to its caller. These two facts imply
that we can place the frame of the iterator directly on top of the frame of its caller
in a single central stack.

When an iterator is created, its frame is pushed on the stack. When it yields a
value, control returns to the for loop, but the iterator’s frame is left on the stack.
If the body of the loop makes any subroutine calls, the frames for those calls will
be allocated beyond the frame of the iterator. Since control must return to the
loop before the iterator resumes, we know that such frames will be gone again
before the iterator has a chance to see them: if it needs to call subroutines itself,
the stack above it will be clear. Likewise, if the iterator calls any subroutines, they
will return (popping their frames from the stack) before the for loop runs again.
Nested iterators present no special problems (see Exercise ©) 8.42).

Data Structure Implementation

Compilers for C# 2.0 employ yet another implementation of iterators. Like Java,
C# 1.1 provided iterator objects. Each such object implements the IEnumerator
interface, which provides MoveNext and Current methods. Typically an iterator
is obtained by calling the GetEnumerator method of an object (a container) that
implements the IEnumerable interface:

for (IEnumerator i = myTree.GetEnumerator(); i.MoveNext();) {
object o = i.Current;
Console.WriteLine(o.ToString());

Chapter 8 Subroutines and Control Abstraction 137-CD

C# 2.0 provides true iterators as an extension of iterator objects. The pro-
grammer simply declares a method that contains one or more yield return

exameLe 8.78 statements, and whose return type is IEnumerator or IEnumerable. Here is an
Implementation of C# example of the latter:
iterators
static IEnumerable FromToBy (int fromVal, int toVal, int byAmt)
{
if (byAmt >= 0) {
for (int i = fromVal; i <= toVal; i += byAmt) {
yield return i;
}
} else {
for (int i = fromVal; i >= toVal; i += byAmt) {
yield return i;
}
}
}

The compiler automatically transforms this code into a hidden class with a
GetEnumerator method, along the lines of Figure @) 8.15. Within this code, an
explicit state variable keeps track of the “program counter” of the last yield
statement. In addition, local variable i of the true iterator becomes a data mem-
ber of the FromToByImpl class, leaving the iterator with no need for a stack frame
across iterations of the loop. In a quite literal sense, the compiler transforms each
true iterator into an iterator object.

Recursive iterators present no particular difficulties: a nested iterator is allo-
cated on demand when the outer iterator enters a foreach loop, and is referred
to by a reference in that outer iterator. The details are deferred to Exercise ©) 8.43.
Because iterator objects are allocated from the heap, the C# implementation of
true iterators may be somewhat slower than the stack-based implementation of
the previous subsection.

/CHECK YOUR UNDERSTANDING
14. Describe the “obvious” implementation of iterators using coroutines.

15. Explain how the state of multiple active iterators can be maintained in a single
stack.

16. Describe the transformation used by C# compilers to turn a true iterator into
an iterator object.

138-CD Chapter 8 Subroutines and Control Abstraction

static IEnumerable FromToBy(int fromVal, int toVal, int byAmt) {
return new FromToByImpl(fromVal, toVal, byAmt);
}
class FromToByImpl : IEnumerator, IEnumerable {
enum State {starting, goingUp, goingDown, done}
int i, tv, ba;
State s;

public FromToByImpl(int fromVal, int toVal, int byAmt) {
fv = fromVal; tv = toVal; ba = byAmt; s = State.starting;
}
public IEnumerator GetEnumerator() {
return this;
}
public object Current {
get { return i; }
}
public bool MoveNext() {
switch (s) {
case State.starting :
if (ba >= 0) {
if (i <= tv) { s = State.goingUp; return true; }
else { s = State.done; return false; }
} else {
if (i >= tv) { s = State.goingDown; return true; }
else { s = State.done; return false; }
}
case State.goingUp :
i += ba;
if (i <= tv) return true;
else { s = State.done; return false; }
case State.goingDown :
i += ba;
if (i >= tv) return true;
else { s = State.done; return false; }
default: // for completeness
case State.done : return false;

}
public void Reset() {
s = State.starting;
}
}

Figure 8.15 Iterator object equivalent of a true iterator in C#. This handwritten code cor-
responds to Example () 8.78. It represents, at the source level, what the compiler creates at
the level of intermediate code: a state machine that tracks the program counter of the original
iterator, with a starting state, an ending state, and one state for each yield statement. The arms
of the switch statement capture the code paths in the original iterator that move from one
state to the next.

	Subroutines and Control Abstraction

