

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

http://shop.oreilly.com/product/0636920025108.do

21st Century C
by Ben Klemens

Copyright © 2013 Ben Klemens. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nathan Jepson
Production Editor: Rachel Steely
Copyeditor: Linley Dolby
Proofreader: Teresa Horton

Indexer: Ellen Troutman
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

November 2012: First Edition.

Revision History for the First Edition:
2012-10-12 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449327149 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. 21st Century C, the image of a common spotted cuscus, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32714-9

[LSI]

1350047263

Table of Contents

Preface . ix

Part I. The Environment

1. Set Yourself Up for Easy Compilation . 3
Use a Package Manager 4
Compiling C with Windows 6

POSIX for Windows 7
Compiling C with POSIX 8
Compiling C Without POSIX 8

Which Way to the Library? 10
A Few of My Favorite Flags 11
Paths 12
Runtime Linking 15

Using Makefiles 15
Setting Variables 16
The Rules 19

Using Libraries from Source 22
Using Libraries from Source (Even if Your Sysadmin Doesn’t Want You To) 23
Compiling C Programs via Here Document 25

Include Header Files from the Command Line 25
The Unified Header 26
Here Documents 27
Compiling from stdin 28

2. Debug, Test, Document . 31
Using a Debugger 31

GDB Variables 34
Print Your Structures 36

Using Valgrind to Check for Errors 39
Unit Testing 41

iii

Using a Program as a Library 43
Coverage 44

Interweaving Documentation 45
Doxygen 46
Literate Code with CWEB 47

Error Checking 49
What Is the User’s Involvement in the Error? 49
The Context in Which the User Is Working 51
How Should the Error Indication Be Returned? 52

3. Packaging Your Project . 55
The Shell 56

Replacing Shell Commands with Their Outputs 56
Use the Shell’s for Loops to Operate on a Set of Files 58
Test for Files 59
fc 62

Makefiles vs. Shell Scripts 64
Packaging Your Code with Autotools 66

An Autotools Demo 68
Describing the Makefile with makefile.am 71
The configure Script 75

4. Version Control . 79
Changes via diff 80
Git’s Objects 81

The Stash 84
Trees and Their Branches 85

Merging 86
The Rebase 88

Remote Repositories 89

5. Playing Nice with Others . 91
The Process 91

Writing to Be Read by Nonnatives 91
The Wrapper Function 92
Smuggling Data Structures Across the Border 93
Linking 94

Python Host 95
Compiling and Linking 96
The Conditional Subdirectory for Automake 96
Distutils Bridging with Autotools 98

iv | Table of Contents

Part II. The Language

6. Your Pal the Pointer . 103
Automatic, Static, and Manual Memory 103
Persistent State Variables 105
Pointers Without malloc 107

Structures Get Copied, Arrays Get Aliased 108
malloc and Memory-Twiddling 111
The Fault Is in Our Stars 112
All the Pointer Arithmetic You Need to Know 113

7. C Syntax You Can Ignore . 117
Don’t Bother Explicitly Returning from main 118
Let Declarations Flow 118

Set Array Size at Runtime 120
Cast Less 121
Enums and Strings 122
Labels, gotos, switches, and breaks 124

goto Considered 124
switch 125

Deprecate Float 128

8. Obstacles and Opportunity . 133
Cultivate Robust and Flourishing Macros 133

Preprocessor Tricks 137
Linkage with static and extern 139

Declare Externally Linked Elements Only in Header Files 141
The const Keyword 143

Noun-Adjective Form 144
Tension 145
Depth 146
The char const ** Issue 147

9. Text . 151
Making String Handling Less Painful with asprintf 151

Security 152
Constant Strings 153
Extending Strings with asprintf 154

A Pæan to strtok 156
Unicode 160

The Encoding for C Code 162
Unicode Libraries 163

Table of Contents | v

The Sample Code 164

10. Better Structures . 167
Compound Literals 168

Initialization via Compound Literals 169
Variadic Macros 169
Safely Terminated Lists 170
Foreach 171
Vectorize a Function 172
Designated Initializers 173
Initialize Arrays and Structs with Zeros 175
Typedefs Save the Day 176

A Style Note 178
Return Multiple Items from a Function 179

Reporting Errors 180
Flexible Function Inputs 182

Declare Your Function as printf-Style 183
Optional and Named Arguments 185
Polishing a Dull Function 187

The Void Pointer and the Structures It Points To 192
Functions with Generic Inputs 192
Generic Structures 196

11. Object-Oriented Programming in C . 201
What You Don’t Get (and Why You Won’t Miss It) 202

Scope 202
Overloaded with Operator Overloading 205

Extending Structures and Dictionaries 209
Extending a Structure 210
Implementing a Dictionary 214
Base Your Code on Pointers to Objects 218

Functions in Your Structs 219
Count References 223

Example: A Substring Object 224
An Agent-Based Model of Group Formation 228

12. Libraries . 235
GLib 235
POSIX 236

Using mmap for Gigantic Data Sets 236
Easy Threading with Pthreads 238

The GNU Scientific Library 246
SQLite 248

vi | Table of Contents

The Queries 249
libxml and cURL 250

Epilogue . cclv

Glossary . 257

Bibliography . 261

Index . 263

Table of Contents | vii

CHAPTER 1

Set Yourself Up for Easy Compilation

Look out honey ’cause I’m using technology.

—Iggy Pop, “Search and Destroy”

The C standard library is just not enough to get serious work done.

Instead, the C ecosystem has expanded outside of the standard, which means that
knowing how to easily call functions from common but not-ISO-standard libraries is
essential if you want to get past doing textbook exercises. Unfortunately, this is the
point where most textbooks taper off and leave you to work it out for yourself, which
is why you can find C detractors who will say self-dissonant things like C is 40 years
old, so you have to write every procedure from scratch in it—they never worked out how
to link to a library.

Here is the agenda for the chapter:

• Setting up the requisite tools. This is much easier than it was in the dark days when
you had to hunt for every component. You can set up a full build system with all
the frills in maybe 10 or 15 minutes (plus all the download time to load so much
good stuff).

• How to compile a C program. Yes, you know how to do this, but we need a setup
that has hooks for the libraries and their locations; just typing cc myfile.c doesn’t
cut it anymore. Make is just about the simplest system to facilitate compiling pro-
grams, so it provides a good model for discussion. I’ll show you the smallest pos-
sible makefile that offers enough room to grow.

• Whatever system we use will be based on a small set of environment-like variables,
so I’ll discuss what they do and how to set them. Once we have all that compilation
machinery in place, adding new libraries will be an easy question of adjusting the
variables we’ve already set up.

• As a bonus, we can use everything up to this point to set up a still simpler system
for compilation, which will let us cut and paste code onto the command prompt.

3

A special note to IDE users: you may not be a make user, but this section will none-
theless be relevant to you, because for every recipe that make executes when compiling
code, your IDE has an analogous recipe. If you know what make is doing, you’ll have
an easy time tweaking your IDE.

Use a Package Manager
Oh man, if you are not using a package manager, you are missing out.

I bring up package managers for several reasons: first, some of you may not have the
basics installed. For you, I put this section first in the book, because you need to get
these tools, and fast. A good package manager will have you set up quite rapidly with
a full POSIX subsystem, compilers for every language you’ve ever heard of, a half-decent
array of games, the usual office productivity tools, a few hundred C libraries, et cetera.

Second, as C authors, the package manager is a key means by which we can get libraries
for folding into our work.

Third, when you’ve been writing enough code, there will come a time when you want
to distribute your code, making the jump from being somebody who downloads pack-
ages to being somebody producing a package. This book will take you halfway, showing
you how to prepare your package for easy autoinstallation, so that when the adminis-
trator of a package repository decides to include your code in the repository, he or she
will have no problem building the final package.

If you are a Linux user, you set up your computer with a package manager and have
already seen how easy the software obtention process can be. For Windows users, I’ll
cover Cygwin in detail. Mac users have several options, such as Fink and Macports. All
the Mac options depend on Apple’s Xcode package, typically available on the OS install
CD (or directory of installable programs, depending on the vintage), or by registering
as a developer with Apple.

What packages will you need? Here’s a quick rundown of the usual suspects. Because
every system has a different organization scheme, some of these may be bundled dif-
ferently, installed by default in a base package, or oddly named. When in doubt about
a package, install it, because we’re past the days when installing too many things could
somehow cause system instability or slowdown. However, you probably don’t have
the bandwidth (or maybe even the disk space) to install every package on offer, so some
judgment will be required. If you find that you are missing something, you can always
go back and get it later. Packages to definitely get:

• A compiler. Definitely install gcc; Clang may be available.

• gdb, a debugger.

• Valgrind, to test for C memory usage errors.

• gprof, a profiler.

4 | Chapter 1: Set Yourself Up for Easy Compilation

http://cygwin.com
http://finkproject.org
http://macports.org

• make, so you never have to call your compiler directly.

• pkg-config, for finding libraries.

• Doxygen, for documentation generation.

• A text editor. There are literally hundreds of text editors to choose from. Here are
a few subjective recommendations:

— Emacs and vim are the hardcore geek’s favorites. Emacs is very inclusive (the
E is for extensible); vim is more minimalist and is very friendly to touch typists.
If you expect to spend hundreds of hours staring at a text editor, it is worth
taking the time to learn one of them.

— Kate is friendly and attractive, and provides a good subset of the conveniences
we expect as programmers, such as syntax highlighting.

— As a last resort, try nano, which is aggressively simple, and is text-based, and
therefore works even when your GUI doesn’t.

• If you are a fan of IDEs, get one—or several. Again, there are many to choose from;
here are a few recommendations:

— Anjuta: in the GNOME family. Friendly with Glade, the GNOME GUI builder.

— KDevelop: in the KDE family.

— Code::blocks: relatively simple, works on Windows.

— Eclipse: the luxury car with lots of cupholders and extra knobs. Also cross-
platform.

In later chapters, I’ll get to these more heavy-duty tools:

• Autotools: Autoconf, Automake, libtool

• Git

• Alternate shells, such as the Z shell.

And, of course, there are the C libraries that will save you the trouble of reinventing
the wheel (or, to be more metaphorically accurate, reinventing the locomotive). You
might want more, but here are the libraries that will be used over the course of this book:

• libcURL

• libGlib

• libGSL

• libSQLite3

• libXML2

There is no consensus on library package naming schemes, and you will have to work
out how your package manager likes to dissect a single library into subparts. There is
typically one package for users and a second for authors who will use the library in their
own work, so be sure to select both the base package and the -dev or -devel packages.
Some systems separate documentation into yet another package. Some require that you

Use a Package Manager | 5

download debugging symbols separately, in which case gdb should lead you through
the steps the first time you run it on something lacking debugging symbols.

If you are using a POSIX system, then after you’ve installed the preceding items, you
will have a complete development system are and ready to get coding. For Windows
users, we’ll take a brief detour to understand how the setup interacts with the main
Windows system.

Compiling C with Windows
On most systems, C is the central, VIP language that all the other tools work to facilitate;
on a Windows box, C is strangely ignored.

So I need to take a little time out to discuss how to set up a Windows box for writing
code in C. If you aren’t writing on a Windows box now, feel free to skip this segment
and jump to “Which Way to the Library?” on page 9.

This is not a rant about Microsoft; please do not read it as such. I am not going to
speculate on Microsoft’s motives or business strategies. However, if you want to get
work done in C on a Windows box, you need to know the state of affairs (which is
frankly inhospitable) and what you can do to get going.

POSIX for Windows
Because C and Unix coevolved, it’s hard to talk about one and not the other. I think
it’s easier to start with POSIX. Also, those of you who are trying to compile code on a
Windows box that you wrote elsewhere will find this to be the most natural route.

As far as I can tell, the world of things with filesystems divides into two (slightly over-
lapping) classes:

• POSIX-compliant systems

• The Windows family of operating systems

POSIX compliance doesn’t mean that a system has to look and feel like a Unix box.
For example, the typical Mac user has no idea that he or she is using a standard BSD
system with an attractive frontend, but those in the know can go to the Accessories →
Utilities folder, open the Terminal program, and run ls, grep, and make to their hearts’
content.

Further, I doubt that many systems live up to 100% of the standard’s requirements
(like having a Fortran ̀ 77 compiler). For our purposes, we need a shell that can behave
like the barebones POSIX shell, a handful of utilities (sed, grep, make, …), a C99 compiler,
and additions to the standard C library such as fork and iconv. These can be added as
a side note to the main system. The package manager’s underlying scripts, Autotools,
and almost every other attempt at portable coding will rely on these tools to some

6 | Chapter 1: Set Yourself Up for Easy Compilation

extent, so even if you don’t want to stare at a command prompt all day, these tools will
be handy to have for installations.

On server-class OSes and the full-featured editions of Windows 7, Microsoft offers
what used to be called INTERIX and is now called the Subsystem for Unix-based Ap-
plication (SUA), which provides the usual POSIX system calls, the Korn shell, and gcc.
The subsystem is typically not provided by default but can be installed as an add-on
component. But the SUA is not available for other current editions of Windows and
will not be available for Windows 8, so we can’t depend on Microsoft to provide a
POSIX subsystem for its operating systems.

And so, Cygwin.

If you were to rebuild Cygwin from scratch, this would be your agenda:

1. Write a C library for Windows that provides all the POSIX functions. This will
have to smooth over some Windows/POSIX incongruities, such as how Windows
has distinct drives like C: while POSIX has one unified filesystem. In this case, alias
C: as /cygdrive/c, D: as /cygdrive/d, and so on.

2. Now that you can compile POSIX-standard programs by linking to your library,
do so: generate Windows versions of ls, bash, grep, make, gcc, X, rxvt, libglib,
perl, python, and so on.

3. Once you have hundreds of programs and libraries built, set up a package manager
that allows users to select the elements they want to install.

As a user of Cygwin, all you have to do is download the package manager from the
setup link at Cygwin’s website and pick packages. You will certainly want the preceding
list, plus a decent terminal (try RXVT, or install the X subsystem and use the xterm),
but you will see that virtually all of the luxuries familiar from a development system
are there somewhere. Now you can get to compiling C code.

Compiling C with POSIX
Microsoft provides a C++ compiler, in the form of Visual Studio, which has an ANSI
C compatibility mode. This is the only means of compiling C code currently provided
by Microsoft. Many representatives from the company have made it clear that C99
support (let alone C11 support) is not forthcoming. Visual Studio is the only major
compiler that is still stuck on C89, so we’ll have to find alternative offerings elsewhere.

Of course, Cygwin provides gcc, and if you’ve followed along and installed Cygwin,
then you’ve already got a full build environment.

If you are compiling under Cygwin, then your program will depend on its library of
POSIX functions, cygwin1.dll (whether your code actually includes any POSIX calls or
not). If you are running your program on a box with Cygwin installed, then you obvi-
ously have no problem. Users will be able to click on the executable and run it as
expected, because the system should be able to find the Cygwin DLL. A program

Compiling C with Windows | 7

http://cygwin.com

compiled under Cygwin can run on boxes that don’t have Cygwin installed if you
distribute cygwin1.dll with your code.

On my machine, this is (path to cygwin)/bin/cygwin1.dll. The cygwin1.dll file has a
GPL-like license (see “The Legal Sidebar” on page xvi), in the sense that if you distribute
the DLL separately from Cygwin as a whole, then you are required to publish the source
code for your program.1 If this is a problem, then you’ll have to find a way to recompile
it without depending on cygwin1.dll, which means dropping any POSIX-specific func-
tions from your code and using MinGW, as discussed later. You can use cygcheck to
find out which DLLs your program depends on, and thus verify that your executable
does or does not link to cygwin1.dll.

Compiling C Without POSIX
If your program doesn’t need the POSIX functions (like fork or popen), then you can
use MinGW (Minimalist GNU for Windows), which provides a standard C compiler
and some basic associated tools. Msys is a companion to MinGW that provides other
useful tools, such as a shell.

The lack of POSIX-style amenities is not the real problem with MinGW. Msys provides
a POSIX shell, or leave the command prompt behind entirely and try Code::blocks, an
IDE that uses MinGW for compilation on Windows. Eclipse is a much more extensive
IDE that can also be configured for MinGW, though that requires a bit more setup.

Or if you are more comfortable at a POSIX command prompt, then set up Cygwin
anyway, get the packages providing the MinGW versions of gcc, and use those for
compilation instead of the POSIX-linking default version of Cygwin gcc.

If you haven’t already met Autotools, you’ll meet it soon. The signature of a package
built using Autotools is its three-command install: ./configure; make; make install.
Msys provides sufficient machinery for such packages to stand a good chance of work-
ing. Or if you have downloaded the packages to build from Cygwin’s command
prompt, then you can use the following to set up the package to use Cygwin’s Mingw32
compiler for producing POSIX-free code:

./configure --host=ming32

Then run make; make install as usual.

Once you’ve compiled under MinGW, via either command-line compilation or Auto-
tools, you’ve got a native Windows binary. Because MinGW knows nothing of
cygwin1.dll, and your program makes no POSIX calls anyway, you’ve now got an ex-
ecutable program that is a bona fide Windows program, that nobody will know you
compiled from a POSIX environment.

1. Cygwin is a project run by Red Hat, Inc., who will also allow users to purchase the right to not distribute
their source code as per the GPL.

8 | Chapter 1: Set Yourself Up for Easy Compilation

http://www.codeblocks.org/

No, the real problem with MinGW is the paucity of precompiled libraries.2 If you want
to be free of cygwin1.dll, then you can’t use the version of libglib.dll that ships with
Cygwin. You’ll need to recompile GLib from source to a native Windows DLL—but
GLib depends on GNU’s gettext for internationalization, so you’ll have to build that
library first. Modern code depends on modern libraries, so you may find yourself
spending a lot of time setting up the sort of things that in other systems are a one-line
call to the package manager. We’re back to the sort of thing that makes people talk
about how C is 40 years old, so you need to write everything from scratch.

So, there are the caveats. Microsoft has walked away from the conversation, leaving
others to implement a post-grunge C compiler and environment. Cygwin does this and
provides a full package manager with enough libraries to do some or all of your work,
but it is associated with a POSIX style of writing and Cygwin’s DLL. If that is a problem,
you will need to do more work to build the environment and the libraries that you’ll
need to write decent code.

Which Way to the Library?
OK, so you have a compiler, a POSIX toolchain, and a package manager that will easily
install a few hundred libraries. Now we can move on to the problem of using those in
compiling our programs.

We have to start with the compiler command line, which will quickly become a mess,
but we’ll end with three (sometimes three and a half) relatively simple steps:

1. Set a variable listing the compiler flags.

2. Set a variable listing the libraries to link to. The half-step is that you sometimes
have to set only one variable for linking while compiling, and sometimes have to
set two for linking at compile time and runtime.

3. Set up a system that will use these variables to orchestrate the compilation.

To use a library, you have to tell the compiler that you will be importing functions from
the library twice: once for the compilation and once for the linker. For a library in a
standard location, the two declarations happen via an #include in the text of the pro-
gram and a -l flag on the compiler line.

Example 1-1 presents a quick sample program that does some amusing math (for me,
at least; if the statistical jargon is Greek to you, that’s OK). The C99-standard error
function, erf(x), is closely related to the integral from zero to x of the Normal distri-
bution with mean zero and standard deviation √2. Here, we use erf to verify an area

2. Although Msys, MinGW, and a few other elements are provided as packages, this handful of packages
pales in comparison to the hundreds of packages provided by the typical package manager. Notably,
precompiled libraries are not a one-click or one-command install. However, by the time you read this,
my complaint may have been addressed, and there might be many more MinGW packages available.

Which Way to the Library? | 9

popular among statisticians (the 95% confidence interval for a standard large-n
hypothesis test). Let us name this file erf.c.

Example 1-1. A one-liner from the standard library. (erf.c)

#include <math.h> //erf, sqrt
#include <stdio.h> //printf

int main(){
 printf("The integral of a Normal(0, 1) distribution "
 "between -1.96 and 1.96 is: %g\n", erf(1.96*sqrt(1/2.)));
}

The #include lines should be familiar to you. The compiler will paste math.h and
stdio.h into the code file here, and thus paste in declarations for printf, erf, and sqrt.
The declaration in math.h doesn’t say anything about what erf does, only that it takes
in a double and returns a double. That’s enough information for the compiler to check
the consistency of our usage and produce an object file with a note telling the computer:
once you get to this note, go find the erf function, and replace this note with erf’s
return value.

It is the job of the linker to reconcile that note by actually finding erf, which is in a
library somewhere on your hard drive.

The math functions found in math.h are split off into their own library, and you will
have to tell the linker about it by adding an -lm flag. Here, the -l is the flag indicating
that a library needs to be linked in, and the library in this case has a single-letter name,
m. You get printf for free, because there is an implicit -lc asking the linker to link the
standard libc assumed at the end of the linking command. Later, we’ll see GLib 2.0
linked in via -lglib-2.0, the GNU Scientific Library get linked via -lgsl, and so on.

So if the file were named erf.c, then the full command line using the gcc compiler,
including several additional flags to be discussed shortly, would look like this:

gcc erf.c -o erf -lm -g -Wall -O3 -std=gnu11

So we’ve told the compiler to include math functions via an #include in the program,
and told the linker to link to the math library via the -lm on the command line.

The -o flag gives the output name; otherwise, we’d get the default executable name of
a.out.

A Few of My Favorite Flags
You’ll see that I use a few compiler flags every time, and I recommend you do, too.

• -g adds symbols for debugging. Without it, your debugger won’t be able to give
you variable or function names. They don’t slow down the program, and we don’t
care if the program is a kilobyte larger, so there’s little reason to not use this. It
works for gcc, Clang, and icc (Intel C Compiler).

10 | Chapter 1: Set Yourself Up for Easy Compilation

• -std=gnu11 is gcc-specific, and specifies that gcc should allow code conforming to
the C11 and POSIX standards. Otherwise, gcc will count certain now-valid bits of
syntax as invalid. As of this writing, some systems still predate C11, in which case,
use -std=gnu99. gcc only; everybody else switched to C99 being the default a long
time ago. The POSIX standard specifies that c99 be present on your system, so the
compiler-agnostic version of the above line would be:

c99 erf.c -o erf -lm -g -Wall -O3

In the following makefiles, I achieve this effect by setting the variable CC=c99.

On Macs, c99 is a specially-hacked version of gcc, and is probably
not what you want. If you have an undesirable version of c99 or it
is missing entirely, make your own. Put a file named c99 in the
directory at the head of your path with the text:

gcc --std=c99 $*

or just

clang $*

as you prefer. Make it executable via chmod +x c99.

• -O3 indicates optimization level three, which tries every trick known to build faster
code. If, when you run the debugger, you find that too many variables have been
optimized out for you to follow what’s going on, then change this to -O0. This will
be a common tweak in the CFLAGS variable, later. This works for gcc, Clang, and icc.

• -Wall adds compiler warnings. This works for gcc, Clang, and icc. For icc, you
might prefer -w1, which displays the compiler’s warnings, but not its remarks.

Use your compiler warnings, always. You may be fastidious and know
the C standard inside out, but you aren’t more fastidious or knowl-
edgeable than your compiler. Old C textbooks filled pages admonishing
you to watch out for the difference between = and ==, or to check that
all variables are initialized before use. As a more modern textbook au-
thor, I have it easy, because I can summarize all those admonishments
into one single tip: use your compiler warnings, always.

If your compiler advises a change, don’t second-guess it or put off the
fix. Do everything necessary to (1) understand why you got a warning
and (2) fix your code so that it compiles with zero warnings and zero
errors. Compiler messages are famously obtuse, so if you are having
trouble with step (1), paste the warning message into your search engine
to see how many thousands of others were confounded by this warning
before you. You may want to add -Werror to your compiler flags so your
compiler will treat warnings as errors.

Which Way to the Library? | 11

Paths
I’ve got over 700,000 files on my hard drive, and one of them has the declarations for
sqrt and erf, and another is the object file holding the compiled functions. (You can
try find / -type f | wc -l to get a rough file count on any POSIX-standard system.)
The compiler needs to know in which directories to look to find the correct header and
object file, and the problem will only get more complex when we use libraries that are
not part of the C standard.

In a typical setup, there are at least three places where libraries may be installed:

• The operating system vendor may define a standard directory or two where libraries
are installed by the vendor.

• There may be a directory for the local sysadmin to install packages that shouldn’t
be overwritten on the next OS upgrade from the vendor. The sysadmin might have
a specially hacked version of a library that should override the default version.

• Users typically don’t have the rights to write to these locations, and so should be
able to use libraries in their home directories.

The OS-standard location typically causes no problems, and the compiler should know
to look in those places to find the standard C library, as well as anything installed
alongside it. The POSIX standard refers to these directories as “the usual places.”

But for the other stuff, you have to tell the compiler where to look. This is going to get
Byzantine: there is no standard way to find libraries in nonstandard locations, and it
rates highly on the list of things that frustrate people about C. On the plus side, your
compiler knows how to look in the usual locations, and library distributors tend to put
things in the usual locations, so you might never need to specify a path manually. On
another plus side, there are a few tools to help you with specifying paths. And on one
last plus side, once you have located the nonstandard locations on your system, you
can set them in a shell or makefile variable and never think about them again.

Let us say that you have a library named Libuseful installed on your computer, and you
know that its various files were put in the /usr/local/ directory, which is the location
officially intended for your sysadmin’s local libraries. You already put #include <use
ful.h> in your code; now you have to put this on the command line:

gcc -I/usr/local/include use_useful.c -o use_useful -L/usr/local/lib -luseful

• -I adds the given path to the include search path, which the compiler searches for
header files you #included in your code.

• -L adds to the library search path.

• Order matters. If you have a file named specific.o that depends on the Libbroad
library, and Libbroad depends on Libgeneral, then you will need:

gcc specific.o -lbroad -lgeneral

12 | Chapter 1: Set Yourself Up for Easy Compilation

Any other ordering, such as gcc -lbroad -lgeneral specific.o, will probably fail.
You can think of the linker looking at the first item, specific.o, and writing down
a list of unresolved function, structure, and variable names. Then it goes to the
next item, -lbroad, and searches for the items on its still-missing list, all the while
potentially adding new unresolved items, then checking -lgeneral for those items
still on the missing list. If there are names still unlocated by the end of the list
(including that implicit -lc at the end), then the linker halts and gives what is left
of its missing-items list to the user.

OK, back to the location problem: where is the library that you want to link to? If it
was installed via the same package manager that you used to install the rest of your
operating system, then it is most likely in the usual places, and you don’t have to worry
about it.

You may have a sense of where your own local libraries tend to be, such as /usr/local
or /sw or /opt. You no doubt have on hand a means of searching the hard drive, such
as a search tool on your desktop or the POSIX:

find /usr -name 'libuseful*'

to search /usr for files with names beginning with libuseful. When you find Libuseful’s
shared object file is in /some/path/lib, the headers are almost certainly in /some/path/
include.

Everybody else finds hunting the hard drive for libraries to be annoying, too, and pkg-
config addresses this by maintaining a repository of the flags and locations that pack-
ages self-report as being necessary for compilation. Type pkg-config on your command
line; if you get an error about specifying package names, then great, you have pkg-
config and can use it to do the research for you. For example, on my PC, typing these
two commands on the command line:

pkg-config --libs gsl libxml-2.0
pkg-config --cflags gsl libxml-2.0

gives me these two lines of output:

-lgsl -lgslcblas -lm -lxml2
-I/usr/include/libxml2

These are exactly the flags I need to compile using GSL and LibXML2. The -l flags
reveal that GNU Scientific Library depends on a Basic Linear Algebra Subprograms
(BLAS) library, and the GSL’s BLAS library depends on the standard math library. It
seems that all the libraries are in the usual places, because there are no -L flags, but the
-I flag indicates the special location for LibXML2’s header files.

Back to the command line, the shell provides a trick in that when you surround a
command by backticks, the command is replaced with its output. That is, when I type:

gcc `pkg-config --cflags --libs gsl libxml-2.0` -o specific specific.c

the compiler sees:

Which Way to the Library? | 13

gcc -I/usr/include/libxml2 -lgsl -lgslcblas -lm -lxml2 -o specific specific.c

So pkg-config does a lot of the work for us, but it is not sufficiently standard that we
can expect everybody has it or that every library is registered with it. If you don’t have
pkg-config, then you’ll have to do this sort of research yourself, by reading the manual
for your library or searching your disk as we saw previously.

There are often environment variables for paths, such as CPATH or
LIBRARY_PATH or C_INCLUDE_PATH. You would set them in your .bashrc or
other such user-specific list of environment variables. They are hope-
lessly nonstandard—gcc on Linux and gcc on the Mac use different
variables, and any other compiler may use others still. I find that it’s
easier to set these paths on a per-project basis in the makefile or its
equivalent, using -I and -L flags. If you prefer these path variables, check
the end of your compiler’s manpage for the list of relevant variables for
your situation.

Even with pkg-config, the need for something that will assemble all this for us is in-
creasingly apparent. Each element is easy enough to understand, but it is a long, me-
chanical list of tedious parts.

Runtime Linking
Static libraries are linked by the compiler by effectively copying the relevant contents
of the library into the final executable. So the program itself works as a more-or-less
standalone system. Shared libraries are linked to your program at run-time, meaning
that we have the same problem with finding the library that we had at compile time all
over again at runtime. What is worse, users of your program may have this problem.

If the library is in one of the usual locations, life is good and the system will have no
problem finding the library at runtime. If your library is in a nonstandard path, then
you need to find a way to modify the runtime search path for libraries. Options:

• If you packaged your program with Autotools, Libtool knows how to add the right
flags, and you don’t have to worry about it.

• The most likely reason for needing to modify this search path is if you are keeping
libraries in your home directory because you don’t have (or don’t want to make
use of) root access. If you are installing all of your libraries into libpath, then set
the environment variable LD_LIBRARY_PATH. This is typically done in your shell’s
startup script (.bashrc, .zshrc, or whatever is appropriate), via:

export LD_LIBRARY_PATH=libpath:$LD_LIBRARY_PATH

There are those who warn against overuse of the LD_LIBRARY_PATH (what if some-
body puts a malicious impostor library in the path, thus replacing the real library
without your knowledge?), but if all your libraries are in one place, it is not unrea-
sonable to add one directory under your ostensible control to the path.

14 | Chapter 1: Set Yourself Up for Easy Compilation

• When compiling the program with gcc, Clang, or icc based on a library in lib-
path, add:

LDADD=-Llibpath -Wl,-Rlibpath

to the subsequent makefile. The -L flag tells the compiler where to search for li-
braries to resolve symbols; the -Wl flag passes its flags through from gcc/Clang/icc
to the linker, and the linker embeds the given -R into the runtime search path for
libraries to link to. Unfortunately, pkg-config often doesn’t know about runtime
paths, so you may need to enter these things manually.

Using Makefiles
The makefile provides a resolution to all this endless tweaking. It is basically an organ-
ized set of variables and shell scripts. The POSIX-standard make program reads the
makefile for instructions and variables, and then assembles the long and tedious com-
mand lines for us. After this segment, there will be little reason to call the compiler
directly.

In “Makefiles vs. Shell Scripts” on page 62, I’ll cover a few more details about the
makefile; here, I’m going to show you the smallest practicable makefile that will compile
a basic program that depends on a library. Here it is, all six lines of it:

P=program_name
OBJECTS=
CFLAGS = -g -Wall -O3
LDLIBS=
CC=c99

$(P): $(OBJECTS)

Usage:

• Once ever: Save this (with the name makefile) in the same directory as your .c files.
If you are using GNU Make, you have the option of capitalizing the name to
Makefile if you feel that doing so will help it to stand out from the other files. Set
your program’s name on the first line (use progname, not progname.c).

• Every time you need to recompile: Type make.

Your Turn: Here’s the world-famous hello.c program, in two lines:

#include <stdio.h>
int main(){ printf("Hello, world.\n"); }

Save that and the preceding makefile to a directory, and try the previous
steps to get the program compiled and running. Once that works, mod-
ify your makefile to compile erf.c.

Using Makefiles | 15

Setting Variables
We’ll get to the actual functioning of the makefile soon, but five out of six lines of this
makefile are about setting variables (most of which are currently set to be blank), in-
dicating that we should take a moment to consider environment variables in a little
more detail.

Historically, there have been two main threads of shell grammar: one
based primarily on the Bourne shell, and another based primarily on the
C shell. The C shell has a slightly different syntax for variables, e.g., set
CFLAGS="-g -Wall -O3” to set the value of CFLAGS. But the POSIX stan-
dard is written around the Bourne-type variable-setting syntax, so that
is what I focus on through the rest of this book.

The shell and make use the $ to indicate the value of a variable, but the shell uses $var,
whereas make wants any variable names longer than one character in parens: $(var).
So, given the preceding makefile, $(P): $(OBJECTS) will be equivalent to

program_name:

There are several ways to get make to recognize a variable:

• Set the variable from the shell before calling make, and export the variable, meaning
that when the shell spawns a child process, it has the variable in its list of environ-
ment variables. To set CFLAGS from a POSIX-standard command line:

export CFLAGS='-g -Wall -O3'

At home, I omit the first line in this makefile, P=program_name, and instead set it
once per session via export P=program_name, which means I have to edit the makefile
itself still less frequently.

• You can put these export commands in your shell’s startup script, like .bashrc
or .zshrc. This guarantees that every time you log in or start a new shell, the variable
will be set and exported. If you are confident that your CFLAGS will be the same
every time, you can set them here and never think about them again.

• You can export a variable for a single command by putting the assignment just
before the command. The env command lists the environment variables it knows
about, so when you run the following:

PANTS=kakhi env | grep PANTS

you should see the appropriate variable and its value. This is why the shell won’t
let you put spaces around the equals sign: the space is how it distinguishes between
the assignment and the command.

Using this form sets and exports the given variables for one line only. After you try
this on the command line, try running env | grep PANTS again to verify that
PANTS is no longer an exported variable.

16 | Chapter 1: Set Yourself Up for Easy Compilation

Feel free to specify as many variables as you’d like:

PANTS=kakhi PLANTS="ficus fern" env | grep 'P.*NTS'

This trick is a part of the shell specification’s simple command description, meaning
that the assignment needs to come before an actual command. This will matter
when we get to noncommand shell constructs. Writing:

VAR=val if [-e afile] ; then ./program_using_VAR ; fi

will fail with an obscure syntax error. The correct form is:

if [-e afile] ; then VAR=val ./program_using_VAR ; fi

• As in the earlier makefile, you can set the variable at the head of the makefile, with
the lines like CFLAGS=.... In the makefile, you can have spaces around the equals
sign without anything breaking.

• make will let you set variables on the command line, independent of the shell. Thus,
these two lines are close to equivalent:

make CFLAGS="-g -Wall" Set a makefile variable.
CFLAGS="-g -Wall" make Set an environment variable that only make and its children see.

All of these means are equivalent, as far as your makefile is concerned, with the excep-
tion that child programs called by make will know new environment variables but won’t
know any makefile variables.

Environment Variables in C
In your C code, get environment variables with getenv. Because getenv is so easy to use,
it’s useful for quickly setting a variable on the C side, so you can try a few different
values from the command prompt.

Example 1-2 prints a message to the screen as often as the user desires. The message is
set via the environment variable msg and the number of repetitions via reps. Notice how
we set defaults of 10 and “Hello.” should getenv return NULL (typically meaning that
the environment variable is unset).

Example 1-2. Environment variables provide a quick way to tweak details of a program
(getenv.c)

#include <stdlib.h> //getenv, atoi
#include <stdio.h> //printf

int main(){
 char *repstext=getenv("reps");
 int reps = repstext ? atoi(repstext) : 10;

 char *msg = getenv("msg");
 if (!msg) msg = "Hello.";

 for (int i=0; i< reps; i++)
 printf("%s\n", msg);
}

Using Makefiles | 17

As previously, we can export a variable for just one line, which makes sending a variable
to the program still more convenient. Usage:

reps=10 msg="Ha" ./getenv
msg="Ha" ./getenv
reps=20 msg=" " ./getenv

You might find this to be odd—the inputs to a program should come after the program
name, darn it—but the oddness aside, you can see that it took little setup within the
program itself, and we get to have named parameters on the command line almost for
free.

When your program is a little further along, you can take the time to set up getopt to
set input arguments the usual way.

make also offers several built-in variables. Here are the (POSIX-standard) ones that you
will need to read the following rules:

$@
The full target filename. By target, I mean the file that needs to be built, such as
a .o file being compiled from a .c file or a program made by linking .o files.

$*
The target file with the suffix cut off. So if the target is prog.o, $* is prog, and
$*.c would become prog.c.

$<
The name of the file that caused this target to get triggered and made. If we are
making prog.o, it is probably because prog.c has recently been modified, so $< is
prog.c.

The Rules
Now, let us focus on the procedures the makefile will execute, and then get to how the
variables influence that.

Setting the variables aside, segments of the makefile have the form:

target: dependencies
 script

If the target gets called, via the command make target, then the dependencies are
checked. If the target is a file, the dependencies are all files, and the target is newer than
the dependencies, then the file is up-to-date and there’s nothing to do. Otherwise, the
processing of the target gets put on hold, the dependencies are run or generated, prob-
ably via another target, and when the dependency scripts are all finished, the target’s
script gets executed.

For example, before this was a book, it was a series of tips posted to a blog (at http://
modelingwithdata.org). Every blog post had an HTML and PDF version, all generated

18 | Chapter 1: Set Yourself Up for Easy Compilation

http://modelingwithdata.org
http://modelingwithdata.org

via LaTeX. I’m omitting a lot of details for the sake of a simple example (like the many
options for latex2html), but here’s the sort of makefile one could write for the process.

If you are copying any of these makefile snippets from a version on your
screen or on paper to a file named makefile, don’t forget that the white-
space at the head of each line must be a tab, not spaces. Blame POSIX.

all: html doc publish

doc:
 pdflatex $(f).tex

html:
 latex -interaction batchmode $(f)
 latex2html $(f).tex

publish:
 scp $(f).pdf $(Blogserver)

I set f on the command line via a command like export f=tip-make. When I then type
make on the command line, the first target, all, gets checked. That is, the command
make by itself is equivalent to make first_target. That depends on html, doc, and
publish, so those targets get called in sequence. If I know it’s not yet ready to copy out
to the world, then I can call make html doc and do only those steps.

In the simple makefile from earlier, we had only one target/dependency/script group.
For example:

P=domath
OBJECTS=addition.o subtraction.o

$(P): $(OBJECTS)

This follows a sequence of dependencies and scripts similar to what my blogging
makefile did, but the scripts are implicit. Here, P=domath is the program to be compiled,
and it depends on the object files addition.o and subtraction.o. Because addition.o is not
listed as a target, make uses an implicit rule, listed below, to compile from the .c to
the .o file. Then it does the same for subtraction.o and domath.o (because GNU make
implicitly assumes that domath depends on domath.o given the setup here). Once all the
objects are built, we have no script to build the $(P) target, so GNU make fills in its
default script for linking .o files into an executable.

POSIX-standard make has a specific recipe for compiling a .o object file from a .c source
code file:

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $*.c

The $(CC) variable represents your C compiler; The POSIX standard specifies a default
of CC=c99, but current editions of GNU make set CC=cc, which is typically a link to gcc.
In the minimal makefile at the head of this segment, $(CC) is explicitly set to c99,
$(CFLAGS) is set to the list of flags earlier, and $(LDFLAGS) is unset and therefore replaced

Using Makefiles | 19

with nothing. So if make determines that it needs to produce your_program.o, then this
is the command that will be run, given that makefile:

c99 -g -Wall -O3 -o your_program.o your_program.c

When GNU make decides that you have an executable program to build from object
files, it uses this recipe:

$(CC) $(LDFLAGS) first.o second.o $(LDLIBS)

Recall that order matters in the linker, so we will need two linker variables. In the
previous example, we needed:

cc specific.o -lbroad -lgeneral

as the relevant part of the linking command. Comparing the correct compilation com-
mand to the recipe, we see that we need to set LDLIBS=-lbroad -lgeneral. If we had set
LDFLAGS=-lbroad -lgeneral, then the recipe would produce cc -lbroad -lgeneral
specific.o, which is likely to fail. Notice that LDFLAGS also appears in the recipe for
compilation from .c to .o files.

If you’d like to see the full list of default rules and variables built in to
your edition of make, try:

make -p > default_rules

So, that’s the game: find the right variables and set them in the makefile. You still have
to do the research as to what the correct flags are, but at least you can write them down
in the makefile and never think about them again.

If you use an IDE, or CMAKE, or any of the other alternatives to POSIX-standard
make, you’re going to be playing the same find-the-variables game. I’m going to continue
discussing the preceding minimal makefile, and you should have no problem finding
the corresponding variables in your IDE.

• The CFLAGS variable is an ingrained custom, but the variable that you’ll need to set
for the linker changes from system to system. Even LDLIBS isn’t POSIX-standard,
but is what GNU make uses.

• The CLFAGS and LDLIBS variables are where we’re going to hook all the compiler
flags locating and identifying libraries. If you have pkg-config, put the backticked
calls here. For example, the makefile on my system, where I use Apophenia and
GLib for just about everything, looks like:

CFLAGS=`pkg-config --cflags apophenia glib-2.0` -g -wall -std=gnu11 -O3
LDLIBS=`pkg-config --libs apophenia glib-2.0`

Or, specify the -I, -L, and -l flags manually, like:

CFLAGS=-I/home/b/root/include -g -Wall -O3
LDLIBS=-L/home/b/root/lib -lweirdlib

20 | Chapter 1: Set Yourself Up for Easy Compilation

• After you add a library and its locations to the LIBS and CFLAGS lines and you know
it works on your system, there is little reason to ever remove it. Do you really care
that the final executable might be 10 kilobytes larger than if you customized a new
makefile for every program? That means you can write one makefile summarizing
where all the libraries are on your system and copy it from project to project without
any rewriting.

• If you have a second (or more) C file, add second.o third.o, and so on to the
OBJECTS line (no commas, just spaces between names) in the makefile at the head
of this section. make will use that to determine which files to build and which recipes
to run.

• If you have a program that is one .c file, you may not need a makefile at all. In a
directory with no makefile and erf.c from earlier, try using your shell to:

export CFLAGS='-g -Wall -O3 -std=gnu11'
export LDLIBS='-lm'
make erf

and watch make use its knowledge of C compilation to do the rest.

What Are the Linker Flags for Building a Shared Library?
To tell you the truth, I have no idea. It’s different across operating systems, both by
type and by year, and even on one system the rules are often hairy.

Instead, Libtool, one of the tools introduced in Chapter 3, knows every detail of every
shared library generation procedure on every operating system. I recommend investing
your time getting to know Autotools and thus solve the shared object compilation
problem once and for all, rather than investing that time in learning the right compiler
flags and linking procedure for every target system.

Using Libraries from Source
So far, the story has been about compiling your own code using make. Compiling code
provided by others is often a different story.

Let’s try a sample package. The GNU Scientific Library includes a host of numeric
computation routines.

The GSL is packaged via Autotools, a set of tools that will prepare a library for use on
any machine, by testing for every known quirk and implementing the appropriate
workaround. Autotools is central to how code is distributed in the present day, and
“Packaging Your Code with Autotools” on page 64 will go into detail about how you
can package your own programs and libraries with it. But for now, we can start off as
users of the system and enjoy the ease of quickly installing useful libraries.

Using Libraries from Source | 21

The GSL is often provided in precompiled form via package manager, but for the pur-
poses of going through the steps of compilation, here’s how to get the GSL as source
code and set it up, assuming you have root privileges on your computer.

wget ftp://ftp.gnu.org/gnu/gsl/gsl-1.15.tar.gz
tar xvzf gsl-*gz
cd gsl-1.15
./configure
make
sudo make install

Download the zipped archive. Ask your package manager to install wget if you don’t
have it, or type this URL into your browser.

Unzip the archive: x=extract, v=verbose, z=unzip via gzip, f=filename.

Determine the quirks of your machine. If the configure step gives you an error about
a missing element, then use your package manager to obtain it and run configure
again.

Install to the right location—if you have permissions.

If you are trying this at home, then you probably have root privileges, and this will work
fine. If you are at work and using a shared server, the odds are low that you have
superuser rights, so you won’t be able to provide the password needed to do the last
step in the script as superuser. In that case, hold your breath until the next section.

Did it install? Example 1-3 provides a short program to try finding that 95% confidence
interval using GSL functions; try it and see if you can get it linked and running:

Example 1-3. Redoing Example 1-1 with the GSL (gsl_erf.c)

#include <gsl/gsl_cdf.h>
#include <stdio.h>

int main(){
 double bottom_tail = gsl_cdf_gaussian_P(-1.96, 1);
 printf("Area between [-1.96, 1.96]: %g\n", 1-2*bottom_tail);
}

To use the library you just installed, you’ll need to modify the makefile of your library-
using program to specify the libraries and their locations.

Depending on whether you have pkg-config on hand, you can do one of:

LDLIBS=`pkg-config --libs gsl`
#or
LDLIBS=-lgsl -lgslcblas -lm

If it didn’t install in a standard location and pkg-config is not available, you will need
to add paths to the heads of these definitions, such as CFLAGS=-I/usr/local/include
and LDLIBS=-L/usr/local/lib -Wl,-R/usr/local/lib.

22 | Chapter 1: Set Yourself Up for Easy Compilation

Using Libraries from Source (Even if Your Sysadmin Doesn’t
Want You To)
You may have noticed the caveats in the last section about how you have to have root
privileges to install to the usual locations on a POSIX system. But you may not have
root access if you are using a shared computer at work, or if you have an especially
controlling significant other.

Then you have to go underground and make your own private root directory.

The first step is to simply create the directory:

mkdir ~/root

I already have a ~/tech directory where I keep all my technical logistics, manuals, and
code snippets, so I made a ~/tech/root directory. The name doesn’t matter, but I’ll use
~/root as the dummy directory here.

Your shell replaces the tilde with the full path to your home directory,
saving you a lot of typing. The POSIX standard only requires that the
shell do this at the beginning of a word or just after a colon (which you’d
need for a path-type variable), but most shells expand mid-word tildes
as well. Other programs, like make, may or may not recognize the tilde
as your home directory.

The second step is to add the right part of your new root system to all the relevant paths.
For programs, that’s the PATH in your .bashrc (or equivalent):

PATH=~/root/bin:$PATH

By putting the bin subdirectory of your new directory before the original PATH, it will
be searched first, and your copy of any programs will be found first. Thus, you can
substitute in your preferred version of any programs that are already in the standard
shared directories of the system.

The Manual
I suppose there was once a time when the manual was actually a printed document,
but in the present day, it exists in the form of the man command. For example, use man
strtok to read about the strtok function, typically including what header to include,
the input arguments, and basic notes about its usage. The manual pages tend to keep
it simple, sometimes lack examples, and assume the reader already has a basic idea of
how the function works. If you need a more basic tutorial, your favorite Internet search
engine can probably offer several (and in the case of strtok, see the section “A Pæan to
strtok” on page 154). The GNU C library manual, also easy to find online, is very
readable and written for beginners.

Using Libraries from Source (Even if Your Sysadmin Doesn’t Want You To) | 23

• If you can’t recall the name of what you need to look up, every manual page has a
one-line summary, and man -k searchterm will search those summaries. Many sys-
tems also have the apropos command, which is similar to man -k but adds some
features. For extra refinement, I often find myself piping the output of apropos
through grep.

• The manual is divided into sections. Section 1 is command-line commands, and
section 3 is library functions. If your system has a command-line program named
printf, then man printf will show its documentation, and man 3 printf will show
the documentation for the C library’s printf command.

• For more on the usage of the man command (such as the full list of sections), try
man man.

• Your text editor or IDE may have a means of calling up manpages quickly. For
example, vi users can put the cursor on a word and use K to open that word’s
manpage.

For libraries you will fold into your C programs, note the new paths to search in the
preceding makefile:

LDLIBS=-L/home/your_home/root/lib (plus the other flags, like -lgsl -lm ...)
CFLAGS=-I/home/your_home/root/include (plus -g -Wall -O3 ...)

Now that you have a local root, you can use it for other systems as well, such as Java’s
CLASSPATH.

The last step is to install programs in your new root. If you have the source code and
it uses Autotools, all you have to do is add --prefix=$HOME/root in the right place:

./configure --prefix=$HOME/root; make; make install

You didn’t need sudo to do the install step, because everything is now in territory you
control.

Because the programs and libraries are in your home directory and have no more per-
missions than you do, your sysadmin can’t complain that they are an imposition on
others. If your sysadmin complains anyway, then, as sad as it may be, it might be time
to break up.

Compiling C Programs via Here Document
At this point, you have seen the pattern of compilation a few times:

1. Set a variable expressing compiler flags.

2. Set a variable expressing linker flags, including a -l flag for every library that you
use.

3. Use make or your IDE’s recipes to convert the variables into full compile and link
commands.

24 | Chapter 1: Set Yourself Up for Easy Compilation

The remainder of this chapter will do all this one last time, using an absolutely minimal
setup: just the shell. If you are a kinetic learner who picked up scripting languages by
cutting and pasting snippets of code into the interpreter, you’ll be able to do the same
with pasting C code onto your command prompt.

Include Header Files from the Command Line
The gcc and Clang have a convenient flag for including headers. For example:

gcc -include stdio.h

is equivalent to putting

#include <stdio.h>

at the head of your C file; similarly for clang -include stdio.h.

By adding that to our compiler invocation, we can finally write hello.c as the one line
of code it should be:

int main(){ printf("Hello, world.\n"); }

which compiles fine via:

gcc -include stdio.h hello.c -o hi --std=gnu99 -Wall -g -O3

or shell commands like:

export CFLAGS='-g -Wall -include stdio.h'
export CC=c99
make hello

This tip about -include is compiler-specific and involves moving information from the
code to the compilation instructions. If you think this is bad form, well, skip this tip.

The Unified Header
There was once a time when compilers took several seconds or minutes to compile even
relatively simple programs, so there was human-noticeable benefit to reducing the work
the compiler has to do. My current copies of stdio.h and stdlib.h are each about 1,000
lines long (try wc -l /usr/include/stdlib.h) and time.h another 400, meaning that this
seven-line program:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
int main(){
 srand(time(NULL)); // Initialize RNG seed.
 printf("%i\n", rand()); // Make one draw.
}

is actually a ~2,400-line program.

Compiling C Programs via Here Document | 25

Your compiler doesn’t think 2,400 lines is a big deal anymore, and this compiles in
under a second. So why are we spending time picking out just the right headers for a
given program?

Once you have a unified header, even a line like #include <allheads.h> is extraneous
if you are a gcc or Clang user, because you can instead add -include allheads.h to your
CFLAGS and never think about which out-of-project headers to include again.

Your Turn: Write yourself a single header, let us call it allheads.h, and
throw in every header you’ve ever used, so it’ll look something like:

#include <math.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <gsl/gsl_rng.h>

I can’t tell you exactly what it’ll look like, because I don’t know exactly
what you use day to day.

Now that you have this aggregate header, you can just throw one:

#include <allheads.h>

on top of every file you write, and you’re done with thinking about
headers. Sure, it will expand to perhaps 10,000 lines of extra code, much
of it not relevant to the program at hand. But you won’t notice, and
unused declarations don’t change the final executable.

Headers also serve the purpose of limiting scope, but this is generally more important
for functions and structures you wrote than those in the libraries. The purpose of lim-
iting scope is not to keep the namespace small so the computer won’t overheat; it is to
reduce cognitive load for you, the programmer. I’m guessing you’re not even familiar
with most of the functions to be found in the libraries you are using, and if you don’t
know about them, they can’t possibly be taking up cognitive load. Other languages
don’t even make the distinction and heap on the keywords, like the R project, which
has 752 words internally defined at startup.

Here Documents
Here documents are a feature of POSIX-standard shells that you can use for C, Python,
Perl, or whatever else, and they will make this book much more useful and fun. Also,
if you want to have a multilingual script, here documents are an easy way to do it. Do
some parsing in Perl, do the math in C, then have Gnuplot produce the pretty pictures,
and have it all in one text file.

Here’s a Python example. Normally, you’d tell Python to run a script via:

python your_script.py

26 | Chapter 1: Set Yourself Up for Easy Compilation

You can give the filename '-' to use stdin as the input file:

echo "print 'hi.'" | python '-'

We need '-' and not just - to indicate that this is plain text and not
introducing a switch like the c in python -c "print 'Hi'". Many pro-
grams follow the GNU custom that two dashes indicate that they should
stop reading switches and read subsequent inputs plain. Thus:

echo "print 'hi.'" | python -- -

also works, but is the sort of thing that scares people.

You could, in theory, put some lengthy scripts on the command line via echo, but you’ll
quickly see that there are a lot of small, undesired parsings going on—you might need
\"hi\" instead of "hi", for example.

Thus, the here document, which does no parsing at all. Try this:

python '-' <<"XXXX"
lines=2
print "\nThis script is %i lines long.\n" %(lines,)
XXXX

• Here documents are a standard shell feature, so they should work on any POSIX
system.

• The "XXXX" is any string you’d like; "EOF" is also popular, and "-----" looks good
as long as you get the dash count to match at top and bottom. When the shell sees
your chosen string alone on a line, it will stop sending the script to the program’s
stdin. That’s all the parsing that happens.

• There’s also a variant that begins with <<-. This variant removes all tabs at the head
of every line, so you can put a here document in an indented section of a shell script
without breaking the flow of indentation. Of course, this would be disastrous for
a Python here document.

• As another variant, there’s a difference between <<"XXXX" and <<XXXX. In the second
version, the shell parses certain elements, which means you can have the shell insert
the value of $shell_variables for you. The shell relies heavily on the $ for its vari-
ables and other expansions; the $ is one of the few characters on a standard key-
board that has no special meaning to C. It’s as if the people who wrote Unix
designed it from the ground up to make it easy to write shell scripts that produce
C code….

Compiling from stdin
OK, back to C: we can use here documents to compile C code pasted onto the command
line via gcc or Clang, or have a few lines of C in a multilingual script.

Compiling C Programs via Here Document | 27

We’re not going to use the makefile, so we need a single compilation command. To
make life less painful, let us alias it. Paste this onto your command line, or add it to
your .bashrc, .zshrc, or wherever applicable:

go_libs="-lm"
go_flags="-g -Wall -include allheads.h -O3"
alias go_c="c99 -xc '-' $go_libs $go_flags"

where allheads.h is the aggregate header you’d put together earlier. Using the
-include flag means one less thing to think about when writing the C code, and I’ve
found that bash’s history gets wonky when there are #s in the C code.

On the compilation line, you’ll recognize the '-' to mean that instead of reading from
a named file, use stdin. The -xc identifies this as C code, because gcc stands for GNU
Compiler Collection, not GNU C Compiler, and with no input filename ending in .c
to tip it off, we have to be clear that this is not Java, Fortran, Objective C, Ada, or
C++ (and similarly for Clang, even though its name is meant to invoke C language).

Whatever you did to customize the LDLIBS and CFLAGS in your makefile, do here.

Now we’re sailing, and can compile C code on the command line:

go_c << '---'
int main(){printf("Hello from the command line.\n");}

./a.out

We can use a here document to paste short C programs onto the command line, and
write little test programs without hassle. Not only do you not need a makefile, you
don’t even need an input file.

Don’t expect this sort of thing to be your primary mode of working. But cutting and
pasting code snippets onto the command line can be fun, and being able to have a single
step in C within a longer shell script is pretty fabulous.

28 | Chapter 1: Set Yourself Up for Easy Compilation

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY—that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

O’Reilly Ebooks—Your bookshelf on your devices!

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
Android Marketplace, and Amazon.com.

oreilly.comSpreading the knowledge of innovators

iBookstore, the

	Table of Contents
	Preface
	C Is Punk Rock
	Q & A (Or, the Parameters of the Book)
	Standards: So Many to Choose From
	The POSIX Standard

	Some Logistics
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. The Environment
	Chapter 1. Set Yourself Up for Easy Compilation
	Use a Package Manager
	Compiling C with Windows
	POSIX for Windows
	Compiling C with POSIX
	Compiling C Without POSIX

	Which Way to the Library?
	A Few of My Favorite Flags
	Paths
	Runtime Linking

	Using Makefiles
	Setting Variables
	The Rules

	Using Libraries from Source
	Using Libraries from Source (Even if Your Sysadmin Doesn’t Want You To)
	Compiling C Programs via Here Document
	Include Header Files from the Command Line
	The Unified Header
	Here Documents
	Compiling from stdin

	Chapter 2. Debug, Test, Document
	Using a Debugger
	GDB Variables
	Print Your Structures

	Using Valgrind to Check for Errors
	Unit Testing
	Using a Program as a Library
	Coverage

	Interweaving Documentation
	Doxygen
	The narrative

	Literate Code with CWEB

	Error Checking
	What Is the User’s Involvement in the Error?
	The Context in Which the User Is Working
	How Should the Error Indication Be Returned?

	Chapter 3. Packaging Your Project
	The Shell
	Replacing Shell Commands with Their Outputs
	Use the Shell’s for Loops to Operate on a Set of Files
	Test for Files
	fc

	Makefiles vs. Shell Scripts
	Packaging Your Code with Autotools
	An Autotools Demo
	Describing the Makefile with makefile.am
	Form variables
	Content variables
	Adding testing
	Adding makefile bits

	The configure Script
	More Bits of Shell

	Chapter 4. Version Control
	Changes via diff
	Git’s Objects
	The Stash

	Trees and Their Branches
	Merging
	The Rebase

	Remote Repositories

	Chapter 5. Playing Nice with Others
	The Process
	Writing to Be Read by Nonnatives
	The Wrapper Function
	Smuggling Data Structures Across the Border
	Linking

	Python Host
	Compiling and Linking
	The Conditional Subdirectory for Automake
	Distutils Bridging with Autotools

	Part II. The Language
	Chapter 6. Your Pal the Pointer
	Automatic, Static, and Manual Memory
	Persistent State Variables
	Pointers Without malloc
	Structures Get Copied, Arrays Get Aliased
	malloc and Memory-Twiddling
	The Fault Is in Our Stars
	All the Pointer Arithmetic You Need to Know
	Typedef as a teaching tool

	Chapter 7. C Syntax You Can Ignore
	Don’t Bother Explicitly Returning from main
	Let Declarations Flow
	Set Array Size at Runtime

	Cast Less
	Enums and Strings
	Labels, gotos, switches, and breaks
	goto Considered
	switch

	Deprecate Float

	Chapter 8. Obstacles and Opportunity
	Cultivate Robust and Flourishing Macros
	Preprocessor Tricks

	Linkage with static and extern
	Declare Externally Linked Elements Only in Header Files

	The const Keyword
	Noun-Adjective Form
	Tension
	Depth
	The char const ** Issue

	Chapter 9. Text
	Making String Handling Less Painful with asprintf
	Security
	Constant Strings
	Extending Strings with asprintf

	A Pæan to strtok
	Unicode
	The Encoding for C Code
	Unicode Libraries
	The Sample Code

	Chapter 10. Better Structures
	Compound Literals
	Initialization via Compound Literals

	Variadic Macros
	Safely Terminated Lists
	Foreach
	Vectorize a Function
	Designated Initializers
	Initialize Arrays and Structs with Zeros
	Typedefs Save the Day
	A Style Note

	Return Multiple Items from a Function
	Reporting Errors

	Flexible Function Inputs
	Declare Your Function as printf-Style
	Optional and Named Arguments
	Polishing a Dull Function

	The Void Pointer and the Structures It Points To
	Functions with Generic Inputs
	Generic Structures

	Chapter 11. Object-Oriented Programming in C
	What You Don’t Get (and Why You Won’t Miss It)
	Scope
	Private struct elements

	Overloaded with Operator Overloading
	_Generic

	Extending Structures and Dictionaries
	Extending a Structure
	C, with fewer seams

	Implementing a Dictionary
	Base Your Code on Pointers to Objects

	Functions in Your Structs
	Count References
	Example: A Substring Object
	An Agent-Based Model of Group Formation

	Chapter 12. Libraries
	GLib
	POSIX
	Using mmap for Gigantic Data Sets
	Easy Threading with Pthreads
	The pthreads checklist
	Protect threaded resources with mutexes
	The example
	_Thread_local and static variables

	The GNU Scientific Library
	SQLite
	The Queries

	libxml and cURL

	Epilogue
	Glossary
	Bibliography
	Index

