
CS 51510 Longest common subsequence Fall 2024

1. Longest common subsequence

Suppose we are given two arrays, A and B, of n and m positive numbers (or two strings
of n and m characters)

A = [a1, a2, . . . , an],

B = [b1, b2, . . . , bm].

A common subsequence of A and B is a subsequence [ai1 , ai2 , . . . , aik ] of elements
from A and a subsequence [bj1 , bj2 , . . . , bjk ] of elements from B such that aiν = bjν for
each 1 ≤ ν ≤ k. Notice that the elements in the common subsequence need not be
contiguous in A or B.

Given a common subsequence of A and B, we can compute its length. The “longest
common subsequence” problem is to find the maximum possible length over all possible
common subsequences from the given arrays (or strings) A and B.

Let us consider how to solve this problem using dynamic programming. We need to
come up with a definition of a subproblem for which we can write a recurrence relation
relating the solution of the subproblem to the solutions of other (smaller) subproblems.
The most obvious choice for a subproblem is

L(i, j) = length of the longest subsequence common to [a1, . . . , ai] and [b1, . . . , bj].

As we shall now show, this obvious choice of subproblem is a good choice. We can write a
recurrence relation relating subproblem L(i, j) to its (smaller) subproblems L(r, s) with
r < i or s < j.

The idea behind the recurrence relation is this. Given indices i and j, consider elements
ai from A and bj from B. We have two mutually exclusive cases, either ai = bj or ai ̸= bj.
Let us consider these two cases one at a time.

Suppose that we have ai = bj. Then the element ai (and also bj) must be the tail end of
the common subsequence that solves the subproblem L(i, j) (why?). What about the rest
of this common subsequence? It must be L(i−1, j−1). That is, the common subsequence
that solves L(i, j) must have ai tacked on to the end of the common subsequence that
solves L(i− 1, j − 1). So in this case we have

L(i, j) = 1 + L(i− 1, j − 1) if ai = bj.

That is what our recurrence relation looks like in this case.

Now suppose that we are in the other case, where ai ̸= bj. In this case we can say for
sure that we cannot have both ai and bj as part of the solution to L(i, j) (if both ai
and bj were part of the solution to L(i, j), then, since ai is the last item we can choose
from A and bj is the last item we can choose from B, it must be that ai and bj are
the last item in the common subsequence, but that implies ai = bj, a contradiction).
If we cannot have both ai and bj as part of the solution to L(i, j), that gives us three
(mutually exclusive) cases. Either ai is part of the solution to L(i, j) and bj is not, or bj



is part of the solution to L(i, j) and ai is not, or neither ai nor bj is part of the solution
to L(i, j). Let us look at these three cases one at a time.

Suppose that ai ̸= bj, and ai is not part of the solution to L(i, j) but bj is part of
this solution. Since we know that L(i, j) doesn’t make use of ai, we can ignore it, and
conclude that L(i, j) = L(i− 1, j). That is, the common subsequence that solves L(i, j)
is the same subsequence that solves L(i− 1, j).

Similarly, if ai ̸= bj, and bj is not part of the solution to L(i, j) but ai is part of this
solution, then L(i, j) = L(i, j − 1).

For the third case, if ai ̸= bj, and neither ai nor bj is part of the solution to L(i, j), then
L(i, j) = L(i− 1, j − 1) (that is, we can ignore both ai and bj).

In general, when ai ̸= bj we do not know which of the above three cases we are in, so
we define our recurrence relation to take the maximum of the values returned by these
three cases. That is

L(i, j) = max{L(i− 1, j), L(i, j − 1), L(i− 1, j − 1) } if ai ̸= bj.

Now we can put our two main cases together, to get the whole recurrence relation.

L(i, j) =

{
1 + L(i− 1, j − 1) if ai = bj,

max{L(i− 1, j), L(i, j − 1), L(i− 1, j − 1) } if ai ̸= bj.

This recurrence relation can also be rewritten as

L(i, j) =

{
1 + L(i− 1, j − 1) if ai = bj,

max{L(i− 1, j), L(i, j − 1) } if ai ̸= bj.

The initial conditions are

L(i, 0) = 0 for 0 ≤ i ≤ n and L(0, j) = 0 for 0 ≤ j ≤ m

since there can be no common subsequence if one of the sequences is empty.

Notice that we have only provided the maximum length of the longest common subse-
quence. We have not calculated its location in the two arrays, nor have we determined
if there might be more than one common subsequence that gives this maximal length.


