14

Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by
combining the solutions to subproblems. (“Programming” in this context refers
to a tabular method, not to writing computer code.) As we saw in Chapters 2
and 4, divide-and-conquer algorithms partition the problem into disjoint subprob-
lems, solve the subproblems recursively, and then combine their solutions to solve
the original problem. In contrast, dynamic programming applies when the subprob-
lems overlap—that is, when subproblems share subsubproblems. In this context,
a divide-and-conquer algorithm does more work than necessary, repeatedly solv-
ing the common subsubproblems. A dynamic-programming algorithm solves each
subsubproblem just once and then saves its answer in a table, thereby avoiding the
work of recomputing the answer every time it solves each subsubproblem.

Dynamic programming typically applies to optimization problems. Such prob-
lems can have many possible solutions. Each solution has a value, and you want
to find a solution with the optimal (minimum or maximum) value. We call such
a solution an optimal solution to the problem, as opposed to the optimal solution,
since there may be several solutions that achieve the optimal value.

To develop a dynamic-programming algorithm, follow a sequence of four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Steps 1-3 form the basis of a dynamic-programming solution to a problem. If you
need only the value of an optimal solution, and not the solution itself, then you
can omit step 4. When you do perform step 4, it often pays to maintain additional
information during step 3 so that you can easily construct an optimal solution.
The sections that follow use the dynamic-programming method to solve some
optimization problems. Section 14.1 examines the problem of cutting a rod into

14.1 Rod cutting 363

rods of smaller length in a way that maximizes their total value. Section 14.2
shows how to multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 14.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 14.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 14.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

14.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

Serling Enterprises has a table giving, for i = 1,2,..., the price p; in dollars
that they charge for a rod of length i inches. The length of each rod in inches is
always an integer. Figure 14.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and
a table of prices p; fori = 1,2,...,n, determine the maximum revenue r, ob-
tainable by cutting up the rod and selling the pieces. If the price p, for a rod of
length 7 is large enough, an optimal solution might require no cutting at all.

Consider the case when n = 4. Figure 14.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. Cutting a 4-inch rod
into two 2-inch pieces produces revenue p, + p, = 5+ 5 = 10, which is optimal.

Serling Enterprises can cut up a rod of length n in 2"~! different ways, since they
have an independent option of cutting, or not cutting, at distance i inches from the
left end, fori = 1,2,...,n — 1.! 'We denote a decomposition into pieces using
ordinary additive notation, so that 7 = 2 + 2 + 3 indicates that a rod of length 7 is
cut into three pieces—two of length 2 and one of length 3. If an optimal solution
cuts the rod into k pieces, for some 1 < k < n, then an optimal decomposition

n=11+12+—|—zk

L If pieces are required to be cut in order of monotonically increasing size, there are fewer ways to
consider. For n = 4, only 5 such ways are possible: parts (a), (b), (c), (¢), and (h) in Figure 14.2. The
number of ways is called the partition function, which is approximately equal to ™ V2n/3 /4n+/3.
This quantity is less than 2”1 but still much greater than any polynomial in 7. We won’t pursue
this line of inquiry further, however.

364

Chapter 14 Dynamic Programming

length i |

2 3 4 5 6 7 8 9 10

price p; |

1
1

5 8 9 10 17 17 20 24 30

Figure 14.1 A sample price table for rods. Each rod of length i inches earns the company p;
dollars of revenue.

TEED OEER EPED EEn®

(a)

(b) ©) (d)

DEE) BENG ENG® ®BE®®

(e)

® (€9) (h)

Figure 14.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value
of that piece, according to the sample price chart of Figure 14.1. The optimal strategy is part (c)—
cutting the rod into two pieces of length 2—which has total value 10.

of the rod into pieces of lengths iy, i5, ..., ix provides maximum corresponding

revenue

rn:pi1+pi2+"'+pik~

For the sample problem in Figure 14.1, you can determine the optimal revenue

figures r;, fori = 1,2,...,10, by inspection, with the corresponding optimal
decompositions

ri = 1 fromsolution 1 =1 (no cuts),

r, = 5 from solution 2 =2 (no cuts) ,

r3 = 8 from solution 3 =3 (no cuts) ,

rs = 10 from solution4 =2+ 2,

rs = 13 from solution 5 =2 + 3,

re¢ = 17 from solution 6 = 6 (no cuts) ,

r, = 18 fromsolution7=1+6 or 7=2+2+ 3,
rg = 22 from solution8 =2+ 6,

ro = 25 from solution9 =3+ 6,

rio = 30 from solution 10 = 10 (no cuts) .

14.1 Rod cutting 365

More generally, we can express the values r, for » > 1 in terms of optimal
revenues from shorter rods:

Fp =max{p,,r + rn—1,72 +rp—p,...,u—1 + 11} . (14.1)

The first argument, p, , corresponds to making no cuts at all and selling the rod of
length 7 as is. The other n — 1 arguments to max correspond to the maximum rev-
enue obtained by making an initial cut of the rod into two pieces of size i andn — i,
foreachi = 1,2,...,n—1, and then optimally cutting up those pieces further, ob-
taining revenues r; and r,_; from those two pieces. Since you don’t know ahead of
time which value of i optimizes revenue, you have to consider all possible values
for i and pick the one that maximizes revenue. You also have the option of picking
no i at all if the greatest revenue comes from selling the rod uncut.

To solve the original problem of size n, you solve smaller problems of the same
type. Once you make the first cut, the two resulting pieces form independent in-
stances of the rod-cutting problem. The overall optimal solution incorporates op-
timal solutions to the two resulting subproblems, maximizing revenue from each
of those two pieces. We say that the rod-cutting problem exhibits optimal sub-
structure: optimal solutions to a problem incorporate optimal solutions to related
subproblems, which you may solve independently.

In a related, but slightly simpler, way to arrange a recursive structure for the
rod-cutting problem, let’s view a decomposition as consisting of a first piece of
length i cut off the left-hand end, and then a right-hand remainder of length n —i.
Only the remainder, and not the first piece, may be further divided. Think of every
decomposition of a length-n rod in this way: as a first piece followed by some
decomposition of the remainder. Then we can express the solution with no cuts
at all by saying that the first piece has size i = n and revenue p, and that the
remainder has size 0 with corresponding revenue ro, = 0. We thus obtain the
following simpler version of equation (14.1):

r, =max{p; +r,—; : 1 <i <n}. (14.2)

In this formulation, an optimal solution embodies the solution to only one related
subproblem —the remainder —rather than two.

Recursive top-down implementation

The CUT-ROD procedure on the following page implements the computation im-
plicit in equation (14.2) in a straightforward, top-down, recursive manner. It takes
as input an array p[l:n] of prices and an integer n, and it returns the maxi-
mum revenue possible for a rod of length n. For length n = 0, no revenue
is possible, and so CUT-ROD returns O in line 2. Line 3 initializes the max-
imum revenue ¢ to —oo, so that the for loop in lines 4-5 correctly computes

366

Chapter 14 Dynamic Programming

q = max{p; + CUT-ROD(p,n —i) : 1 <i < n}. Line 6 then returns this value.
A simple induction on n proves that this answer is equal to the desired answer r,,,
using equation (14.2).

CuT-ROD(p, n)
1 ifn==

2 return 0
3 g =-—-

4 fori = 1ton
5 q = max{q, p[i] + CUT-ROD(p,n — i)}
6 return g

If you code up CUT-ROD in your favorite programming language and run it on
your computer, you’ll find that once the input size becomes moderately large, your
program takes a long time to run. For n = 40, your program may take several
minutes and possibly more than an hour. For large values of 7, you’ll also discover
that each time you increase n by 1, your program’s running time approximately
doubles.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself re-
cursively over and over again with the same parameter values, which means that
it solves the same subproblems repeatedly. Figure 14.3 shows a recursion tree
demonstrating what happens for n = 4: CUT-ROD(p, n) calls CUT-ROD(p,n —1i)
fori = 1,2,...,n. Equivalently, CUT-ROD(p, n) calls CUT-ROD(p, j) for each
Jj =0,1,...,n — 1. When this process unfolds recursively, the amount of work
done, as a function of n, grows explosively.

To analyze the running time of CUT-ROD, let 7'(n) denote the total number of
calls made to CUT-ROD(p, n) for a particular value of n. This expression equals
the number of nodes in a subtree whose root is labeled 7 in the recursion tree. The
count includes the initial call at its root. Thus, 7(0) = 1 and

n—1
T(n) =1+ T(j). (14.3)
j=0
The initial 1 is for the call at the root, and the term 7'(j) counts the number of calls
(including recursive calls) due to the call CUT-ROD(p,n — i), where j = n —1i.
As Exercise 14.1-1 asks you to show,

T(n)=2", (14.4)
and so the running time of CUT-ROD is exponential in 7.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all possible ways of cutting up a rod of length n. How many ways

14.1 Rod cutting 367

/ N b b
Koo

Figure 14.3 The recursion tree showing recursive calls resulting from a call CUT-ROD(p, n) for
n = 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label # corresponds to cutting off an initial piece of size s — ¢
and leaving a remaining subproblem of size ¢. A path from the root to a leaf corresponds to one of
the 2" ~1 ways of cutting up a rod of length 7. In general, this recursion tree has 2”* nodes and 2" ~!
leaves.

are there? A rod of length n has n — 1 potential locations to cut. Each possible way
to cut up the rod makes a cut at some subset of these n — 1 locations, including the
empty set, which makes for no cuts. Viewing each cut location as a distinct mem-
ber of a set of n — 1 elements, you can see that there are 2"~! subsets. Each leaf
in the recursion tree of Figure 14.3 corresponds to one possible way to cut up the
rod. Hence, the recursion tree has 2"~! leaves. The labels on the simple path from
the root to a leaf give the sizes of each remaining right-hand piece before making
each cut. That is, the labels give the corresponding cut points, measured from the
right-hand end of the rod.

Using dynamic programming for optimal rod cutting

Now, let’s see how to use dynamic programming to convert CUT-ROD into an
efficient algorithm.

The dynamic-programming method works as follows. Instead of solving the
same subproblems repeatedly, as in the naive recursion solution, arrange for each
subproblem to be solved only once. There’s actually an obvious way to do so: the
first time you solve a subproblem, save its solution. If you need to refer to this
subproblem’s solution again later, just look it up, rather than recomputing it.

Saving subproblem solutions comes with a cost: the additional memory needed
to store solutions. Dynamic programming thus serves as an example of a fime-
memory trade-off . The savings may be dramatic. For example, we’re about to use
dynamic programming to go from the exponential-time algorithm for rod cutting

368

Chapter 14 Dynamic Programming

down to a ®(n?)-time algorithm. A dynamic-programming approach runs in poly-
nomial time when the number of distinct subproblems involved is polynomial in
the input size and you can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. Solutions to the rod-cutting problem illustrate both of them.

The first approach is top-down with memoization.> In this approach, you write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level. If not, the procedure computes the
value in the usual manner but also saves it. We say that the recursive procedure has
been memoized: it “remembers” what results it has computed previously.

The second approach is the botfom-up method. This approach typically de-
pends on some natural notion of the “size” of a subproblem, such that solving any
particular subproblem depends only on solving “smaller” subproblems. Solve the
subproblems in size order, smallest first, storing the solution to each subproblem
when it is first solved. In this way, when solving a particular subproblem, there
are already saved solutions for all of the smaller subproblems its solution depends
upon. You need to solve each subproblem only once, and when you first see it, you
have already solved all of its prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has lower overhead for procedure calls.

The procedures MEMOIZED-CUT-ROD and MEMOIZED-CUT-ROD-AUX on
the facing page demonstrate how to memoize the top-down CUT-ROD proce-
dure. The main procedure MEMOIZED-CUT-ROD initializes a new auxiliary array
r[0: n] with the value —oo which, since known revenue values are always nonneg-
ative, is a convenient choice for denoting “unknown.” MEMOIZED-CUT-ROD then
calls its helper procedure, MEMOIZED-CUT-ROD-AUX, which is just the memo-
ized version of the exponential-time procedure, CUT-ROD. It first checks in line 1
to see whether the desired value is already known and, if it is, then line 2 returns it.
Otherwise, lines 3—7 compute the desired value g in the usual manner, line 8 saves
it in r[n], and line 9 returns it.

The bottom-up version, BOTTOM-UP-CUT-ROD on the next page, is even sim-
pler. Using the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-
RoOD takes advantage of the natural ordering of the subproblems: a subproblem of

2 The technical term “memoization” is not a misspelling of “memorization.” The word “memoiza-
tion” comes from “memo,” since the technique consists of recording a value to be looked up later.

14.1 Rod cutting 369

MEMOIZED-CUT-ROD (p, n)

1 let r[0:n] be a new array // will remember solution values in r
2 fori =0ton

3 rli] = —o0

4 return MEMOIZED-CUT-ROD-AUX (p, n, 1)

MEMOIZED-CUT-ROD-AUX (p,n,r)

1 ifr[n] >0 // already have a solution for length n?

2 return r[n]

3 ifn==

4 q=20

5 elseq = —o0

6 fori = 1ton // i is the position of the first cut

7 q = max{q, pli] + MEMOIZED-CUT-ROD-AUX (p,n —i,r)}
8 r[n] =g¢q // remember the solution value for length n

9 return g

BoTtToM-UP-CUT-ROD(p, n)

1 letr[0:n] be a new array // will remember solution values in r

2 r[0] =0

3 forj =1ton // for increasing rod length j

4 q = —00

5 fori = 1toj // i is the position of the first cut

6 q = max{q, pli] +r[j —i]}

7 rlj] = ¢ // remember the solution value for length j
8 return r[n]

size i is “smaller” than a subproblem of size j if i < j. Thus, the procedure solves
subproblems of sizes j = 0, 1,...,n,in that order.

Line 1 of BOTTOM-UP-CUT-ROD creates a new array r[0:n] in which to save
the results of the subproblems, and line 2 initializes r[0] to 0, since a rod of length 0
earns no revenue. Lines 3—6 solve each subproblem of size j,for j = 1,2,...,n,
in order of increasing size. The approach used to solve a problem of a particular
size j is the same as that used by CUT-ROD, except that line 6 now directly refer-
ences array entry r[j —i] instead of making a recursive call to solve the subproblem
of size j —i. Line 7 saves in r[] the solution to the subproblem of size j. Finally,
line 8 returns r[n], which equals the optimal value r,,.

The bottom-up and top-down versions have the same asymptotic running time.
The running time of BOTTOM-UP-CUT-ROD is ®(n?), due to its doubly nested

370

Chapter 14 Dynamic Programming

(o) e o) w)<!n)

Figure 144 The subproblem graph for the rod-cutting problem with n = 4. The vertex labels give
the sizes of the corresponding subproblems. A directed edge (x, y) indicates that solving subprob-
lem x requires a solution to subproblem y. This graph is a reduced version of the recursion tree of
Figure 14.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

loop structure. The number of iterations of its inner for loop, in lines 5-6, forms
an arithmetic series. The running time of its top-down counterpart, MEMOIZED-
CUT-ROD, is also ©(n?), although this running time may be a little harder to see.
Because a recursive call to solve a previously solved subproblem returns immedi-
ately, MEMOIZED-CUT-ROD solves each subproblem just once. It solves subprob-
lems for sizes 0, 1, ..., n. To solve a subproblem of size n, the for loop of lines 67
iterates n times. Thus, the total number of iterations of this for loop, over all re-
cursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total
of ®(n?) iterations, just like the inner for loop of BOTTOM-UP-CUT-ROD. (We
actually are using a form of aggregate analysis here. We’ll see aggregate analysis
in detail in Section 16.1.)

Subproblem graphs

When you think about a dynamic-programming problem, you need to understand
the set of subproblems involved and how subproblems depend on one another.
The subproblem graph for the problem embodies exactly this information. Fig-
ure 14.4 shows the subproblem graph for the rod-cutting problem with n = 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-
problem graph has a directed edge from the vertex for subproblem x to the vertex
for subproblem y if determining an optimal solution for subproblem x involves
directly considering an optimal solution for subproblem y. For example, the sub-
problem graph contains an edge from x to y if a top-down recursive procedure for
solving x directly calls itself to solve y. You can think of the subproblem graph as

14.1 Rod cutting 371

a “reduced” or “collapsed” version of the recursion tree for the top-down recursive
method, with all nodes for the same subproblem coalesced into a single vertex and
all edges directed from parent to child.

The bottom-up method for dynamic programming considers the vertices of the
subproblem graph in such an order that you solve the subproblems y adjacent to
a given subproblem x before you solve subproblem x. (As Section B.4 notes, the
adjacency relation in a directed graph is not necessarily symmetric.) Using ter-
minology that we’ll see in Section 20.4, in a bottom-up dynamic-programming
algorithm, you consider the vertices of the subproblem graph in an order that is a
“reverse topological sort,” or a “topological sort of the transpose” of the subprob-
lem graph. In other words, no subproblem is considered until all of the subprob-
lems it depends upon have been solved. Similarly, using notions that we’ll visit in
Section 20.3, you can view the top-down method (with memoization) for dynamic
programming as a “depth-first search” of the subproblem graph.

The size of the subproblem graph G = (V, E) can help you determine the
running time of the dynamic-programming algorithm. Since you solve each sub-
problem just once, the running time is the sum of the times needed to solve each
subproblem. Typically, the time to compute the solution to a subproblem is propor-
tional to the degree (number of outgoing edges) of the corresponding vertex in the
subproblem graph, and the number of subproblems is equal to the number of ver-
tices in the subproblem graph. In this common case, the running time of dynamic
programming is linear in the number of vertices and edges.

Reconstructing a solution

The procedures MEMOIZED-CUT-ROD and BOTTOM-UP-CUT-ROD return the
value of an optimal solution to the rod-cutting problem, but they do not return
the solution itself: a list of piece sizes.

Let’s see how to extend the dynamic-programming approach to record not only
the optimal value computed for each subproblem, but also a choice that led to the
optimal value. With this information, you can readily print an optimal solution.
The procedure EXTENDED-BOTTOM-UP-CUT-ROD on the next page computes,
for each rod size j, not only the maximum revenue r;, but also s; , the optimal size
of the first piece to cut off. It’s similar to BOTTOM-UP-CUT-ROD, except that it
creates the array s in line 1, and it updates s[j] in line 8 to hold the optimal size i
of the first piece to cut off when solving a subproblem of size ;.

The procedure PRINT-CUT-ROD-SOLUTION on the following page takes as in-
put an array p[l:n] of prices and a rod size n. It calls EXTENDED-BOTTOM-
UpP-CUT-ROD to compute the array s[1:n] of optimal first-piece sizes. Then
it prints out the complete list of piece sizes in an optimal decomposition of a

372

Chapter 14 Dynamic Programming

rod of length n. For the sample price chart appearing in Figure 14.1, the call
EXTENDED-BOTTOM-UP-CUT-ROD(p, 10) returns the following arrays:

i |01 23 4 5 6 7 8 9 10
rli]]0 15810 13 17 18 22 25 30
sli] 123 2 2 6 1 2 3 10

A call to PRINT-CUT-ROD-SOLUTION((p, 10) prints just 10, but a call withn =7
prints the cuts 1 and 6, which correspond to the first optimal decomposition for r;
given earlier.

EXTENDED-BOTTOM-UP-CUT-ROD (p, n)
1 letr[0:n]and s[1:n] be new arrays

2 r[0] =0

3 forj =1ton // for increasing rod length j

4 q = —00

5 fori = 1to // i is the position of the first cut

6 ifg < plil+r[j —i]

7 q = plil+rlj —i]

8 s[j] =i // best cut location so far for length j

9 rljl =¢q // remember the solution value for length j

10 return r and s

PRINT-CUT-ROD-SOLUTION (p, n)

1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

2 whilen >0

3 print s[n] // cut location for length n

4 n =n—sinj // length of the remainder of the rod
Exercises
14.1-1

Show that equation (14.4) follows from equation (14.3) and the initial condition
TO) =1.

14.1-2

Show, by means of a counterexample, that the following “greedy” strategy does
not always determine an optimal way to cut rods. Define the density of a rod of
length i to be p;/i, that is, its value per inch. The greedy strategy for a rod of
length n cuts off a first piece of length i, where 1 < i < n, having maximum

14.2 Matrix-chain multiplication 373

density. It then continues by applying the greedy strategy to the remaining piece of
lengthn —i.

14.1-3

Consider a modification of the rod-cutting problem in which, in addition to a
price p; for each rod, each cut incurs a fixed cost of c¢. The revenue associated with
a solution is now the sum of the prices of the pieces minus the costs of making the
cuts. Give a dynamic-programming algorithm to solve this modified problem.

14.1-4

Modify CUT-ROD and MEMOIZED-CUT-ROD-AUX so that their for loops go up
to only |7n/2], rather than up to n. What other changes to the procedures do you
need to make? How are their running times affected?

14.1-5
Modifty MEMOIZED-CUT-ROD to return not only the value but the actual solution.

14.1-6

The Fibonacci numbers are defined by recurrence (3.31) on page 69. Give an
O (n)-time dynamic-programming algorithm to compute the nth Fibonacci number.
Draw the subproblem graph. How many vertices and edges does the graph contain?

14.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem
of matrix-chain multiplication. Given a sequence (chain) (A4, A5, ..., A,) of n
matrices to be multiplied, where the matrices aren’t necessarily square, the goal is
to compute the product

A1Ay-- Ay . (14.5)

using the standard algorithm® for multiplying rectangular matrices, which we’ll see
in a moment, while minimizing the number of scalar multiplications.

You can evaluate the expression (14.5) using the algorithm for multiplying pairs
of rectangular matrices as a subroutine once you have parenthesized it to resolve
all ambiguities in how the matrices are multiplied together. Matrix multiplication
is associative, and so all parenthesizations yield the same product. A product of

3 None of the three methods from Sections 4.1 and Section 4.2 can be used directly, because they
apply only to square matrices.

