
14.4 Longest common subsequence 393

ing the product and computing the number of multiplications for each, or running
RECURSIVE-MATRIX-CHAIN? Justify your answer.
14.3-2
Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an
array of 16 elements. Explain why memoization fails to speed up a good divide-
and-conquer algorithm such as MERGE-SORT.
14.3-3
Consider the antithetical variant of the matrix-chain multiplication problem where
the goal is to parenthesize the sequence of matrices so as to maximize, rather than
minimize, the number of scalar multiplications. Does this problem exhibit optimal
substructure?
14.3-4
As stated, in dynamic programming, you ûrst solve the subproblems and then
choose which of them to use in an optimal solution to the problem. Professor
Capulet claims that she does not always need to solve all the subproblems in or-
der to ûnd an optimal solution. She suggests that she can ûnd an optimal solution
to the matrix-chain multiplication problem by always choosing the matrix A k at
which to split the subproduct A i A i C1    A j (by selecting k to minimize the quan-
tity p i 1 p k p j) before solving the subproblems. Find an instance of the matrix-
chain multiplication problem for which this greedy approach yields a suboptimal
solution.
14.3-5
Suppose that the rod-cutting problem of Section 14.1 also had a limit l i on the
number of pieces of length i allowed to be produced, for i D 1; 2; : : : ; n. Show
that the optimal-substructure property described in Section 14.1 no longer holds.

14.4 Longest common subsequence

Biological applications often need to compare the DNA of two (or more) dif-
ferent organisms. A strand of DNA consists of a string of molecules called
bases, where the possible bases are adenine, cytosine, guanine, and thymine.
Representing each of these bases by its initial letter, we can express a strand
of DNA as a string over the 4-element set fA; C; G; Tg. (See Section C.1 for
the deûnition of a string.) For example, the DNA of one organism may be
S 1 D ACCGGTCGAGTGCGCGGAAGCCGGCCGAA , and the DNA of another organ-
ism may be S 2 D GTCGTTCGGAATGCCGTTGCTCTGTAAA . One reason to com-

394 Chapter 14 Dynamic Programming

pare two strands of DNA is to determine how <similar= the two strands are, as some
measure of how closely related the two organisms are. We can, and do, deûne sim-
ilarity in many different ways. For example, we can say that two DNA strands are
similar if one is a substring of the other. (Chapter 32 explores algorithms to solve
this problem.) In our example, neither S 1 nor S 2 is a substring of the other. Alter-
natively, we could say that two strands are similar if the number of changes needed
to turn one into the other is small. (Problem 14-5 looks at this notion.) Yet another
way to measure the similarity of strands S 1 and S 2 is by ûnding a third strand S 3
in which the bases in S 3 appear in each of S 1 and S 2 . These bases must appear
in the same order, but not necessarily consecutively. The longer the strand S 3 we
can ûnd, the more similar S 1 and S 2 are. In our example, the longest strand S 3 is
GTCGTCGGAAGCCGGCCGAA .
We formalize this last notion of similarity as the longest-common-subsequence

problem. A subsequence of a given sequence is just the given sequence with 0 or
more elements left out. Formally, given a sequence X D hx 1 ; x 2 ; : : : ; x m i, another
sequence Z D h´ 1 ; ´ 2 ; : : : ; ´ k i is a subsequence of X if there exists a strictly
increasing sequence hi 1 ; i 2 ; : : : ; i k i of indices of X such that for all j D 1; 2; : : : ; k,
we have x i j D ´ j . For example, Z D hB; C; D; B i is a subsequence of X D
hA;B;C;B;D;A;B i with corresponding index sequence h2; 3; 5; 7i.
Given two sequences X and Y , we say that a sequence Z is a common sub-

sequence of X and Y if Z is a subsequence of both X and Y . For example, if
X D hA;B;C;B;D;A;B i and Y D hB;D;C;A;B;Ai, the sequence hB;C;Ai is
a common subsequence of both X and Y . The sequence hB;C;Ai is not a longest
common subsequence (LCS) of X and Y , however, since it has length 3 and the
sequence hB; C; B; Ai, which is also common to both sequences X and Y , has
length 4. The sequence hB; C; B; Ai is an LCS of X and Y , as is the sequence
hB;D;A;B i, since X and Y have no common subsequence of length 5 or greater.

In the longest-common-subsequence problem, the input is two sequences X D
hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i, and the goal is to ûnd a maximum-
length common subsequence of X and Y . This section shows how to efûciently
solve the LCS problem using dynamic programming.

Step 1: Characterizing a longest common subsequence
You can solve the LCS problem with a brute-force approach: enumerate all subse-
quences of X and check each subsequence to see whether it is also a subsequence
of Y , keeping track of the longest subsequence you ûnd. Each subsequence of X
corresponds to a subset of the indices f1; 2; : : : ;mg of X . Because X has 2 m sub-
sequences, this approach requires exponential time, making it impractical for long
sequences.

14.4 Longest common subsequence 395

The LCS problem has an optimal-substructure property, however, as the fol-
lowing theorem shows. As we’ll see, the natural classes of subproblems corre-
spond to pairs of <preûxes= of the two input sequences. To be precise, given a
sequence X D hx 1 ; x 2 ; : : : ; x m i, we deûne the i th preûx of X , for i D 0; 1; : : : ;m,
as X i D hx 1 ; x 2 ; : : : ; x i i. For example, if X D hA; B; C; B; D; A; B i, then
X 4 D hA;B;C;B i and X 0 is the empty sequence.

Theorem 14.1 (Optimal substructure of an LCS)
Let X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i be sequences, and let Z D
h´ 1 ; ´ 2 ; : : : ; ´ k i be any LCS of X and Y .
1. If x m D y n , then ´ k D x m D y n and Z k1 is an LCS of X m1 and Y n1 .
2. If x m ¤ y n and ´ k ¤ x m , then Z is an LCS of X m1 and Y .
3. If x m ¤ y n and ´ k ¤ y n , then Z is an LCS of X and Y n1 .

Proof (1) If ´ k ¤ x m , then we could append x m D y n to Z to obtain a common
subsequence of X and Y of length k C 1, contradicting the supposition that Z is
a longest common subsequence of X and Y . Thus, we must have ´ k D x m D y n .
Now, the preûx Z k1 is a length-.k  1/ common subsequence of X m1 and Y n1 .
We wish to show that it is an LCS. Suppose for the purpose of contradiction
that there exists a common subsequence W of X m1 and Y n1 with length greater
than k  1. Then, appending x m D y n to W produces a common subsequence of
X and Y whose length is greater than k, which is a contradiction.

(2) If ́ k ¤ x m , then Z is a common subsequence of X m1 and Y . If there were a
common subsequence W of X m1 and Y with length greater than k, then W would
also be a common subsequence of X m and Y , contradicting the assumption that Z
is an LCS of X and Y .
(3) The proof is symmetric to (2).

The way that Theorem 14.1 characterizes longest common subsequences says
that an LCS of two sequences contains within it an LCS of preûxes of the two se-
quences. Thus, the LCS problem has an optimal-substructure property. A recursive
solution also has the overlapping-subproblems property, as we’ll see in a moment.

Step 2: A recursive solution

Theorem 14.1 implies that you should examine either one or two subproblems
when ûnding an LCS of X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i. If
x m D y n , you need to ûnd an LCS of X m1 and Y n1 . Appending x m D y n to
this LCS yields an LCS of X and Y . If x m ¤ y n , then you have to solve two
subproblems: ûnding an LCS of X m1 and Y and ûnding an LCS of X and Y n1 .

396 Chapter 14 Dynamic Programming

Whichever of these two LCSs is longer is an LCS of X and Y . Because these
cases exhaust all possibilities, one of the optimal subproblem solutions must appear
within an LCS of X and Y .
The LCS problem has the overlapping-subproblems property. Here’s how. To

ûnd an LCS of X and Y , you might need to ûnd the LCSs of X and Y n1 and of
X m1 and Y . But each of these subproblems has the subsubproblem of ûnding an
LCS of X m1 and Y n1 . Many other subproblems share subsubproblems.
As in the matrix-chain multiplication problem, solving the LCS problem recur-

sively involves establishing a recurrence for the value of an optimal solution. Let’s
deûne cŒi; j � to be the length of an LCS of the sequences X i and Y j . If either i D 0
or j D 0, one of the sequences has length 0, and so the LCS has length 0. The
optimal substructure of the LCS problem gives the recursive formula

cŒi; j � D

Ĩ
0 if i D 0 or j D 0 ;
cŒi  1; j  1� C 1 if i; j > 0 and x i D y j ;
max fcŒi; j  1�; cŒi  1; j �g if i; j > 0 and x i ¤ y j :

(14.9)

In this recursive formulation, a condition in the problem restricts which sub-
problems to consider. When x i D y j , you can and should consider the subproblem
of ûnding an LCS of X i 1 and Y j 1 . Otherwise, you instead consider the two
subproblems of ûnding an LCS of X i and Y j 1 and of X i 1 and Y j . In the pre-
vious dynamic-programming algorithms we have examined4for rod cutting and
matrix-chain multiplication4we didn’t rule out any subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 14-5) has this characteristic.

Step 3: Computing the length of an LCS

Based on equation (14.9), you could write an exponential-time recursive algorithm
to compute the length of an LCS of two sequences. Since the LCS problem has only
‚.mn/ distinct subproblems (computing cŒi; j � for 0 හ i හ m and 0 හ j හ n),
dynamic programming can compute the solutions bottom up.
The procedure LCS-LENGTH on the next page takes two sequences X D hx 1 ;

x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i as inputs, along with their lengths. It
stores the cŒi; j � values in a table cŒ0 W m; 0 W n�, and it computes the entries in row-
major order. That is, the procedure ûlls in the ûrst row of c from left to right, then
the second row, and so on. The procedure also maintains the table bŒ1 W m; 1 W n� to
help in constructing an optimal solution. Intuitively, bŒi; j � points to the table entry
corresponding to the optimal subproblem solution chosen when computing cŒi; j �.
The procedure returns the b and c tables, where cŒm; n� contains the length of an
LCS of X and Y . Figure 14.8 shows the tables produced by LCS-LENGTH on the

14.4 Longest common subsequence 397

sequences X D hA;B; C; B; D;A; B i and Y D hB;D; C; A; B; Ai. The running
time of the procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

LCS-LENGTH.X; Y;m; n/
1 let bŒ1 W m; 1 W n� and cŒ0 W m; 0 W n� be new tables
2 for i D 1 to m
3 cŒi; 0� D 0
4 for j D 0 to n
5 cŒ0; j � D 0
6 for i D 1 to m // compute table entries in row-major order
7 for j D 1 to n
8 if x i = = y j
9 cŒi; j � D cŒi  1; j  1� C 1
10 bŒi; j � D <-=
11 elseif cŒi  1; j �  cŒi; j  1�
12 cŒi; j � D cŒi  1; j �
13 bŒi; j � D <"=
14 else cŒi; j � D cŒi; j  1�
15 bŒi; j � D <=
16 return c and b

PRINT-LCS.b;X; i; j /
1 if i == 0 or j == 0
2 return // the LCS has length 0
3 if bŒi; j � == <-=
4 PRINT-LCS.b;X; i  1; j  1/
5 print x i // same as y j
6 elseif bŒi; j � == <"=
7 PRINT-LCS.b;X; i  1; j /
8 else PRINT-LCS.b;X; i; j  1/

Step 4: Constructing an LCS

With the b table returned by LCS-LENGTH, you can quickly construct an LCS of
X D hx 1 ;x 2 ; : : : ;x m i and Y D hy 1 ;y 2 ; : : : ;y n i. Begin at bŒm; n� and trace through
the table by following the arrows. Each <-= encountered in an entry bŒi; j � im-
plies that x i D y j is an element of the LCS that LCS-LENGTH found. This
method gives you the elements of this LCS in reverse order. The recursive pro-
cedure PRINT-LCS prints out an LCS of X and Y in the proper, forward order.

398 Chapter 14 Dynamic Programming

0 0 0 0 0 0 0
0 0 0 0 1 1 1

0 1 1 1 2 2
0 1 1 2 2 2
0 1 1 2 2 3

0 1 2 2 2 3 3

0 1 2 2 3 3

0 1 2 2 3 4 4

1

2
3

4

B D C A B A

1 2 3 4 5 6 0

A

B

C

B

D

A

B

1

2
3

4

5

6

7

0

j

i

x i

y j

Figure 14.8 The c and b tables computed by LCS-LENGTH on the sequences X D hA; B; C; B;
D;A;Bi and Y D hB;D;C;A;B;Ai. The square in row i and column j contains the value of cŒi; j �
and the appropriate arrow for the value of bŒi; j �. The entry 4 in cŒ7; 6�4the lower right-hand corner
of the table4is the length of an LCS hB; C; B; Ai of X and Y . For i; j > 0, entry cŒi; j � depends
only on whether x i D y j and the values in entries cŒi  1; j �, cŒi; j  1�, and cŒi  1; j  1�, which
are computed before cŒi; j �. To reconstruct the elements of an LCS, follow the bŒi; j � arrows from
the lower right-hand corner, as shown by the sequence shaded blue. Each <-= on the shaded-blue
sequence corresponds to an entry (highlighted) for which x i D y j is a member of an LCS.

The initial call is PRINT-LCS.b;X;m; n/. For the b table in Figure 14.8, this pro-
cedure prints BCBA. The procedure takes O.m C n/ time, since it decrements at
least one of i and j in each recursive call.

Improving the code
Once you have developed an algorithm, you will often ûnd that you can improve
on the time or space it uses. Some changes can simplify the code and improve
constant factors but otherwise yield no asymptotic improvement in performance.
Others can yield substantial asymptotic savings in time and space.

In the LCS algorithm, for example, you can eliminate the b table altogether.
Each cŒi; j � entry depends on only three other c table entries: cŒi  1; j  1�,
cŒi  1; j �, and cŒi; j  1�. Given the value of cŒi; j �, you can determine in O.1/
time which of these three values was used to compute cŒi; j �, without inspecting
table b. Thus, you can reconstruct an LCS in O.mCn/ time using a procedure sim-
ilar to PRINT-LCS. (Exercise 14.4-2 asks you to give the pseudocode.) Alt hough
this method saves ‚.mn/ space, the auxiliary space requirement for computing

14.4 Longest common subsequence 399

an LCS does not asymptotically decrease, since the c table takes ‚.mn/ space
anyway.

You can, however, reduce the asymptotic space requirements for LCS-LENGTH,
since it needs only two rows of table c at a time: the row being computed and the
previous row. (In fact, as Exercise 14.4-4 asks you to show, you can use only
slightly more than the space for one row of c to compute the length of an LCS.)
This improvement works if you need only the length of an LCS. If you need
to reconstruct the elements of an LCS, the smaller table does not keep enough
information to retrace the algorithm’s steps in O.m C n/ time.

Exercises
14.4-1
Determine an LCS of h1; 0; 0; 1; 0; 1; 0; 1i and h0; 1; 0; 1; 1; 0; 1; 1; 0i.
14.4-2
Give pseudocode to reconstruct an LCS from the completed c table and the original
sequences X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i in O.m C n/ time,
without using the b table.
14.4-3
Give a memoized version of LCS-LENGTH that runs in O.mn/ time.
14.4-4
Show how to compute the length of an LCS using only 2  min fm;ng entries in the
c table plus O.1/ additional space. Then show how to do the same thing, but using
min fm;ng entries plus O.1/ additional space.
14.4-5
Give an O.n 2 /-time algorithm to ûnd the longest monotonically increasing subse-
quence of a sequence of n numbers.

? 14.4-6
Give an O.n lg n/-time algorithm to ûnd the longest monotonically increasing sub-
sequence of a sequence of n numbers. (Hint: The last element of a candidate subse-
quence of length i is at least as large as the last element of a candidate subsequence
of length i  1. Maintain candidate subsequences by linking them through the input
sequence.)

