
ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2015

56

//architect /

The first article in this series about the effects of modern chip
design on programming focused on the memory system,

specifically the cache hierarchy. In this article, Part 2, I extend
our investigation to the issues of multithreaded access. In Part 3,
I will look at the internal workings of the CPU itself.

False Sharing
In our first experiment, we will see a surprising effect that can
occur when memory is accessed concurrently from different
threads. The code in Listing 1 contains an array of 17 integers
and four methods that modify different elements of the array.
The experiment consists of two test runs in which we run two
of the methods concurrently on different threads. In the first
test run, we will execute the methods modifyFarA() and
modifyFarB(), which modify two array elements that are
16 elements apart. In the second test run, we will execute the
methods modifyNearA() and modifyNearB(), which modify
two adjacent array elements. The only difference is how far
apart the modified array elements are. How does that affect
performance?

Listing 1.
public final int[] array = new int[17];

@Benchmark
@Group("near")
public void modifyNearA() {

 array[0]++;
}

@Benchmark
@Group("near")
public void modifyNearB() {
 array[1]++;
}

@Benchmark
@Group("far")
public void modifyFarA() {
 array[0]++;
}

@Benchmark
@Group("far")
public void modifyFarB() {
 array[16]++;
}

On my laptop, a method call in the first test run takes about
3.6 ns, while in the second test run it takes 4.5 ns. In other
words, if the array elements are farther apart, modifications are
25 percent faster. How can that be?

There are actually two puzzles to solve here. Why does it
matter how far apart the elements are? And why do these

How false sharing and branch misprediction can have unwanted effects on your code’s performance

Part 2

Inside the CPU: the Unexpected
Effects of Instruction Execution

MICHAEL HEINRICHS
BIO

PHOTOGRAPH COURTESY
OF DEVOXX

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2015

57

//architect /

methods interfere with each other at all, even though they access
different variables?

Watchful readers will notice the similarity to the initial example in the
first article of this series. If elements of an integer array are 16 elements or
more apart, they will be located in different cache lines. If they are closer to
each other, chances are great that they will end up in the same cache line. Is
the observed variation in behavior related to cache lines?

Indeed, it is. The memory system has no understanding of Java. It does
not know about Java arrays and Java variables. It smallest unit is a cache
line. If two threads modify the same cache line, they interfere with each
other and it does not matter that we modified two different variables in the
source code.

Why do two threads that modify the same cache line slow each other
down? We have to fill out our model of the cache hierarchy to understand
this effect. When two threads run in parallel long enough, they end up on
different CPU cores. CPU cores do not share an L1 cache—each core has its
own. (Note: How the L2 and L3 caches are shared between cores depends
on the architecture. For example, a typical setup is that L2 cache is shared
between adjacent cores while L3 cache is shared between all cores.)

As each core copies the cache line into its respective L1 cache and does
the update to the variable, the core notifies the other cores of the update
and tells them to freshen the L1 cache copy they own.

Modern computers use a variant of the Modified
Exclusive Shared Invalid (MESI) protocol to synchro-
nize the L1 caches. The protocols used today have been
improved, but the basic principle remains the same. In
the MESI protocol, every cache line that was loaded into
the cache is in one of four states: Modified, Exclusive,
Shared, or Invalid. The Modified state means that the
cache has an exclusive copy of the cache line and has
modified it. If a cache line is in the Exclusive state, it also
means that it is an exclusive copy, but it has not been
modified yet. A cache line is in the Shared state if there
are copies in two or more caches, but none of them has
been modified. An Invalid cache line is no longer valid and
cannot be used.

Figure 1 shows the state changes during our experi-
ment. Figure 1a shows the state changes during the

first test run, when the array elements were farther apart and the threads
accessed different cache lines. When one of the threads loaded a cache
line into the cache, the line was marked as being Exclusive. When the
thread modified it, the state switched to Modified. From then on, the
cache line remained in the Modified state. Access to the cache line was
fast, because the Modified state tells us that we can update the cache line

The MESI
protocol ensures
that the
system never
works with
two different
versions of
the same
cache line.

MODIFIED EXCLUSIVE

SHARED INVALID

a b

Cache Line is read

MODIFIED EXCLUSIVE

SHARED INVALID

Cache Line is shared

MODIFIED EXCLUSIVE

SHARED INVALID

Cache Line is modified

MODIFIED EXCLUSIVE

SHARED INVALID

Core 1
modifies

Core 2’s cache
line is invalid

MODIFIED EXCLUSIVE

SHARED INVALID

No further state changes

MODIFIED EXCLUSIVE

SHARED INVALID

Core Line
is shared

Core 2 reads

Figure 1: MESI state changes while modifying elements (1a: adjacent elements,
1b: distant elements)

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2015

58

//architect /

directly without any further actions.
Things were more complicated during the second test run, as can be

seen in Figure 1b. The MESI protocol ensures that the system never works
with two different versions of the same cache line. Both threads modi-
fied the same cache line; therefore, when the second thread requested
the cache line, it had to load it from the L1 cache of the first core and both
caches had to mark their respective cache lines as shared. When one of the
two threads tried to modify the cache line, it first had to signal the other
cache that its cache line had become invalid. Only after that was successful
and its cache line entered the Modified state was it able to do the modi-
fication. But when the other thread requested the cache line, both caches
had to synchronize again and switch to the Shared state. Then we had to
start all over again. The constant need to mark the other thread as invalid
and synchronize back again once done was the reason why the second test
ran slower than the first.

The problem of two seemingly independent variables affecting each
other’s performance is so common that it has its own name: false shar-
ing. It is extremely tricky to detect, because false sharing is invisible if you
look at Java alone. One of the examples in the Java Microbenchmarking
Harness gives a good overview of different techniques to avoid false shar-
ing between two variables. The basic idea of all solutions is to insert other
variables to ensure that the two variables potentially affected by false shar-
ing are located in different cache lines.

Linear Search or Binary Search? The Cost of Branch Misses
At this point, we leave the memory system behind to take a closer look
at the CPU itself. With our next experiment, we will try to answer a sim-
ple question: If executed on a small array, which is faster—linear search
(Listing 2) or binary search (Listing 3)?

Listing 2.
public static boolean linearSearch(
 int needle, int[] haystack) {

 for (int current : haystack) {
 if (current == needle) {
 return true;
 } else if (current > needle) {

 return false;
 }
 }

 return false;
}

Listing 3.
public static boolean binarySearch(int needle,
 int[] haystack) {

 int low = 0;
 int high = haystack.length - 1;

 while (low <= high) {
 int mid = (low + high) >>> 1;
 int midVal = haystack[mid];

 if (midVal < needle)
 low = mid + 1;
 else if (midVal > needle)
 high = mid - 1;
 else
 return true;
 }
 return false;
}

For large arrays, the binary search outperforms linear search by a wide
margin: the larger the array, the larger the performance gap. But for small
arrays, such as one of 16 integers, the answer is not straightforward,
because the outcome depends on the CPU architecture. On my laptop, a
binary search takes 28.2 ns on average, whereas a linear search takes only
21.8 ns. Most of us would have expected that binary search would be faster,
because it requires fewer iterations. How is it possible that linear search is
that much faster?

To get an initial idea, let’s run perf again on both algorithms. (For a quick
introduction to the usage of perf, see the first article in this series.) The per-

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2015

59

//architect /

formance numbers are roughly the same, but there is a significant differ-
ence in the number of branch misses. [Screen shots with full perf results are
available in the download area. —Ed.] The linear search had 346.9 million
branch misses, while the binary search had 526.4 million. What is a branch
miss? To understand branch misses, we need to take a step back and
take a look at a mechanism called pipelining.
Pipelining. When the CPU processes an instruction, it actually has
several steps to perform. The instruction needs to be fetched from
memory and decoded. That is, the CPU must figure out what kind of
instruction it is dealing with. After that, the instruction needs to be
executed and the result has to be written back to memory. Figure 2
shows the internal structure of a CPU and how a single instruction A
steps through the different stages on a mythical CPU with no pipeline.

The operations performed at each stage are quite different. The
stages are implemented in different parts of the CPU. Thus, if a pro-
cessor really worked as shown in Figure 2, it would be inefficient,
because most of its parts would be idle most of the time, waiting for
the next instruction to arrive. Early on, chip designers thought about
ways to keep all components busy and came up with a solution
called pipelining.

The principle can be seen in Figure 3. Instruction A is fetched.
While instruction A is decoded, the CPU fetches the next instruction,
B. As it executes instruction A, the CPU decodes instruction B, fetches
the third instruction C, and so on. Instead of processing one instruc-

tion after another, the CPU processes a stream of
instructions: the instruction pipeline.

This works extremely well. A single instruction
still needs four cycles to step through all four stages,
but with pipelining the throughput increases from
one instruction every four cycles to one instruction
per cycle.
Branch prediction. There is one case, however, in
which pipelining becomes tricky: conditional jumps.
Imagine that instruction A is a conditional jump and
that, depending on the outcome, it may execute
instruction B or jump directly to a distant instruction
X. Should the CPU fetch instruction B or X while we
decode A? It does not know the outcome of the con-

ditional jump yet, because that becomes clear only after instruction A has
finished the execution stage.

Different processor architectures deal with this situation differently. One
of the most common strategies is branch prediction: The CPU guesses

Figure 2: CPU execution without pipeline Figure 3: CPU execution with pipeline

Most parts are idle

FETCH DECODE EXECUTE WRITE
BACK

A

FETCH DECODE EXECUTE WRITE
BACK

A

FETCH DECODE EXECUTE WRITE
BACK

A

FETCH DECODE EXECUTE WRITE
BACK

A

FETCH DECODE EXECUTE WRITE
BACK

B

FETCH DECODE EXECUTE WRITE
BACK

A

FETCH DECODE EXECUTE WRITE
BACK

AB

BC

FETCH DECODE EXECUTE WRITE
BACK

A

CD B

FETCH DECODE EXECUTE WRITE
BACK

A

D C B

FETCH DECODE EXECUTE WRITE
BACK

E

No part is idle

In a typical
program, the
CPU’s rate of
successful
branch
predictions
is well above
90 percent.

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2015

60

//architect /

which branch it should take. Even though the prediction algorithm has to
be simple and fast, it is amazing how accurate it is. In a typical program, the
rate of successful predictions is well above 90 percent.

What happens if the guess is wrong? The effect of a wrong guess and
unnecessary execution is
less dramatic than one might
expect. Take a look at Figure 4
and assume that instruction A
is a conditional jump for which
the CPU did a wrong guess.
Once instruction A finishes
the execution stage, the CPU
knows that the branch predic-
tion was wrong. It can simply
drop instructions B and C now.
At this point, they have only
been fetched from memory and
decoded. To the outside world,
both operations have no notice-
able effects. Therefore, the
CPU can just throw out these
instructions and continue fetch-
ing the first instructions of the
correct branch.
Branch prediction while search-
ing. Nevertheless, branch
mispredictions are expensive,
because they nullify the per-
formance increase we gained
through pipelining our instruc-
tions. In the case of our two
search algorithms, the perfor-
mance loss is large enough to
make binary search the slower
alternative, even though it
requires fewer comparisons to
find the needle in the haystack.

The algorithm for linear search

contains three conditional jumps: the for loop; the check for whether the
element was found; and the check on the range of possible indexes. Each
results in a conditional jump. Even though this is quite a few conditional
jumps for such a short code segment, all of them are easy to predict cor-
rectly. The loop index is always smaller than the array bounds except at the
very end, when the loop is exited. This means that once the loop is entered,
every guess is likely to be right except the one at the very end. The same is
true for the other two conditional jumps. If the CPU were to guess that the
current element is not the element being searched for, it will always be right
except once, when the element is found and the loop is exited.

The algorithm for binary search also contains three conditional jumps.
Two of them are easy to guess right most of the time, for the same reason
as described above. But in the loop, a decision must be made to continue
in the upper half or lower half of the remaining array. The test data is evenly
distributed, which means chances are 50-50 that the code needs to go
to one half or the other. In other words, it is impossible to guess the right
branch at this point. No matter which branch is guessed, it will be wrong
half the time.

Conclusion
With the instruction pipeline and branch predictions, we have reached a
level that you usually do not need to consider when optimizing your Java
program. I have encountered maybe a handful of cases so far where avoid-
ing branches actually did improve performance noticeably in very hot code
segments. But pipelining and branch prediction are fascinating neverthe-
less. What this example shows is that for very small data structures, it often
makes sense to use the simplest algorithm possible. The positive effects
of clever but complex algorithms can easily be nullified by other effects.
Therefore, it makes even more sense to adhere to the most important rule
in software engineering: If in doubt, follow the KISS principle—that is, keep
it simple. </article>

Figure 4: Branch misprediction

LEARN MORE
•	Branch mispredicts using assembly on Intel processors
•	“Eliminate False Sharing”
•	Using padding in Java to avoid false sharing

FETCH DECODE EXECUTE WRITE
BACK

A

FETCH DECODE EXECUTE WRITE
BACK

AB

BC

FETCH DECODE EXECUTE WRITE
BACK

A

BC

FETCH DECODE EXECUTE WRITE
BACK

A

A

FETCH DECODE EXECUTE WRITE
BACK

X

Drop instructions

Fetch correct
instruction

Wrong prediction

X X

