
76 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

I
n a compiled language, the makefile
is arguably the most important part
of any programming project. To
compile your project, you first have
to compile each source file into an

object file, which in turn needs to be
linked with system libraries into the
final executable fi le. Each command
can have a considerable number of
arguments added in. That’s a lot of
typing and a lot of potential for mistakes.
The more source files you have, the
more complex the compilation process
becomes, unless you use makefiles.
Most Linux users have at least a cursory
knowledge of make and makefiles
(because that’s how we build software
packages for our systems), but not
much more than that. Most developers
probably don’t have too much in-depth
experience with makefiles, because
most Integrated Development
Environments (IDEs) have the capability

of managing makefiles for them.
Although this is convenient most of
the time, knowing more about how make
works and what goes into makefiles
can help you troubleshoot compilation
errors down the road.

According to make’s man page,
“The purpose of the make utility is to
determine automatically which pieces
of a large program need to be recom-
piled, and issue the commands to
recompile them.” Essentially, make is
used to determine efficiently (and
without user error) which portions of
the source code have been updated
since the last compilation and recom-
pile them. It can be used for more than
just compiling programs. Because it
isn’t limited to any particular language,
you can use it for anything you can come
up with that relates to the modified
date of a group of files.

Running make is a straightforward

man make
A PRIMER ON THE MAKE UTILITY
In the modern world of Integrated Development Environments, we
forget what really goes into compiling a large code project. This
article should be a refresher on (or teach for the first time) the

basics of makefiles, the most underrated part of any code project.

Adrian Hannah

http://www.linuxjournal.com

process. The more convoluted portion
of using make is constructing the
makefile. The makefile is a file that
consists of a series of rules that define
the dependencies of your project.
These rules govern the behavior of
make during execution.

Rules and Targets
Each rule in the makefile is an inde-
pendent series of commands that are
executed in order to build a target.
Make does not necessarily run each
rule in order. Make will run through
the rules recursively, building each
target in turn, based on modification.
Rules are formatted like this:

target: dependency list ...

commands

...

The target is typically the name of
a fi le, but it can be a phony target
(discussed later in this article). The
dependency l ist is a space-separated
list of files that designate whether the

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 77

IMPORTANT:
Command lines must be indented with tab

characters; spaces cause funky errors.

This has been a design flaw in make for

decades. Empty lines must sti l l have a

tab character or else make will throw a fit.

THE BASICS:
� Comments start with a pound sign (#).

� Continuation of a line is denoted by a

back slash (\).

� Lines containing equal signs (=) are

variable definitions.

� Each command line typically is executed in

a separate Bourne shell—that is, sh1.

� To execute more than one command line

in the same shell, type them on the same

line, separated by semicolons. Use a \ to

continue the line if necessary.

Listing 1. Example Makefile

CC=g++

CFLAGS=-c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp

OBJECTS=$(SOURCES:.cpp=.o)

EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

$(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:

$(CC) $(CFLAGS) $< -o $@

http://www.linuxjournal.com

target needs to be rebuilt. The com-
mands can be any shell command, so
long as the target is up to date at the
end of them. It is imperative that you
indent the commands with a tab char-
acter and not spaces. This is a design
flaw in make that has yet to be fixed,
and it will cause some strange and
obscure errors should you use spaces
instead of tabs in your makefile.

When make encounters a rule, it first
checks the files listed in the dependency
list to ensure that they haven’t changed.
If one of them has, make looks through
the makefile for the rule containing
that file as the target. This recursion
continues until a rule is found where
all the dependencies are unchanged or
rebuilt (or have no further dependen-
cies), and then make executes the listed
commands for that rule before returning
to the previous rule, and so on, until
the root rule has been satisfied and its
commands run.

You may use pattern-matching char-
acters to describe dependencies in the
dependency list or in commands, but
they may not be used in the target.

Phony Targets
Phony targets (also called dummy or
pseudo-targets) are not real files; they
simply are aliases within the makefile.
As I mentioned before, you can specify
targets from the command line, and this
is precisely what phony targets are used
for. If you’re familiar with the process of

using make to build applications on
your system, you’re familiar with make
install (which installs the application
after compiling the source) or make
clean (which cleans up the temporary
files created while compiling the
source). These are two examples of
phony targets. Obviously, there are no
“install” or “clean” files in the project;
they’re just aliases to a set of commands
set aside to complete some task not
dependent on the modification time
of any particular fi le in the project.
Here is an example of using a “clean”
phony target:

clean:

-rm *.o my_bin_file

Special Targets
Some special targets are built in to
make. These special targets hold special
meaning, and they modify the way make
behaves during execution:

.PHONY — this target signifies which
other targets are phony targets. If a
target is listed as a dependency of
.PHONY, the check to ensure that the
target file was updated is not per-
formed. This is useful if at any time
your project actually produces a file
named the same as a phony target;
this check always will fail when execut-
ing your phony target.

.SUFFIXES — the dependency list of
this target is a list of the established file
suffixes for this project. This is helpful

78 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE man make: a Primer on the Make Utility

http://www.linuxjournal.com

when you are using suffix rules (discussed
later in this article).

.DEFAULT — if you have a bunch of
targets that use the same set of com-
mands, you may consider using the
.DEFAULT target. It is used to specify the
commands to be executed when no rule
is found for a target.

.PRECIOUS — all dependencies of the
.PRECIOUS target are preserved should
make be killed or interrupted.

.INTERMEDIATE — specifies which
targets are intermediate, or temporary,
files. Upon completion, make will delete
all intermediate files before terminating.

.SECONDARY — this target is similar
to .INTERMEDIATE, except that these
files will not be deleted automatically
upon completion. If no dependencies
are specified, all fi les are considered
secondary.

.SECONDEXPANSION — after the
initial read-in phase, anything listed
after this target will be expanded for
a second time. So, for example:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: $(ONEVAR) $$(TWOVAR)

will expand to:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: onefile $(TWOVAR)

after the initial read-in phase, but
because I specified .SECONDEXPANSION,
it will expand everything following a
second time:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: onefile twofile

I’m not going to elaborate on this
here, because this is a rather complex
subject and outside the scope of this
article, but you can find all sorts of
.SECONDEXPANSION goodness out there
on the Internet and in the GNU manual.

.DELETE_ON_ERROR — this target
will cause make to delete a target if it
has changed and any of the associated
commands exit with a nonzero status.

.IGNORE — if an error is encountered
while building a target list as a depen-
dency of .IGNORE, it is ignored. If there
are no dependencies to .IGNORE, make
will ignore errors for all targets.

.LOW_RESOLUTION_TIME — for
some reason or another, if you have
files that will have a low-resolution
timestamp (missing the subsecond
portion), this target allows you to desig-
nate those files. If a file is listed as a
dependency of .LOW_RESOLUTION_TIME,
make will compare times only to the
nearest second between the target and
its dependencies.

.SILENT — this is a legacy target
that causes the command’s output to

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 79

http://www.linuxjournal.com

be suppressed. It is suggested that you
use Command Echoing (discussed in
the Command Special Characters sec-
tion) or by using the -s flag on the
command line.

.EXPORT_ALL_VARIABLES — tells
make to export all variables to any child
processes created.

.NOTPARALLEL — although make
can run simultaneous jobs in order to
complete a task faster, specifying this
target in the makefile will force make
to run serially.

.ONESHELL — by default, make will
invoke a new shell for each command it
runs. This target causes make to use one
shell per rule.

.POSIX — with this target, make is
forced to conform to POSIX standards
while running.

Variables
In other versions of make, variables
are called macros, but in the GNU

version (which is the version you likely
are using), they are referred to as
variables, which I personally feel is a
more appropriate title. Nomenclature
aside, variables are a convenient way
to store information that may be
used multiple times throughout the
makefile. It becomes abundantly clear
the first time you write a makefile
and then realize that you forgot a
command flag for your compiler in
all 58 rules you wrote. If I had used
variables to designate my compiler
flags, I’d have had to change it only
once instead of 58 times. Lesson
learned. Set these at the beginning
of your makefile before any rules.
Simply use:

VARNAME = information stored in the variable

to set the variable, and do use
$(VARNAME) to invoke it throughout
the makefile. Any shell variables that

80 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE man make: a Primer on the Make Utility

PREDEFINED VARIABLES
� $? — evaluates to the l ist of compo-

nents that are younger than the current

target. Can be used only in description

fi le command l ines.

� $@ — evaluates to the current

target name. Can be used only in

description fi le command l ines.

� $$@ — also evaluates to the current

target name. However, it can be

used only on dependency l ines.

� $< — the name of the related fi le

that caused the action (the precur-

sor to the target). This is only for

suffix rules.

� $* — the shared prefix of the target

and dependent—only for suffix rules.

http://www.linuxjournal.com

existed prior to calling make will exist
within make as variables and, thus, are
invoked the same way as variables. You
can specify a variable from the com-
mand line as well. Simply add it to the
end of your make command, and it will
be used within the make execution.

If, at some point, you need to alter
the data stored in a variable tem-
porarily, there is a very simple way to
substitute in this new data without
overwriting the variable. It’s done
using the following format:

$(VARNAME:find=replace)

where find is the substring you are try-
ing to find, and replace is the string to
replace it with. So, for instance:

LETTERS = abcxyz xyzabc xyz

print:

echo $(LETTERS:xyz=def)

will produce the output abcdef
xyzabc def.

Suffix Rules
In certain situations, you will find that
the rules for a certain fi le type are
identical except for the fi lename. For
instance, a lot of times in a C project,
you will see rules l ike this:

file.o: file.c

cc -O -Wall file.c

because for every .c fi le, you need to
make the intermediate .o fi le, so that
the end binary then can be built.
Suffix rules are a way of minimizing
the amount of time you spend writing
out rules and the number of rules in
your makefile. In order to use suffix
rules, you need to tell make which fi le
suffixes are considered significant
(suffix rules won’t work unless the

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 81

� CC — the name of the compiler.

� DEBUG — the debugging flag. This is

-g in both g++ and cxx. The purpose

of the flag is to include debugging

information into the executable, so

that you can use util it ies l ike gdb to

debug the code.

� LFLAGS — the flags used in l inking.

As it turns out, you don’t need any

special flags for l inking. The option

listed is -Wall, which tells the compiler

to print all warnings. But, that’s fine.

We can use that.

� CFLAGS — the flags used in compil-

ing and creating object fi les. This

includes both -Wall and -c. The -c

option is needed to create object

fi les—that is, .o fi les.

COMMON VARIABLES FOR C++ PROGRAMMING

http://www.linuxjournal.com

suffix is defined this way), then write
the generic rule for the suffixes. In
the case described above, you would
do this:

.SUFFIXES: .o .c

.c.o:

cc -O -Wall $<

You may note that in the case of
suffix rules, the dependency suffix
goes before the target suffix, which is
a reversal from the normal order in a
makefile. You also will see that you
use $< in the command, which evalu-
ates to the .c fi lename associated with
the .o fi le that triggered the rule.
There are a couple predefined vari-
ables l ike this that are used exclusively
for suffix rules:

� $< — evaluates to the component
that is being used to make the
target—that is, fi le.c.

� $* — evaluates to the fi lename
part (without any suffix) of the
component that is being used to
make the target—that is, fi le.

Note that the $? variable cannot
occur in suffix rules, but the $@ variable
stil l wil l work.

Command Special Characters
Certain characters can be used in

conjunction with commands to alter
the behavior of make or the com-
mand. If you’re familiar with shell
scripting, you’l l recognize that \ sig-
nifies a l ine continuation. That is to
say, using \ means that the command
isn’t finished and continues on the
next l ine. Nobody likes looking at a
messy fi le, and using this character
at the end of a l ine helps keep your
makefile clean and pretty. If a rule
has more than one command, use a
semicolon to separate commands. You
can start a command with a hyphen,
and make will ignore any errors that
occur from the command. If you want
to suppress the output of a command
during execution, start the command
with an at sign (@).

Using these symbols will allow you
to make a more usable and readable
makefile.

Directives
Sometimes, you need more control
over how the makefile is read and
executed. Directives are designed
exactly for that purpose.

From defining, overriding or export-
ing variables to importing other
makefiles, these directives are what
make a more robust makefile possible.
The most useful of the directives are
the conditional directives though.

Conditional directives allow you to
define multiple versions of a command
based on preexisting conditions. For

82 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE man make: a Primer on the Make Utility

http://www.linuxjournal.com

example, say you have a set of
libraries you want included in your
binary only if the compiler used is gcc:

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)

else

$(CC) -o foo $(objects) $(normal_libs)

endif

In this example, you use ifeq to
check if CC equals gcc and if it does,
use the gcc libraries; otherwise, use
the generic libraries.

This is just a small, basic sampling
of the things you can do with make
and makefiles. There are so many more
complex and interesting things you
can do, you just have to dig around
to find them!�

Adrian Hannah has spent the past 15 years bashing keyboards to
make computers do what he tells them. He currently is working
as a system administrator for the federal government. He is a jack
of all trades and a master of none. He spends all his waking hours
on the Linux Journal IRC channel, on Twitter (@codemoney2841)
and talking to random chat bots on the Internet.

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 83

Resources

GNU make comes with most Linux distributions by default,
but it can be found on the main GNU FTP server:
ftp.gnu.org/gnu/make (via HTTP) and
ftp.gnu.org/gnu/make (via FTP). It also can be found
on the GNU mirrors at www.gnu.org/prep/ftp.html.

Documentation for make is available on-line at
www.gnu.org/software/make/manual, as is
documentation for most GNU software. You also can
find more information about make by running info make
or man make, or by looking at /usr/doc/make/,
/usr/local/doc/make/ or similar directories on your system.
A brief summary is available by running make --help.

Conditional directives allow you to define
multiple versions of a command based on
preexisting conditions.

http://www.gnu.org/prep/ftp.html
http://www.gnu.org/software/make/manual
http://www.linuxjournal.com
www.linuxjournal.com/rss_feeds
ftp.gnu.org/gnu/make
ftp://ftp.gnu.org/gnu/make

