
Problems for Chapter 14 409 

14-5 Edit distance 
In order to transform a source string of text xŒ1 W m� to a target string yŒ1 W n�, you 
can perform various transformation operations. The goal is, given x and y , to 
produce a series of transformations that changes x to y . An array ´4assumed 
to be large enough to hold all the characters it needs4holds the intermediate re- 
sults. Initially, ´ is empty, and at termination, you should have ´Œj � D yŒj � for 
j D 1; 2; : : : ; n. The procedure for solving this problem maintains current indices 
i into x and j into ´, and the operations are allowed to alter ´ and these indices. 
Initially, i D j D 1. Every character in x must be examined during the transfor- 
mation, which means that at the end of the sequence of transformation operations, 
i D m C 1. 

You may choose from among six transformation operations, each of which has 
a constant cost that depends on the operation: 
Copy a character from x to ´ by setting ´Œj � D xŒi � and then incrementing both i 

and j . This operation examines xŒi � and has cost Q C . 
Replace a character from x by another character c , by setting ´Œj � D c , and then 

incrementing both i and j . This operation examines xŒi � and has cost Q R . 
Delete a character from x by incrementing i but leaving j alone. This operation 

examines xŒi � and has cost Q D . 
Insert the character c into ´ by setting ´Œj � D c and then incrementing j , but 

leaving i alone. This operation examines no characters of x and has cost Q I . 
Twiddle (i.e., exchange) the next two characters by copying them from x to ´ but 

in the opposite order: setting ´Œj � D xŒi C 1� and ´Œj C 1� D xŒi �, and then 
setting i D i C 2 and j D j C 2. This operation examines xŒi � and xŒi C 1� 
and has cost Q T . 

Kill the remainder of x by setting i D m C 1. This operation examines all char- 
acters in x that have not yet been examined. This operation, if performed, must 
be the ûnal operation. It has cost Q K . 
Figure 14.12 gives one way to transform the source string algorithm to the 

target string altruistic. Several other sequences of transformation operations 
can transform algorithm to altruistic. 

Assume that Q C < Q D C Q I and Q R < Q D C Q I , since otherwise, the 
copy and replace operations would not be used. The cost of a given sequence of 
transformation operations is the sum of the costs of the individual operations in 
the sequence. For the sequence above, the cost of transforming algorithm to 
altruistic is 3Q C C Q R C Q D C 4Q I C Q T C Q K . 
a. Given two sequences xŒ1 W m� and yŒ1 W n� and the costs of the transformation 

operations, the edit distance from x to y is the cost of the least expensive op- 



410 Chapter 14 Dynamic Programming 

Operation x ´ 
initial strings a lgorithm 
copy al gorithm a 
copy alg orithm al 
replace by t algo rithm alt 
delete algor ithm alt 
copy algori thm altr 
insert u algori thm altru 
insert i algori thm altrui 
insert s algori thm altruis 
twiddle algorith m altruisti 
insert c algorith m altruistic 
kill algorithm altruistic 

Figure 14.12 A sequence of operations that transforms the source algorithm to the target string 
altruistic. The underlined characters are xŒi� and ´Œj � after the operation. 

eration sequence that transforms x to y . Describe a dynamic-programming 
algorithm that ûnds the edit distance from xŒ1 W m� to yŒ1 W n� and prints an op- 
timal operation sequence. Analyze the running time and space requirements of 
your algorithm. 

The edit-distance problem generalizes the problem of aligning two DNA sequences 
(see, for example, Setubal and Meidanis [405, Section 3.2]). There are several 
methods for measuring the similarity of two DNA sequences by aligning them. 
One such method to align two sequences x and y consists of inserting spaces at 
arbitrary locations in the two sequences (including at either end) so that the result- 
ing sequences x 0 and y 0 have the same length but do not have a space in the same 
position (i.e., for no position j are both x 0 Œj � and y 0 Œj � a space). Then we assign a 
<score= to each position. Position j receives a score as follows: 
 C1 if x 0 Œj � D y 0 Œj � and neither is a space, 
 1 if x 0 Œj � ¤ y 0 Œj � and neither is a space, 
 2 if either x 0 Œj � or y 0 Œj � is a space. 
The score for the alignment is the sum of the scores of the individual positions. For 
example, given the sequences x D GATCGGCAT and y D CAATGTGAATC, one 
alignment is 
G ATCG GCAT 
CAAT GTGAATC 
- * ++ * + * +-++ * 



Problems for Chapter 14 411 

A + under a position indicates a score of C1 for that position, a - indicates a score 
of 1, and a * indicates a score of 2, so that this alignment has a total score of 
6  1  2  1  4  2 D 4. 
b. Explain how to cast the problem of ûnding an optimal alignment as an edit- 

distance problem using a subset of the transformation operations copy, replace, 
delete, insert, twiddle, and kill. 

14-6 Planning a company party 
Professor Blutarsky is consulting for the president of a corporation that is planning 
a company party. The company has a hierarchical structure, that is, the supervisor 
relation forms a tree rooted at the president. The human resources department has 
ranked each employee with a conviviality rating, which is a real number. In order to 
make the party fun for all attendees, the president does not want both an employee 
and his or her immediate supervisor to attend. 

Professor Blutarsky is given the tree that describes the structure of the corpo- 
ration, using the left-child, right-sibling representation described in Section 10.3. 
Each node of the tree holds, in addition to the pointers, the name of an employee 
and that employee’s conviviality ranking. Describe an algorithm to make up a guest 
list that maximizes the sum of the conviviality ratings of the guests. Analyze the 
running time of your algorithm. 

14-7 Viterbi algorithm 
Dynamic programming on a directed graph can play a part in speech recogni- 
tion. A directed graph G D .V;E/ with labeled edges forms a formal model 
of a person speaking a restricted language. Each edge .u; v/ 2 E is labeled with 
a sound �.u; v/ from a ûnite set † of sounds. Each directed path in the graph 
starting from a distinguished vertex v 0 2 V corresponds to a possible sequence of 
sounds produced by the model, with the label of a path being the concatenation of 
the labels of the edges on that path. 
a. Describe an efûcient algorithm that, given an edge-labeled directed graph G 

with distinguished vertex v 0 and a sequence s D h� 1 ; � 2 ; : : : ; � k i of sounds 
from †, returns a path in G that begins at v 0 and has s as its label, if any such 
path exists. Otherwise, the algorithm should return NO- SUCH- PATH. Analyze 
the running time of your algorithm. (Hint: You may ûnd concepts from Chap- 
ter 20 useful.) 

Now suppose that every edge .u; v/ 2 E has an associated nonnegative probabil- 
ity p.u; v/ of being traversed, so that the corresponding sound is produced. The 
sum of the probabilities of the edges leaving any vertex equals 1. The probability 
of a path is deûned to be the product of the probabilities of its edges. Think of 


