
68 Copublished by the IEEE CS and the AIP 1521-9615/10/$26.00 © 2010 IEEE Computing in SCienCe & engineering

S C I E n t I f I C P r o g r A m m I n g

Editors: Konstantin Läufer, laufer@cs.luc.edu

Konrad Hinsen, hinsen@cnrs-orleans.fr

Why Modern CPUs Are stArving
And WhAt CAn Be done ABoUt it
By Francesc Alted

A well-documented trend shows
that CPU speeds are in-
creasing at a faster rate than

memory speeds.1,2 Indeed, CPU per-
formance has now outstripped mem-
ory performance to the point that
current CPUs are starved for data,
as memory I/O becomes the perfor-
mance bottleneck.

This hasn’t always been the case.
Once upon a time, processor and
memory speeds evolved in parallel.
For example, memory clock access in
the early 1980s was at approximately
1 MHz, and memory and CPU speeds
increased in tandem to reach speeds
of 16 MHz by decade’s end. By the
early 1990s, however, CPU and mem-
ory speeds began to drift apart: mem-
ory speed increases began to level off,
while CPU clock rates continued to
skyrocket to 100 MHz and beyond.
It wasn’t too long before CPU capa-
bilities began to substantially outstrip
memory performance. Consider this: a
100 MHz processor consumes a word
from memory every 10 nanoseconds
in a single clock tick. This rate is im-
possible to sustain even with present-
day RAM, let alone with the RAM
available when 100 MHz processors
were state of the art. To address this
mismatch, commodity chipmakers in-
troduced the first on-chip cache.

But CPUs didn’t stop at 100 MHz; by
the start of the new millennium, pro-
cessor speeds reached unparalleled ex-
tremes, hitting the magic 1 GHz figure.

As a consequence, a huge abyss opened
between the processors and the memory
subsystem: CPUs had to wait up to 50
clock ticks for each memory read or
write operation.

During the early and middle 2000s,
the strong competition between Intel
and AMD continued to drive CPU
clock cycles faster and faster (up to 4
GHz). Again, the increased impedance
mismatch with memory speeds forced
vendors to introduce a second-level
cache in CPUs. In the past five years,
the size of this second-level cache
grew rapidly, reaching 12 Mbytes in
some instances.

Vendors started to realize that they
couldn’t keep raising the frequency
forever, however, and thus dawned
the multicore age. Programmers be-
gan scratching their heads, wondering
how to take advantage of those shiny
new and apparently innovative multi-
core machines. Today, the arrival of
Intel i7 and AMD Phenom makes
four-core on-chip CPUs the most
common configuration. Of course,
more processors means more demand
for data, and vendors thus introduced
a third-level cache.

So, here we are today: memory la-
tency is still much greater than pro-
cessor clock step (around 150 times
greater or more) and has become an
essential bottleneck over the past 20
years. Memory throughput is improv-
ing at a better rate than its latency,
but it’s also lagging behind processors

(about 25 times slower). The result is
that current CPUs are suffering from
serious starvation: they’re capable of
consuming (much!) more data than
the system can possibly deliver.

The Hierarchical
Memory Model
Why, exactly, can’t we improve mem-
ory latency and bandwidth to keep
up with CPUs? The main reason is
cost: it’s prohibitively expensive to
manufacture commodity SDRAM
that can keep up with a modern pro-
cessor. To make memory faster, we
need motherboards with more wire
layers, more complex ancillary logic,
and (most importantly) the ability to
run at higher frequencies. This addi-
tional complexity represents a much
higher cost, which few are willing to
pay. Moreover, raising the frequency
implies pushing more voltage through
the circuits. This causes the energy
consumption to quickly skyrocket and
more heat to be generated, which re-
quires huge coolers in user machines.
That’s not practical.

To cope with memory bus limita-
tions, computer architects introduced
a hierarchy of CPU memory caches.3

Such caches are useful because they’re
closer to the processor (normally in
the same die), which improves both la-
tency and bandwidth. The faster they
run, however, the smaller they must
be due mainly to energy dissipation
problems. In response, the industry

CPUs spend most of their time waiting for data to arrive. Identifying low-level bottlenecks—and how to
ameliorate them—can save hours of frustration over poor performance in apparently well-written programs.

CISE-12-2-ScientificPro.indd 68 2/8/10 2:23:25 PM

marCh/april 2010 69

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to
the CPU) are faster but have reduced
capacities and are best suited for per-
forming computations; higher-level
caches are slower but have higher ca-
pacity and are best suited for storage
purposes.

Figure 1 shows the evolution of
this hierarchical memory model over
time. The forthcoming (or should I
say the present?) hierarchical model
includes a minimum of six memory
levels. Taking advantage of such a
deep hierarchy isn’t trivial at all, and
programmers must grasp this fact
if they want their code to run at an
acceptable speed.

Techniques to Fight
Data Starvation
Unlike the good old days when the
processor was the main bottleneck,
memory organization has now be-
come the key factor in optimization.
Although learning assembly language
to get direct processor access is (rela-
tively) easy, understanding how the
hierarchical memory model works—
and adapting your data structures
accordingly—requires considerable
knowledge and experience. Until we
have languages that facilitate the de-
velopment of programs that are aware

of memory hierarchy (for an example
in progress, see the Sequoia project
at www.stanford.edu/group/sequoia),
programmers must learn how to
deal with this problem at a fairly low
level.4

There are some common techniques
to deal with the CPU data-starvation
problem in current hierarchical mem-
ory models. Most of them exploit the
principles of temporal and spatial
locality. In temporal locality, the target
dataset is reused several times over
a short period. The first time the
dataset is accessed, the system must
bring it to cache from slow memory;
the next time, however, the processor
will fetch it directly (and much more
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In
this case, circuits are designed to fetch
memory elements that are clumped
together much faster than if they’re
dispersed. In addition, specialized
circuitry (even in current commodity
hardware) offers prefetching—that is,
it can look at memory-access patterns
and predict when a certain chunk of
data will be used and start to trans-
fer it to cache before the CPU has
actually asked for it. The net result is
that the CPU can retrieve data much
faster when spatial locality is properly
used.

Programmers should exploit the op-
timizations inherent in temporal and
spatial locality as much as possible.
One generally useful technique that
leverages these principles is the block-
ing technique (see Figure 2). When
properly applied, the blocking tech-
nique guarantees that both spatial and
temporal localities are exploited for
maximum benefit.

Although the blocking technique
is relatively simple in principle, it’s
less straightforward to implement
in practice. For example, should the
basic block fit in cache level one,
two, or three? Or would it be bet-
ter to fit it in main memory—which
can be useful when computing large,
disk-based datasets? Choosing from
among these different possibilities
is difficult, and there’s no substitute
for experimentation and empirical
analysis.

In general, it’s always wise to use
libraries that already leverage the
blocking technique (and others) for
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is
a virtual machine written in Python
and C that lets you evaluate poten-
tially complex arithmetic expressions
over arbitrarily large arrays. Using the
blocking technique in combination

figure 1. Evolution of the hierarchical memory model. (a) the primordial (and simplest) model; (b) the most common current
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade:
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Sp
eed

C
ap

ac
ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd 69 2/8/10 2:23:26 PM

S C I E n t I f I C P r o g r A m m I n g

70 Computing in SCienCe & engineering

with a specialized, just-in-time (JIT)
compiler offers a good balance between
cache and branch prediction, allowing
optimal performance for many vector
operations. However, for expressions
involving matrices, Lapack is a better
fit and can be used in almost any lan-
guage. Also, compression is another
field where the blocking technique
can bring important advantages (see
the sidebar, “Compression and Data
Access”).

Enter the Multicore Age
Ironically, even as the memory
subsystem has increasingly lagged
behind the processor over the past
two decades, vendors have started to
integrate several cores in the same
CPU die, further exacerbating the
problem. At this point, almost ev-
ery new computer comes with sev-
eral high-speed cores that share a
single memory bus. Of course, this
only starves the CPUs even more as

several cores fight for scarce memory
resources. To make this situation
worse, you must synchronize the cach-
es of different cores to ensure coherent
access to memory, effectively increas-
ing memory operations’ latency even
further.

To address this problem, the in-
dustry introduced the nonuniform
memory access (NUMA) architec-
ture in the 1990s. In NUMA, dif-
ferent memory banks are dedicated
to different processors (typically in
different physical sockets), thereby
avoiding the performance hit that
results when several processors at-
tempt to address the same memory
at the same time. Here, processors
can access local memory quickly and
remote memory more slowly. This
can dramatically improve memory
throughput as long as the data is
localized to specific processes (and
thus processors). However, NUMA
makes the cost of moving data from
one processor to another signifi-
cantly more expensive. Its benefits
are therefore limited to particular
workloads—most notably on serv-
ers where the data is often associated
with certain task groups. NUMA is
less useful for accelerating parallel
processes (unless memory access is
optimized). Given this, multicore/
NUMA programmers should realize
that software techniques for improv-
ing memory access are even more
important in this environment than
in single-core processing.

figure 2. the blocking technique. the blocking approach exploits both spatial and
temporal localities for maximum benefit by retrieving a contiguous block that fits
into the CPU cache at each memory access, then operates upon it and reuses it as
much as possible before writing the block back to memory.

Dataset A

Dataset B

Dataset C

C = A <oper> B

Central processing unit

Cache

Operate

Compression and data aCCess

over the past 10 years, it’s been standard practice to
use compression to accelerate the reading and writing

of large datasets to and from disks. optimizations based
on compression leverage the fact that it’s generally faster
to read and write a small (compressed) dataset than a
larger (uncompressed) one, even when accounting for
(de)compression time. So, given the gap between proces-
sor and memory speed, can compression also accelerate
data transfer from memory to the processor?

the new blocking, shuffling, and compression (Blosc)
library project uses compression to improve memory-access
speed. Blosc is a lossless compressor for binary data that is
optimized for speed rather than high compression ratios.

It uses the blocking technique (which I describe in the
main text) to reduce activity on the memory bus as much
as possible. In addition, the shuffle algorithm maximizes
the compression ratio of data stored in small blocks.

As preliminary benchmarks show, for highly compress-
ible datasets, Blosc can effectively transmit compressed
data from memory to CPU faster than it can transmit
uncompressed data (see www.pytables.org/docs/
StarvingCPUs.pdf). However, for datasets that compress
poorly, transfer speeds still lag behind those of uncom-
pressed datasets. As the gap between CPU and memory
speed continues to widen, I expect Blosc to improve
memory-to-CPU data transmission rates over an increasing
range of datasets. You can find more information about
Blosc at http://blosc.pytables.org.

CISE-12-2-ScientificPro.indd 70 2/8/10 2:23:27 PM

marCh/april 2010 71

CPUs and GPUs:
Bound to Collaborate
Multicores aren’t the latest challenge
to memory access. In the last few
years, Nvidia suddenly realized that
its graphics cards (also called graph-
ics processing units, or GPUs) were
in effect small parallel supercomput-
ers. The company therefore took the
opportunity to improve the GPUs’
existing shaders—used primarily
to calculate rendering effects—and
convert them into “stream” or thread
processors. They also created the
Compute Unified Device Architec-
ture (CUDA),5 a parallel program-
ming model for GPUs that has proven
to be so popular that a new standard,
OpenCL (www.khronos.org/opencl),
quickly emerged to help any hetero-
geneous mix of CPUs and GPUs in
a system work together to solve prob-
lems faster.

You can seamlessly integrate the
current generation of GPUs to run
tens of thousands of threads simulta-
neously. Regarding the starving cores
problem, you might wonder whether
GPUs have any practical utility what-
soever given the memory bottleneck
or whether they’re mostly marketing
hype.

Fortunately, GPUs are radically
different beasts than CPUs and tra-
ditional motherboards. One of the
critical differences is that GPUs
access memory over much better
bandwidth (up to 10 times faster
in some cases). This is because a
GPU is designed to access memory
in parallel over independent paths.
One problem with this design, how-
ever, is that to take advantage of
the tremendous bandwidth, all the
available memory has to run at very
high frequencies—effectively limit-
ing the total amount of high-speed
memory (up to 1 Gbyte on most

current cards). In contrast, current
commodity motherboards are de-
signed to address a much greater
amount of memory (up to 16 Gbytes
or more).

You can compensate for the fact
that GPUs access less memory
(albeit at much faster speeds) by using
new programming paradigms—such
as OpenCL—that effectively com-
bine GPUs with CPUs (which access
much more memory at lower speeds).
Of course, many problems remain
to be solved before this combination
is truly effective, from implement-
ing specific hardware to enhance
the CPU-to-GPU communication
latency and bandwidth to developing
new software that allows program-
mers to take advantage of this new
computational model. Only time will
tell whether this approach becomes
mainstream, but both hardware and
software developers are investing
considerable effort in exploring it (see
www.nvidia.com/object/cuda_home.
html#).

T he gap between CPU and mem-
ory speeds is enormous and

will continue to widen for the fore-
seeable future. And, over time, an
increasing number of applications
will be limited by memory access.
The good news is that chip manu-
facturers and software developers
are creating novel solutions to CPU
starvation.

But vendors can’t do this work
alone. If computational scientists
want to squeeze the most perfor-
mance from their systems, they’ll
need more than just better hardware
and more powerful compilers or
profilers—they’ll need a new way to
look at their machines. In the new
world order, data arrangement, not

the code itself, will be central to
program design.

Acknowledgments
I’m grateful to my friend, Scott Prater,
for turning my writing into something
that a reader might actually want to
look at.

References
K. Dowd, “memory reference opti-1.

mizations,” High Performance Comput-

ing, o’reilly & Associates, 1993,

pp. 213–233.

C. Dunphy, “rAm-o-rama—Your field 2.

guide to memory types,” Maximum

PC, mar. 2000, pp. 67–69.

 r. van der Pas, 3. Memory Hierarchy in

Cache-Based Systems, tech. report, Sun

microsystems, nov. 2002; www.sun.

com/blueprints/1102/817-0742.pdf.

U. Drepper, 4. What Every Programmer

Should Know About Memory, tech.

report, redHat Inc., nov. 2007;

http://people.redhat.com/drepper/

cpumemory.pdf.

 t. Halfhill, “Parallel Processing with 5.

CUDA: nvidia’s High-Performance

Computing Platform Uses massive

multithreading,” Microprocessor

Report, vol. 22, no. 1, 2008; www.

mdronline.com/mpr/h/2008/0128/

220401.html.

Francesc Alted is a freelance developer and

consultant in the high-performance data-

bases field. He is also creator of the Pytables

project (www.pytables.org), where he puts

into practice lessons learned during years

of fighting with computers. Contact him at

faltet@pytables.org.

Selected articles and columns from
IEEE Computer Society publica-

tions are also available for free at http://
ComputingNow.computer.org.

CISE-12-2-ScientificPro.indd 71 2/8/10 2:23:29 PM

