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I magine you have an array 
with 67,000 integer ele-

ments and you run two loops 
over the array, as shown in 
Listing 1. Both loops multiply 
the elements of the array by 
three. However, while the first 
loop changes every element, 
the second loop modifies only 
every sixteenth element.

How much faster will the 
second loop be compared to 
the first? Take a guess!

The surprising answer is 
that if the code is executed on 
a typical laptop, both loops 
take the same amount of 
time. Table 1 shows measure-
ments from three computers. 
The difference is negligible. 
The second loop does only 
a fraction of the work, so 
how is it possible that the 
first loop runs as fast as 
the second?

To understand this 
behavior you have to con-
sider how the CPU and the 
memory system work. On 
the lowest level, modern 

computers can show surpris-
ing behavior, very much like 
quantum mechanics, that 
seems to contradict daily 
experience. But sometimes 
quantum mechanics has 
noticeable effects on our “real 
world.” And sometimes the 
effects of processes at the 
hardware level have a notice-
able effect on our programs. 
This article takes a look at 
how modern computers 
work at the lowest level and 
explores the things that can 
affect performance.

Instructions 
If you try to imagine how the 
loops in Listing 1 are exe-
cuted, your initial interpreta-

tion might be that the array is 
stored in main memory and 
the CPU reads element after 
element, multiplies each ele-
ment by three, and writes the 
result back, as you can see in 
Figure 1. This interpretation is 
useful for understanding the 
functionality of the loops, but 
it’s not what really happens 
inside a computer.

Figure 2 shows a graph 
of relative performance 
improvements that CPUs 
and memory went through in 
recent decades. Memory per-
formance improved steadily 
during the whole period, but 
that was nothing compared 
to the improvements in CPU 
speed, especially during the 

1990s. In recent years, plain 
CPU speed hit a limit, but do 
not be fooled! The scale in 
Figure 2 is logarithmic. Even 
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Table 1

S M A L L  S T EP S 
E AC H  EL EMEN T

L A R GE  S T EP S  E V ERY 
16 T H  EL EMEN T

I7- 4980HQ  @  2.8  GH Z ,  M AC  O S  X  YO SEMI T E 30.4 MS 29.7 MS

I7-3770  @  3.4  GH Z ,  L INU X  MIN T  14 25.8 MS 26.1 MS

T 7200  @  2  GH Z ,  L INU X  MIN T  14 193.0 MS 184.2 MS

Figure 1

Java and
Performance



ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////////////   MARCH/APRIL 2015

JA
VA

 T
EC

H

41

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T 

US

blog

//java architect / 

though it might look as if memory 
performance is catching up, the gap 
is still huge.

For our example, this means that 
if a computer worked as we imag-
ined in Figure 1, it would be terribly 
slow. The CPU would wait most of 
the time for the memory to deliver 
the next element. To overcome this 
bottleneck, processor designers 
added a cache between the CPU 
and main memory. The cache is a 

smaller and much faster memory 
module, whose whole purpose is 
to mitigate the performance gap. 
Figure 3 shows an improved model 
of the CPU and memory system.

Programs tend to access the 
same data and code several times 
within a short period of time (tem-
poral locality), and memory access 
is often limited to small regions 
(spatial locality). This means that 
if you load all the data that you 
use into the cache, there is a high 
chance that you’ll need it again 
later. And because the next time 
you need it the data is available in 
the cache, the performance of your 
programs increases tremendously.

Now you might wonder—if we 
can put faster memory between 
CPU and main memory, why can’t 

we just make the whole memory 
faster? There are mostly two rea-
sons. For one, main memory is a 
lot larger than cache, and it sim-
ply takes more time to find the 
right address within 16 GB (the 
typical size of main memory, as of 
this writing) than to find the right 
address within 8 KB (the typical 
size of Level 1 [L1] cache). However, 
probably the more important rea-
son is that the electronic compo-
nents of cache (SRAM) are much 
more expensive than the ones used 
in main memory (DRAM) in terms 
of heat and space. Heat and space 
are the limiting factors in modern 
chip design.

To exploit spatial locality, the 
cache doesn’t work with individual 
bytes but uses cache lines instead. 

A cache line is an adjacent part of 
the memory, typically 64 bytes.

What really happens when you 
iterate over the large loops from 
Listing 1 can be seen in Figure 4. 
The CPU loads a complete cache 
line from main memory into the 
cache and modifies the elements 
in the cache directly. The first loop 
modifies all elements in the cache 
line, while the second loop modifies 
only one element (16 integers, each 
4 bytes long). The limiting factor in 
this setup is loading the cache line 
into the cache; it almost doesn’t 
matter how many operations you 
execute on each cache line. This 
explains why the performance of 
both loops is roughly the same.

Counting instructions to estimate 
the performance of an algorithm is 

Figure 2

Figure 3

Download all listings in this issue as text

private static final int ARRAY_SIZE = 64 * 1024 * 1024;
public int[] array = new int[ARRAY_SIZE];

for (int i = 0, n = array.length; i < n; i++) {
    array[i] *= 3;
} 

for (int i = 0, n = array.length; i < n; i+=16) {
    array[i] *= 3;
}

LISTING 1   
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a useful approximation, because it’s 
easy to assess and usually gives a 
good indication. But as this exam-
ple shows, you have to keep in mind 
that it’s just an approximation. In 
reality, the execution times of single 
instructions vary widely, and you 
can’t rely on this number only.

Data Size
Does the size of a data structure 
affect performance? To answer this 
question, run a small experiment 
using the code in Listing 2. Take 
the second loop from the first code 
example and run it repetitively. 
This time, change the size of the 
array and measure the average time 
to run a single loop iteration. The 
purpose of this experiment is to 
run a trivial algorithm over a data 
structure whose size you can con-
trol. Is there a relationship between 
the size of the array and the time 
needed to modify a single element?

Before you look at the results, 
consider briefly what you expect. 
Accessing a single array element 
requires constant time, O(1). Thus, 
the inner part of the loop should 
be executed in constant time, too. 
That means for large enough arrays, 
you will hit an upper bound that is 
constant. But what happens before 
that? Will the execution time be 
constant all the way through?

Figure 5 shows the dependency 
between array size and access time. 

As you can see, there is a relation-
ship between these values. A single 
modification is faster if the array 
is small. But it’s not that simple. 
The resulting curve looks like a 
staircase. The access time remains 
constant until the array size 
exceeds a specific threshold, and 

then it jumps to a new level where 
it remains until the next threshold 
is reached. Why is there a depen-
dency at all, and where do these 
levels come from?

The cache is usually not a single 
unit, but consists of several lev-
els with different sizes and access Figure 4

Download all listings in this issue as text

private static final int ARRAY_CONTENT = 777;
@Param({"1024", "2048", "4096", "8192", "16384", …, "536870912"})
 public int size;  

public int[] array;
 public int counter;
 public int mask;

@Setup(Level.Iteration)
public void setUp() {
    final int elements = size / 4;
    final int indexes = elements / 16;
     mask = indexes - 1;
     array = new int[elements];
    Arrays.fill(array, ARRAY_CONTENT);
    counter = 0;
     for (int i = 0; i < indexes; i++) { 
        seqIndex[i] = 16 * i; 
    }
}  

@Benchmark 
public void benchLoop() {
     array[16 * counter] *= 3;
    counter = (counter + 1) & mask; 
}

LISTING 2    
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times. L1 cache is the smallest 
and fastest. Current CPUs typi-
cally have three cache levels, with 
each level being slower and signifi-
cantly larger than the level before. 
Figure 6 shows an improved ver-
sion of our model that contains the 
cache hierarchy.

How large are the performance 
gaps between the different cache 
levels? To explain this in a form 

that is more accessible to human 
beings, my former colleague 
Richard Thompson came up with 
the beer cache hierarchy. Imagine 
that you’re sitting in front of your 
TV watching your favorite team and 
you’re thirsty. 
■■ L1 cache is the bottle of beer in 

your hand. Access time is almost 
immediate (< 1 ns), but the 
quantity is extremely limited (for 
example, 32 KB on my system).

■■ L2 cache is the cooler next to 
your sofa. Access time is still 
pretty low (7 ns), and the quan-
tity is significantly larger (256 KB, 
which is equivalent to 8 bottles 
of beer).

■■ L3 cache is the fridge in the 
kitchen. Access time is noticeably 

larger (25 ns), but the size is so 
large that the analogy falls apart 
(8 MB, which is equivalent to 256 
bottles of beer).

■■ Main memory is the corner store. 
Access time is huge (100 ns), but 
the quantity of beer is probably 
more than enough for a lifetime 
(16 GB, which is equivalent to 
more than half a million bottles 
of beer).
Looking at these numbers, it 

becomes quite obvious why both 
loops in the initial example took the 
same amount of time. It doesn’t 
really matter how many sips of beer 
you drink if you have to run to the 
corner store for each bottle.

With the cache level hierarchy in 
mind, take a look at the graph in 
Figure 5. Each plateau in the graph 
corresponds to a level of the cache 
hierarchy. As long as the array fits 
into L1 and L2 cache, access time 
is very low. But as soon as the array 
becomes too large and has to be 
read from L3 cache, access time 
increases noticeably. And the same 
happens again as soon as the array 
does not fit into L3 cache and has 
to be read from main memory. If 
you look closely, you can even see 
the small jump between the L1 and 
L2 cache.

Size does matter. Even though 
memory is cheaper than ever 

Figure 5

Figure 6

Download all listings in this issue as text

public int[] rndIndex; 
 
@Setup(Level.Iteration) 
public void setUp() {
    …
 
    rndIndex = new int[indexes]; 
    final List<Integer> list = new ArrayList<>(indexes); 
    for (int i=0; i<indexes; i++) { 
        list.add(16 * i); 
    } 
    Collections.shuffle(list); 
    for (int i=0; i<indexes; i++) { 
        rndIndex[i] = list.get(i); 
    } 
}

LISTING 3
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before, try to avoid wasting it. The 
smaller the size of the data you 
use, the higher the chance that 
it will fit into the cache, which 
can lead to significantly better 
performance.

Access Patterns
So the size of data influences per-
formance. Does the order in which 
you access your data—the data 
access pattern—have an influence, 
too? You can change the previ-

ous experiment slightly to find an 
answer. Instead of simply running 
an index through the array, create a 
second array that stores the access 
order. Access the array sequentially 
as before for one time, and then 
access it randomly and measure 
the difference. You can see the code 
for both experiments in Listing 3.

If you run the experiment with 
different array sizes and plot the 
result in a graph, you get two 
curves, as shown in Figure 7. Not 
surprisingly, you can see the already 
familiar staircase pattern. Both 
curves show similar access times 
on the lower two levels, which cor-
relate to the L1 and L2 caches. But 
on the third level, the performance 
of the sequential access pattern is 
noticeably better. The fourth level 
shows a significant difference. Why 

is the access order insignificant for 
small arrays, but plays a major part 
for large arrays? 

A Valuable Tool
To get a better understanding of 
what is going on inside the com-
puter, you can use the Linux pro-
filer tool perf, which collects and 
prints out events generated by 
the CPU and the memory system 
while a program is executed. The 
command-line interface for perf 
is similar to that of git. You call 
perf with the command you want 
to execute: 

To get a list of all commands, use 
perf --help. To get help for a specific 
command, you can run:

The most useful command is 
stat. It allows perf to run another 
program and tracks hardware 
events during execution:

Without any arguments, this 
command starts PROGRAM, tracks 
some general events, and prints 
out the statistics as soon as the 
program ends. You can see a 
typical output in Figure 8. You can 

perf COMMAND [ARGS]

perf help COMMAND

perf stat [ARGS] PROGRAM

Figure 7

Figure 8
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specify which events should be 
tracked by using the -e option. To 
get a list of supported events, run 
the command: 

In Java, you usually don’t want to 
track the whole program, because 
this would include bootstrapping 
the VM, JIT compilation, and so on, 
which typically we’re not interested 
in. However, with perf you can hook 
into a running process with the -p 
option. Perf is a little weird when 
used with the -p option, because 
you still have to specify a program 
that will be executed, and the mea-
surement ends once this program 
ends. Typically you’d use the sleep 
command, which enables you to 
specify the duration of the test. 

First, measure both your loops 
using the default settings of perf. 

This provides a good overview. 
The most-interesting results can 
be seen in Table 2. The number 
of stalled front-end and back-end 
cycles differs significantly between 
both runs. A stalled cycle means 
the CPU is idle and waiting for 
something. One of the most likely 
causes of a stalled front-end cycle 
is a cache miss, which results in the 
CPU waiting for data to arrive from 
main memory or a slower cache. 
To validate this assumption, you 
can run perf again, but this time to 
specifically measure cache loads 
and cache misses. You can see the 
result in Table 3. 

The ratio between success-
ful cache loads and cache misses 
differs tremendously. When 
accessing the array in sequential 
order, only about 6 percent of all 
memory loads result in a cache 
miss. But when accessing the 

array in random order, two out of 
three loads result in a cache miss. 
The high number of cache misses 
is expected, because the array 
doesn’t fit into the cache, and you 
have to load everything from main 
memory. But why are there almost 
no cache misses when you access 
the array sequentially?

Loading data from main memory 
into the cache is often a major 
bottleneck. For this reason, the 
CPU tries to help by guessing which 
data you’ll use next and loading it 
into the cache in the background, 
as you can see in Figure 9. While 
you modify the elements of a 
cache line, functionality called the 
prefetcher loads the next cache 
line into the cache. Thus, when you 
need the data, it’s already available 
in the cache.

The prefetcher is not par-
ticularly smart. It can guess the 
next memory location correctly 
only if the memory loads fol-
low a regular pattern. In the first 
case, when you went through 
the array sequentially, guessing 
the next memory location was 
easy, and the prefetcher could 
mitigate a substantial part of the 
performance loss by prefetching 
the next memory location. But 
when you accessed the array ran-
domly, guessing the next memory 
location correctly was impos-
sible, and the algorithm had to 

wait until data was loaded from 
main memory.

The access pattern has a signifi-
cant influence on the performance 
of an algorithm, but the chances to 
use this knowledge within Java are 
limited. You have close to no con-
trol over how your data is arranged 
in memory. But there is hope. The 
proposed value types might provide 
this ability one day, because they 
allow you to arrange object-like 
structures sequentially in memory.

Another Valuable Tool
Microbenchmarking is another 
valuable tool for getting more 
insight into your programs. 
Probably the most important 
rule of microbenchmarking is to 
always use a tool that helps you to 
avoid some of the many pitfalls, 
such as the insufficient warmup 
of the VM, dead code elimina-
tion, and loop unrolling. The Java 
Microbenchmark Harness (JMH) 
from Oracle is probably the best 
harness available right now.

perf list

Figure 9

Table 2

S E Q UEN T I A L  AC C E S S R A ND OM  AC C E S S

CYC L E S 19,430,435,800 19,429,967,708

S TA L L ED  F R ON T- END  CYC L E S 7,217,361,632 (37.14%) 19,006,043,7 78 (97.82%)

S TA L L ED  B AC K- END  CYC L E S 843,462,646 (4.34%) 18,296,349,545 (94.17%)

Table 3

S E Q UEN T I A L  AC C E S S R A ND OM  AC C E S S

L1  C AC HE  L OA D S 5,758,001,370 170,655,221

L1  C AC HE  MIS S E S 360,757,378 (6.27%) 365,959,699 (214.4 4%)
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Tests written for JMH are simi-
lar to JUnit tests. The code you 
want to benchmark needs to be in 
a single method, which must be 
annotated with @Benchmark. The 
test can be configured with anno-
tations at the class level. Table 4 
shows the most-important anno-
tations and their meaning.

Conclusion
Most of the time, processes at the 
hardware level have no significant 
effect on programs, but some-
times they do. Therefore, it’s use-
ful to have a rough understanding 
of what goes on at the hardware 
level and to keep up with the latest 
developments. Besides being use-
ful, this knowledge is also fascinat-
ing and a great way to impress your 
fellow developers.

This was the first part of a  
two-part series about the quan-
tum physics of Java. This part 

focused on memory and, spe-
cifically, the cache hierarchy. The 
second part looks a little more into 
memory and then takes a deep 
dive into the inner workings of a 
modern CPU. </article>
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Table 4

A NNO TAT ION DE S C RIP T ION

@BENCHMARKMODE SPECIFIES WHAT SHOULD BE MEASURED—FOR E X AMPLE, THROUGHPUT OR AVERAGE TIME.

@OUTPUT TIMEUNIT SPECIFIES THE TIME UNIT USED IN THE OUTPUT—FOR E X AMPLE, TimeUnit.MILLISECONDS.

@WARMUP SPECIFIES THE WARMUP PHASE. YOU CAN SET THE NUMBER OF ITERATIONS AND THE 
DURATION OF A SINGLE ITERATION.

@MEASUREMENT SPECIFIES THE MEASUREMENT PHASE AND IS SIMIL AR TO @WARMUP.

@FORK SPECIFIES HOW OF TEN YOU WANT TO FORK THE JAVA VIRTUAL MACHINE (JVM) AND RUN THE 
TESTS. YOU SHOULD ALWAYS DO RUNS IN SEVERAL FORKS.

Java and
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