
14 Dynamic Programming 

Dynamic programming, like the divide-and-conquer method, solves problems by 
combining the solutions to subproblems. (<Programming= in this context refers 
to a tabular method, not to writing computer code.) As we saw in Chapters 2 
and 4, divide-and-conquer algorithms partition the problem into disjoint subprob- 
lems, solve the subproblems recursively, and then combine their solutions to solve 
the original problem. In contrast, dynamic programming applies when the subprob- 
lems overlap4that is, when subproblems share subsubproblems. In this context, 
a divide-and-conquer algorithm does more work than necessary, repeatedly solv- 
ing the common subsubproblems. A dynamic-programming algorithm solves each 
subsubproblem just once and then saves its answer in a table, thereby avoiding the 
work of recomputing the answer every time it solves each subsubproblem. 

Dynamic programming typically applies to optimization problems. Such prob- 
lems can have many possible solutions. Each solution has a value, and you want 
to ûnd a solution with the optimal (minimum or maximum) value. We call such 
a solution an optimal solution to the problem, as opposed to the optimal solution, 
since there may be several solutions that achieve the optimal value. 
To develop a dynamic-programming algorithm, follow a sequence of four steps: 

1. Characterize the structure of an optimal solution. 
2. Recursively deûne the value of an optimal solution. 
3. Compute the value of an optimal solution, typically in a bottom-up fashion. 
4. Construct an optimal solution from computed information. 
Steps 133 form the basis of a dynamic-programming solution to a problem. If you 
need only the value of an optimal solution, and not the solution itself, then you 
can omit step 4. When you do perform step 4, it often pays to maintain additional 
information during step 3 so that you can easily construct an optimal solution. 
The sections that follow use the dynamic-programming method to solve some 

optimization problems. Section 14.1 examines the problem of cutting a rod into 



14.1 Rod cutting 363 

rods of smaller length in a way that maximizes their total value. Section 14.2 
shows how to multiply a chain of matrices while performing the fewest total scalar 
multiplications. Given these examples of dynamic programming, Section 14.3 dis- 
cusses two key characteristics that a problem must have for dynamic programming 
to be a viable solution technique. Section 14.4 then shows how to ûnd the longest 
common subsequence of two sequences via dynamic programming. Finally, Sec- 
tion 14.5 uses dynamic programming to construct binary search trees that are opti- 
mal, given a known distribution of keys to be looked up. 

14.1 Rod cutting 

Our ûrst example uses dynamic programming to solve a simple problem in decid- 
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them 
into shorter rods, which it then sells. Each cut is free. The management of Serling 
Enterprises wants to know the best way to cut up the rods. 

Serling Enterprises has a table giving, for i D 1; 2; : : :, the price p i in dollars 
that they charge for a rod of length i inches. The length of each rod in inches is 
always an integer. Figure 14.1 gives a sample price table. 

The rod-cutting problem is the following. Given a rod of length n inches and 
a table of prices p i for i D 1; 2; : : : ; n, determine the maximum revenue r n ob- 
tainable by cutting up the rod and selling the pieces. If the price p n for a rod of 
length n is large enough, an optimal solution might require no cutting at all. 

Consider the case when n D 4. Figure 14.2 shows all the ways to cut up a rod 
of 4 inches in length, including the way with no cuts at all. Cutting a 4-inch rod 
into two 2-inch pieces produces revenue p 2 C p 2 D 5 C 5 D 10, which is optimal. 

Serling Enterprises can cut up a rod of length n in 2 n1 different ways, since they 
have an independent option of cutting, or not cutting, at distance i inches from the 
left end, for i D 1; 2; : : : ; n  1. 1 We denote a decomposition into pieces using 
ordinary additive notation, so that 7 D 2 C 2 C 3 indicates that a rod of length 7 is 
cut into three pieces4two of length 2 and one of length 3. If an optimal solution 
cuts the rod into k pieces, for some 1 හ k හ n, then an optimal decomposition 
n D i 1 C i 2 C    C i k 

1 If pieces are required to be cut in order of monotonically increasing size, there are fewer ways to 
consider. For n D 4, only 5 such ways are possible: parts (a), (b), (c), (e), and (h) in Figure 14.2. The 
number of ways is called the partition function, which is approximately equal to e  

p 
2n=3 =4n 

p 
3. 

This quantity is less than 2 n1 , but still much greater than any polynomial in n. We won’t pursue 
this line of inquiry further, however. 



364 Chapter 14 Dynamic Programming 

length i 1 2 3 4 5 6 7 8 9 10 
price p i 1 5 8 9 10 17 17 20 24 30 

Figure 14.1 A sample price table for rods. Each rod of length i inches earns the company p i 
dollars of revenue. 

9 

(a) 

1 

(b) 

8 

(c) (d) 

(e) (f) (g) 

1 

(h) 

1 1 1 

5 5 1 8 

5 1 1 5 1 1 5 1 1 

Figure 14.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value 
of that piece, according to the sample price chart of Figure 14.1. The optimal strategy is part (c)4 
cutting the rod into two pieces of length 24which has total value 10. 

of the rod into pieces of lengths i 1 , i 2 , . . . , i k provides maximum corresponding 
revenue 
r n D p i 1 C p i 2 C    C p i k : 

For the sample problem in Figure 14.1, you can determine the optimal revenue 
ûgures r i , for i D 1; 2; : : : ; 10, by inspection, with the corresponding optimal 
decompositions 
r 1 D 1 from solution 1 D 1 (no cuts) ; 
r 2 D 5 from solution 2 D 2 (no cuts) ; 
r 3 D 8 from solution 3 D 3 (no cuts) ; 
r 4 D 10 from solution 4 D 2 C 2 ; 
r 5 D 13 from solution 5 D 2 C 3 ; 
r 6 D 17 from solution 6 D 6 (no cuts) ; 
r 7 D 18 from solution 7 D 1 C 6 or 7 D 2 C 2 C 3 ; 
r 8 D 22 from solution 8 D 2 C 6 ; 
r 9 D 25 from solution 9 D 3 C 6 ; 
r 10 D 30 from solution 10 D 10 (no cuts) : 



14.1 Rod cutting 365 

More generally, we can express the values r n for n  1 in terms of optimal 
revenues from shorter rods: 
r n D max fp n ; r 1 C r n1 ; r 2 C r n2 ; : : : ; r n1 C r 1 g : (14.1) 
The ûrst argument, p n , corresponds to making no cuts at all and selling the rod of 
length n as is. The other n  1 arguments to max correspond to the maximum rev- 
enue obtained by making an initial cut of the rod into two pieces of size i and n  i , 
for each i D 1; 2; : : : ; n  1, and then optimally cutting up those pieces further, ob- 
taining revenues r i and r ni from those two pieces. Since you don’t know ahead of 
time which value of i optimizes revenue, you have to consider all possible values 
for i and pick the one that maximizes revenue. You also have the option of picking 
no i at all if the greatest revenue comes from selling the rod uncut. 

To solve the original problem of size n, you solve smaller problems of the same 
type. Once you make the ûrst cut, the two resulting pieces form independent in- 
stances of the rod-cutting problem. The overall optimal solution incorporates op- 
timal solutions to the two resulting subproblems, maximizing revenue from each 
of those two pieces. We say that the rod-cutting problem exhibits optimal sub- 
structure: optimal solutions to a problem incorporate optimal solutions to related 
subproblems, which you may solve independently. 

In a related, but slightly simpler, way to arrange a recursive structure for the 
rod-cutting problem, let’s view a decomposition as consisting of a ûrst piece of 
length i cut off the left-hand end, and then a right-hand remainder of length n  i . 
Only the remainder, and not the ûrst piece, may be further divided. Think of every 
decomposition of a length-n rod in this way: as a ûrst piece followed by some 
decomposition of the remainder. Then we can express the solution with no cuts 
at all by saying that the ûrst piece has size i D n and revenue p n and that the 
remainder has size 0 with corresponding revenue r 0 D 0. We thus obtain the 
following simpler version of equation (14.1): 
r n D max fp i C r ni W 1 හ i හ ng : (14.2) 
In this formulation, an optimal solution embodies the solution to only one related 
subproblem4the remainder4rather than two. 

Recursive top-down implementation 

The CUT-ROD procedure on the following page implements the computation im- 
plicit in equation (14.2) in a straightforward, top-down, recursive manner. It takes 
as input an array pŒ1 W n� of prices and an integer n, and it returns the maxi- 
mum revenue possible for a rod of length n. For length n D 0, no revenue 
is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the max- 
imum revenue q to 1, so that the for loop in lines 435 correctly computes 



366 Chapter 14 Dynamic Programming 

q D max fp i C CUT-ROD.p; n  i/ W 1 හ i හ ng. Line 6 then returns this value. 
A simple induction on n proves that this answer is equal to the desired answer r n , 
using equation (14.2). 

CUT-ROD.p; n/ 
1 if n == 0 
2 return 0 
3 q D 1 
4 for i D 1 to n 
5 q D max fq; pŒi � C CUT-ROD.p; n  i/g 
6 return q 

If you code up CUT-ROD in your favorite programming language and run it on 
your computer, you’ll ûnd that once the input size becomes moderately large, your 
program takes a long time to run. For n D 40, your program may take several 
minutes and possibly more than an hour. For large values of n, you’ll also discover 
that each time you increase n by 1, your program’s running time approximately 
doubles. 

Why is CUT-ROD so inefûcient? The problem is that CUT-ROD calls itself re- 
cursively over and over again with the same parameter values, which means that 
it solves the same subproblems repeatedly. Figure 14.3 shows a recursion tree 
demonstrating what happens for n D 4: CUT-ROD.p; n/ calls CUT-ROD.p; n  i/ 
for i D 1; 2; : : : ; n. Equivalently, CUT-ROD.p; n/ calls CUT-ROD.p; j / for each 
j D 0; 1; : : : ; n  1. When this process unfolds recursively, the amount of work 
done, as a function of n, grows explosively. 

To analyze the running time of CUT-ROD, let T .n/ denote the total number of 
calls made to CUT-ROD.p; n/ for a particular value of n. This expression equals 
the number of nodes in a subtree whose root is labeled n in the recursion tree. The 
count includes the initial call at its root. Thus, T .0/ D 1 and 

T .n/ D 1 C 
n1 X 

j D0 

T .j / : (14.3) 

The initial 1 is for the call at the root, and the term T .j / counts the number of calls 
(including recursive calls) due to the call CUT-ROD.p; n  i/, where j D n  i . 
As Exercise 14.1-1 asks you to show, 
T .n/ D 2 n ; (14.4) 
and so the running time of CUT-ROD is exponential in n. 

In retrospect, this exponential running time is not so surprising. CUT-ROD ex- 
plicitly considers all possible ways of cutting up a rod of length n. How many ways 



14.1 Rod cutting 367 

3 

1 0 

0 

0 

0 1 

2 0 

0 

1 

2 

0 

1 0 

4 

Figure 14.3 The recursion tree showing recursive calls resulting from a call C UT-ROD.p; n/ for 
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from 
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s  t 
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of 
the 2 n1 ways of cutting up a rod of length n. In general, this recursion tree has 2 n nodes and 2 n1 

leaves. 

are there? A rod of length n has n  1 potential locations to cut. Each possible way 
to cut up the rod makes a cut at some subset of these n  1 locations, including the 
empty set, which makes for no cuts. Viewing each cut location as a distinct mem- 
ber of a set of n  1 elements, you can see that there are 2 n1 subsets. Each leaf 
in the recursion tree of Figure 14.3 corresponds to one possible way to cut up the 
rod. Hence, the recursion tree has 2 n1 leaves. The labels on the simple path from 
the root to a leaf give the sizes of each remaining right-hand piece before making 
each cut. That is, the labels give the corresponding cut points, measured from the 
right-hand end of the rod. 

Using dynamic programming for optimal rod cutting 

Now, let’s see how to use dynamic programming to convert CUT-ROD into an 
efûcient algorithm. 
The dynamic-programming method works as follows. Instead of solving the 

same subproblems repeatedly, as in the naive recursion solution, arrange for each 
subproblem to be solved only once. There’s actually an obvious way to do so: the 
ûrst time you solve a subproblem, save its solution. If you need to refer to this 
subproblem’s solution again later, just look it up, rather than recomputing it. 

Saving subproblem solutions comes with a cost: the additional memory needed 
to store solutions. Dynamic programming thus serves as an example of a time- 
memory trade-off . The savings may be dramatic. For example, we’re about to use 
dynamic programming to go from the exponential-time algorithm for rod cutting 



368 Chapter 14 Dynamic Programming 

down to a ‚.n 2 /-time algorithm. A dynamic-programming approach runs in poly- 
nomial time when the number of distinct subproblems involved is polynomial in 
the input size and you can solve each such subproblem in polynomial time. 

There are usually two equivalent ways to implement a dynamic-programming 
approach. Solutions to the rod-cutting problem illustrate both of them. 
The ûrst approach is top-down with memoization. 2 In this approach, you write 

the procedure recursively in a natural manner, but modiûed to save the result of 
each subproblem (usually in an array or hash table). The procedure now ûrst checks 
to see whether it has previously solved this subproblem. If so, it returns the saved 
value, saving further computation at this level. If not, the procedure computes the 
value in the usual manner but also saves it. We say that the recursive procedure has 
been memoized: it <remembers= what results it has computed previously. 

The second approach is the bottom-up method. This approach typically de- 
pends on some natural notion of the <size= of a subproblem, such that solving any 
particular subproblem depends only on solving <smaller= subproblems. Solve the 
subproblems in size order, smallest ûrst, storing the solution to each subproblem 
when it is ûrst solved. In this way, when solving a particular subproblem, there 
are already saved solutions for all of the smaller subproblems its solution depends 
upon. You need to solve each subproblem only once, and when you ûrst see it, you 
have already solved all of its prerequisite subproblems. 

These two approaches yield algorithms with the same asymptotic running time, 
except in unusual circumstances where the top-down approach does not actually 
recurse to examine all possible subproblems. The bottom-up approach often has 
much better constant factors, since it has lower overhead for procedure calls. 

The procedures MEMOIZED-CUT-ROD and MEMOIZED-CUT-ROD-AUX on 
the facing page demonstrate how to memoize the top-down CUT-ROD proce- 
dure. The main procedure MEMOIZED-CUT-ROD initializes a new auxiliary array 
rŒ0 W n� with the value 1 which, since known revenue values are always nonneg- 
ative, is a convenient choice for denoting <unknown.= MEMOIZED-CUT-ROD then 
calls its helper procedure, MEMOIZED-CUT-ROD-AUX, which is just the memo- 
ized version of the exponential-time procedure, CUT-ROD. It ûrst checks in line 1 
to see whether the desired value is already known and, if it is, then line 2 returns it. 
Otherwise, lines 337 compute the desired value q in the usual manner, line 8 saves 
it in rŒn�, and line 9 returns it. 
The bottom-up version, BOTTOM-UP-CUT-ROD on the next page, is even sim- 

pler. Using the bottom-up dynamic-programming approach, BOTTOM-UP-CUT- 
ROD takes advantage of the natural ordering of the subproblems: a subproblem of 

2 The technical term <memoization= is not a misspelling of <memorization.= The word <memoiza- 
tion= comes from <memo,= since the technique consists of recording a value to be looked up later. 



14.1 Rod cutting 369 

MEMOIZED-CUT-ROD .p; n/ 
1 let rŒ0 W n� be a new array // will remember solution values in r 
2 for i D 0 to n 
3 rŒi � D 1 
4 return MEMOIZED-CUT-ROD-AUX .p; n; r/ 

MEMOIZED-CUT-ROD-AUX .p; n; r/ 
1 if rŒn�  0 // already have a solution for length n? 
2 return rŒn� 
3 if n = = 0 
4 q D 0 
5 else q D 1 
6 for i D 1 to n // i is the position of the ûrst cut 
7 q D max fq; pŒi � C MEMOIZED-CUT-ROD-AUX .p; n  i; r/g 
8 rŒn� D q // remember the solution value for length n 
9 return q 

BOTTOM-UP-CUT-ROD .p; n/ 
1 let rŒ0 W n� be a new array // will remember solution values in r 
2 rŒ0� D 0 
3 for j D 1 to n // for increasing rod length j 
4 q D 1 
5 for i D 1 to j // i is the position of the ûrst cut 
6 q D max fq; pŒi � C rŒj  i �g 
7 rŒj � D q // remember the solution value for length j 
8 return rŒn� 

size i is <smaller= than a subproblem of size j if i < j . Thus, the procedure solves 
subproblems of sizes j D 0; 1; : : : ; n, in that order. 
Line 1 of BOTTOM-UP-CUT-ROD creates a new array rŒ0 W n� in which to save 

the results of the subproblems, and line 2 initializes rŒ0� to 0, since a rod of length 0 
earns no revenue. Lines 336 solve each subproblem of size j , for j D 1; 2; : : : ; n, 
in order of increasing size. The approach used to solve a problem of a particular 
size j is the same as that used by CUT-ROD, except that line 6 now directly refer- 
ences array entry rŒj i � instead of making a recursive call to solve the subproblem 
of size j  i . Line 7 saves in rŒj � the solution to the subproblem of size j . Finally, 
line 8 returns rŒn�, which equals the optimal value r n . 
The bottom-up and top-down versions have the same asymptotic running time. 

The running time of BOTTOM-UP-CUT-ROD is ‚.n 2 /, due to its doubly nested 



370 Chapter 14 Dynamic Programming 

3 

0 

1 

2 

4 

Figure 14.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels give 
the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that solving subprob- 
lem x requires a solution to subproblem y. This graph is a reduced version of the recursion tree of 
Figure 14.3, in which all nodes with the same label are collapsed into a single vertex and all edges 
go from parent to child. 

loop structure. The number of iterations of its inner for loop, in lines 536, forms 
an arithmetic series. The running time of its top-down counterpart, MEMOIZED- 
CUT-ROD, is also ‚.n 2 /, although this running time may be a little harder to see. 
Because a recursive call to solve a previously solved subproblem returns immedi- 
ately, MEMOIZED-CUT-ROD solves each subproblem just once. It solves subprob- 
lems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for loop of lines 637 
iterates n times. Thus, the total number of iterations of this for loop, over all re- 
cursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total 
of ‚.n 2 / iterations, just like the inner for loop of BOTTOM-UP-CUT-ROD. (We 
actually are using a form of aggregate analysis here. We’ll see aggregate analysis 
in detail in Section 16.1.) 

Subproblem graphs 
When you think about a dynamic-programming problem, you need to understand 
the set of subproblems involved and how subproblems depend on one another. 

The subproblem graph for the problem embodies exactly this information. Fig- 
ure 14.4 shows the subproblem graph for the rod-cutting problem with n D 4. It 
is a directed graph, containing one vertex for each distinct subproblem. The sub- 
problem graph has a directed edge from the vertex for subproblem x to the vertex 
for subproblem y if determining an optimal solution for subproblem x involves 
directly considering an optimal solution for subproblem y . For example, the sub- 
problem graph contains an edge from x to y if a top-down recursive procedure for 
solving x directly calls itself to solve y . You can think of the subproblem graph as 



14.1 Rod cutting 371 

a <reduced= or <collapsed= version of the recursion tree for the top-down recursive 
method, with all nodes for the same subproblem coalesced into a single vertex and 
all edges directed from parent to child. 
The bottom-up method for dynamic programming considers the vertices of the 

subproblem graph in such an order that you solve the subproblems y adjacent to 
a given subproblem x before you solve subproblem x . (As Section B.4 notes, the 
adjacency relation in a directed graph is not necessarily symmetric.) Using ter- 
minology that we’ll see in Section 20.4, in a bottom-up dynamic-programming 
algorithm, you consider the vertices of the subproblem graph in an order that is a 
<reverse topological sort,= or a <topological sort of the transpose= of the subprob- 
lem graph. In other words, no subproblem is considered until all of the subprob- 
lems it depends upon have been solved. Similarly, using notions that we’ll visit in 
Section 20.3, you can view the top-down method (with memoization) for dynamic 
programming as a <depth-ûrst search= of the subproblem graph. 

The size of the subproblem graph G D .V;E/ can help you determine the 
running time of the dynamic-programming algorithm. Since you solve each sub- 
problem just once, the running time is the sum of the times needed to solve each 
subproblem. Typically, the time to compute the solution to a subproblem is propor- 
tional to the degree (number of outgoing edges) of the corresponding vertex in the 
subproblem graph, and the number of subproblems is equal to the number of ver- 
tices in the subproblem graph. In this common case, the running time of dynamic 
programming is linear in the number of vertices and edges. 

Reconstructing a solution 

The procedures MEMOIZED-CUT-ROD and BOTTOM-UP-CUT-ROD return the 
value of an optimal solution to the rod-cutting problem, but they do not return 
the solution itself : a list of piece sizes. 
Let’s see how to extend the dynamic-programming approach to record not only 

the optimal value computed for each subproblem, but also a choice that led to the 
optimal value. With this information, you can readily print an optimal solution. 
The procedure EXTENDED-BOTTOM-UP-CUT-ROD on the next page computes, 
for each rod size j , not only the maximum revenue r j , but also s j , the optimal size 
of the ûrst piece to cut off. It’s similar to BOTTOM-UP-CUT-ROD, except that it 
creates the array s in line 1, and it updates sŒj � in line 8 to hold the optimal size i 
of the ûrst piece to cut off when solving a subproblem of size j . 

The procedure PRINT-CUT-ROD-SOLUTION on the following page takes as in- 
put an array pŒ1 W n� of prices and a rod size n. It calls EXTENDED-BOTTOM- 
UP-CUT-ROD to compute the array sŒ1 W n� of optimal ûrst-piece sizes. Then 
it prints out the complete list of piece sizes in an optimal decomposition of a 



372 Chapter 14 Dynamic Programming 

rod of length n. For the sample price chart appearing in Figure 14.1, the call 
EXTENDED-BOTTOM-UP-CUT-ROD .p; 10/ returns the following arrays: 
i 0 1 2 3 4 5 6 7 8 9 10 
rŒi � 0 1 5 8 10 13 17 18 22 25 30 
sŒi � 1 2 3 2 2 6 1 2 3 10 

A call to PRINT-CUT-ROD-SOLUTION .p; 10/ prints just 10, but a call with n D 7 
prints the cuts 1 and 6, which correspond to the ûrst optimal decomposition for r 7 
given earlier. 

EXTENDED-BOTTOM-UP-CUT-ROD .p; n/ 
1 let rŒ0 W n� and sŒ1 W n� be new arrays 
2 rŒ0� D 0 
3 for j D 1 to n // for increasing rod length j 
4 q D 1 
5 for i D 1 to j // i is the position of the ûrst cut 
6 if q < pŒi � C rŒj  i � 
7 q D pŒi � C rŒj  i � 
8 sŒj � D i // best cut location so far for length j 
9 rŒj � D q // remember the solution value for length j 
10 return r and s 

PRINT-CUT-ROD-SOLUTION .p; n/ 
1 .r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD .p; n/ 
2 while n > 0 
3 print sŒn� // cut location for length n 
4 n D n  sŒn� // length of the remainder of the rod 

Exercises 
14.1-1 
Show that equation (14.4) follows from equation (14.3) and the initial condition 
T .0/ D 1. 
14.1-2 
Show, by means of a counterexample, that the following <greedy= strategy does 
not always determine an optimal way to cut rods. Deûne the density of a rod of 
length i to be p i =i , that is, its value per inch. The greedy strategy for a rod of 
length n cuts off a ûrst piece of length i , where 1 හ i හ n, having maximum 



14.2 Matrix-chain multiplication 373 

density. It then continues by applying the greedy strategy to the remaining piece of 
length n  i . 
14.1-3 
Consider a modiûcation of the rod-cutting problem in which, in addition to a 
price p i for each rod, each cut incurs a ûxed cost of c . The revenue associated with 
a solution is now the sum of the prices of the pieces minus the costs of making the 
cuts. Give a dynamic-programming algorithm to solve this modiûed problem. 
14.1-4 
Modify CUT-ROD and MEMOIZED-CUT-ROD-AUX so that their for loops go up 
to only bn=2c, rather than up to n. What other changes to the procedures do you 
need to make? How are their running times affected? 
14.1-5 
Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution. 
14.1-6 
The Fibonacci numbers are deûned by recurrence (3.31) on page 69. Give an 
O.n/-time dynamic-programming algorithm to compute the nth Fibonacci number. 
Draw the subproblem graph. How many vertices and edges does the graph contain? 

14.2 Matrix-chain multiplication 

Our next example of dynamic programming is an algorithm that solves the problem 
of matrix-chain multiplication. Given a sequence (chain) hA 1 ; A 2 ; : : : ; A n i of n 
matrices to be multiplied, where the matrices aren’t necessarily square, the goal is 
to compute the product 
A 1 A 2    A n : (14.5) 
using the standard algorithm 3 for multiplying rectangular matrices, which we’ll see 
in a moment, while minimizing the number of scalar multiplications. 
You can evaluate the expression (14.5) using the algorithm for multiplying pairs 

of rectangular matrices as a subroutine once you have parenthesized it to resolve 
all ambiguities in how the matrices are multiplied together. Matrix multiplication 
is associative, and so all parenthesizations yield the same product. A product of 

3 None of the three methods from Sections 4.1 and Section 4.2 can be used directly, because they 
apply only to square matrices. 


