
ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

40

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

I magine you have an array
with 67,000 integer ele-

ments and you run two loops
over the array, as shown in
Listing 1. Both loops multiply
the elements of the array by
three. However, while the first
loop changes every element,
the second loop modifies only
every sixteenth element.

How much faster will the
second loop be compared to
the first? Take a guess!

The surprising answer is
that if the code is executed on
a typical laptop, both loops
take the same amount of
time. Table 1 shows measure-
ments from three computers.
The difference is negligible.
The second loop does only
a fraction of the work, so
how is it possible that the
first loop runs as fast as
the second?

To understand this
behavior you have to con-
sider how the CPU and the
memory system work. On
the lowest level, modern

computers can show surpris-
ing behavior, very much like
quantum mechanics, that
seems to contradict daily
experience. But sometimes
quantum mechanics has
noticeable effects on our “real
world.” And sometimes the
effects of processes at the
hardware level have a notice-
able effect on our programs.
This article takes a look at
how modern computers
work at the lowest level and
explores the things that can
affect performance.

Instructions
If you try to imagine how the
loops in Listing 1 are exe-
cuted, your initial interpreta-

tion might be that the array is
stored in main memory and
the CPU reads element after
element, multiplies each ele-
ment by three, and writes the
result back, as you can see in
Figure 1. This interpretation is
useful for understanding the
functionality of the loops, but
it’s not what really happens
inside a computer.

Figure 2 shows a graph
of relative performance
improvements that CPUs
and memory went through in
recent decades. Memory per-
formance improved steadily
during the whole period, but
that was nothing compared
to the improvements in CPU
speed, especially during the

1990s. In recent years, plain
CPU speed hit a limit, but do
not be fooled! The scale in
Figure 2 is logarithmic. Even

An introduction to modern chip design and its effect on Java programs

MICHAEL HEINRICHS
BIO

PHOTOGRAPH COURTESY
OF DEVOXX

Part 1

The Quantum Physics of Java

Table 1

S M A L L S T EP S
E AC H EL EMEN T

L A R GE S T EP S E V ERY
16 T H EL EMEN T

I7- 4980HQ @ 2.8 GH Z , M AC O S X YO SEMI T E 30.4 MS 29.7 MS

I7-3770 @ 3.4 GH Z , L INU X MIN T 14 25.8 MS 26.1 MS

T 7200 @ 2 GH Z , L INU X MIN T 14 193.0 MS 184.2 MS

Figure 1

Java and
Performance

ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

41

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

though it might look as if memory
performance is catching up, the gap
is still huge.

For our example, this means that
if a computer worked as we imag-
ined in Figure 1, it would be terribly
slow. The CPU would wait most of
the time for the memory to deliver
the next element. To overcome this
bottleneck, processor designers
added a cache between the CPU
and main memory. The cache is a

smaller and much faster memory
module, whose whole purpose is
to mitigate the performance gap.
Figure 3 shows an improved model
of the CPU and memory system.

Programs tend to access the
same data and code several times
within a short period of time (tem-
poral locality), and memory access
is often limited to small regions
(spatial locality). This means that
if you load all the data that you
use into the cache, there is a high
chance that you’ll need it again
later. And because the next time
you need it the data is available in
the cache, the performance of your
programs increases tremendously.

Now you might wonder—if we
can put faster memory between
CPU and main memory, why can’t

we just make the whole memory
faster? There are mostly two rea-
sons. For one, main memory is a
lot larger than cache, and it sim-
ply takes more time to find the
right address within 16 GB (the
typical size of main memory, as of
this writing) than to find the right
address within 8 KB (the typical
size of Level 1 [L1] cache). However,
probably the more important rea-
son is that the electronic compo-
nents of cache (SRAM) are much
more expensive than the ones used
in main memory (DRAM) in terms
of heat and space. Heat and space
are the limiting factors in modern
chip design.

To exploit spatial locality, the
cache doesn’t work with individual
bytes but uses cache lines instead.

A cache line is an adjacent part of
the memory, typically 64 bytes.

What really happens when you
iterate over the large loops from
Listing 1 can be seen in Figure 4.
The CPU loads a complete cache
line from main memory into the
cache and modifies the elements
in the cache directly. The first loop
modifies all elements in the cache
line, while the second loop modifies
only one element (16 integers, each
4 bytes long). The limiting factor in
this setup is loading the cache line
into the cache; it almost doesn’t
matter how many operations you
execute on each cache line. This
explains why the performance of
both loops is roughly the same.

Counting instructions to estimate
the performance of an algorithm is

Figure 2

Figure 3

Download all listings in this issue as text

private static final int ARRAY_SIZE = 64 * 1024 * 1024;
public int[] array = new int[ARRAY_SIZE];

for (int i = 0, n = array.length; i < n; i++) {
 array[i] *= 3;
}

for (int i = 0, n = array.length; i < n; i+=16) {
 array[i] *= 3;
}

LISTING 1

ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

42

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

a useful approximation, because it’s
easy to assess and usually gives a
good indication. But as this exam-
ple shows, you have to keep in mind
that it’s just an approximation. In
reality, the execution times of single
instructions vary widely, and you
can’t rely on this number only.

Data Size
Does the size of a data structure
affect performance? To answer this
question, run a small experiment
using the code in Listing 2. Take
the second loop from the first code
example and run it repetitively.
This time, change the size of the
array and measure the average time
to run a single loop iteration. The
purpose of this experiment is to
run a trivial algorithm over a data
structure whose size you can con-
trol. Is there a relationship between
the size of the array and the time
needed to modify a single element?

Before you look at the results,
consider briefly what you expect.
Accessing a single array element
requires constant time, O(1). Thus,
the inner part of the loop should
be executed in constant time, too.
That means for large enough arrays,
you will hit an upper bound that is
constant. But what happens before
that? Will the execution time be
constant all the way through?

Figure 5 shows the dependency
between array size and access time.

As you can see, there is a relation-
ship between these values. A single
modification is faster if the array
is small. But it’s not that simple.
The resulting curve looks like a
staircase. The access time remains
constant until the array size
exceeds a specific threshold, and

then it jumps to a new level where
it remains until the next threshold
is reached. Why is there a depen-
dency at all, and where do these
levels come from?

The cache is usually not a single
unit, but consists of several lev-
els with different sizes and access Figure 4

Download all listings in this issue as text

private static final int ARRAY_CONTENT = 777;
@Param({"1024", "2048", "4096", "8192", "16384", …, "536870912"})
 public int size;  

public int[] array;
 public int counter;
 public int mask;

@Setup(Level.Iteration)
public void setUp() {
 final int elements = size / 4;
 final int indexes = elements / 16;
  mask = indexes - 1;
  array = new int[elements];
 Arrays.fill(array, ARRAY_CONTENT);
 counter = 0;
  for (int i = 0; i < indexes; i++) {
 seqIndex[i] = 16 * i;
 }
}  

@Benchmark 
public void benchLoop() {
  array[16 * counter] *= 3;
 counter = (counter + 1) & mask; 
}

LISTING 2

ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

43

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

times. L1 cache is the smallest
and fastest. Current CPUs typi-
cally have three cache levels, with
each level being slower and signifi-
cantly larger than the level before.
Figure 6 shows an improved ver-
sion of our model that contains the
cache hierarchy.

How large are the performance
gaps between the different cache
levels? To explain this in a form

that is more accessible to human
beings, my former colleague
Richard Thompson came up with
the beer cache hierarchy. Imagine
that you’re sitting in front of your
TV watching your favorite team and
you’re thirsty.
■■ L1 cache is the bottle of beer in

your hand. Access time is almost
immediate (< 1 ns), but the
quantity is extremely limited (for
example, 32 KB on my system).

■■ L2 cache is the cooler next to
your sofa. Access time is still
pretty low (7 ns), and the quan-
tity is significantly larger (256 KB,
which is equivalent to 8 bottles
of beer).

■■ L3 cache is the fridge in the
kitchen. Access time is noticeably

larger (25 ns), but the size is so
large that the analogy falls apart
(8 MB, which is equivalent to 256
bottles of beer).

■■ Main memory is the corner store.
Access time is huge (100 ns), but
the quantity of beer is probably
more than enough for a lifetime
(16 GB, which is equivalent to
more than half a million bottles
of beer).
Looking at these numbers, it

becomes quite obvious why both
loops in the initial example took the
same amount of time. It doesn’t
really matter how many sips of beer
you drink if you have to run to the
corner store for each bottle.

With the cache level hierarchy in
mind, take a look at the graph in
Figure 5. Each plateau in the graph
corresponds to a level of the cache
hierarchy. As long as the array fits
into L1 and L2 cache, access time
is very low. But as soon as the array
becomes too large and has to be
read from L3 cache, access time
increases noticeably. And the same
happens again as soon as the array
does not fit into L3 cache and has
to be read from main memory. If
you look closely, you can even see
the small jump between the L1 and
L2 cache.

Size does matter. Even though
memory is cheaper than ever

Figure 5

Figure 6

Download all listings in this issue as text

public int[] rndIndex;

@Setup(Level.Iteration)
public void setUp() {
 …

 rndIndex = new int[indexes];
 final List<Integer> list = new ArrayList<>(indexes);
 for (int i=0; i<indexes; i++) {
 list.add(16 * i);
 }
 Collections.shuffle(list);
 for (int i=0; i<indexes; i++) {
 rndIndex[i] = list.get(i);
 }
}

LISTING 3

ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

44

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

before, try to avoid wasting it. The
smaller the size of the data you
use, the higher the chance that
it will fit into the cache, which
can lead to significantly better
performance.

Access Patterns
So the size of data influences per-
formance. Does the order in which
you access your data—the data
access pattern—have an influence,
too? You can change the previ-

ous experiment slightly to find an
answer. Instead of simply running
an index through the array, create a
second array that stores the access
order. Access the array sequentially
as before for one time, and then
access it randomly and measure
the difference. You can see the code
for both experiments in Listing 3.

If you run the experiment with
different array sizes and plot the
result in a graph, you get two
curves, as shown in Figure 7. Not
surprisingly, you can see the already
familiar staircase pattern. Both
curves show similar access times
on the lower two levels, which cor-
relate to the L1 and L2 caches. But
on the third level, the performance
of the sequential access pattern is
noticeably better. The fourth level
shows a significant difference. Why

is the access order insignificant for
small arrays, but plays a major part
for large arrays?

A Valuable Tool
To get a better understanding of
what is going on inside the com-
puter, you can use the Linux pro-
filer tool perf, which collects and
prints out events generated by
the CPU and the memory system
while a program is executed. The
command-line interface for perf
is similar to that of git. You call
perf with the command you want
to execute:

To get a list of all commands, use
perf --help. To get help for a specific
command, you can run:

The most useful command is
stat. It allows perf to run another
program and tracks hardware
events during execution:

Without any arguments, this
command starts PROGRAM, tracks
some general events, and prints
out the statistics as soon as the
program ends. You can see a
typical output in Figure 8. You can

perf COMMAND [ARGS]

perf help COMMAND

perf stat [ARGS] PROGRAM

Figure 7

Figure 8

ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

45

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

specify which events should be
tracked by using the -e option. To
get a list of supported events, run
the command:

In Java, you usually don’t want to
track the whole program, because
this would include bootstrapping
the VM, JIT compilation, and so on,
which typically we’re not interested
in. However, with perf you can hook
into a running process with the -p
option. Perf is a little weird when
used with the -p option, because
you still have to specify a program
that will be executed, and the mea-
surement ends once this program
ends. Typically you’d use the sleep
command, which enables you to
specify the duration of the test.

First, measure both your loops
using the default settings of perf.

This provides a good overview.
The most-interesting results can
be seen in Table 2. The number
of stalled front-end and back-end
cycles differs significantly between
both runs. A stalled cycle means
the CPU is idle and waiting for
something. One of the most likely
causes of a stalled front-end cycle
is a cache miss, which results in the
CPU waiting for data to arrive from
main memory or a slower cache.
To validate this assumption, you
can run perf again, but this time to
specifically measure cache loads
and cache misses. You can see the
result in Table 3.

The ratio between success-
ful cache loads and cache misses
differs tremendously. When
accessing the array in sequential
order, only about 6 percent of all
memory loads result in a cache
miss. But when accessing the

array in random order, two out of
three loads result in a cache miss.
The high number of cache misses
is expected, because the array
doesn’t fit into the cache, and you
have to load everything from main
memory. But why are there almost
no cache misses when you access
the array sequentially?

Loading data from main memory
into the cache is often a major
bottleneck. For this reason, the
CPU tries to help by guessing which
data you’ll use next and loading it
into the cache in the background,
as you can see in Figure 9. While
you modify the elements of a
cache line, functionality called the
prefetcher loads the next cache
line into the cache. Thus, when you
need the data, it’s already available
in the cache.

The prefetcher is not par-
ticularly smart. It can guess the
next memory location correctly
only if the memory loads fol-
low a regular pattern. In the first
case, when you went through
the array sequentially, guessing
the next memory location was
easy, and the prefetcher could
mitigate a substantial part of the
performance loss by prefetching
the next memory location. But
when you accessed the array ran-
domly, guessing the next memory
location correctly was impos-
sible, and the algorithm had to

wait until data was loaded from
main memory.

The access pattern has a signifi-
cant influence on the performance
of an algorithm, but the chances to
use this knowledge within Java are
limited. You have close to no con-
trol over how your data is arranged
in memory. But there is hope. The
proposed value types might provide
this ability one day, because they
allow you to arrange object-like
structures sequentially in memory.

Another Valuable Tool
Microbenchmarking is another
valuable tool for getting more
insight into your programs.
Probably the most important
rule of microbenchmarking is to
always use a tool that helps you to
avoid some of the many pitfalls,
such as the insufficient warmup
of the VM, dead code elimina-
tion, and loop unrolling. The Java
Microbenchmark Harness (JMH)
from Oracle is probably the best
harness available right now.

perf list

Figure 9

Table 2

S E Q UEN T I A L AC C E S S R A ND OM AC C E S S

CYC L E S 19,430,435,800 19,429,967,708

S TA L L ED F R ON T- END CYC L E S 7,217,361,632 (37.14%) 19,006,043,7 78 (97.82%)

S TA L L ED B AC K- END CYC L E S 843,462,646 (4.34%) 18,296,349,545 (94.17%)

Table 3

S E Q UEN T I A L AC C E S S R A ND OM AC C E S S

L1 C AC HE L OA D S 5,758,001,370 170,655,221

L1 C AC HE MIS S E S 360,757,378 (6.27%) 365,959,699 (214.4 4%)

ORACLE.COM/JAVAMAGAZINE  ///   MARCH/APRIL 2015

JA
VA

 T
EC

H

46

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

Tests written for JMH are simi-
lar to JUnit tests. The code you
want to benchmark needs to be in
a single method, which must be
annotated with @Benchmark. The
test can be configured with anno-
tations at the class level. Table 4
shows the most-important anno-
tations and their meaning.

Conclusion
Most of the time, processes at the
hardware level have no significant
effect on programs, but some-
times they do. Therefore, it’s use-
ful to have a rough understanding
of what goes on at the hardware
level and to keep up with the latest
developments. Besides being use-
ful, this knowledge is also fascinat-
ing and a great way to impress your
fellow developers.

This was the first part of a
two-part series about the quan-
tum physics of Java. This part

focused on memory and, spe-
cifically, the cache hierarchy. The
second part looks a little more into
memory and then takes a deep
dive into the inner workings of a
modern CPU. </article>

LEARN MORE
•	“�What Every Programmer Should

Know About Memory”
•	Igor Ostrovsky Blogging
•	Martin Thompson’s blog,

Mechanical Sympathy
•	“�Linux kernel profiling with perf”

tutorial

Table 4

A NNO TAT ION DE S C RIP T ION

@BENCHMARKMODE SPECIFIES WHAT SHOULD BE MEASURED—FOR E X AMPLE, THROUGHPUT OR AVERAGE TIME.

@OUTPUT TIMEUNIT SPECIFIES THE TIME UNIT USED IN THE OUTPUT—FOR E X AMPLE, TimeUnit.MILLISECONDS.

@WARMUP SPECIFIES THE WARMUP PHASE. YOU CAN SET THE NUMBER OF ITERATIONS AND THE
DURATION OF A SINGLE ITERATION.

@MEASUREMENT SPECIFIES THE MEASUREMENT PHASE AND IS SIMIL AR TO @WARMUP.

@FORK SPECIFIES HOW OF TEN YOU WANT TO FORK THE JAVA VIRTUAL MACHINE (JVM) AND RUN THE
TESTS. YOU SHOULD ALWAYS DO RUNS IN SEVERAL FORKS.

Java and
Performance

MORE ON TOPIC:

3 Billion
Devices Run Java

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

