APPENDIX A

Character Encodings

A character is the basic unit of a writing system, for example, a letter of the English alphabet and an
ideograph of an ideographic writing system such as Chinese and Japanese ideographs. In the written

form, a character is identified by its shape, also known as glyph. The identification of a character with its
shape is not precise. It depends on many factors, for example, a hyphen is identified as a minus sign in a
mathematical expression and some Greek and Latin letters have the same shapes, but they are considered
different characters in two written scripts. Computers understand only numbers, more precisely, only bits
0 and 1. Therefore, it was necessary to convert, with the advent of computers, the characters into codes

(or bit combinations) inside the computer’s memory, so that the text (sequence of characters) could be
stored and reproduced. However, different computers may represent different characters with the same bit
combinations, which may lead to misinterpretation of text stored by one computer system and reproduced
by another. Therefore, for correct exchange of information between two computer systems, it is necessary
that one computer system understand unambiguously the coded form of the characters represented in bit
combinations produced by another computer system and vice versa. Before we begin our discussion of some
widely used character encodings, it is necessary to understand some commonly used terms:

e Anabstract character is a unit of textual information, for example, the Latin capital
letter A (‘A').

e A character repertoire is defined as the set of characters to be encoded. A character
repertoire can be fixed or open. In a fixed character repertoire, once the set of
characters to be encoded is decided, it is never changed. ASCII and POSIX portable
character repertoires are examples of fixed character repertoires. In an open
character repertoire, a new character may be added any time. Unicode and Windows
Western European repertoires are examples of open character repertoires. The Euro
currency sign and Indian Rupee sign were added to Unicode because it is an open
repertoire.

e Acoded character set is defined as a mapping from a set of non-negative integers
(also known as code positions, code points, code values, character numbers, and
code space) to a set of abstract characters. The integer that maps to a character
is called the code point for that character, and the character is called an encoded
character. A coded character set is also called a character encoding, coded character
repertoire, character set definition, or code page. Figure A-1 depicts two different
coded character sets; both of them have the same character repertoire, which is the
set of three characters (A, B, and C) and the same code points, which is the set of
three non-negative integers (1, 2, and 3).

© Kishori Sharan and Adam L. Davis 2022
K. Sharan and A. L. Davis, Beginning Java 17 Fundamentals, 947
https://doi.org/10.1007/978-1-4842-7307-4

APPENDIX A © CHARACTER ENCODINGS

e e
> o

Coded Character Set-I Coded Character Set-Il

Figure A-1. Two coded character sets having the same character repertoire and code points

To define a coded character set, you need to specify three things:
e Asetofcode points
e Asetof characters
e A mapping between the set of code points and the set of characters

The number of bits used to represent a character determines how many distinct characters can be
represented in a coded character set. Some widely used coded character sets are outlined in the following
sections.

ASCII

ASCI], the American Standard Code for Information Interchange, is a 7-bit coded character set. ASCII has 27
(=128) code points, and so it represents 128 distinct characters whose numeric values range from 0 (binary
0000000) to 127 (binary 1111111). The characters NUL and DELETE are represented by code points 0000000 and
1111111, respectively. There are historical reasons to assign these code points to NUL and DELETE characters.
It was common to use punched paper tapes to store data for processing by the time ASCII was developed. A 1
bit was used to represent a hole on the paper tape, whereas a 0 bit represented the absence of a hole. Since a row
of seven 0 bits would be indistinguishable from blank tape, the coding 0000000 would have to represent a NUL
character, that is, the absence of any effect. Since holes, once punched, could not be erased but an erroneous
character could always be converted into 111111, this bit pattern was adopted as the DELETE character.

ASCII uses the first 32 bit combinations (or code points) to represent control characters. This range
includes the NUL character, but not the DELETE character. Therefore, it leaves 95 bit combinations for
printing characters:

128(Al1l characters) - 32(Control Characters) - 1(DELETE) = 95(Printing characters)

All printing characters are arranged in the order that could be used for sorting purposes. The SPACE
character is normally sorted before any other printing character. Therefore, the SPACE character is allocated
the first position among the printing characters. The code point for the SPACE character in ASCII is 32, or
1100000. The code point range of 48-57 represents 0-9 digits, range 65-90 represents 26 uppercase letters
A-Z, and range 97-122 represents 26 lowercase letters a-z. Modern computers use an 8-bit combination, also
known as a byte, as the smallest unit for storage. Therefore, on modern computers, a 7-bit ASCII character uses
8 bits (or 1 byte) of memory, of which the most significant bit is always set to 0; for example, SPACE is stored as
01100000, and DELETE is stored as 0111111. Table A-1 contains the list of characters in the ASCII character set.

948

APPENDIXA © CHARACTER ENCODINGS

Table A-1. ASCII Character Set

Decimal Hexadecimal Binary Character Official Name

0 0 0 NUL NULL

1 1 1 SOH Start of heading

2 2 10 STX Start of text

3 3 11 ETX End of text

4 4 100 EOT End of transmission
5 5 101 ENQ Enquiry

6 6 110 ACK Acknowledge

7 7 111 BEL Bell

8 8 1000 BS Backspace

9 9 1001 TAB Horizontal tab

10 0A 1010 LF Line feed (new line)
11 0B 1011 VT Vertical tab

12 0C 1100 FF Form feed (new page)
13 0D 1101 CR Carriage return

14 OE 1110 SO Shift out

15 OF 1111 SI Shift in

16 10 10000 DLE Data link escape

17 11 10001 DC1 Device control 1

18 12 10010 DC2 Device control 2

19 13 10011 DC3 Device control 3

20 14 10100 DC4 Device control 4

21 15 10101 NAK Negative acknowledge
22 16 10110 SYN Synchronous idle
23 17 10111 ETB End of transmission block
24 18 11000 CAN Cancel

25 19 11001 EM End of medium

26 1A 11010 SUB Substitute

27 1B 11011 ESC Escape

28 1C 11100 FS File separator

29 1D 11101 GS Group separator

30 1E 11110 RS Record separator

(continued)

949

APPENDIX A © CHARACTER ENCODINGS

Table A-1. (continued)

Decimal Hexadecimal Binary Character Official Name
31 1F 11111 us Unit separator
32 20 100000 Sp Space

33 21 100001 ! Exclamation mark
34 22 100010 " Quotation mark
35 23 100011 # Number sign

36 24 100100 $ Dollar sign

37 25 100101 % Percent sign

38 26 100110 & Ampersand

39 27 100111 ' Apostrophe

40 28 101000 (Left parenthesis
41 29 101001) Right parenthesis
42 2A 101010 * Asterisk

43 2B 101011 + Plus sign

44 2C 101100 , Comma

45 2D 101101 - Hyphen/minus
46 2E 101110 Full stop/period
47 2F 101111 / Solidus/slash
48 30 110000 0 Digit zero

49 31 110001 1 Digit one

50 32 110010 2 Digit two

51 33 110011 3 Digit three

52 34 110100 4 Digit four

53 35 110101 5 Digit five

54 36 110110 6 Digit six

55 37 110111 7 Digit seven

56 38 111000 8 Digit eight

57 39 111001 9 Digit nine

58 3A 111010 Colon

59 3B 111011 ; Semicolon

60 3C 111100 < Less-than sign
61 3D 111101 = Equals sign

950

(continued)

Table A-1. (continued)

APPENDIXA © CHARACTER ENCODINGS

Decimal Hexadecimal Binary Character Official Name

62 3E 111110 > Greater-than sign

63 3F 111111 ? Question mark

64 40 1000000 @ Commercial at

65 41 1000001 A Latin capital letter A
66 42 1000010 B Latin capital letter B
67 43 1000011 C Latin capital letter C
68 44 1000100 D Latin capital letter D
69 45 1000101 E Latin capital letter E
70 46 1000110 F Latin capital letter F
71 47 1000111 G Latin capital letter G
72 48 1001000 H Latin capital letter H
73 49 1001001 I Latin capital letter I
74 4A 1001010] Latin capital letter]
75 4B 1001011 K Latin capital letter K
76 4C 1001100 L Latin capital letter L
77 4D 1001101 M Latin capital letter M
78 4E 1001110 N Latin capital letter N
79 4F 1001111 (¢} Latin capital letter O
80 50 1010000 P Latin capital letter P
81 51 1010001 Q Latin capital letter Q
82 52 1010010 R Latin capital letter R
83 53 1010011 S Latin capital letter S
84 54 1010100 T Latin capital letter T
85 55 1010101 U Latin capital letter U
86 56 1010110 \Y% Latin capital letter V
87 57 1010111 W Latin capital letter W
88 58 1011000 X Latin capital letter X
89 59 1011001 Y Latin capital letter Y
90 5A 1011010 Z Latin capital letter Z
91 5B 1011011 [Left square bracket/opening square bracket
92 5C 1011100 \ Reverse solidus/backslash

(continued)

951

APPENDIX A © CHARACTER ENCODINGS

Table A-1. (continued)

Decimal Hexadecimal Binary Character Official Name

93 5D 1011101] Right square bracket/closing square bracket
94 5E 1011110 A Circumflex accent
95 5F 1011111 _ Low line/spacing underscore
96 60 1100000) Grave accent

97 61 1100001 A Latin small letter A
98 62 1100010 B Latin small letter B
99 63 1100011 C Latin small letter C
100 64 1100100 D Latin small letter D
101 65 1100101 E Latin small letter E
102 66 1100110 F Latin small letter F
103 67 1100111 G Latin small letter G
104 68 1101000 H Latin small letter H
105 69 1101001 I Latin small letter I
106 6A 1101010] Latin small letter]
107 6B 1101011 K Latin small letter K
108 6C 1101100 L Latin small letter L
109 6D 1101101 M Latin small letter M
110 6E 1101110 N Latin small letter N
111 6F 1101111 (0] Latin small letter O
112 70 1110000 P Latin small letter P
113 71 1110001 Q Latin small letter Q
114 72 1110010 R Latin small letter R
115 73 1110011 S Latin small letter S
116 74 1110100 T Latin small letter T
117 75 1110101 U Latin small letter U
118 76 1110110 \Y% Latin small letter V
119 77 1110111 Y Latin small letter W
120 78 1111000 X Latin small letter X
121 79 1111001 Y Latin small letter Y
122 7A 1111010 Z Latin small letter Z
123 7B 1111011 { Left curly bracket/opening curly bracket

(continued)

952

APPENDIXA © CHARACTER ENCODINGS

Table A-1. (continued)

Decimal Hexadecimal Binary Character Official Name

124 7C 1111100 | Vertical line/vertical bar

125 7D 1111101 } Right curly bracket/closing curly bracket
126 7E 1111110 ~ Tilde

127 7F 1111111 DEL DELETE

8-Bit Character Sets

The ASCII character set worked fine for the English language. Representing the alphabets from other
languages, for example, French and German, led to the development of an 8-bit character set. An 8-bit
character set defines 2° (or 256) character positions whose numeric values range from 0 to 255. The bit
combination for an 8-bit character set ranges from 00000000 to 11111111. The 8-bit character set is divided into
two parts. The first part represents characters, which are the same as in the ASCII character set. The second
part introduces 128 new characters. The first 32 positions in the second part are reserved for control characters.
Therefore, there are two control character areas in an 8-bit character set: 0-31 and 128-159. Since the SPACE
and DELETE characters are already defined in the first part, an 8-bit character set can accommodate 192
printing characters (95 + 97), including SPACE. ISO Latin-1 is one example of an 8-bit character set.

Even an 8-bit character set is not large enough to accommodate most of the alphabets of all languages
in the world. This led to the development of a bigger (may be the biggest) character set, which is known as
the Universal Character Set (UCS).

Universal Multiple-Octet Coded Character Set (UCS)

The Universal Multiple-Octet Coded Character Set, simply known as UCS, is intended to provide a single
coded character set for the encoding of written forms of all the languages of the world and of a wide range
of additional symbols that may be used in conjunction with such languages. It is intended not only to
cover languages in current use but also languages of the past and such additions as may be required in the
future. The UCS uses a four-octet (one octet is 8 bits) structure to represent a character. However, the most
significant bit of the most significant octet is constrained to be 0, which permits its use for private internal
purposes in a data processing system. The remaining 31 bits allow us to represent more than two billion
characters. The four octets are named as follows:

e The Group-Octet, or G
e The Plane-Octet, or P
e The Row-Octet, or R

e The Cell-Octet, or C

G is the most significant octet, and C is the least significant octet. So the whole code range for UCS is
viewed as a four-dimensional structure composed of

e 128 groups
e 256 planes in each group
e 256 rows in each plane

e 256 cells in each row

953

APPENDIX A © CHARACTER ENCODINGS

Two hexadecimal digits (0-9, A-F) specify the values of any octet. The values of G are restricted to the
range 00-7E The plane with G=00 and P=00 is known as the Basic Multilingual Plane (BMP). The row of
BMP with R=00 represents the same set of characters as 8-bit ISO Latin-I. Therefore, the first 128 characters
of ASCII, ISO Latin-1, and BMP with R=00 match. Characters 129th to 256th of ISO Latin-I and those of BMP
with R=00 match. This makes UCS compatible with the existing 7-bit ASCII and 8-bit ISO Latin-I. Further,
BMP has been divided into five zones:

e A-zone:Itis used for alphabetic and symbolic scripts together with various symbols.
The code position available for A-zone ranges from 0000 to 4DFE The code positions
0000-001F and 0080-009F are reserved for control characters. The code position
007F is reserved for the DELETE character. Thus, it has 19903 code positions
available for graphics characters.

e I-zone:Itis used for Chinese/Japanese/Korean (CJK) unified ideographs. Its range is
4E00-9FFF, so 20992 code positions are available in this zone.

e O-zone:Itis used for Korean Hangul syllabic scripts and for other scripts. Its range is
A000-D7FF so 14336 code positions are available in this zone.

e S-zone:Itis reserved for use with transformation format UTF-16. The transformation
format UTF-16 is described shortly. Its range is D800-DFFF, so 2048 code positions
are available in this zone.

e R-zonme:Itis known as the restricted zone. It can be used only in special
circumstances. One of the uses of this zone is for specific user-defined characters.
However, in this case an agreement is necessary between the sender and the
recipient to communicate successfully. Its range is EO00-FFFD, so 8190 code
positions are available in this zone.

UCS is closely related to another popular character set called Unicode, which has been prepared by the
Unicode Consortium. Unicode uses a two-octet (16 bits) coding structure, and hence it can accommodate 2!
(= 65536) distinct characters. Unicode can be considered as the 16-bit coding of the BMP of UCS. These two
character sets, Unicode and UCS, were developed and are maintained by two different organizations. However,
they cooperate to keep Unicode and UCS compatible. If a computer system uses the Unicode character set to
store some text, each character in the text has to be allocated 16 bits even if all characters in the text are from
the ASCII character set. Note that the first 128 characters of Unicode match with those of ASCII, and a character
in ASCII can be represented only in 8 bits. So to use 16 bits to represent all characters in Unicode is wasteful of
computer memory. An alternative would be to use 8 bits for all characters from ASCII and 16 bits for characters
outside the range of ASCII. However, this method of using different bits to represent different characters from
Unicode has to be consistent and uniform, resulting in no ambiguity when data is stored or interchanged
between different computer systems. This issue led to the development of the character encoding methods.
Currently, there are four character encoding methods specified in ISO/IEC 10646-1:

e UCS-2
e UCS-4
e UTF-16
e UTF-8

UCS-2

This is a two-octet BMP form of encoding, which allows the use of two octets to represent a character from
the BMP. This is a fixed-length encoding method. That is, each character from BMP is represented by exactly
two octets.

954

APPENDIXA © CHARACTER ENCODINGS

UCS-4

This encoding method is also called the four-octet canonical form of encoding, which uses four octets for
every character in UCS. This is also a fixed-length encoding method.

UTF-16 (UCS Transformation Format 16)

Once characters outside the BMP are used, the UCS-2 encoding method cannot be applied to represent
them. In this case, the encoding must switch over to use UCS-4, which will just double the use of resources,
such as memory, network bandwidth, etc. The transformation format UTF-16 has been designed to avoid
such a waste of memory and other resources, which would have resulted in using the UCS-4 encoding
method. The UTF-16 is a variable-length encoding method. In the UTF-16 encoding method, UCS-2 is used
for all characters within BMP, and UCS-4 is used for encoding the characters outside BMP.

UTF-8 (UCS Transformation Format 8)

This is a variable-length encoding method, which may use one to six octets to represent a character
from UCS. All ASCII characters are encoded using one octet. In the UTF-8 format of character encoding,
characters are represented using one or more octets, as shown in Table A-2.

Table A-2. List of Legal UTF-8 Sequences

Number of Octets Bit Patterns Used UCS Code
1 Octet 1: OXXXXXXX 00000000-0000007F
2 Octet 1: 110xxxxXX 00000080-000007FF

Octet 2: 10xxxXXXX

3 Octet 1: 1110xxxx 00000800-0000FFFF
Octet 2: 10xXXXXXX
Octet 3: 10xXxXxXXXX

4 Octet 1: 11110xxx 00010000-001FFFFF
Octet 2: 10xXXXXX
Octet 3: 10xxxXXXX
Octet 4: 10xXXXXXX

5 Octet 1: 111110xx 00200000-03FFFFFF
Octet 2: 10xXXXXXX
Octet 3: 10xXXXXX
Octet 4: 10xXXXXX
Octet 5: 10xxxXxXX

6 Octet 1: 1111110x 04000000-7FFFFFFF
Octet 2: 10xxXXXXX
Octet 3: 10xXxXXXXX
Octet 4: 10XXXXXX
Octet 5: 10xxXxXXXX
Octet 6: 10xxxXXXX

955

APPENDIX A © CHARACTER ENCODINGS

The “x” in the table indicates either a 0 or a 1. Note that, in UTF-8 format, an octet that starts with a 0 bit
indicates that it is representing an ASCII character. An octet starting with 110 bit combinations indicates that
it is the first octet of the two-octet representation of a character. And so on. Also note that, when an octet is
part of a multi-octet character representation, the octet other than the first one starts with a 10-bit pattern.
Security checks can be easily implemented for UTF-8 encoded data. UTF-8 octet sequences, which do not
conform to the octet sequences shown in the table, are considered invalid.

Java and Character Encodings

Java stores and manipulates all characters and strings as Unicode characters. In serialization and bytecodes,
Java uses the UTF-8 encoding of the Unicode character set. All implementations of the Java virtual machine
are required to support the character encoding methods, as shown in Table A-3.

Table A-3. List of the Supported Character Encodings by a JVM

Character Encoding Description

ASCII 7-bit ASCII (also known as ISO-646-US, the basic Latin block of the Unicode
character set).

1SO-8859-1 ISO Latin Alphabet No. 1 (also known as ISO Latin-1).

UTF-8 8-bit Unicode Transformation Format.

UTF-16BE 16-bit Unicode Transformation Format, big-endian byte order. Big-endian is
discussed in Chapter 3.

UTF-16LE 16-bit Unicode Transformation Format, little-endian byte order. Little-endian is
discussed in Chapter 3.

UTF-16 16-bit Unicode Transformation Format, byte order specified by a mandatory
initial byte order mark (either order accepted on input, big-endian used on
output).

Java supports UTF-8 format with the following two significant modifications:

e Java uses 16 bits to represent a NUL character in a class file, whereas standard
UTEF-8 uses only 8 bits. This compromise has been made to make it easier for other
languages to parse a Java class file where a NUL character is not allowed within a
string. However, in some cases, Java uses standard UTF-8 format to represent the
NUL character.

e Javarecognizes only one-octet, two-octet, and three-octet UTF-8 formats, whereas
standard UTF-8 format may use one-octet, two-octet, three-octet, four-octet, five-
octet, and six-octet sequences. This is because Java supports the Unicode character
set, and all characters from Unicode can be represented in one-, two-, or three-octet
formats of UTF-8.

When you compile the Java source code, by default, the Java compiler assumes that the source code file
has been written using the platform’s default encoding (also known as local code page or native encoding).
The platform’s default character encoding is Latin-1 on Windows and Solaris and MacRoman on Mac. Note
that Windows does not use true Latin-1 character encoding. It uses a variation of Latin-1 that includes fewer
control characters and more printing characters. You can specify a file encoding name (or code page name)
to control how the compiler interprets characters beyond the ASCII character set. At the time of compiling

956

APPENDIXA © CHARACTER ENCODINGS

your Java source code, you can pass the character encoding name used in your source code file to the Java
compiler. The following command tells the Java compiler (javac) that the Java source code Test.java has
been written using a traditional Chinese encoding named Big5. Now, the Java compiler will convert all
characters encoded in Big5 to Unicode:

javac -encoding Big5 Test.java
The JDK since version 9 supports UTF-8-based properties resource bundles. There is a rare issue that
could arise where an ISO-8859-1 properties file could be recognized as a valid UTF-8 file. To accommodate

for this, the JDK provides a way to designate the encoding of resource bundles either “ISO-8859-1" or
“UTF-8’, by setting the system property "java.util. PropertyResourceBundle.encoding" to either value.

957

