Problems for Chapter 14 409

14-5 Edit distance
In order to transform a source string of text x[1 : m] to a target string y[1 : n], you
can perform various transformation operations. The goal is, given x and y, to
produce a series of transformations that changes x to y. An array z—assumed
to be large enough to hold all the characters it needs—holds the intermediate re-
sults. Initially, z is empty, and at termination, you should have z[j] = y[j] for
j =1,2,...,n. The procedure for solving this problem maintains current indices
i into x and j into z, and the operations are allowed to alter z and these indices.
Initially, i = j = 1. Every character in x must be examined during the transfor-
mation, which means that at the end of the sequence of transformation operations,
i=m+1.

You may choose from among six transformation operations, each of which has
a constant cost that depends on the operation:

Copy a character from x to z by setting z[j] = x[i] and then incrementing both i
and j . This operation examines x[i] and has cost Q¢.

Replace a character from x by another character c, by setting z[j] = ¢, and then
incrementing both 7 and ;. This operation examines x[i]| and has cost Q.

Delete a character from x by incrementing i but leaving j alone. This operation
examines x[i] and has cost Qp.

Insert the character ¢ into z by setting z[j] = c¢ and then incrementing j, but
leaving i alone. This operation examines no characters of x and has cost Q;.

Twiddle (i.e., exchange) the next two characters by copying them from x to z but
in the opposite order: setting z[j] = x[i + 1] and z[j + 1] = x][i], and then
settingi = i +2and j = j + 2. This operation examines x[i] and x[i + 1]
and has cost Q7.

Kill the remainder of x by setting i = m + 1. This operation examines all char-
acters in x that have not yet been examined. This operation, if performed, must
be the final operation. It has cost Qg.

Figure 14.12 gives one way to transform the source string algorithm to the
target string altruistic. Several other sequences of transformation operations
can transform algorithmto altruistic.

Assume that Q¢ < QOp + Qy and Qr < QOp + Oy, since otherwise, the
copy and replace operations would not be used. The cost of a given sequence of
transformation operations is the sum of the costs of the individual operations in
the sequence. For the sequence above, the cost of transforming algorithm to
altruisticis3Qc¢ + Or + Op +40; + Or + Ok.

a. Given two sequences x[1:m] and y[l:n] and the costs of the transformation
operations, the edit distance from x to y is the cost of the least expensive op-



410

Chapter 14  Dynamic Programming

Operation X Z

initial strings algorithm _

copy algorithm a_

copy algorithm al_

replace by t algorithm alt

delete algorithm alt

copy algorithm altr

insert u algorithm altru_

insert i algorithm altrui
insert s algorithm altruis_
twiddle algorithm altruisti
insert ¢ algorithm altruistic_
kill algorithm altruistic_

Figure 14.12 A sequence of operations that transforms the source algorithm to the target string
altruistic. The underlined characters are x[i] and z[;] after the operation.

eration sequence that transforms x to y. Describe a dynamic-programming
algorithm that finds the edit distance from x[1:m] to y[1 : n] and prints an op-
timal operation sequence. Analyze the running time and space requirements of
your algorithm.

The edit-distance problem generalizes the problem of aligning two DNA sequences
(see, for example, Setubal and Meidanis [405, Section 3.2]). There are several
methods for measuring the similarity of two DNA sequences by aligning them.
One such method to align two sequences x and y consists of inserting spaces at
arbitrary locations in the two sequences (including at either end) so that the result-
ing sequences x’ and y’ have the same length but do not have a space in the same
position (i.e., for no position j are both x'[j] and y’[;] a space). Then we assign a
“score” to each position. Position j receives a score as follows:

e +1if x'[j] = »[j] and neither is a space,

* —1ifx'[j] # y'[j] and neither is a space,

* —2ifeither x'[j] or y'[]] is a space.

The score for the alignment is the sum of the scores of the individual positions. For

example, given the sequences x = GATCGGCAT and y = CAATGTGAATC, one
alignment is

G ATCG GCAT
CAAT GTGAATC
—%++x+x+—-+++%



Problems for Chapter 14 411

A + under a position indicates a score of 41 for that position, a — indicates a score
of —1, and a * indicates a score of —2, so that this alignment has a total score of
6:-1—2-1—4-2=—4.

b. Explain how to cast the problem of finding an optimal alignment as an edit-
distance problem using a subset of the transformation operations copy, replace,
delete, insert, twiddle, and kill.

14-6 Planning a company party

Professor Blutarsky is consulting for the president of a corporation that is planning
a company party. The company has a hierarchical structure, that is, the supervisor
relation forms a tree rooted at the president. The human resources department has
ranked each employee with a conviviality rating, which is a real number. In order to
make the party fun for all attendees, the president does not want both an employee
and his or her immediate supervisor to attend.

Professor Blutarsky is given the tree that describes the structure of the corpo-
ration, using the left-child, right-sibling representation described in Section 10.3.
Each node of the tree holds, in addition to the pointers, the name of an employee
and that employee’s conviviality ranking. Describe an algorithm to make up a guest
list that maximizes the sum of the conviviality ratings of the guests. Analyze the
running time of your algorithm.

14-7 Viterbi algorithm

Dynamic programming on a directed graph can play a part in speech recogni-
tion. A directed graph G = (V, E) with labeled edges forms a formal model
of a person speaking a restricted language. Each edge (u,v) € E is labeled with
a sound o (u,v) from a finite set ¥ of sounds. Each directed path in the graph
starting from a distinguished vertex vy € V' corresponds to a possible sequence of
sounds produced by the model, with the label of a path being the concatenation of
the labels of the edges on that path.

a. Describe an efficient algorithm that, given an edge-labeled directed graph G
with distinguished vertex vy and a sequence s = (04, 0, ..., o) of sounds
from X, returns a path in G that begins at vy and has s as its label, if any such
path exists. Otherwise, the algorithm should return NO-SUCH-PATH. Analyze
the running time of your algorithm. (Hint: You may find concepts from Chap-
ter 20 useful.)

Now suppose that every edge (u#,v) € E has an associated nonnegative probabil-
ity p(u,v) of being traversed, so that the corresponding sound is produced. The
sum of the probabilities of the edges leaving any vertex equals 1. The probability
of a path is defined to be the product of the probabilities of its edges. Think of



