
E DIT DISTANCE—A CLASSICAL problem in computer 
science—has received ongoing attention from both 
practitioners and theoreticians. Given two strings A 
and B, the edit distance is the minimum number of 
substitutions, insertions, and deletions needed to 
transform A into B. For example, the edit distance 
between apf leee and rapleet is 3: ​apf  ​→​​ ins ​  rapf leee  ​
→​​ del ​  rapleee  ​→​​ sub ​  rapleet​. The edit distance problem 
is widely known, as it is often taught as part of 
the undergraduate curriculum to illustrate two-
dimensional dynamic programming. Theoreticians 

have studied the problem starting 
from as early as 196624 and 1974,43 but 
it very much remains an active topic of 
research today (for example, Boroujeni 
et al.8). Simultaneously, bioinformatics 
practitioners continue to actively de-
velop14,15,40 and apply9,28,38,39,42,45 fast edit 
distance solvers ubiquitously. Given 
its status as a classic problem and its 
importance to both theoreticians and 
practitioners, edit distance provides a 
unique opportunity to study the inter-
action between theory and practice.

Theoreticians develop abstract al-
gorithms that have superior theoreti-
cal performance; practitioners develop 
implemented algorithms that have 
superior empirical performance. In an 
ideal world, practitioners would imple-
ment and analyze the empirical per-
formance of the abstract algorithms 
developed by theoreticians, while theo-
reticians would analyze the theoreti-
cal performance of the implemented 
algorithms developed by practitioners. 
In the real world, there is often a wide 
gap between the practical and theoreti-
cal communities; understanding how 
to close this gap is critical to making 
theoretical computer science more 
relevant to applications. The edit dis-
tance problem is then an excellent lens 
through which to understand how the 
theoretical analysis of algorithms im-
pacts practical implementations.

There are many ways to approach 
the practice/theory gap in a problem 
like edit distance. We take one that 
is systematic and focused on the way 
theoreticians analyze edit distance 
algorithms, rather than on the algo-
rithms themselves. From a practical 
perspective, theoretical analysis has 
two goals.37 The first goal is to pre-
dict the empirical performance of 
an algorithm, either in an absolute 
sense or relative to other algorithms. 
The second goal is to be a yardstick 
that drives the design of novel algo-
rithms that perform well in practice. 
In this article, we systematically sur-
vey the types of theoretical analysis 
techniques that have been applied to 
edit distance and evaluate the extent 
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to which each one has achieved these 
two stated goals.

To focus this presentation, we con-
sider only the simplest version of the 
edit distance problem, where both 
strings have equal length n and are over 
a constant sized alphabet; moreover, 
the algorithm only needs to return the 
edit distance and not the sequence of 
edits that achieve it. We also focus only 
on the runtime analysis as opposed to 
the memory use. We start by summariz-
ing the state-of-the-art practical imple-
mentations then go through the vari-
ous types of theoretical analysis that 
has been applied to the edit distance 

problem: traditional worst-case analy-
sis, worst-case analysis parametrized 
by the edit distance, worst-case analysis 
parametrized by entropy and compress-
ibility, average-case analysis, semi-ran-
dom models, and advice-based models. 
For each technique, we evaluate the 
extent to which it has achieved the pre-
diction and design goals of theoretical 
analysis on the edit distance computa-
tion problem. We will not assume any 
knowledge of biology or any knowledge 
of computer science beyond an under-
graduate level. We then conclude with a 
discussion of open problems and their 
potential solutions.

State-of-the-Art  
Implementations and Algorithms
Here, we will briefly outline the algo-
rithms that are used in state-of-the-art 
implementations as well as highlight 
their empirical performance. The clas-
sical algorithm taught in many Algo-
rithms courses is called Needleman-
Wunsch.43 It builds a two-dimensional 
matrix D where the value at D[i, j] is the 
edit distance between the i-long prefix 
of A and the j-long prefix of B. This ma-
trix can be computed in the standard 
dynamic programming manner using 
the recurrence D[i, j ] = min(D[i − 1, j ] + 
1, D[i, j − 1] + 1, D[i, j ] + Ii, j ), where Ii, j is 0 
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if the ith character of A is equal to the jth 
character of B and 1 otherwise. The edit 
distance is then the value at [n, n] (re-
call that n is the length of the strings). 
Doubling banded alignment41 is a 
modification of Needleman-Wunsch 
whose main idea is to reduce the num-
ber of cells of D that need to be com-
puted. It uses the idea that if one only 
computes the values of D[i, j ] within a 
diagonal band of width d (that is, when 
|i − j| ≤ d/2), then by checking if D[n,m] 
≤ d one can either determine the edit 
distance if it is at most d or determine 
the edit distance is greater than d. Us-
ing this idea, it runs the checking algo-
rithm repeatedly by doubling the value 
of d until the edit distance is found. 
The Myers’ bit-parallel technique32 is a 
hardware optimization of Needleman-
Wunsch that encodes the dynamic pro-
gramming matrix into bitvectors and 
then rewrites the recurrences in terms 
of word-sized bitvector operations. 
These three algorithms/techniques 
comprise the core of all state-of-the-art 
implementations today.

There are at least three broadly used 
software libraries/tools that implement 
edit distance computation.14,15,40 Edlib40 
is optimized specifically for the edit 
distance problem, while SeqAn15 and 
Parasail14 are designed for more gen-
eral alignment problems, but support 
edit distance as a special case. Edlib 
and SeqAn both implement the banded 
alignment algorithm using Myers’ bit-
parallel technique.32 Myers’ technique 
does not change the asymptotic runtime 
but gives a significant constant speedup 
in practice. Parasail14 implements the 
Needleman-Wunsch algorithm using 
high-performance computing tech-
niques. These include both task-level 
parallelism (that is, multi-threading) 
and instruction-level parallelism (that 
is, SIMD vectorized instructions). Para-
sail’s code is also customized during 
compilation for the instruction set of the 
host architecture. Another implementa-
tion, BGSA,44 implements the Needle-
man-Wunsh algorithm with the Myers’ 
bit-parallel technique but supports 
multi-core, task-level, and instruction-
level parallelism for batch execution.

There are also approaches to speed-
up edit distance by using specialized 
hardware, such as GPUs, FPGAs, or 
even custom-designed processors (for 
references, see Alser et al.3). These re-

sult in orders-of-magnitude constant-
time speedups over their CPU counter-
parts in practice. However, until there 
is more widespread availability and 
integration of such specialized hard-
ware in bioinformatics compute infra-
structures, these tools are unlikely to be 
widely used.

How well do the widely used imple-
mentations perform? On two sequenc-
es of 1 million nucleotides each, one 
of the fastest implementations (edlib) 
takes 1.1 seconds for sequences with 
edit distance of 0.01n and 30 seconds 
for sequences with edit distance of 
0.40n, on a single core server.40 For se-
quences of 100,000 nucleotides each, 
the runtimes are 0.01s and 0.40s, re-
spectively. As we will later see, this cor-
responds to the theoretical prediction 
that the runtime deteriorates with in-
creasing edit distance. For many ap-
plications, these runtimes are good 
enough. However, edit distance com-
putation remains a bottleneck for ap-
plications that use it as a subroutine 
to make thousands or millions of com-
parisons (for example, comparing long 
reads against each other38).

Traditional Worst-Case Analysis
The most common way to analyze 
running time, taught in undergradu-
ate computer science classes, is tra-
ditional worst-case analysis. For ex-
ample, it says the classical merge sort 
algorithm runs in O (n log n) worst-case 
time, which formally means there ex-
ists a constant c such that for any large-
enough input of n elements, merge 
sort takes at most cn log n time. Has 
traditional worst-case analysis led to 
the design of edit distance algorithms 
that perform well in practice? There 
are two candidates. The first is the clas-
sical Needleman-Wunsch algorithm; 
it was originally described in Wagner 
and Fischer,43 which gave the dynamic 
programming recurrence and proved 
the runtime is Θ(n2). Their algorithm 
modified an earlier dynamic program-
ming algorithm35 whose run time 
was Θ(n3).a It seems likely then that 
traditional worst-case analysis was a 

a	 As a historical note, the algorithm presented 
in Needleman and Wunsch35 is not the algo-
rithm we call “Needleman-Wunsch” today. 
The “Needleman-Wunsch” algorithm was de-
scribed later.43

In the real world, 
there is often a 
wide gap between 
the practical 
and theoretical 
communities; 
understanding 
how to close this 
gap is critical to 
making theoretical 
computer science 
more relevant to 
applications.
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Has traditional worst-case analy-
sis been able to accurately predict the 
empirical performance of algorithms? 
The analysis of Needleman-Wunsch 
shows that Θ(n2) time is taken for every 
input instance, not just in the worst-
case. The Four-Russians runtime 
analysis is similar in that it also holds 
for all inputs, not just worst-case ones. 
Therefore, the predictions of tradition-
al worst-case analysis accurately reflect 
these algorithms’ runtime on real data.

Can traditional worst-case analysis 
lead to the design of new algorithms 
that perform well in practice? A fa-
mous recent result states that under 
the strong exponential time hypoth-
esis, there cannot be an (n2−δ ) algo-
rithm, for any δ > 0.7 Such an algorithm 
is called strongly sub-quadratic. There 
are other “barrier” results of this type 
which we will not elaborate on.1,2,10 
These results make it unlikely that 
better algorithms can be designed us-
ing traditional worst-case analysis as a 
guide. However, they say nothing about 
the existence of provably and substan-
tially better algorithms, if they are ana-
lyzed using a different technique than 
traditional worst-case analysis.

Worst-Case Analysis Parametrized 
by the Edit Distance
One step away from traditional worst-
case analysis is parametrized worst-case 
analysis, which is worst-case analysis in 
terms of properties of the input besides 
just its size n. In the case of edit dis-
tance, the parameter that has proven 
most useful is the edit distance itself, 
usually denoted by k (note that k ≤ n). 
The most notable algorithm designed 
using k-parametrized worst-case analy-
sis is doubling banded alignment.41 Pa-
rametrized analysis shows that it com-
putes the edit distance in time Θ(kn), 
on all inputs. There are several other 
algorithms parametrized by k;19,33 they 
achieve various trade-offs between k 
and n and have some other differences 
outside the scope of this article. Dou-
bling banded alignment is the most 
notable of these because it is very sim-
ple to describe and implement (that is, 
it does not use any complex data struc-
tures) and forms a main component 
of one of the empirically fastest imple-
mentations today—edlib.40

K-parametrized analysis predicts 
several ways in which doubling banded 

driving force behind the creation of 
the Needleman-Wunsch algorithm. 
Moreover, the algorithm is a success in 
practice because many implemented 
algorithms, including some of the fast-
est ones, are either modifications of it 
or use it as a subroutine. This includes 
both banded alignment and the Myers’ 
bit-parallel technique used by edlib, 
parasail, and SeqAn. Thus, though 
Needleman-Wunsch is not the fastest 
algorithm in practice or in theory, it 
exemplifies how traditional worst-case 
analysis achieved the design goal.

The second candidate is the fast-
est known algorithm under traditional 
worst-case analysis—the Four-Russians 
speedup to Needleman-Wunsch.6,29 It 
takes Θ(n2/log2 n) time (in a unit-cost 
RAM model). The algorithm was clearly 
designed to optimize the runtime un-
der traditional worst-case analysis. But 
how does it perform in practice? Does 
the Θ(log2 n) speedup outweigh the ad-
ditional constant factors due to higher 
algorithm and data structure complex-
ity? To answer this question, there have 
been implementations and experimen-
tal evaluations of this algorithm.22,36 
The improvement over Needleman-
Wunsch was a factor of about 5 for n = 
218, and, extrapolating from Rejmon,36 
would not exceed 10 even for sequences 
of a billion characters. Thus, in prac-
tice, the Four Russians algorithm is 
dominated by other algorithms that 
have Θ(n2) run time but have better 
constant factors (for example, Myers’ 
bit-parallel algorithm).36 Moreover, the 
fastest implementations of edit dis-
tance today14,15,40 do not implement the 
Four Russians algorithm, even as a sub-
routine, highlighting how exploiting 
the properties of the CPU (for example, 
the bit-parallel or SIMD implementa-
tions) can bring constant speedups 
that in practice outperform asymptotic 
speedups. We therefore conclude that 
in the case of the Four Russians algo-
rithm, traditional worst-case analysis 
has led us astray into the design of an 
algorithm that is not practically useful.b

b	 While the algorithm itself was not practically 
useful, one could argue it had an impact on 
practice because some of its ideas were later 
used by algorithms such as Myers’ bit-parallel 
algorithm. While we may deem an algorithm 
not practically useful, it may nevertheless have 
been an important steppingstone on the road 
to another practically useful algorithm.

alignment is theoretically an improve-
ment over Needleman-Wunsch. The 
first is when k = o (n), doubling banded 
alignment scales sub-quadratically 
with the input size, while Needleman-
Wunsch does not. The second is the 
closer the sequences are (that is, the 
smaller the edit distance), the smaller 
the runtime. Thus, the algorithm cap-
tures a natural notion of complexity of 
the input and takes advantage of input 
that is less complex, while Needleman-
Wunsch does not. These two predic-
tions are reflected empirically as well 
since the runtime analyses are for all 
inputs and both algorithms do not 
hide any significant implementation 
constants. Third, even when k = Θ(n), 
the empirical advantage of doubling 
banded alignment over Needleman-
Wunsch can be significant.40

However, when k = Θ(n), the fact 
remains the banded algorithm scales 
quadratically with the input size, both 
in theory and in practice. Unfortunate-
ly, this is the case for the following pre-
dominant application of edit distance. 
Biological sequences evolve from each 
other via a mutation process, which, 
for the purposes of this discussion, can 
be considered as mutating each posi-
tion with some constant probability, 
independently for each position. The 
mutation probability is, for the most 
part, independent of n and the edit 
distance is therefore proportional to n 
with a constant called divergence. For 
example, the sequence divergence in 
coding regions of genes between hu-
man and other species is 1%–2% for 
bonobo and about 19% for mouse.12 
Thus, regardless of species, and even 
for species that are very close, the 
edit distance is still approximately a 
constant proportion of the sequence 
length. This illustrates the importance 
of using theoretical analysis to design 
exact algorithms that scale sub-qua-
dratically when k = Θ(n).

In summary, the k-parameterized 
worst-case analysis technique has 
been a tremendous success for edit dis-
tance. It led directly to the design of the 
banded alignment algorithm, which 
is widely used in practice, and it can 
predict the empirical improvement of 
banded alignment over Needleman-
Wunsch. However, it still did not pro-
duce an algorithm that scales strongly 
sub-quadratically with the input size 
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design a new algorithm to work well 
under that model and validate it em-
pirically. Researchers have aimed to 
design an algorithm with a strongly 
sub-quadratic expected runtime.

An obvious first attempt is to as-
sume each string of length n is ran-
domly drawn uniformly and indepen-
dently from the universe of all strings 
of length n. For each string, this cor-
responds to generating each character 
independently, following an identical 
categorical distribution for each po-
sition. However, this model does not 
capture essential properties of real 
data and has not resulted in any useful 
algorithms or predictive running time 
analysis. When the real input strings 
are evolutionary related, then the as-
sumption they are independent of 
each other is highly inaccurate. Even 
in the case that the real input strings 
are not evolutionary related, the uni-
formity assumption remains unreal-
istic since biological sequences have 
evolved to serve a function and thus 
exhibit non-random behavior.

A more accurate model uses an in-
del channel.16 Here, the first string is 
chosen uniformly at random, while the 
second string is obtained by randomly 
mutating each nucleotide, with a prob-
ability at most a small constant. The al-
gorithm of Ganesh and Sy16 runs in O(n 
log n) time and, with high probability 
over this input distribution, returns the 
correct edit distance. This algorithm’s 
runtime is significantly better than just 
strongly sub-quadratic. However, we 
are not aware of any implementation, 
and, for this algorithm to be practical, 
it must prove it performs reasonably 
well even for real input that does not 
follow the model’s distribution.

A successful application of aver-
age case analysis is in the analysis of 
the “furthest reaching” algorithm, 
which was proposed in Myers31 and Uk-
konen.41 This analysis combines aver-
age-case with parametrized analysis. It 
runs in O(nk) time in the worst case,41 
but an average case analysis gives  
O(n + k2).31 The model used in this 
analysis is like the one previously men-
tioned, which describes the model of 
Ganesh and Sy.16 While this algorithm 
does not break the quadratic time barri-
er and is not used by state-of-the-art edit 
distance algorithms, it has nevertheless 
been practically successful. It was the 

repetitive patterns, still has high en-
tropy (for example, 0.8525) and low 
compressibility.c Thus, while worst-
case analysis parametrized by entropy 
or compressibility has led to the design 
of novel algorithms, it has not achieved 
the design or prediction goals of theo-
retical analysis since these algorithms 
have not been useful in practice.

Average-Case Analysis
One of the pitfalls of traditional and 
parametric worst-case analysis is that 
it assumes the inputs are chosen by an 
adversary who wants to make things as 
difficult as possible for the algorithm. 
In practice, however, biological se-
quences are not chosen this way and 
may have much nicer properties. On 
such instances, the optimal path in the 
alignment matrix stays very close to the 
diagonal, even much tighter than the 
band of width d used by the doubling 
banded alignment algorithm. For ex-
ample, a heuristic algorithm that stops 
the doubling banded alignment pre-
maturely and reports the value of [n, n] 
would still likely report the correct edit 
distance. Worst-case analysis cannot 
tell us either the probability of success 
nor tell us how long to double to guar-
antee a high probability of success.

One theoretical analysis tech-
nique to alleviate the shortcoming of 
worst-case analysis is average-case 
analysis (sometimes called distribu-
tional analysis). Here, the inputs are 
assumed to be drawn from some kind 
of distribution, and what is measured 
is the expected performance over this 
distribution. Other alternatives in-
clude measuring the performance that 
can be achieved with high probability 
and/or measuring the performance in 
terms of a trade-off with the probabil-
ity of the algorithm achieving it. Re-
analyzing the performance of existing 
algorithms under this model would 
not be beneficial for most of the algo-
rithms we have looked at so far (that is, 
Needleman-Wunsch, Four Russians, 
and banded alignment) because their 
runtime holds for all inputs, not just 
worst-case ones. However, if we have 
an input distribution in mind, we can 

c	 If compressing multiple DNA sequences to-
gether, much better compressibility is pos-
sible. However, edit distance has not been 
typically performed against such collections.

for applications where k = Θ(n). More-
over, it may not be able to do so in the 
future due to the barrier results against 
strongly sub-quadratic algorithms in 
the worst-case framework.1,2,7,10

Worst-Case Analysis Parametrized 
by Entropy and Compressibility
Another way to parameterize the 
analysis of edit distance algorithms 
is by the entropy of the input, h. En-
tropy is a value between 0 and 1 which 
measures the amount of order in the 
strings.34 Strings containing short re-
petitive patters tend to have a lower 
entropy. As an extreme case, the string 
of all Ts has entropy 0 while a string 
generated uniformly at random has 
entropy close to 1. Intuitively, an edit 
distance algorithm could take advan-
tage of the repetitive patterns to run 
faster on strings with lower entropy. 
An algorithm following this intuition 
was developed by Crochemore et al.13 
and runs in time O(hn2/log n) for most 
inputs. When the input strings have 
low entropy, this is theoretically faster 
than Needleman-Wunsch. Note that 
this runtime is not comparable with 
banded alignment, since the edit dis-
tance can be low for strings with high 
entropy, and vice versa.

A related notion are algorithms 
that compute the edit distance of A 
and B directly from their compressed 
representations. The time to com-
press two strings is in most cases as-
ymptotically negligible compared to 
the time it takes to compute the edit 
distance. Hence, one could solve the 
edit distance computation problem 
by first compressing A and B and then 
running an edit distance algorithm 
on the compressed strings. For exam-
ple, there is an algorithm to compute 
edit distance between two run-length 
encoded34 strings in ​​O​(​​𝓁n​)​​​​ time5,13,26 
where ​𝓁​ is the size of the encoded 
strings. For a more general class 
of compression algorithms called 
straight-line programs,20 there is an al-
gorithm17 that runs in ​O(𝓁n ​√ 

_
 log(n / 𝓁) ​​ 

time. In these cases, the algorithms 
are designed to optimize the runtime 
with respect to ​𝓁​-parametrized worst-
case analysis.

Unfortunately, these algorithms 
have not been broadly applied in prac-
tice. A major reason is because a long 
DNA sequence, while exhibiting some 
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Krauthgamer.4 In their model, an ad-
versary chooses the two input strings 
and a longest common subsequence 
between them. Then, each position 
is randomly perturbed with a small 
probability p (that is, the nucleotide is 
replaced with another random one). 
However, the perturbations are con-
strained so the positions of the longest 
common subsequence are perturbed 
identically. This model captures the 
idea that for two evolutionary related 
strings, if we view their longest com-
mon subsequence as their ancestral 
sequence, then all the nucleotides out-
side this common subsequence would 
have evolved somewhat independently 
of each other. Allowing the adversary 
to choose some worst-case values for 
them gives her too much power; in-
stead, some noise is added to them to 
make them more independent.

In Andoni and Krauthgamer,4 the 
algorithms’ approximation ratios are 
not precisely derived (that is, big-Oh 
notation is used). There has also been 
another line of work focusing on fast 
approximation algorithms under tra-
ditional worst-case analysis with the 
best-known approximation constant 
of 1680.11 In both cases, the algorithms 
achieve strongly sub-quadratic run 
time, something that could not be 
done by exact algorithms using worst-
case analysis for k = Θ(n). However, 
without a precise derivation of a tiny 
approximation ratio, or an implemen-
tation and validation on real data, it is 
difficult to predict the applicability of 
these algorithms.

Asymmetric (p,B)-pseudo-random 
model. As we mentioned previously, a 
string chosen at random does not re-
flect a biologically evolved sequence. 
More precisely, a uniformly random 
string has the property that the prob-
ability that any two non-overlapping 
equal-length substrings are identical 
decreases with their length. In fact, 
once their length exceeds a certain 
critical threshold, this probability is, 
for all practical purposes, zero. This 
property is in contrast with biologi-
cal sequences, which are often com-
posed of long similar elements called 
repeats. It is true that longer repeats 
tend to be less frequent and less simi-
lar, but this decrease does not happen 
at the same rate as for random strings. 
This was captured in a more realistic 

basis of an implementation of the “diff” 
Unix tool31 and serves as a foundation 
for generalizations of the edit distance 
problem (for example, to affine gap pen-
alties as in Marco-Sola et al.27).

Semi-Random Models
One can view average-case analysis and 
worst-case analysis as two extremes. 
The main idea of more sophisticated 
semirandom models is to achieve a 
middle ground between an adversary 
and randomness.4,8,23 Here, the per-
formance is measured as worst-case 
over the choices of the adversary and 
average case over the random distribu-
tion. The semi-random models for edit 
distance have only led to approxima-
tion, rather than exact, algorithms. A 
c-approximation algorithm is one that 
returns a value at most a multiplica-
tive factor of c (called the approxima-
tion ratio) away from the edit distance. 
Approximation algorithms relax the 
requirement of finding the exact solu-
tion in exchange for better runtime. 
For an edit distance approximation 
algorithm to be relevant in practice, 
the approximation ratio must be a 
constant very close to one for example, 
1.01). For example, even a 3-approxi-
mation algorithm would not be able 
to always distinguish two random DNA 
sequences (that is, expected edit dis-
tance of approximately 0.53n (person-
al simulations, data not shown)) from 
a mouse and human sequence pair 
(that is, edit distance of about 0.19n.12). 
Thus, the usefulness of the models is 
predicated on their ability to achieve a 
tiny approximation ratio.

Smoothed analysis is based on the 
idea that worst-case inputs designed to 
fool algorithms are not very stable; that 
is, if bad input is tweaked a little, the 
algorithm no longer performs poorly.37 
In this model, an adversary first picks 
an input (that is, a worst-case choice), 
but then some small random noise is 
added to this input. The algorithm’s 
performance on a particular adver-
sarial input is defined as the expected 
performance over the distribution of 
noisy inputs centered around the ad-
versarial input. The algorithm’s over-
all performance is then defined as the 
worst-case performance over all choic-
es of the adversary’s input.

Smoothed analysis was consid-
ered for edit distance in Andoni and 

Smoothed analysis 
is based on the  
idea that worst-case 
inputs designed  
to fool algorithms 
are not very stable; 
that is, if bad input  
is tweaked a little, 
the algorithm no 
longer performs 
poorly.
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one between A and B. They show that 
if an algorithm has access to O(log n) 
of such instances, it can find the edit 
distance between A and B in O(n log n) 
time, with high probability.

This approach has not been imple-
mented but is promising in the sense 
the runtime is not just sub-quadratic 
but nearly linear, and the algorithm 
is exact and seems easy to implement. 
Compared to the banded alignment 
algorithms, the O(n log n) algorithm 
is likely to have significant empirical 
speed improvements for moderately 
sized inputs even for small values of k. 
Unfortunately, it is not clear how cor-
related instances can be obtained in 
practice and whether they would be 
captured by the Goldwasser and Hold-
en definition.18

Conclusion
We have surveyed the various ap-
proaches to the theoretical analysis of 
edit distance algorithms, focusing on 
whether these approaches have led to 
the design of algorithms that are fast 
in practice and to the theoretical pre-
diction of the empirical runtimes of 
existing algorithms. We showed the 
track record has been mixed. On one 
hand, a few algorithms widely used 
in practice (Needleman-Wunsch, 
doubled banded alignment, furthest 
reaching) have been born out of theo-
retical analysis and their empirical 
performance is captured well by theo-
retical predictions. On the other hand, 
very little of the algorithms developed 
using theoretical analysis as a yard-
stick since then have had any practical 
relevance.

From a practical perspective, a ma-
jor open problem is to implement an al-
gorithm with linear-like empirical scal-
ing on inputs where the edit distance is 
linear in n. Theoretical analysis has the 
potential to lead the way in achieving 
this goal. Semi-random models are the 
most promising approach, due to the 
barrier results for worst-case analysis. 
A reasonable model which might give 
a good balance between capturing re-
ality and ease of analysis is one where 
B is assumed to have evolved from A 
via a mutation process (like Ganesh 
and Sy16). For the theoretical work to 
have practical relevance, however, it 
must be implemented and validated; 
in particular, the algorithm’s runtime 

through a barrier of previous models, 
that is, it achieves a low approximation 
ratio while maintaining sub-quadratic 
time. However, the actual runtime im-
provement is only n0.102, which is less 
than 9 for inputs up to a billion nucleo-
tides long. It is unlikely that this im-
provement would justify the additional 
overhead of a more complex algorithm. 
Nevertheless, the model can ultimately 
be successful if the runtime of the algo-
rithm can be improved, the implemen-
tation of the algorithm kept simple, 
and the usefulness of the model em-
pirically validated.

In summary, none of the semi-ran-
dom models have yet led to a better 
understanding of the performance of 
existing algorithms or to the design of 
algorithms that perform well in prac-
tice. The proposed algorithms, at least 
in their current form, are not promis-
ing: the algorithms of Andoni and 
Krauthgamer4 and Kuszmaul23 have 
impractical approximation ratios, 
while the Boroujeni et al. algorithm8 
improves the runtime by a factor that 
is too small to have an effect in prac-
tice. However, the models themselves 
are promising, and can ultimately be 
successful if the runtime of the algo-
rithms can be improved, the complex-
ity of the algorithms kept low, and the 
usefulness of the models empirically 
validated. These ongoing efforts may 
eventually result in an algorithm that 
outperforms banded alignment, in 
practice, on inputs with k = Θ(n).

Analyzing with Advice
The biological problem is usually 
more general than the mathemati-
cal abstraction created for it. Some-
times the algorithm has access to 
other information, not included in the 
problem definition, that can serve as 
advice. In this case, one can both ex-
pand the problem definition and the 
theoretical analysis to incorporate 
this advice. An advice-based analysis 
measures the algorithm runtime with 
respect to the amount of such advice 
used. In the case of edit distance, Gold-
wasser and Holden18 argue that, for an 
input instance A and B, it is possible 
to have access to a collection of cor-
related instances. Intuitively, a corre-
lated instance is one whose sequence 
of edits in the shortest edit sequence 
is, with some high probability, like the 

model of randomness, proposed in 
Kuszmaul.23 They say that a string is (p, 
B)-pseudorandom if the edit distance 
of any two disjoint B-long substrings is 
at least a fraction p of their length. This 
generalizes uniform randomness, that 
is, a uniformly random string is (Ω(1), 
O(log n))-pseudorandom with high 
probability.23 But by choosing p and 
B appropriately, we can more realisti-
cally match the repeat properties of a 
biological string.

The asymmetric (p, B)-pseudoran-
dom model23 is to first choose a string 
at random from all (p, B)-pseudoran-
dom strings and then have an adver-
sary choose the other string and modify 
some small portion of the pseudoran-
dom string. By allowing the adversary 
to choose one of the strings, this model 
allows the two strings to be evolution-
ary related. Moreover, the additional 
power of the adversary to modify the 
pseudorandom string makes the mod-
el even more realistic, because a true 
biological sequence would usually 
have some substrings that break the (p, 
B), even when the values of p and B are 
chosen to minimize these cases.

This model is used in Kuszmaul23 
to design several new algorithms. The 
main algorithm has a runtime ​​O​​ 

∼ ​​ (nB) 
(the ​​O​​ 

∼ ​​ notation is like O but ignores 
log factors), which is strongly sub-
quadratic if B is strongly sub-linear. 
However, as in smoothed analysis, the 
algorithm is only an approximation al-
gorithm, and the exact approximation 
ratio is not calculated. Thus, whether 
this model leads to any practical algo-
rithms remains to be seen. However, 
the fact that it seems to intuitively 
better capture biological reality while 
lending itself to theoretical analysis is 
promising.

The random model of Boroujeni 
et al. A recently proposed model8 has 
the adversary first choose a seed string 
s and then constructs A by permuting 
s uniformly at random. After observ-
ing A and the random permutation, 
the adversary then constructs B. The 
algorithm given by Boroujeni et al.8 is 
an approximation algorithm with an 
expected runtime is O(n1.898), which is 
strongly sub-quadratic. The approxi-
mation ratio is 1 + o (1), which is low 
enough to be of practical relevance.

This analysis model has led to the 
design of an algorithm that brakes 
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and accuracy must be robust to data 
not drawn from the modeled distribu-
tion and the constant-time overhead 
of the algorithm must not override the 
asymptotic gains. Unfortunately, cur-
rent community incentives leave the 
implementation and validation of an 
algorithm as an afterthought that is 
rarely pursued.

To solve this open problem and, 
more generally, close the gap between 
theory and practice, implementation 
and validation cannot be treated as a 
separate step of the process. We need 
multi-disciplinary teams that can in-
terleave the theoretical analysis of al-
gorithms with their implementation 
and validation. Allowing for a back-
and-forth between practitioners and 
theoreticians during the development 
process can allow iterations over the 
theoretical model and practical heu-
ristics that would otherwise be impos-
sible. Such teams will be able to use 
both empirical and theoretical perfor-
mance as a yardstick and will be bet-
ter able to develop algorithms whose 
empirical performance is not only su-
perior but also accurately captured by 
theoretical analysis.

It is also essential to continue to 
study the relationship between theo-
retical analysis and practical imple-
mentations. One of the limitations of 
this study is that it only focuses on a 
single problem, making it difficult to 
draw more general conclusions. More 
studies such as this one could estab-
lish patterns and identify clear direc-
tions to closing the practice/theory 
gap. In a recent paper,30 we applied the 
same lens more broadly (but also more 
anecdotally) to study the analysis of al-
gorithms in sequencing bioinformat-
ics, attempting to establish patterns 
and draw conclusions for that domain. 
Ultimately, the relationship between 
theory and practice must be under-
stood not only from a technical angle 
but also from a social science and 
philosophy of science perspective. In 
other disciplines, this relationship is 
studied by philosophers of science (for 
example, in education policy21) and so 
a similar approach may be fruitful in 
computer science.
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