Programming Rust
Fast, Safe Systems Development

Jim Blandy and Jason Orendorff

Bejing - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

CHAPTER 4
Ownership

Ive found that Rust has forced me to learn many of the things that I was slowly learning as
good practice’ in C/C++ before I could even compile my code. ...I want to stress that Rust
isn’t the kind of language you can learn in a couple days and just deal with the hard/techni-
cal/good-practice stuff later. You will be forced to learn strict safety immediately and it will
probably feel uncomfortable at first. However in my own experience, this has led me towards
feeling like compiling my code actually means something to me again.

—Mitchell Nordine

Rust makes the following pair of promises, both essential to a safe systems program-
ming language:

 You decide the lifetime of each value in your program. Rust frees memory and
other resources belonging to a value promptly, at a point under your control.

 Even so, your program will never use a pointer to an object after it has been
freed. Using a dangling pointer is a common mistake in C and C++: if you're
lucky, your program crashes. If you're unlucky, your program has a security hole.
Rust catches these mistakes at compile time.

C and C++ keep the first promise: you can call free or delete on any object in the
dynamically allocated heap you like, whenever you like. But in exchange, the second
promise is set aside: it is entirely your responsibility to ensure that no pointer to the
value you freed is ever used. There’s ample empirical evidence that this is a difficult
responsibility to meet: pointer misuse has been a common culprit in public databases
of reported security problems for as long as that data has been collected.

Plenty of languages fulfill the second promise using garbage collection, automatically
freeing objects only when all reachable pointers to them are gone. But in exchange,
you relinquish control to the collector over exactly when objects get freed. In general,
garbage collectors are surprising beasts, and understanding why memory wasn’t freed

n

when you expected can be a challenge. And if youre working with objects that repre-
sent files, network connections, or other operating system resources, not being able to
trust that they’ll be freed at the time you intended, and their underlying resources
cleaned up along with them, is a disappointment.

None of these compromises are acceptable for Rust: the programmer should have
control over values’ lifetimes, and the language should be safe. But this is a pretty
well-explored area of language design. You can’t make major improvements without
some fundamental changes.

Rust breaks the deadlock in a surprising way: by restricting how your programs can
use pointers. This chapter and the next are devoted to explaining exactly what these
restrictions are and why they work. For now, suffice it to say that some common
structures you are accustomed to using may not fit within the rules, and you’ll need
to look for alternatives. But the net effect of these restrictions is to bring just enough
order to the chaos to allow Rust’s compile-time checks to verify that your program is
free of memory safety errors: dangling pointers, double frees, using uninitialized
memory, and so on. At runtime, your pointers are simple addresses in memory, just
as they would be in C and C++. The difference is that your code has been proven to
use them safely.

These same rules also form the basis of Rusts support for safe concurrent program-
ming. Using Rust’s carefully designed threading primitives, the rules that ensure your
code uses memory correctly also serve to prove that it is free of data races. A bugin a
Rust program cannot cause one thread to corrupt another’s data, introducing hard-
to-reproduce failures in unrelated parts of the system. The nondeterministic behavior
inherent in multithreaded code is isolated to those features designed to handle it—
mutexes, message channels, atomic values, and so on—rather than appearing in ordi-
nary memory references. Multithreaded code in C and C++ has earned its ugly repu-
tation, but Rust rehabilitates it quite nicely.

Rust’s radical wager, the claim on which it stakes its success, and that forms the root
of the language, is that even with these restrictions in place, you’ll find the language
more than flexible enough for almost every task, and that the benefits—the elimina-
tion of broad classes of memory management and concurrency bugs—will justify the
adaptations you’ll need to make to your style. The authors of this book are bullish on
Rust exactly because of our extensive experience with C and C++. For us, Rust’s deal
is a no-brainer.

Rust’s rules are probably unlike what you've seen in other programming languages.
Learning how to work with them and turn them to your advantage is, in our opinion,
the central challenge of learning Rust. In this chapter, we'll first motivate Rust’s rules
by showing how the same underlying issues play out in other languages. Then, we'll
explain Rust’s rules in detail. Finally, we'll talk about some exceptions and almost-
exceptions.

72 | Chapter4: Ownership

Ownership

If you've read much C or C++ code, you've probably come across a comment saying
that an instance of some class owns some other object that it points to. This generally
means that the owning object gets to decide when to free the owned object: when the
owner is destroyed, it destroys its possessions along with it.

For example, suppose you write the following C++ code:
std::string s = "frayed knot";

The string s is usually represented in memory as shown in Figure 4-1.

stack
frame

capacity

y
eop QN ([[e[oefo] Tefofo[« [T T T T [N

length

Figure 4-1. A C++ std::string value on the stack, pointing to its heap-allocated buffer

Here, the actual std::string object itself is always exactly three words long, com-
prising a pointer to a heap-allocated buffer, the buffer’s overall capacity (that is, how
large the text can grow before the string must allocate a larger buffer to hold it), and
the length of the text it holds now. These are fields private to the std::string class,
not accessible to the string’s users.

A std::string owns its buffer: when the program destroys the string, the string’s
destructor frees the buffer. In the past, some C++ libraries shared a single buffer
among several std: :string values, using a reference count to decide when the buffer
should be freed. Newer versions of the C++ specification effectively preclude that
representation; all modern C++ libraries use the approach shown here. In these situa-
tions it’s generally understood that, although it’s fine for other code to create tempo-
rary pointers to the owned memory, it is that code’s responsibility to make sure its
pointers are gone before the owner decides to destroy the owned object. You can cre-
ate a pointer to a character living in a std::string’s buffer, but when the string is
destroyed, your pointer becomes invalid, and it’s up to you to make sure you don’t use

Ownership | 73

it anymore. The owner determines the lifetime of the owned, and everyone else must
respect its decisions.

Rust takes this principle out of the comments and makes it explicit in the language. In
Rust, every value has a single owner that determines its lifetime. When the owner is
freed—dropped, in Rust terminology—the owned value is dropped too. These rules
are meant to make it easy for you to find any given value’ lifetime simply by inspect-
ing the code, giving you the control over its lifetime that a systems language should
provide.

A variable owns its value. When control leaves the block in which the variable is
declared, the variable is dropped, so its value is dropped along with it. For example:

fn print_padovan() {
let mut padovan = vec![1,1,1]; // allocated here
for 1 in 3..10 {
let next = padovan[i-3] + padovan[i-2];
padovan.push(next);
}
println!("P(1..10) = {:?}", padovan);
} // dropped here

The type of the variable padovan is std: :vec: :Vec<i32>, a vector of 32-bit integers.
In memory, the final value of padovan will look something like Figure 4-2.

padovan
fame 9| 6] 10
. capacity \
v
e BT T T T T 1
; length :

Figure 4-2. A Vec 32 on the stack, pointing to its buffer in the heap

This is very similar to the C++ std::string we showed earlier, except that the ele-
ments in the buffer are 32-bit values, not characters. Note that the words holding
padovan’s pointer, capacity, and length live directly in the stack frame of the
print_padovan function; only the vector’s buffer is allocated on the heap.

74 | Chapter4: Ownership

As with the string s earlier, the vector owns the buffer holding its elements. When the
variable padovan goes out of scope at the end of the function, the program drops the
vector. And since the vector owns its buffer, the buffer goes with it.

Rust’s Box type serves as another example of ownership. A Box<T> is a pointer to a
value of type T stored on the heap. Calling Box: :new(v) allocates some heap space,
moves the value v into it, and returns a Box pointing to the heap space. Since a Box
owns the space it points to, when the Box is dropped, it frees the space too.

For example, you can allocate a tuple in the heap like so:

{
let point = Box::new((0.625, 0.5)); // point allocated here
let label = format!("{:?}", point); // label allocated here
assert_eq!(label, "(0.625, 0.5)");

} // both dropped here

When the program calls Box: : new, it allocates space for a tuple of two f64 values on
the heap, moves its argument (6.625, 0.5) into that space, and returns a pointer to
it. By the time control reaches the call to assert_eq!, the stack frame looks like
Figure 4-3.

point label

~A
o I o[- [

stack
frame

heap

[o[[Tof Ts]) I

Figure 4-3. Two local variables, each owning memory in the heap

The stack frame itself holds the variables point and label, each of which refers to a
heap allocation that it owns. When they are dropped, the allocations they own are
freed along with them.

Just as variables own their values, structs own their fields; and tuples, arrays, and vec-
tors own their elements:

struct Person { name: String, birth: 132 }

let mut composers = Vec::new();

composers.push(Person { name: "Palestrina".to_string(),
birth: 1525 });

composers.push(Person { name: "Dowland".to_string(),
birth: 1563 });

composers.push(Person { name: "Lully".to_string(),

Ownership | 75

birth: 1632 });
for composer in &composers {
println!("{}, born {}", composer.name, composer.birth);

}

Here, composers is a Vec<Person>, a vector of structs, each of which holds a string
and a number. In memory, the final value of composers looks like Figure 4-4.

composers

—~—A—
stack
frame
d G
% %,
9
9/ %

[0] (1] (2

y name birth

heap - | 16 10 |1525| o 8] 756 o] 8]5 i3]

%%,
PaIestrlna Dowland LuIIy

Figure 4-4. A more complex tree of ownership

There are many ownership relationships here, but each one is pretty straightforward:
composers owns a vector; the vector owns its elements, each of which is a Person
structure; each structure owns its fields; and the string field owns its text. When con-
trol leaves the scope in which composers is declared, the program drops its value, and
takes the entire arrangement with it. If there were other sorts of collections in the pic-
ture—a HashMap, perhaps, or a BTreeSet—the story would be the same.

At this point, take a step back and consider the consequences of the ownership rela-
tions we've presented so far. Every value has a single owner, making it easy to decide
when to drop it. But a single value may own many other values: for example, the vec-
tor composers owns all of its elements. And those values may own other values in
turn: each element of composers owns a string, which owns its text.

It follows that the owners and their owned values form trees: your owner is your par-
ent, and the values you own are your children. And at the ultimate root of each tree is
a variable; when that variable goes out of scope, the entire tree goes with it. We can
see such an ownership tree in the diagram for composers: it’s not a “tree” in the sense
of a search tree data structure, or an HTML document made from DOM elements.
Rather, we have a tree built from a mixture of types, with Rust’s single-owner rule for-
bidding any rejoining of structure that could make the arrangement more complex

76 | Chapter4: Ownership

than a tree. Every value in a Rust program is a member of some tree, rooted in some
variable.

Rust programs don’t usually explicitly drop values at all, in the way C and C++ pro-
grams would use free and delete. The way to drop a value in Rust is to remove it
from the ownership tree somehow: by leaving the scope of a variable, or deleting an
element from a vector, or something of that sort. At that point, Rust ensures the value
is properly dropped, along with everything it owns.

In a certain sense, Rust is less powerful than other languages: every other practical
programming language lets you build arbitrary graphs of objects that point to each
other in whatever way you see fit. But it is exactly because Rust is less powerful that
the analyses the language can carry out on your programs can be more powerful.
Rust’s safety guarantees are possible exactly because the relationships it may
encounter in your code are more tractable. This is part of Rusts “radical wager” we
mentioned earlier: in practice, Rust claims, there is usually more than enough flexi-
bility in how one goes about solving a problem to ensure that at least a few perfectly
fine solutions fall within the restrictions the language imposes.

That said, the story we've told so far is still much too rigid to be usable. Rust extends
this picture in several ways:

 You can move values from one owner to another. This allows you to build, rear-
range, and tear down the tree.

o The standard library provides the reference-counted pointer types Rc and Arc,
which allow values to have multiple owners, under some restrictions.

« b2 . . .
 You can “borrow a reference” to a value; references are nonowning pointers, with
limited lifetimes.

Each of these strategies contributes flexibility to the ownership model, while still
upholding Rust’s promises. We'll explain each one in turn, with references covered in
the next chapter.

Moves

In Rust, for most types, operations like assigning a value to a variable, passing it to a
function, or returning it from a function dont copy the value: they move it. The
source relinquishes ownership of the value to the destination, and becomes uninitial-
ized; the destination now controls the value’s lifetime. Rust programs build up and
tear down complex structures one value at a time, one move at a time.

You may be surprised that Rust would change the meaning of such fundamental
operations; surely assignment is something that should be pretty well nailed down at
this point in history. However, if you look closely at how different languages have

Moves | 77

chosen to handle assignment, you’ll see that there’s actually significant variation from
one school to another. The comparison also makes the meaning and consequences of
Rust’s choice easier to see.

Consider the following Python code:

s = ['udon', 'ramen', 'soba']

t=s

us=s-:s
Each Python object carries a reference count, tracking the number of values that are
currently referring to it. So after the assignment to s, the state of the program looks
like Figure 4-5 (note that some fields are left out).

t u

s
Python local
variables 9
list :4
is
(pytstoic
A

/.

=~

%’% %
A

) y
list
elements L AR AK

strings
(PyASCIIObject) K M

G)
fo(,&%"?‘

Figure 4-5. How Python represents a list of strings in memory

Since only s is pointing to the list, the list’s reference count is 1; and since the list is
the only object pointing to the strings, each of their reference counts is also 1.

78 | Chapter4: Ownership

What happens when the program executes the assignments to t and u? Python imple-
ments assignment simply by making the destination point to the same object as the
source, and incrementing the object’s reference count. So the final state of the pro-
gram is something like Figure 4-6.

Python local
variables 9

N
list
(PyListObject) & *
%
%)O

X
%%, 2
(

) \ 4
list
elements LA AN

%

(PyASCIIéngch 1[5 [ramen]
1] 4 [udon

Joe A &
%, %, %
Q. %, op
<

oo/o(bé

Figure 4-6. The result of assigning s to both t and u in Python

Python has copied the pointer from s into t and u, and updated the list’s reference
count to 3. Assignment in Python is cheap, but because it creates a new reference to
the object, we must maintain reference counts to know when we can free the value.

Now consider the analogous C++ code:

using namespace std;
vector<string> s = { "udon", "ramen", "soba" };
vector<string> t = s;
vector<string> u = s;

The original value of s looks like Figure 4-7 in memory.

Moves | 79

[0] (1] 2]

heap-o|4|4|9|8|5|9|4|4| | | -

Figure 4-7. How C++ represents a vector of strings in memory

What happens when the program assigns s to t and u? Assigning a std: :vector pro-
duces a copy of the vector in C++; std: :string behaves similarly. So by the time the
program reaches the end of this code, it has actually allocated three vectors and nine
strings (Figure 4-8).

s t u
—A— r—A— r—A—

stack
frame

heap BT T Tol T To] [1 BOLT T [T [[J T I

o apass

Figure 4-8. The result of assigning s to both t and u in C++

Depending on the values involved, assignment in C++ can consume unbounded
amounts of memory and processor time. The advantage, however, is that it’s easy for
the program to decide when to free all this memory: when the variables go out of
scope, everything allocated here gets cleaned up automatically.

In a sense, C++ and Python have chosen opposite trade-offs: Python makes assign-
ment cheap, at the expense of requiring reference counting (and in the general case,
garbage collection). C++ keeps the ownership of all the memory clear, at the expense
of making assignment carry out a deep copy of the object. C++ programmers are
often less than enthusiastic about this choice: deep copies can be expensive, and there
are usually more practical alternatives.

So what would the analogous program do in Rust? Here’s the code:

80 | Chapter4: Ownership

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s;
let u = s;

Like C and C++, Rust puts plain string literals like "udon" in read-only memory, so
for a clearer comparison with the C++ and Python examples, we call to_string here
to get heap-allocated String values.

After carrying out the initialization of s, since Rust and C++ use similar representa-
tions for vectors and strings, the situation looks just as it did in C++ (Figure 4-9).

s
r—A—

stack
fane
[0] (1] 2]

heap.n|4|4|9|8|5|9|4|4| | | -

\ 4
udon ramen m

Figure 4-9. How Rust represents a vector of strings in memory

But recall that, in Rust, assignments of most types move the value from the source to
the destination, leaving the source uninitialized. So after initializing t, the program’s
memory looks like Figure 4-10.

S t

heap.n|4|4|9|8|5|?|4|4| | | -

\ 4
udon ramen m

Figure 4-10. The result of assigning s to t in Rust

What has happened here? The initialization let t = s; moved the vector’s three
header fields from s to t; now t owns the vector. The vector’s elements stayed just
where they were, and nothing happened to the strings either. Every value still has a

Moves | 81

single owner, although one has changed hands. There were no reference counts to be
adjusted. And the compiler now considers s uninitialized.

So what happens when we reach the initialization let u = s;? This would assign the
uninitialized value s to u. Rust prudently prohibits using uninitialized values, so the
compiler rejects this code with the following error:

error[EQ382]: use of moved value: °s°
--> ownership_double_move.rs:9:9

8 let t = s;
9 let u = s;
A

|

|

| - value moved here

|

| value used here after move
|

Consider the consequences of Rust’s use of a move here. Like Python, the assignment
is cheap: the program simply moves the three-word header of the vector from one
spot to another. But like C++, ownership is always clear: the program doesn’t need
reference counting or garbage collection to know when to free the vector elements
and string contents.

The price you pay is that you must explicitly ask for copies when you want them. If
you want to end up in the same state as the C++ program, with each variable holding
an independent copy of the structure, you must call the vector’s clone method, which
performs a deep copy of the vector and its elements:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];

let t = s.clone();

let u = s.clone();
You could also re-create Python’s behavior by using Rust’s reference-counted pointer
types; we'll discuss those shortly in “Rc and Arc: Shared Ownership” on page 90.

More Operations That Move

In the examples thus far, we've shown initializations, providing values for variables as
they come into scope in a let statement. Assigning to a variable is slightly different,
in that if you move a value into a variable that was already initialized, Rust drops the
variable’s prior value. For example:

let mut s = "Govinda".to_string();

s = "Siddhartha".to_string(); // value "Govinda" dropped here
In this code, when the program assigns the string "Siddhartha"” to s, its prior value
"Govinda" gets dropped first. But consider the following:

let mut s = "Govinda".to_string();

let t = s;
s = "Siddhartha".to_string(); // nothing is dropped here

82 | (Chapter4: Ownership

This time, t has taken ownership of the original string from s, so that by the time we
assign to s, it is uninitialized. In this scenario, no string is dropped.

We've used initializations and assignments in the examples here because they’re sim-
ple, but Rust applies move semantics to almost any use of a value. Passing arguments
to functions moves ownership to the functions parameters; returning a value from a
function moves ownership to the caller. Building a tuple moves the values into the
tuple. And so on.

You may now have a better insight into what’s really going on in the examples we
offered in the previous section. For example, when we were constructing our vector
of composers, we wrote:

struct Person { name: String, birth: 132 }

let mut composers = Vec::new();
composers.push(Person { name: "Palestrina".to_string(),
birth: 1525 });
This code shows several places at which moves occur, beyond initialization and
assignment:

Returning values from a function
The call Vec: :new() constructs a new vector, and returns, not a pointer to the
vector, but the vector itself: its ownership moves from Vec: :new to the variable
composers. Similarly, the to_string call returns a fresh String instance.

Constructing new values
The name field of the new Person structure is initialized with the return value of
to_string. The structure takes ownership of the string.

Passing values to a function
The entire Person structure, not just a pointer, is passed to the vector’s push
method, which moves it onto the end of the structure. The vector takes owner-
ship of the Person, and thus becomes the indirect owner of the name String as
well.

Moving values around like this may sound inefficient, but there are two things to
keep in mind. First, the moves always apply to the value proper, not the heap storage
they own. For vectors and strings, the value proper is the three-word header alone; the
potentially large element arrays and text buffers sit where they are in the heap. Sec-
ond, the Rust compiler’s code generation is good at “seeing through” all these moves;
in practice, the machine code often stores the value directly where it belongs.

Moves | 83

Moves and Control Flow

The previous examples all have very simple control flow; how do moves interact with
more complicated code? The general principle is that, if it's possible for a variable to
have had its value moved away, and it hasn’t definitely been given a new value since,
it’s considered uninitialized. For example, if a variable still has a value after evaluating
an if expression’s condition, then we can use it in both branches:

let x = vec![10, 20, 30];

if c {

f(x); // ... ok to move from x here
} else {

g(x); // ... and ok to also move from x here
}

h(x) // bad: x is uninitialized here if either path uses it
For similar reasons, moving from a variable in a loop is forbidden:

let x = vec![10, 20, 30];
while f() {
g(x); // bad: x would be moved in first iteration,
// uninitialized in second

}
That is, unless we've definitely given it a new value by the next iteration:

let mut x = vec![10, 20, 30];

while f() {

g(x); // move from x

x = h(); // give x a fresh value
}
e(x);

Moves and Indexed Content

We've mentioned that a move leaves its source uninitialized, as the destination takes
ownership of the value. But not every kind of value owner is prepared to become
uninitialized. For example, consider the following code:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for 1 in 101 .. 106 {
v.push(i.to_string());
}

// Pull out random elements from the vector.

let third = v[2];

let fifth = v[4];
For this to work, Rust would somehow need to remember that the third and fifth ele-
ments of the vector have become uninitialized, and track that information until the
vector is dropped. In the most general case, vectors would need to carry around extra

84 | (Chapter4: Ownership

information with them to indicate which elements are live and which have become
uninitialized. That is clearly not the right behavior for a systems programming lan-
guage; a vector should be nothing but a vector. In fact, Rust rejects the preceding code
with the following error:

error[EQ507]: cannot move out of indexed content
--> ownership_move_out_of_vector.rs:14:17

|
14 | let third = v[2];

| ANAN

| |
| help: consider using a reference instead "&v[2]’
| cannot move out of indexed content

It also makes a similar complaint about the move to fifth. In the error message, Rust
suggests using a reference, in case you want to access the element without moving it.
This is often what you want. But what if you really do want to move an element out of
a vector? You need to find a method that does so in a way that respects the limitations
of the type. Here are three possibilities:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for 1 in 101 .. 106 {
v.push(i.to_string());
}

// 1. Pop a value off the end of the vector:
let fifth = v.pop().unwrap();
assert_eq! (fifth, "105");

// 2. Move a value out of the middle of the vector, and move the last
// element into its spot:

let second = v.swap_remove(1l);

assert_eq!(second, "102");

// 3. Swap in another value for the one we're taking out:
let third = std::mem::replace(&mut v[2], "substitute".to_string());
assert_eq!(third, "103");

// Let's see what's left of our vector.
assert_eq!(v, vec!["101", "104", "substitute"]);

Each one of these methods moves an element out of the vector, but does so in a way
that leaves the vector in a state that is fully populated, if perhaps smaller.

Collection types like Vec also generally offer methods to consume all their elements
in a loop:

let v = vec!["liberté".to_string(),
"égalité".to_string(),
"fraternité".to_string()];

Moves | 85

for mut s in v {
s.push('!");
println!("{}", s);
}
When we pass the vector to the loop directly, as in for ... in v, this moves the vec-
tor out of v, leaving v uninitialized. The for loops internal machinery takes owner-
ship of the vector, and dissects it into its elements. At each iteration, the loop moves
another element to the variable s. Since s now owns the string, were able to modify it
in the loop body before printing it. And since the vector itself is no longer visible to
the code, nothing can observe it mid-loop in some partially emptied state.

If you do find yourself needing to move a value out of an owner that the compiler
can’t track, you might consider changing the owner’s type to something that can
dynamically track whether it has a value or not. For example, here’s a variant on the
earlier example:

struct Person { name: Option<String>, birth: 132 }

let mut composers = Vec::new();
composers.push(Person { name: Some("Palestrina".to_string()),
birth: 1525 });

You can’t do this:
let first_name = composers[0].name;

That will just elicit the same “cannot move out of indexed content” error shown ear-
lier. But because you've changed the type of the name field from String to
Option<String>, that means that None is a legitimate value for the field to hold, so
this works:

let first_name = std::mem::replace(&mut composers[0].name, None);
assert_eq! (first_name, Some("Palestrina".to_string()));
assert_eq! (composers[0].name, None);

The replace call moves out the value of composers[0].name, leaving None in its
place, and passes ownership of the original value to its caller. In fact, using Option
this way is common enough that the type provides a take method for this very pur-
pose. You could write the preceding manipulation more legibly as follows:

let first_name = composers[0].name.take();

This call to take has the same effect as the earlier call to replace.

Copy Types: The Exception to Moves

The examples we've shown so far of values being moved involve vectors, strings, and
other types that could potentially use a lot of memory and be expensive to copy.

86 | Chapter4: Ownership

Moves keep ownership of such types clear and assignment cheap. But for simpler
types like integers or characters, this sort of careful handling really isn’t necessary.

Compare what happens in memory when we assign a String with what happens
when we assign an 132 value:

let strl = "somnambulance".to_string();
let str2 = stri;

let numl: 132 = 36;
let num2 = numi;

After running this code, memory looks like Figure 4-11.

strl str2
num1 num?2
stack
frame
A
st ||

Figure 4-11. Assigning a string moves the value, whereas assigning an i32 copies it

As with the vectors earlier, assignment moves stri to str2, so that we don’t end up
with two strings responsible for freeing the same buffer. However, the situation with
numl and num2 is different. An 132 is simply a pattern of bits in memory; it doesn’t
own any heap resources, or really depend on anything other than the bytes it compri-
ses. By the time we've moved its bits to num2, we've made a completely independent
copy of num1.

Moving a value leaves the source of the move uninitialized. But whereas it serves an
essential purpose to treat stril as valueless, treating numl that way is pointless; no
harm could result from continuing to use it. The advantages of a move don’t apply
here, and it’s inconvenient.

Earlier we were careful to say that most types are moved; now we've come to the
exceptions, the types Rust designates as Copy types. Assigning a value of a Copy type
copies the value, rather than moving it. The source of the assignment remains initial-
ized and usable, with the same value it had before. Passing Copy types to functions
and constructors behaves similarly.

The standard Copy types include all the machine integer and floating-point numeric
types, the char and bool types, and a few others. A tuple or fixed-size array of Copy
types is itself a Copy type.

Copy Types: The Exception to Moves | 87

Only types for which a simple bit-for-bit copy suffices can be Copy. As we've already
explained, String is not a Copy type, because it owns a heap-allocated buffer. For sim-
ilar reasons, Box<T> is not Copy; it owns its heap-allocated referent. The File type,
representing an operating system file handle, is not Copy; duplicating such a value
would entail asking the operating system for another file handle. Similarly, the
MutexGuard type, representing a locked mutex, isn’t Copy: this type isn’t meaningful to
copy at all, as only one thread may hold a mutex at a time.

As a rule of thumb, any type that needs to do something special when a value is drop-
ped cannot be Copy. A Vec needs to free its elements; a File needs to close its file
handle; a MutexGuard needs to unlock its mutex. Bit-for-bit duplication of such types
would leave it unclear which value was now responsible for the original’s resources.

What about types you define yourself? By default, struct and enum types are not
Copy:

struct Label { number: u32 }
fn print(l: Label) { println!("STAMP: {}", l.number); }

let 1 = Label { number: 3 };
print(l);
println!("My label number is: {}", l.number);

This won’t compile; Rust complains:

error[EQ382]: use of moved value: ‘“l.number"®
--> ownership_struct.rs:12:40

11 print(l);
- value moved here

I
|

12 | println!("My label number is: {}", l.number);
| ANAAAANA yalue used here after move
I

note: move occurs because ‘1° has type ‘main::Label’, which does not
implement the “Copy’ trait
Since Label is not Copy, passing it to print moved ownership of the value to the
print function, which then dropped it before returning. But this is silly; a Label is
nothing but an 132 with pretensions. There’s no reason passing 1 to print should
move the value.

But user-defined types being non-Copy is only the default. If all the fields of your
struct are themselves Copy, then you can make the type Copy as well by placing the
attribute #[derive(Copy, Clone)] above the definition, like so:

#[derive(Copy, Clone)]
struct Label { number: u32 }

88 | Chapter4: Ownership

With this change, the preceding code compiles without complaint. However, if we try
this on a type whose fields are not all Copy, it doesn’t work. Compiling the following
code:

#[derive(Copy, Clone)]
struct StringLabel { name: String }

elicits this error:

error[EQ204]: the trait “Copy’ may not be implemented for this type
--> ownership_string_label.rs:7:10

|
7 | #[derive(Copy, Clone)]

| AANAN

8 | struct StringLabel { name: String }
[R this field does not implement ‘Copy"

Why aren’t user-defined types automatically Copy, assuming they’re eligible? Whether
a type is Copy or not has a big effect on how code is allowed to use it: Copy types are
more flexible, since assignment and related operations don’t leave the original unini-
tialized. But for a type’s implementer, the opposite is true: Copy types are very limited
in which types they can contain, whereas non-Copy types can use heap allocation and
own other sorts of resources. So making a type Copy represents a serious commitment
on the part of the implementer: if it’s necessary to change it to non-Copy later, much
of the code that uses it will probably need to be adapted.

While C++ lets you overload assignment operators and define specialized copy and
move constructors, Rust doesn’t permit this sort of customization. In Rust, every
move is a byte-for-byte, shallow copy that leaves the source uninitialized. Copies are
the same, except that the source remains initialized. This does mean that C++ classes
can provide convenient interfaces that Rust types cannot, where ordinary-looking
code implicitly adjusts reference counts, puts off expensive copies for later, or uses
other sophisticated implementation tricks.

But the effect of this flexibility on C++ as a language is to make basic operations like
assignment, passing parameters, and returning values from functions less predictable.
For example, earlier in this chapter we showed how assigning one variable to another
in C++ can require arbitrary amounts of memory and processor time. One of Rust’s
principles is that costs should be apparent to the programmer. Basic operations must
remain simple. Potentially expensive operations should be explicit, like the calls to
clone in the earlier example that make deep copies of vectors and the strings they
contain.

In this section, we've talked about Copy and Clone in vague terms as characteristics a
type might have. They are actually examples of traits, Rust’s open-ended facility for
categorizing types based on what you can do with them. We describe traits in general
in Chapter 11, and Copy and Clone in particular in Chapter 13.

Copy Types: The Exception to Moves | 89

Rcand Arc: Shared Ownership

Although most values have unique owners in typical Rust code, in some cases it’s dif-
ficult to find every value a single owner that has the lifetime you need; youd like the
value to simply live until everyone’s done using it. For these cases, Rust provides the
reference-counted pointer types Rc and Arc. As you would expect from Rust, these
are entirely safe to use: you cannot forget to adjust the reference count, or create
other pointers to the referent that Rust doesn’t notice, or stumble over any of the
other sorts of problems that accompany reference-counted pointer types in C++.

The Rc and Arc types are very similar; the only difference between them is that an Arc
is safe to share between threads directly—the name Arc is short for atomic reference
count—whereas a plain Rc uses faster non-thread-safe code to update its reference
count. If you don't need to share the pointers between threads, there’s no reason to
pay the performance penalty of an Arc, so you should use Rc; Rust will prevent you
from accidentally passing one across a thread boundary. The two types are otherwise
equivalent, so for the rest of this section, we'll only talk about Rc.

Earlier in the chapter we showed how Python uses reference counts to manage its val-
ues’ lifetimes. You can use Rc to get a similar effect in Rust. Consider the following
code:

use std::rc::Rc;

// Rust can infer all these types; written out for clarity

let s: Rc<String> = Rc::new("shirataki".to_string());

let t: Rc<String> = s.clone();

let u: Rc<String> = s.clone();
For any type T, an Rc<T> value is a pointer to a heap-allocated T that has had a refer-
ence count affixed to it. Cloning an Rc<T> value does not copy the T; instead, it simply
creates another pointer to it, and increments the reference count. So the preceding
code produces the situation illustrated in Figure 4-12 in memory.

Each of the three Rc<String> pointers is referring to the same block of memory,
which holds a reference count and space for the String. The usual ownership rules
apply to the Rc pointers themselves, and when the last extant Rc is dropped, Rust
drops the String as well.

90 | Chapter4: Ownership

stack
frame

String

heap.3| [|16|9-

A 4

Figure 4-12. A reference-counted string, with three references

You can use any of String’s usual methods directly on an Re<String>:

assert!(s.contains("shira"));
assert_eq! (t.find("taki"), Some(5));
println!("{} are quite chewy, almost bouncy, but lack flavor", u);

A value owned by an Rc pointer is immutable. If you try to add some text to the end
of the string:

s.push_str(" noodles");
Rust will decline:

error: cannot borrow immutable borrowed content as mutable
--> ownership_rc_mutability.rs:12:5

12 : s.push_str(" noodles");
| A cannot borrow as mutable
Rust’s memory and thread-safety guarantees depend on ensuring that no value is ever
simultaneously shared and mutable. Rust assumes the referent of an Rc pointer might
in general be shared, so it must not be mutable. We explain why this restriction is
important in Chapter 5.

One well-known problem with using reference counts to manage memory is that, if
there are ever two reference-counted values that point to each other, each will hold
the other’s reference count above zero, so the values will never be freed (Figure 4-13).

Rcand Arc: Shared Ownership | 91

Figure 4-13. A reference-counting loop; these objects will not be freed

It is possible to leak values in Rust this way, but such situations are rare. You cannot
create a cycle without, at some point, making an older value point to a newer value.
This obviously requires the older value to be mutable. Since Rc pointers hold their
referents immutable, it's not normally possible to create a cycle. However, Rust does
provide ways to create mutable portions of otherwise immutable values; this is called
interior mutability, and we cover it in “Interior Mutability” on page 205. If you com-
bine those techniques with Rc pointers, you can create a cycle and leak memory.

You can sometimes avoid creating cycles of Rc pointers by using weak pointers,
std: :rc::Weak, for some of the links instead. However, we won’t cover those in this
book; see the standard library’s documentation for details.

Moves and reference-counted pointers are two ways to relax the rigidity of the own-
ership tree. In the next chapter, we'll look at a third way: borrowing references to val-
ues. Once you have become comfortable with both ownership and borrowing, you
will have climbed the steepest part of Rust’s learning curve, and you’ll be ready to take
advantage of Rust’s unique strengths.

92 | (Chapter4: Ownership

CHAPTER 5
References

Libraries cannot provide new inabilities.
—Mark Miller

All the pointer types we've seen so far—the simple Box<T> heap pointer, and the
pointers internal to String and Vec values—are owning pointers: when the owner is
dropped, the referent goes with it. Rust also has nonowning pointer types called refer-
ences, which have no effect on their referents’ lifetimes.

In fact, it’s rather the opposite: references must never outlive their referents. You must
make it apparent in your code that no reference can possibly outlive the value it
points to. To emphasize this, Rust refers to creating a reference to some value as bor-
rowing the value: what you have borrowed, you must eventually return to its owner.

If you felt a moment of skepticism when reading the phrase “You must make it appa-
rent in your code,” you're in excellent company. The references themselves are noth-
ing special—under the hood, they’re just addresses. But the rules that keep them safe
are novel to Rust; outside of research languages, you won't have seen anything like
them before. And although these rules are the part of Rust that requires the most
effort to master, the breadth of classic, absolutely everyday bugs they prevent is sur-
prising, and their effect on multithreaded programming is liberating. This is Rust’s
radical wager, again.

As an example, let’s suppose were going to build a table of murderous Renaissance
artists and the works they’re known for. Rust’s standard library includes a hash table
type, so we can define our type like this:

use std::collections::HashMap;

type Table = HashMap<String, Vec<String>>;

93

In other words, this is a hash table that maps String values to Vec<String> values,
taking the name of an artist to a list of the names of their works. You can iterate over
the entries of a HashMap with a for loop, so we can write a function to print out a
Table for debugging:

fn show(table: Table) {
for (artist, works) in table {
println!("works by {}:", artist);
for work in works {
println!(" {}", work);
}

}
Constructing and printing the table is straightforward:

fn main() {
let mut table = Table::new();
table.insert("Gesualdo".to_string(),
vec!["many madrigals".to_string(),
"Tenebrae Responsoria".to_string()]);
table.insert("Caravaggio".to_string(),
vec!["The Musicians".to_string(),
"The Calling of St. Matthew".to_string()]);
table.insert("Cellini".to_string(),
vec!["Perseus with the head of Medusa".to_string(),
"a salt cellar".to_string()]);

show(table);
}

And it all works fine:

$ cargo run
Running /home/jimb/rust/book/fragments/target/debug/fragments’
works by Gesualdo:
Tenebrae Responsoria
many madrigals
works by Cellinti:
Perseus with the head of Medusa
a salt cellar
works by Caravaggio:
The Musicians
The Calling of St. Matthew
$

But if you've read the previous chapter’s section on moves, this definition for show
should raise a few questions. In particular, HashMap is not Copy—it can't be, since it
owns a dynamically allocated table. So when the program calls show(table), the
whole structure gets moved to the function, leaving the variable table uninitialized.
If the calling code tries to use table now, it’ll run into trouble:

94 | Chapter5:References

show(table);
assert_eq! (table["Gesualdo"][0], "many madrigals");

Rust complains that table isn’t available anymore:

error[E@382]: use of moved value: ‘“table’
--> references_show_moves_table.rs:29:16

28 show(table);
----- value moved here

|
|
29 | assert_eq! (table["Gesualdo"][0], "many madrigals");
| AAAAA yalue used here after move
|

note: move occurs because ‘"table’ has type ‘HashMap<String, Vec<String>>",
which does not implement the ‘Copy’ trait

In fact, if we look into the definition of show, the outer for loop takes ownership of
the hash table and consumes it entirely; and the inner for loop does the same to each
of the vectors. (We saw this behavior earlier, in the “liberté, égalité, fraternité” exam-
ple.) Because of move semantics, we've completely destroyed the entire structure sim-

ply by trying to print it out. Thanks, Rust!

The right way to handle this is to use references. A reference lets you access a value
without affecting its ownership. References come in two kinds:

o A shared reference lets you read but not modify its referent. However, you can
have as many shared references to a particular value at a time as you like. The
expression &e yields a shared reference to e’s value; if e has the type T, then &e has
the type &T, pronounced “ref T”. Shared references are Copy.

o If you have a mutable reference to a value, you may both read and modify the
value. However, you may not have any other references of any sort to that value
active at the same time. The expression &mut e yields a mutable reference to e’s
value; you write its type as &mut T, which is pronounced “ref mute T”. Mutable
references are not Copy.

You can think of the distinction between shared and mutable references as a way to
enforce a multiple readers or single writer rule at compile time. In fact, this rule doesn’t
apply only to references; it covers the borrowed value’s owner as well. As long as there
are shared references to a value, not even its owner can modify it; the value is locked
down. Nobody can modify table while show is working with it. Similarly, if there is a
mutable reference to a value, it has exclusive access to the value; you can't use the
owner at all, until the mutable reference goes away. Keeping sharing and mutation
fully separate turns out to be essential to memory safety, for reasons we'll go into later
in the chapter.

References | 95

The printing function in our example doesn’t need to modify the table, just read its
contents. So the caller should be able to pass it a shared reference to the table, as fol-
lows:

show(&table);

References are nonowning pointers, so the table variable remains the owner of the
entire structure; show has just borrowed it for a bit. Naturally, we'll need to adjust the
definition of show to match, but you’ll have to look closely to see the difference:

fn show(table: &Table) {
for (artist, works) in table {
println!("works by {}:", artist);
for work in works {
println!(" {}", work);
}

}

The type of shows parameter table has changed from Table to &Table: instead of
passing the table by value (and hence moving ownership into the function), were
now passing a shared reference. That’s the only textual change. But how does this play
out as we work through the body?

Whereas our original outer for loop took ownership of the HashMap and consumed
it, in our new version it receives a shared reference to the HashMap. Iterating over a
shared reference to a HashMap is defined to produce shared references to each entry’s
key and value: artist has changed from a String to a &String, and works from a
Vec<String> to a &/ec<String>.

The inner loop is changed similarly. Iterating over a shared reference to a vector is
defined to produce shared references to its elements, so work is now a &String. No
ownership changes hands anywhere in this function; it’s just passing around nonown-
ing references.

Now, if we wanted to write a function to alphabetize the works of each artist, a shared
reference doesn't suffice, since shared references don’t permit modification. Instead,
the sorting function needs to take a mutable reference to the table:
fn sort_works(table: &mut Table) {
for (_artist, works) in table {

works.sort();

}
}

And we need to pass it one:

sort_works(&mut table);

96 | Chapter5:References

This mutable borrow grants sort_works the ability to read and modify our structure,
as required by the vectors” sort method.

When we pass a value to a function in a way that moves ownership of the value to the
function, we say that we have passed it by value. If we instead pass the function a ref-
erence to the value, we say that we have passed the value by reference. For example, we
fixed our show function by changing it to accept the table by reference, rather than by
value. Many languages draw this distinction, but its especially important in Rust,
because it spells out how ownership is affected.

References as Values

The preceding example shows a pretty typical use for references: allowing functions
to access or manipulate a structure without taking ownership. But references are
more flexible than that, so let’s look at some examples to get a more detailed view of
what’s going on.

Rust References Versus (++ References

If you're familiar with references in C++, they do have something in common with
Rust references. Most importantly, they’re both just addresses at the machine level.
But in practice, Rust’s references have a very different feel.

In C++, references are created implicitly by conversion, and dereferenced implicitly
too:

// C++ code!

int x = 10;

int &r = x; // initialization creates reference implicitly
assert(r == 10); // implicitly dereference r to see x's value
r=20; // stores 20 in x, r itself still points to x

In Rust, references are created explicitly with the & operator, and dereferenced explic-
itly with the * operator:

// Back to Rust code from this point onward.

let x = 10;
let r = &x; // &x is a shared reference to x
assert!(*r == 10); // explicitly dereference r

To create a mutable reference, use the &mut operator:

let mut y = 32;

let m = &mut y; // &mut y i1s a mutable reference to y
*m += 32; // explicitly dereference m to set y's value
assert!(*m == 64); // and to see y's new value

But you might recall that, when we fixed the show function to take the table of artists
by reference instead of by value, we never had to use the * operator. Why is that?

Referencesas Values | 97

Since references are so widely used in Rust, the . operator implicitly dereferences its
left operand, if needed:

struct Anime { name: &'static str, bechdel_pass: bool };

let aria = Anime { name: "Aria: The Animation", bechdel_pass: true };

let anime_ref = &aria;
assert_eq!(anime_ref.name, "Aria: The Animation");

// Equivalent to the above, but with the dereference written out:
assert_eq!((*anime_ref).name, "Aria: The Animation");
The println! macro used in the show function expands to code that uses the . opera-
tor, so it takes advantage of this implicit dereference as well.

The . operator can also implicitly borrow a reference to its left operand, if needed for
a method call. For example, Vec’s sort method takes a mutable reference to the vec-
tor, so the two calls shown here are equivalent:

let mut v = vec![1973, 1968];

v.sort(); // implicitly borrows a mutable reference to v

(&mut v).sort(); // equivalent; much uglier
In a nutshell, whereas C++ converts implicitly between references and lvalues (that is,
expressions referring to locations in memory), with these conversions appearing any-
where they’re needed, in Rust you use the & and * operators to create and follow ref-
erences, with the exception of the . operator, which borrows and dereferences
implicitly.

Assigning References

Assigning to a Rust reference makes it point at a new value:
let x = 10;

let y = 20;
let mut r = &x;

ifb{r=uay;}

assert!(*r == 10 || *r == 20);

The reference r initially points to x. But if b is true, the code points it at y instead, as
illustrated in Figure 5-1.

Figure 5-1. The reference 1, now pointing to y instead of x

98 | Chapter5: References

This is very different from C++, where assigning to a reference stores the value in its
referent. There’s no way to point a C++ reference to a location other than the one it
was initialized with.

References to References

Rust permits references to references:

struct Point { x: 132, y: 132 }

let point = Point { x: 1000, y: 729 };
let r: &Point = &point;

let rr: &&Point = &r;

let rrr: &8&&Point = &rr;

(We've written out the reference types for clarity, but you could omit them; there’s
nothing here Rust can’t infer for itself.) The . operator follows as many references as
it takes to find its target:

assert_eq!(rrr.y, 729);

In memory, the references are arranged as shown in Figure 5-2.

point

rr

X y r m
fame | o O o [|

Figure 5-2. A chain of references to references

So the expression rrr.y, guided by the type of rrr, actually traverses three references
to get to the Point before fetching its y field.

Comparing References

Like the . operator, Rust’'s comparison operators “see through” any number of refer-
ences, as long as both operands have the same type:

let x = 10;
let y = 10;

let rx = &x;
let ry = &y;

let rrx = ℞
let rry = &ry;

assert!(rrx <= rry);
assert!(rrx == rry);

Referencesas Values | 99

The final assertion here succeeds, even though rrx and rry point at different values
(namely, rx and ry), because the == operator follows all the references and performs
the comparison on their final targets, x and y. This is almost always the behavior you
want, especially when writing generic functions. If you actually want to know
whether two references point to the same memory, you can use std: :ptr: :eq, which
compares them as addresses:

assert!(rx == ry); // their referents are equal
assert!(!std::ptr::eq(rx, ry)); // but occupy different addresses

References Are Never Null

Rust references are never null. There’s no analogue to C’s NULL or C++s nullptr;
there is no default initial value for a reference (you can’t use any variable until its
been initialized, regardless of its type); and Rust won't convert integers to references
(outside of unsafe code), so you can’t convert zero into a reference.

C and C++ code often uses a null pointer to indicate the absence of a value: for exam-
ple, the malloc function either returns a pointer to a new block of memory, or
nullptr if there isn't enough memory available to satisfy the request. In Rust, if you
need a value that is either a reference to something or not, use the type Option<&T>.
At the machine level, Rust represents None as a null pointer, and Some(r), where r is a
&T value, as the nonzero address, so Option<&T> is just as efficient as a nullable
pointer in C or C++, even though it’s safer: its type requires you to check whether it’s
None before you can use it.

Borrowing References to Arbitrary Expressions

Whereas C and C++ only let you apply the & operator to certain kinds of expressions,
Rust lets you borrow a reference to the value of any sort of expression at all:

fn factorial(n: usize) -> usize {
(1..n+1).fold(1, |a, b|] a * b)

}

let r = &factorial(6);

assert_eq!(r + &1009, 1729);

In situations like this, Rust simply creates an anonymous variable to hold the expres-

sion’s value, and makes the reference point to that. The lifetime of this anonymous
variable depends on what you do with the reference:

o If you immediately assign the reference to a variable in a let statement (or make
it part of some struct or array that is being immediately assigned), then Rust
makes the anonymous variable live as long as the variable the let initializes. In
the preceding example, Rust would do this for the referent of r.

100 | Chapter5: References

« Otherwise, the anonymous variable lives to the end of the enclosing statement. In
our example, the anonymous variable created to hold 1009 lasts only to the end
of the assert_eq! statement.

If youre used to C or C++, this may sound error-prone. But remember that Rust will
never let you write code that would produce a dangling reference. If the reference
could ever be used beyond the anonymous variable’s lifetime, Rust will always report
the problem to you at compile time. You can then fix your code to keep the referent
in a named variable with an appropriate lifetime.

References to Slices and Trait Objects

The references we've shown so far are all simple addresses. However, Rust also
includes two kinds of fat pointers, two-word values carrying the address of some
value, along with some further information necessary to put the value to use.

A reference to a slice is a fat pointer, carrying the starting address of the slice and its
length. We described slices in detail in Chapter 3.

Rust’s other kind of fat pointer is a trait object, a reference to a value that implements
a certain trait. A trait object carries a value’s address and a pointer to the trait’s imple-
mentation appropriate to that value, for invoking the trait’s methods. We'll cover trait
objects in detail in “Trait Objects” on page 238.

Aside from carrying this extra data, slice and trait object references behave just like
the other sorts of references we've shown so far in this chapter: they don’t own their
referents; they are not allowed to outlive their referents; they may be mutable or
shared; and so on.

Reference Safety

As we've presented them so far, references look pretty much like ordinary pointers in
C or C++. But those are unsafe; how does Rust keep its references under control? Per-
haps the best way to see the rules in action is to try to break them. We'll start with the
simplest example possible, and then add in interesting complications and explain
how they work out.

Borrowing a Local Variable

Here’s a pretty obvious case. You can't borrow a reference to a local variable and take
it out of the variable’s scope:

{

let r;

{

let x = 1;

Reference Safety | 101

r = &x;
}

assert_eq!(*r, 1); // bad: reads memory “x' used to occupy

}

The Rust compiler rejects this program, with a detailed error message:

error: “x° does not live long enough
--> references_dangling.rs:8:5

7 r = &x;
| - borrow occurs here
8 | }
| A °x" dropped here while still borrowed
9 | assert_eq!(*r, 1); // bad: reads memory “x° used to occupy
10 |
|

01}
- borrowed value needs to live until here

Rust’s complaint is that x lives only until the end of the inner block, whereas the refer-

ence remains alive until the end of the outer block, making it a dangling pointer,

which is verboten.

While it’s obvious to a human reader that this program is broken, it’s worth looking at
how Rust itself reached that conclusion. Even this simple example shows the logical
tools Rust uses to check much more complex code.

Rust tries to assign each reference type in your program a lifetime that meets the con-
straints imposed by how it is used. A lifetime is some stretch of your program for
which a reference could be safe to use: a lexical block, a statement, an expression, the
scope of some variable, or the like. Lifetimes are entirely figments of Rust’s compile-
time imagination. At runtime, a reference is nothing but an address; its lifetime is
part of its type and has no runtime representation.

In this example, there are three lifetimes whose relationships we need to work out.
The variables r and x each have a lifetime, extending from the point at which they’re
initialized until the point that they go out of scope. The third lifetime is that of a ref-
erence type: the type of the reference we borrow to &x, and store in r.

Here’s one constraint that should seem pretty obvious: if you have a variable x, then a
reference to x must not outlive x itself, as shown in Figure 5-3.

102 | Chapter5: References

{
let r;
{
let x = 1;
s e lifetime of & must not
exceed this range
i
assert_eq!(*r, 1);
}

Figure 5-3. Permissible lifetimes for ¢x

Beyond the point where x goes out of scope, the reference would be a dangling
pointer. We say that the variable’s lifetime must contain or enclose that of the reference
borrowed from it.

Here’s another kind of constraint: if you store a reference in a variable r, the referen-
ce’s type must be good for the entire lifetime of the variable, from the point it is ini-
tialized to the point it goes out of scope, as shown in Figure 5-4.

{
let r;
{
let x = 1;
r = 8x;
e lifetime of anything stored in
} r must cover at least this range
assert_eq!(*r, 1);
¥

Figure 5-4. Permissible lifetimes for reference stored in r

If the reference can't live at least as long as the variable does, then at some point r will
be a dangling pointer. We say that the reference’s lifetime must contain or enclose the
variable’s.

The first kind of constraint limits how large a reference’s lifetime can be, while the
second kind limits how small it can be. Rust simply tries to find a lifetime for each
reference that satisfies all these constraints. In our example, however, there is no such
lifetime, as shown in Figure 5-5.

Reference Safety | 103

let r;

let x = 1;

T There i no lifetime that lies
’ entirely within this range...

assert_eq! (*r, 1);J
...but also fully encloses this range.

Figure 5-5. A reference with contradictory constraints on its lifetime

Let’s now consider a different example where things do work out. We have the same
kinds of constraints: the reference’s lifetime must be contained by x’s, but fully enclose
r’s. But because r’s lifetime is smaller now, there is a lifetime that meets the con-
straints, as shown in Figure 5-6.

let r = &x;

et The inner lifetime covers
assert_eq! (*r, 1); || thelifetime of r, butis fully
boo enclosed by the lifetime of x.

Figure 5-6. A reference with a lifetime enclosing r's scope, but within x’s scope

These rules apply in a natural way when you borrow a reference to some part of some
larger data structure, like an element of a vector:

let v = vec![1, 2, 3];

let r = &v[1];
Since v owns the vector, which owns its elements, the lifetime of v must enclose that
of the reference type of &v[1]. Similarly, if you store a reference in some data struc-
ture, its lifetime must enclose that of the data structure. If you build a vector of refer-
ences, say, all of them must have lifetimes enclosing that of the variable that owns the
vector.

This is the essence of the process Rust uses for all code. Bringing more language fea-
tures into the picture—data structures and function calls, say—introduces new sorts
of constraints, but the principle remains the same: first, understand the constraints
arising from the way the program uses references; then, find lifetimes that satisfy
them. This is not so different from the process C and C++ programmers impose on
themselves; the difference is that Rust knows the rules, and enforces them.

104 | Chapter5: References

Receiving References as Parameters

When we pass a reference to a function, how does Rust make sure the function uses it
safely? Suppose we have a function f that takes a reference and stores it in a global
variable. We'll need to make a few revisions to this, but here’s a first cut:

// This code has several problems, and doesn't compile.

static mut STASH: &i32;

fn f(p: &i32) { STASH = p; }
Rust’s equivalent of a global variable is called a static: it’s a value thats created when
the program starts and lasts until it terminates. (Like any other declaration, Rust’s
module system controls where statics are visible, so theyre only “global” in their life-
time, not their visibility.) We cover statics in Chapter 8, but for now we'll just call out
a few rules that the code just shown doesn’t follow:

« Every static must be initialized.

« Mutable statics are inherently not thread-safe (after all, any thread can access a
static at any time), and even in single-threaded programs, they can fall prey to
other sorts of reentrancy problems. For these reasons, you may access a mutable
static only within an unsafe block. In this example were not concerned with
those particular problems, so we'll just throw in an unsafe block and move on.

With those revisions made, we now have the following:

static mut STASH: &i32 = &128;
fn f(p: &i32) { // still not good enough
unsafe {
STASH = p;
}
}
We're almost done. To see the remaining problem, we need to write out a few things
that Rust is helpfully letting us omit. The signature of f as written here is actually
shorthand for the following:

fn f<'a>(p: &'a 132) { ... }

Here, the lifetime 'a (pronounced “tick A”) is a lifetime parameter of f. You can read
<'a> as “for any lifetime 'a” so when we write fn f<'a>(p: &'a 132), were defining
a function that takes a reference to an 132 with any given lifetime 'a.

Since we must allow 'a to be any lifetime, things had better work out if it’s the small-
est possible lifetime: one just enclosing the call to f. This assignment then becomes a
point of contention:

STASH = p;

Reference Safety | 105

Since STASH lives for the program’s entire execution, the reference type it holds must
have a lifetime of the same length; Rust calls this the 'static lifetime. But the lifetime
of p’s reference is some 'a, which could be anything, as long as it encloses the call to
f. So, Rust rejects our code:

error[E0312]: lifetime of reference outlives lifetime of borrowed content...
--> references_static.rs:6:17

|
6 | STASH = p;

I A

|

= note: ...the reference is valid for the static lifetime...
note: ...but the borrowed content is only valid for the anonymous lifetime #1

defined on the function body at 4:0
--> references_static.rs:4:1

|
4 | / fn f(p: &i32) { // still not good enough
51] unsafe {
6 | | STASH = p;
71| }
8113

[1n

At this point, its clear that our function can’t accept just any reference as an argu-
ment. But it ought to be able to accept a reference that has a 'static lifetime: storing
such a reference in STASH can't create a dangling pointer. And indeed, the following
code compiles just fine:

static mut STASH: &i32 = &10;

fn f(p: &'static 132) {
unsafe {
STASH = p;
}
}
This time, f’s signature spells out that p must be a reference with lifetime 'static, so
there’s no longer any problem storing that in STASH. We can only apply f to references
to other statics, but that’s the only thing that’s certain not to leave STASH dangling any-
way. So we can write:

static WORTH_POINTING_AT: 132 = 1000;

f(&WORTH_POINTING_AT);
Since WORTH_POINTING_AT is a static, the type of &WORTH_POINTING_AT is &'static
132, which is safe to pass to f.

Take a step back, though, and notice what happened to f’s signature as we amended
our way to correctness: the original f(p: &132) ended up as f(p: &'static 132).In
other words, we were unable to write a function that stashed a reference in a global

106 | Chapter5: References

variable without reflecting that intention in the function’s signature. In Rust, a func-
tion’s signature always exposes the body’s behavior.

Conversely, if we do see a function with a signature like g(p: &132) (or with the life-
times written out, g<'a>(p: &'a 132)), we can tell that it does not stash its argument
p anywhere that will outlive the call. There’s no need to look into g’s definition; the
signature alone tells us what g can and can’t do with its argument. This fact ends up
being very useful when you’re trying to establish the safety of a call to the function.

Passing References as Arguments

Now that we've shown how a function’ signature relates to its body, let’s examine how
it relates to the function’s callers. Suppose you have the following code:

// This could be written more briefly: fn g(p: &i32),
// but let's write out the lifetimes for now.

fn g<'a>(p: &'a 132) { ... }
let x = 10;
g(&x);

From g’s signature alone, Rust knows it will not save p anywhere that might outlive
the call: any lifetime that encloses the call must work for 'a. So Rust chooses the
smallest possible lifetime for &x: that of the call to g. This meets all constraints: it
doesn’t outlive x, and encloses the entire call to g. So this code passes muster.

Note that although g takes a lifetime parameter 'a, we didn’'t need to mention it when
calling g. You only need to worry about lifetime parameters when defining functions
and types; when using them, Rust infers the lifetimes for you.

What if we tried to pass &x to our function f from earlier that stores its argument in a
static?

fn f(p: &'static i32) { ... }
let x = 10;
f(&x);

This fails to compile: the reference & must not outlive x, but by passing it to f, we
constrain it to live at least as long as 'static. There’s no way to satisfy everyone here,
so Rust rejects the code.

Returning References

It’s common for a function to take a reference to some data structure, and then return
a reference into some part of that structure. For example, here’s a function that
returns a reference to the smallest element of a slice:

Reference Safety | 107

// v should have at least one element.
fn smallest(v: &[132]) -> &i32 {
let mut s = &v[0];
for r in &v[1..] {
if *r<*s {s=r; }
}

S

}

We've omitted lifetimes from that function’s signature in the usual way. When a func-
tion takes a single reference as an argument, and returns a single reference, Rust
assumes that the two must have the same lifetime. Writing this out explicitly would
give us:

fn smallest<'a>(v: &'a [132]) -> &'a 132 { ... }
Suppose we call smallest like this:

let s;

{
let parabola = [9, 4, 1, 0, 1, 4, 9]1;
s = smallest(¶bola);

}

assert_eq!(*s, 0); // bad: points to element of dropped array
From smallest’s signature, we can see that its argument and return value must have
the same lifetime, 'a. In our call, the argument ¶bola must not outlive parabola
itself; yet smallest’s return value must live at least as long as s. There’s no possible
lifetime 'a that can satisfy both constraints, so Rust rejects the code:

error: ‘parabola’ does not live long enough
--> references_lifetimes_propagated.rs:12:5

11 | s = smallest(¶bola);
TP borrow occurs here
12 | 3}
| A ‘parabola’ dropped here while still borrowed
13 | assert_eq!(*s, 0); // bad: points to element of dropped array
14 |
|

}

borrowed value needs to live until here
Moving s so that its lifetime is clearly contained within parabola’s fixes the problem:

{
let parabola = [9, 4, 1, 0, 1, 4, 9];
let s = smallest(¶bola);
assert_eq!(*s, 0); // fine: parabola still alive

}

Lifetimes in function signatures let Rust assess the relationships between the refer-
ences you pass to the function and those the function returns, and ensure theyre
being used safely.

108 | Chapter5: References

Structs Containing References

How does Rust handle references stored in data structures? Here’s the same erroneous
program we looked at earlier, except that we've put the reference inside a structure:

// This does not compile.
struct S {

r: &i32
}

let s;
{
let x = 10;
s=S{r: & };
}
assert_eq!(*s.r, 10); // bad: reads from dropped ‘x°
The safety constraints Rust places on references can’t magically disappear just because
we hid the reference inside a struct. Somehow, those constraints must end up apply-
ing to S as well. Indeed, Rust is skeptical:
error[EQ106]: missing lifetime specifier
--> references_in_struct.rs:7:12

7 r: &i32

I

| A expected lifetime parameter

Whenever a reference type appears inside another type’s definition, you must write
out its lifetime. You can write this:

struct S {
r: &'static i32
}
This says that r can only refer to 132 values that will last for the lifetime of the pro-
gram, which is rather limiting. The alternative is to give the type a lifetime parameter
'a, and use that for r:
struct S<'a> {
r: &'a i32
}
Now the S type has a lifetime, just as reference types do. Each value you create of type
S gets a fresh lifetime 'a, which becomes constrained by how you use the value. The
lifetime of any reference you store in r had better enclose 'a, and 'a must outlast the
lifetime of wherever you store the S.

Turning back to the preceding code, the expression S { r: &x } creates a fresh S
value with some lifetime 'a. When you store &x in the r field, you constrain 'a to lie
entirely within x’s lifetime.

Reference Safety | 109

The assignment s = S { ... } stores this S in a variable whose lifetime extends to
the end of the example, constraining 'a to outlast the lifetime of s. And now Rust has
arrived at the same contradictory constraints as before: 'a must not outlive x, yet
must live at least as long as s. No satisfactory lifetime exists, and Rust rejects the code.
Disaster averted!

How does a type with a lifetime parameter behave when placed inside some other
type?

struct T {
s: S // not adequate
}

Rust is skeptical, just as it was when we tried placing a reference in S without specify-
ing its lifetime:
error[EQ106]: missing lifetime specifier

--> references_in_nested_struct.rs:8:8

I
8 | s: S // not adequate
| A expected lifetime parameter
We can't leave off S’s lifetime parameter here: Rust needs to know how a T’s lifetime
relates to that of the reference in its S, in order to apply the same checks to T that it
does for S and plain references.

We could give s the 'static lifetime. This works:

struct T {
s: S<'static>
}
With this definition, the s field may only borrow values that live for the entire execu-
tion of the program. That's somewhat restrictive, but it does mean that a T can’t possi-
bly borrow a local variable; there are no special constraints on a Ts lifetime.

The other approach would be to give T its own lifetime parameter, and pass that to S:

struct T<'a> {
s: S<'a>
}
By taking a lifetime parameter 'a and using it in s’s type, we've allowed Rust to relate
a T value’ lifetime to that of the reference its S holds.

We showed earlier how a function’s signature exposes what it does with the references
we pass it. Now we've shown something similar about types: a type’s lifetime parame-
ters always reveal whether it contains references with interesting (that is,
non-'static) lifetimes, and what those lifetimes can be.

110 | Chapter5: References

For example, suppose we have a parsing function that takes a slice of bytes, and
returns a structure holding the results of the parse:

fn parse_record<'i>(input: &'i [u8]) -> Record<'i> { ... }

Without looking into the definition of the Record type at all, we can tell that, if we
receive a Record from parse_record, whatever references it contains must point into
the input buffer we passed in, and nowhere else (except perhaps at 'static values).

In fact, this exposure of internal behavior is the reason Rust requires types that con-
tain references to take explicit lifetime parameters. There’s no reason Rust couldn’t
simply make up a distinct lifetime for each reference in the struct, and save you the
trouble of writing them out. Early versions of Rust actually behaved this way, but
developers found it confusing: it is helpful to know when one value borrows some-
thing from another value, especially when working through errors.

It’s not just references and types like S that have lifetimes. Every type in Rust has a
lifetime, including 132 and String. Most are simply 'static, meaning that values of
those types can live for as long as you like; for example, a Vec<132> is self-contained,
and needn’t be dropped before any particular variable goes out of scope. But a type
like Vec<&'a 132> has a lifetime that must be enclosed by 'a: it must be dropped
while its referents are still alive.

Distinct Lifetime Parameters
Suppose you've defined a structure containing two references like this:

struct S<'a> {
x: &'a 132,
y: &'a 132
}
Both references use the same lifetime 'a. This could be a problem if your code wants
to do something like this:

let x = 10;
let r;
{
let y = 20;
{

let s =S { x: &, y: &y };
r = s.x;

}

This code doesn’t create any dangling pointers. The reference to y stays in s, which
goes out of scope before y does. The reference to x ends up in r, which doesn’t
outlive x.

Reference Safety | 111

If you try to compile this, however, Rust will complain that y does not live long
enough, even though it clearly does. Why is Rust worried? If you work through the
code carefully, you can follow its reasoning:

« Both fields of S are references with the same lifetime 'a, so Rust must find a sin-
gle lifetime that works for both s.x and s.y.

o Weassign r = s.x, requiring 'a to enclose r’s lifetime.

o We initialized s.y with &y, requiring 'a to be no longer than y’s lifetime.

These constraints are impossible to satisfy: no lifetime is shorter than y’s scope, but
longer than r’s. Rust balks.

The problem arises because both references in S have the same lifetime 'a. Changing
the definition of S to let each reference have a distinct lifetime fixes everything:
struct S<'a, 'b> {
x: &'a 132,
y: &'b 132
}
With this definition, s.x and s.y have independent lifetimes. What we do with s.x
has no effect on what we store in s.y, so it’s easy to satisfy the constraints now: 'a can
simply be r’s lifetime, and 'b can be s’s. (y’s lifetime would work too for 'b, but Rust
tries to choose the smallest lifetime that works.) Everything ends up fine.

Function signatures can have similar effects. Suppose we have a function like this:
fn f<'a>(r: &'a 132, s: &'a 132) -> &'a 132 { r } // perhaps too tight

Here, both reference parameters use the same lifetime 'a, which can unnecessarily
constrain the caller in the same way we've shown previously. If this is a problem, you
can let parameters’ lifetimes vary independently:

fn f<'a, 'b>(r: &'a 132, s: &'b 132) -> &'a 132 { r } // looser

The downside to this is that adding lifetimes can make types and function signatures
harder to read. Your authors tend to try the simplest possible definition first, and
then loosen restrictions until the code compiles. Since Rust won’t permit the code to
run unless its safe, simply waiting to be told when there’s a problem is a perfectly
acceptable tactic.

Omitting Lifetime Parameters

We've shown plenty of functions so far in this book that return references or take
them as parameters, but we've usually not needed to spell out which lifetime is which.
The lifetimes are there; Rust is just letting us omit them when it’s reasonably obvious
what they should be.

112 | Chapter5: References

In the simplest case, if your function doesn't return any references (or other types that
require lifetime parameters), then you never need to write out lifetimes for your
parameters. Rust just assigns a distinct lifetime to each spot that needs one. For
example:
struct S<'a, 'b> {
x: &'a 132,
y: &'b 132
}

fn sum_r_xy(r: &i32, s: S) -> i32 {
r+ s.x + s.y

}

This function’s signature is shorthand for:
fn sum_r_xy<'a, 'b, 'c>(r: &'a 132, s: S<'b, 'c>) -> i32

If you do return references or other types with lifetime parameters, Rust still tries to
make the unambiguous cases easy. If there’s only a single lifetime that appears among
your function’s parameters, then Rust assumes any lifetimes in your return value must
be that one:
fn first_third(point: &[132; 3]) -> (&i32, &i32) {
(&point[0], &point[2])
}

With all the lifetimes written out, the equivalent would be:
fn first_third<'a>(point: &'a [132; 3]) -> (&'a 132, &'a 132)

If there are multiple lifetimes among your parameters, then there’s no natural reason
to prefer one over the other for the return value, and Rust makes you spell out what’s
going on.

But as one final shorthand, if your function is a method on some type and takes its
self parameter by reference, then that breaks the tie: Rust assumes that self’s life-
time is the one to give everything in your return value. (A self parameter refers to
the value the method is being called on, Rusts equivalent of this in C++, Java, or
JavaScript, or self in Python. We'll cover methods in “Defining Methods with impl”
on page 198.)

For example, you can write the following:

struct StringTable {
elements: Vec<String>,

}

impl StringTable {
fn find_by_prefix(&self, prefix: &str) -> Option<&String> {
for 1 in 0 .. self.elements.len() {
if self.elements[i].starts_with(prefix) {

Reference Safety | 113

return Some(&self.elements[i]);

None

}
The find_by_prefix method’s signature is shorthand for:

fn find_by prefix<'a, 'b>(&'a self, prefix: &'b str) -> Option<&'a String>
Rust assumes that whatever you're borrowing, youre borrowing from self.

Again, these are just abbreviations, meant to be helpful without introducing sur-
prises. When they’re not what you want, you can always write the lifetimes out
explicitly.

Sharing Versus Mutation

So far, we've discussed how Rust ensures no reference will ever point to a variable that
has gone out of scope. But there are other ways to introduce dangling pointers. Here’s
an easy case:

let v = vec![4, 8, 19, 27, 34, 10];

let r = &v;
let aside = v; // move vector to aside
rfol; // bad: uses ‘v', which is now uninitialized

The assignment to aside moves the vector, leaving v uninitialized, turning r into a
dangling pointer, as shown in Figure 5-7.

v aside
—~A— r —~A—

ame o I o[8]¢]
frame

heap -4|8|19|27|34|10| | -

Figure 5-7. A reference to a vector that has been moved away

Although v stays in scope for r’s entire lifetime, the problem here is that v’s value gets
moved elsewhere, leaving v uninitialized while r still refers to it. Naturally, Rust
catches the error:

114 | Chapter5: References

error[EQ505]: cannot move out of ‘'v' because it is borrowed
--> references_sharing_vs_mutation_1.rs:10:9

|
9 | let r = &v;
| - borrow of ‘v occurs here
let aside = v; // move vector to aside

10 |
| ANAAA move out of ‘v’ occurs here

Throughout its lifetime, a shared reference makes its referent read-only: you may not
assign to the referent or move its value elsewhere. In this code, r’s lifetime contains
the attempt to move the vector, so Rust rejects the program. If you change the pro-
gram as shown here, there’s no problem:

let v = vec![4, 8, 19, 27, 34, 10];
{

let r = &v;

rfo]; // ok: vector is still there
}

let aside = v;

In this version, r goes out of scope earlier, the reference’s lifetime ends before v is
moved aside, and all is well.

Here’s a different way to wreak havoc. Suppose we have a handy function to extend a
vector with the elements of a slice:

fn extend(vec: &mut Vec<f64>, slice: &[f64]) {
for elt in slice {
vec.push(*elt);
}
}
This is a less flexible (and much less optimized) version of the standard library’s
extend_from_slice method on vectors. We can use it to build up a vector from slices
of other vectors or arrays:

let mut wave = Vec::new();
let head = vec![0.0, 1.0];
let tail = [0.0, -1.0];

extend(&mut wave, &head); // extend wave with another vector
extend(&mut wave, &tail); // extend wave with an array

assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0]);

So we've built up one period of a sine wave here. If we want to add another undula-
tion, can we append the vector to itself?

extend(&mut wave, &wave);
assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0,
0.0, 1.0, 0.0, -1.0]);

Sharing Versus Mutation | 115

This may look fine on casual inspection. But remember that when we add an element
to a vector, if its buffer is full, it must allocate a new buffer with more space. Suppose
wave starts with space for four elements, and so must allocate a larger buffer when
extend tries to add a fifth. Memory ends up looking like Figure 5-8.

slice

extend's
stack frame

caller's
stack frame

wave'sold
buffer (freed)

v ,
I o[o oo[-1ofoo] T T [Sivscibie
]

length
capacity

heap

Figure 5-8. A slice turned into a dangling pointer by a vector reallocation

The extend function’s vec argument borrows wave (owned by the caller), which has
allocated itself a new buffer with space for eight elements. But slice continues to
point to the old four-element buffer, which has been dropped.

This sort of problem isn't unique to Rust: modifying collections while pointing into
them is delicate territory in many languages. In C++, the std: :vector specification
cautions you that “reallocation [of the vector’s buffer] invalidates all the references,
pointers, and iterators referring to the elements in the sequence.” Similarly, Java says,
of modifying a java.util.Hashtable object:

[I]f the Hashtable is structurally modified at any time after the iterator is created, in
any way except through the iterator’s own remove method, the iterator will throw a
ConcurrentModificationException.

What's especially difficult about this sort of bug is that it doesn’t happen all the time.
In testing, your vector might always happen to have enough space, the buffer might
never be reallocated, and the problem might never come to light.

116 | Chapter5: References

Rust, however, reports the problem with our call to extend at compile time:

error[EQ502]: cannot borrow ‘wave' as immutable because it is also borrowed as mutable
--> references_sharing_vs_mutation_2.rs:9:24

9 extend(&mut wave, &wave);

|
|
| ---- AAAAL mutable borrow ends here
|
|
|

| immutable borrow occurs here
mutable borrow occurs here

In other words, we may borrow a mutable reference to the vector, and we may bor-
row a shared reference to its elements, but those two references’ lifetimes may not
overlap. In our case, both references’ lifetimes contain the call to extend, so Rust
rejects the code.

These errors both stem from violations of Rust’s rules for mutation and sharing:

o Shared access is read-only access. Values borrowed by shared references are read-
only. Across the lifetime of a shared reference, neither its referent, nor anything
reachable from that referent, can be changed by anything. There exist no live
mutable references to anything in that structure; its owner is held read-only; and
so on. It’s really frozen.

o Mutable access is exclusive access. A value borrowed by a mutable reference is
reachable exclusively via that reference. Across the lifetime of a mutable refer-
ence, there is no other usable path to its referent, or to any value reachable from
there. The only references whose lifetimes may overlap with a mutable reference
are those you borrow from the mutable reference itself.

Rust reported the extend example as a violation of the second rule: since we've bor-
rowed a mutable reference to wave, that mutable reference must be the only way to
reach the vector or its elements. The shared reference to the slice is itself another way
to reach the elements, violating the second rule.

But Rust could also have treated our bug as a violation of the first rule: since we've
borrowed a shared reference to wave’s elements, the elements and the Vec itself are all
read-only. You can’t borrow a mutable reference to a read-only value.

Each kind of reference affects what we can do with the values along the owning path
to the referent, and the values reachable from the referent (Figure 5-9).

Sharing Versus Mutation | 117

Ownership tree Borrowing a shared reference Borrowing a mutable reference

. inaccessible
variable

| o | | | o | | | o | |

shared mutable
heap- reference reference
alllocated not % &mut
values read-only

read-only accessible only
through the reference

Figure 5-9. Borrowing a reference affects what you can do with other values in the same
ownership tree

Note that in both cases, the path of ownership leading to the referent cannot be
changed for the reference’s lifetime. For a shared borrow, the path is read-only; for a
mutable borrow, it’s completely inaccessible. So there’s no way for the program to do
anything that will invalidate the reference.

Paring these principles down to the simplest possible examples:

let mut x = 10;

let r1 = &x;
let r2 = &x; // ok: multiple shared borrows permitted
X += 10; // error: cannot assign to ‘x' because it is borrowed

let m = &mut x; // error: cannot borrow ‘x' as mutable because it 1is

// also borrowed as immutable

let mut y = 20;

let m1 = &mut y;

let m2 = &mut y; // error: cannot borrow as mutable more than once

let z = y; // error: cannot use 'y because it was mutably borrowed

It is OK to reborrow a shared reference from a shared reference:

let mut w = (107, 109);

let r = &w;
let r0 = &r.0; // ok: reborrowing shared as shared
let m1 = &mut r.1; // error: can't reborrow shared as mutable

You can reborrow from a mutable reference:

let mut v = (136, 139);
let m = &mut v;

let m0 = &mut m.0O; // ok: reborrowing mutable from mutable
*mO = 137;
let r1 = &m.1; // ok: reborrowing shared from mutable,

// and doesn't overlap with m@

v.1; // error: access through other paths still forbidden

118

Chapter 5: References

These restrictions are pretty tight. Turning back to our attempted call extend(&mut
wave, &wave), there’s no quick and easy way to fix up the code to work the way wed
like. And Rust applies these rules everywhere: if we borrow, say, a shared reference to
a key in a HashMap, we can't borrow a mutable reference to the HashMap until the
shared reference’s lifetime ends.

But there’s good justification for this: designing collections to support unrestricted,
simultaneous iteration and modification is difficult, and often precludes simpler,
more efficient implementations. Java’s Hashtable and C++’s vector don’t bother, and
neither Python dictionaries nor JavaScript objects define exactly how such access
behaves. Other collection types in JavaScript do, but require heavier implementations
as a result. C++’s std::map promises that inserting new entries doesn't invalidate
pointers to other entries in the map, but by making that promise, the standard pre-
cludes more cache-efficient designs like Rust’s BTreeMap, which stores multiple
entries in each node of the tree.

Here’s another example of the kind of bug these rules catch. Consider the following
C++ code, meant to manage a file descriptor. To keep things simple, we're only going
to show a constructor and a copying assignment operator, and were going to omit
error handling:

struct File {
int descriptor;

File(int d) : descriptor(d) { }

File& operator=(const File &rhs) {
close(descriptor);
descriptor = dup(rhs.descriptor);
}
1

The assignment operator is simple enough, but fails badly in a situation like this:
File f(open("foo.txt", ...));
Vi
If we assign a File to itself, both rhs and *this are the same object, so operator=

closes the very file descriptor it’s about to pass to dup. We destroy the same resource
we were meant to copy.

In Rust, the analogous code would be:

struct File {
descriptor: 132

}

fn new_file(d: 132) -> File {
File { descriptor: d }

Sharing Versus Mutation | 119

}

fn clone_from(this: &mut File, rhs: &File) {
close(this.descriptor);
this.descriptor = dup(rhs.descriptor);

}

(This is not idiomatic Rust. There are excellent ways to give Rust types their own con-
structor functions and methods, which we describe in Chapter 9, but the preceding
definitions work for this example.)

If we write the Rust code corresponding to the use of File, we get:

let mut f = new_file(open("foo.txt", ...));

clone_from(&mut f, &f);
Rust, of course, refuses to even compile this code:

error[EQ502]: cannot borrow 'f' as immutable because it is also
borrowed as mutable
--> references_self_assignment.rs:18:25

|
18 | clone_from(&mut f, &f);
| - ~- mutable borrow ends here

| [
| | immutable borrow occurs here
| mutable borrow occurs here

This should look familiar. It turns out that two classic C++ bugs—failure to cope with
self-assignment, and using invalidated iterators—are the same underlying kind of
bug! In both cases, code assumes it is modifying one value while consulting another,
when in fact they’re both the same value. If you've ever accidentally let the source and
destination of a call to memcpy or strcpy call overlap in C or C++, that’s yet another
form the bug can take. By requiring mutable access to be exclusive, Rust has fended
off a wide class of everyday mistakes.

The immiscibility of shared and mutable references really demonstrates its value
when writing concurrent code. A data race is possible only when some value is both
mutable and shared between threads—which is exactly what Rust’s reference rules
eliminate. A concurrent Rust program that avoids unsafe code is free of data races by
construction. We'll cover this aspect in more detail when we talk about concurrency in
Chapter 19, but in summary, concurrency is much easier to use in Rust than in most
other languages.

120 | Chapter5: References

Rust’s Shared References Versus ('s Pointers to const

On first inspection, Rusts shared references seem to closely resemble C and C++’s
pointers to const values. However, Rust’s rules for shared references are much
stricter. For example, consider the following C code:

int x = 42; // int variable, not const

const int *p = &x; // pointer to const int

assert(*p == 42);

X++; // change variable directly

assert(*p == 43); // “constant” referent's value has changed

The fact that p is a const int * means that you can’t modify its referent via p itself:
(*p)++ is forbidden. But you can also get at the referent directly as x, which is not
const, and change its value that way. The C family’s const keyword has its uses, but
constant it is not.

In Rust, a shared reference forbids all modifications to its referent, until its lifetime
ends:

let mut x = 42; // nonconst 132 variable

let p = &x; // shared reference to 132

assert_eq!(*p, 42);

X += 1; // error: cannot assign to x because it is borrowed
assert_eq!(*p, 42); // 1f you take out the assignment, this is true

To ensure a value is constant, we need to keep track of all possible paths to that value,
and make sure that they either don’t permit modification or cannot be used at all. C
and C++ pointers are too unrestricted for the compiler to check this. Rust’s references
are always tied to a particular lifetime, making it feasible to check them at compile
time.

Taking Arms Against a Sea of Objects

Since the rise of automatic memory management in the 1990s, the default architec-
ture of all programs has been the sea of objects, shown in Figure 5-10.

This is what happens if you have garbage collection and you start writing a program
without designing anything. We've all built systems that look like this.

This architecture has many advantages that don’t show up in the diagram: initial pro-
gress is rapid, it’s easy to hack stuff in, and a few years down the road, you’ll have no
difficulty justifying a complete rewrite. (Cue AC/DC’s “Highway to Hell”)

Taking Arms Against a Sea of Objects | 121

Figure 5-10. A sea of objects

Of course, there are disadvantages too. When everything depends on everything else
like this, it’s hard to test, evolve, or even think about any component in isolation.

One fascinating thing about Rust is that the ownership model puts a speed bump on
the highway to hell. It takes a bit of effort to make a cycle in Rust—two values such
that each one contains a reference pointing to the other. You have to use a smart
pointer type, such as Rc, and interior mutability—a topic we haven’t even covered yet.
Rust prefers for pointers, ownership, and data flow to pass through the system in one
direction, as shown in Figure 5-11.

ATERS

VAR VAR
[Y e

Figure 5-11. A tree of values

The reason we bring this up right now is that it would be natural, after reading this
chapter, to want to run right out and create a “sea of structs,” all tied together with Rc
smart pointers, and re-create all the object-oriented antipatterns you're familiar with.
This won't work for you right away. Rust’s ownership model will give you some trou-
ble. The cure is to do some up-front design and build a better program.

Rust is all about transferring the pain of understanding your program from the future
to the present. It works unreasonably well: not only can Rust force you to understand
why your program is thread-safe, it can even require some amount of high-level
architectural design.

122 | Chapter5: References

