
CS 51510 Longest increasing subsequence Fall 2024

1. Suppose we are given an array, A, of n positive numbers (or a string of n characters)

A = [a1, a2, . . . , an].

An increasing subsequence of A is a subsequence, [ai1 , ai2 , . . . , aik ], of elements from
A such that ij < ij+1 and aij < aij+1

for each 1 ≤ j < k. Notice that the elements in
the increasing subsequence need not be contiguous in A.

Given an increasing subsequence of A, we can compute the length of this subsequence.
The “longest increasing subsequence” problem is to find the maximum possible length
over all possible increasing subsequences from the given array (or string) A.

Let us consider how to solve this problem using dynamic programming. We need to
come up with a definition of a subproblem for which we can write a recurrence relation
relating the solution of the subproblem to the solutions of other (smaller) subproblems.
The most obvious choice for a subproblem is

L(j) = length of the longest increasing subsequence between a1 and aj.

However, this is not a good definition for a subproblem. Suppose we know the solution
to subproblem L(j − 1). Can we use that information to construct the solution to
subproblem L(j)? Can we use element aj to extend the solution to L(j − 1) into a
solution to L(j)? The answer is no, because even though we know the length, L(j − 1),
of the longest increasing subsequence between a1 and aj−1, we do not know at which
element ai that subsequence ended, so we don’t know if aj can be used to extend that
subsequence. So we cannot write a recurrence relation relating the subproblem L(j) to
any of its (smaller) subproblems L(i) where i < j.

Here is a more useful definition of a subproblem.

LE(j) = length of the longest increasing subsequence that ends at aj.

This definition of a subproblem has the advantage that we can define a recurrence relation
using it, but it has a slight disadvantage in that LE(n) is not the solution of the problem
we started out with (why?).

The idea behind the recurrence relation for LE(j) is this. Given LE(j − 1), we know
both the length of an increasing subsequence and where that subsequence ends. We can
use aj to increase the length of that subsequence if aj > aj−1, and the new increasing
subsequence will have length 1 +LE(j − 1). But even if we can extend the subsequence
given by LE(j − 1), the resulting subsequence need not be the longest increasing sub-
sequence that ends at aj. It may be that we can extend some other, longer, increasing
subsequence, LE(i) where i < j−1 (and ai < aj). So to find the longest possible increas-
ing subsequence that ends at aj, we need to take a maximum over all of the sequences
that aj can extend. This leads to the following recurrence relation.

LE(j) = 1 + max
ai<aj
{LE(i) }



where we use the convention that the maximum over an empty set is zero. (If aj ≤ ai
for all 1 ≤ i < j, then the above maximum is over an empty set of indices. This can
happen, for example, when the array A is sorted in decreasing order.)

The problem we want to solve is L(n), where L still has the definition it was given above.
We can define L(n) in terms of the values of LE(j). Since the solution to L(n) must be
a subsequence that ends somewhere, that maximizing subsequence must be a solution
to one of the subproblems LE(j) for some j between 1 and n. So

L(n) = max
1≤j≤n

{LE(j) }.

We can implement the recurrence relation for LE as a bottom-up (or top-down) dy-
namic programming solution. You should convince yourself that this would be an Θ(n2)
algorithm (because the calculation of each LE(j) requires searching back through the
array and looking at each element ai for 1 ≤ i < j). The calculation of L(n) from the
table of LE(j) values is a Θ(n) procedure. So the whole algorithm if Θ(n2).

There is a Θ(n lg(n)) dynamic programming algorithm that solves this problem. It uses
an even trickier definition of a subproblem than the one we used here. See Introduction
to Algorithms: A Creative Approach, by Udi Manber, pages 167–169.

Notice that we have only provided the maximum length of the longest increasing sub-
sequence. We have not calculated the location in the array of this maximal increasing
subsequence, nor have we determined if there might be more than one increasing subse-
quence that gives this maximal length.


