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The first article in this series about the effects of modern chip 
design on programming focused on the memory system, 

specifically the cache hierarchy. In this article, Part 2, I extend 
our investigation to the issues of multithreaded access. In Part 3, 
I will look at the internal workings of the CPU itself.

False Sharing
In our first experiment, we will see a surprising effect that can 
occur when memory is accessed concurrently from different 
threads. The code in Listing 1 contains an array of 17 integers 
and four methods that modify different elements of the array. 
The experiment consists of two test runs in which we run two 
of the methods concurrently on different threads. In the first 
test run, we will execute the methods modifyFarA() and 
modifyFarB(), which modify two array elements that are 
16 elements apart. In the second test run, we will execute the 
methods modifyNearA() and modifyNearB(), which modify 
two adjacent array elements. The only difference is how far 
apart the modified array elements are. How does that affect 
performance?

Listing 1.
public final int[] array = new int[17];

@Benchmark
@Group("near")
public void modifyNearA() {

    array[0]++;
}

@Benchmark
@Group("near")
public void modifyNearB() {
    array[1]++;
}

@Benchmark
@Group("far")
public void modifyFarA() {
    array[0]++;
}

@Benchmark
@Group("far")
public void modifyFarB() {
    array[16]++;
}

On my laptop, a method call in the first test run takes about 
3.6 ns, while in the second test run it takes 4.5 ns. In other 
words, if the array elements are farther apart, modifications are 
25 percent faster. How can that be?

There are actually two puzzles to solve here. Why does it 
matter how far apart the elements are? And why do these 
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methods interfere with each other at all, even though they access 
different variables?

Watchful readers will notice the similarity to the initial example in the 
first article of this series. If elements of an integer array are 16 elements or 
more apart, they will be located in different cache lines. If they are closer to 
each other, chances are great that they will end up in the same cache line. Is 
the observed variation in behavior related to cache lines? 

Indeed, it is. The memory system has no understanding of Java. It does 
not know about Java arrays and Java variables. It smallest unit is a cache 
line. If two threads modify the same cache line, they interfere with each 
other and it does not matter that we modified two different variables in the 
source code.

Why do two threads that modify the same cache line slow each other 
down? We have to fill out our model of the cache hierarchy to understand 
this effect. When two threads run in parallel long enough, they end up on 
different CPU cores. CPU cores do not share an L1 cache—each core has its 
own. (Note: How the L2 and L3 caches are shared between cores depends 
on the architecture. For example, a typical setup is that L2 cache is shared 
between adjacent cores while L3 cache is shared between all cores.)

As each core copies the cache line into its respective L1 cache and does 
the update to the variable, the core notifies the other cores of the update 
and tells them to freshen the L1 cache copy they own. 

Modern computers use a variant of the Modified 
Exclusive Shared Invalid (MESI) protocol to synchro-
nize the L1 caches. The protocols used today have been 
improved, but the basic principle remains the same. In 
the MESI protocol, every cache line that was loaded into 
the cache is in one of four states: Modified, Exclusive, 
Shared, or Invalid. The Modified state means that the 
cache has an exclusive copy of the cache line and has 
modified it. If a cache line is in the Exclusive state, it also 
means that it is an exclusive copy, but it has not been 
modified yet. A cache line is in the Shared state if there 
are copies in two or more caches, but none of them has 
been modified. An Invalid cache line is no longer valid and 
cannot be used.

Figure 1 shows the state changes during our experi-
ment. Figure 1a shows the state changes during the 

first test run, when the array elements were farther apart and the threads 
accessed different cache lines. When one of the threads loaded a cache 
line into the cache, the line was marked as being Exclusive. When the 
thread modified it, the state switched to Modified. From then on, the 
cache line remained in the Modified state. Access to the cache line was 
fast, because the Modified state tells us that we can update the cache line 

The MESI 
protocol ensures 
that the 
system never 
works with 
two different 
versions of 
the same 
cache line.
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Figure 1: MESI state changes while modifying elements (1a: adjacent elements, 
1b: distant elements)
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directly without any further actions. 
Things were more complicated during the second test run, as can be 

seen in Figure 1b. The MESI protocol ensures that the system never works 
with two different versions of the same cache line. Both threads modi-
fied the same cache line; therefore, when the second thread requested 
the cache line, it had to load it from the L1 cache of the first core and both 
caches had to mark their respective cache lines as shared. When one of the 
two threads tried to modify the cache line, it first had to signal the other 
cache that its cache line had become invalid. Only after that was successful 
and its cache line entered the Modified state was it able to do the modi-
fication. But when the other thread requested the cache line, both caches 
had to synchronize again and switch to the Shared state. Then we had to 
start all over again. The constant need to mark the other thread as invalid 
and synchronize back again once done was the reason why the second test 
ran slower than the first.

The problem of two seemingly independent variables affecting each 
other’s performance is so common that it has its own name: false shar-
ing. It is extremely tricky to detect, because false sharing is invisible if you 
look at Java alone. One of the examples in the Java Microbenchmarking 
Harness gives a good overview of different techniques to avoid false shar-
ing between two variables. The basic idea of all solutions is to insert other 
variables to ensure that the two variables potentially affected by false shar-
ing are located in different cache lines.

Linear Search or Binary Search? The Cost of Branch Misses
At this point, we leave the memory system behind to take a closer look 
at the CPU itself. With our next experiment, we will try to answer a sim-
ple question: If executed on a small array, which is faster—linear search 
(Listing 2) or binary search (Listing 3)? 

Listing 2.
public static boolean linearSearch(
         int needle, int[] haystack) {

    for (int current : haystack) {
        if (current == needle) {
            return true;
        } else if (current > needle) {

            return false;
        }
    }

    return false;
}

Listing 3.
public static boolean binarySearch(int needle,  
                                   int[] haystack) {

    int low = 0;
    int high = haystack.length - 1;

    while (low <= high) {
        int mid = (low + high) >>> 1;
        int midVal = haystack[mid];

        if (midVal < needle)
            low = mid + 1;
        else if (midVal > needle)
            high = mid - 1;
        else
            return true;
    }
    return false;
}

For large arrays, the binary search outperforms linear search by a wide 
margin: the larger the array, the larger the performance gap. But for small 
arrays, such as one of 16 integers, the answer is not straightforward, 
because the outcome depends on the CPU architecture. On my laptop, a 
binary search takes 28.2 ns on average, whereas a linear search takes only 
21.8 ns. Most of us would have expected that binary search would be faster, 
because it requires fewer iterations. How is it possible that linear search is 
that much faster?  

To get an initial idea, let’s run perf again on both algorithms. (For a quick 
introduction to the usage of perf, see the first article in this series.) The per-
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formance numbers are roughly the same, but there is a significant differ-
ence in the number of branch misses. [Screen shots with full perf results are 
available in the download area. —Ed.] The linear search had 346.9 million 
branch misses, while the binary search had 526.4 million.  What is a branch 
miss? To understand branch misses, we need to take a step back and 
take a look at a mechanism called pipelining.
Pipelining. When the CPU processes an instruction, it actually has 
several steps to perform. The instruction needs to be fetched from 
memory and decoded. That is, the CPU must figure out what kind of 
instruction it is dealing with. After that, the instruction needs to be 
executed and the result has to be written back to memory. Figure 2 
shows the internal structure of a CPU and how a single instruction A 
steps through the different stages on a mythical CPU with no pipeline.

The operations performed at each stage are quite different. The 
stages are implemented in different parts of the CPU. Thus, if a pro-
cessor really worked as shown in Figure 2, it would be inefficient, 
because most of its parts would be idle most of the time, waiting for 
the next instruction to arrive. Early on, chip designers thought about 
ways to keep all components busy and came up with a solution 
called pipelining.

The principle can be seen in Figure 3. Instruction A is fetched. 
While instruction A is decoded, the CPU fetches the next instruction, 
B. As it executes instruction A, the CPU decodes instruction B, fetches 
the third instruction C, and so on. Instead of processing one instruc-

tion after another, the CPU processes a stream of 
instructions: the instruction pipeline.

This works extremely well. A single instruction 
still needs four cycles to step through all four stages, 
but with pipelining the throughput increases from 
one instruction every four cycles to one instruction 
per cycle.
Branch prediction. There is one case, however, in 
which pipelining becomes tricky: conditional jumps. 
Imagine that instruction A is a conditional jump and 
that, depending on the outcome, it may execute 
instruction B or jump directly to a distant instruction 
X. Should the CPU fetch instruction B or X while we 
decode A? It does not know the outcome of the con-

ditional jump yet, because that becomes clear only after instruction A has 
finished the execution stage.

Different processor architectures deal with this situation differently. One 
of the most common strategies is branch prediction: The CPU guesses 

Figure 2: CPU execution without pipeline Figure 3: CPU execution with pipeline
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which branch it should take. Even though the prediction algorithm has to 
be simple and fast, it is amazing how accurate it is. In a typical program, the 
rate of successful predictions is well above 90 percent.

What happens if the guess is wrong? The effect of a wrong guess and 
unnecessary execution is 
less dramatic than one might 
expect. Take a look at Figure 4 
and assume that instruction A 
is a conditional jump for which 
the CPU did a wrong guess. 
Once instruction A finishes 
the execution stage, the CPU 
knows that the branch predic-
tion was wrong. It can simply 
drop instructions B and C now. 
At this point, they have only 
been fetched from memory and 
decoded. To the outside world, 
both operations have no notice-
able effects. Therefore, the 
CPU can just throw out these 
instructions and continue fetch-
ing the first instructions of the 
correct branch.
Branch prediction while search-
ing. Nevertheless, branch 
mispredictions are expensive, 
because they nullify the per-
formance increase we gained 
through pipelining our instruc-
tions. In the case of our two 
search algorithms, the perfor-
mance loss is large enough to 
make binary search the slower 
alternative, even though it 
requires fewer comparisons to 
find the needle in the haystack.

The algorithm for linear search 

contains three conditional jumps: the for loop; the check for whether the 
element was found; and the check on the range of possible indexes. Each 
results in a conditional jump. Even though this is quite a few conditional 
jumps for such a short code segment, all of them are easy to predict cor-
rectly. The loop index is always smaller than the array bounds except at the 
very end, when the loop is exited. This means that once the loop is entered, 
every guess is likely to be right except the one at the very end. The same is 
true for the other two conditional jumps. If the CPU were to guess that the 
current element is not the element being searched for, it will always be right 
except once, when the element is found and the loop is exited. 

The algorithm for binary search also contains three conditional jumps. 
Two of them are easy to guess right most of the time, for the same reason 
as described above. But in the loop, a decision must be made to continue 
in the upper half or lower half of the remaining array. The test data is evenly 
distributed, which means chances are 50-50 that the code needs to go 
to one half or the other. In other words, it is impossible to guess the right 
branch at this point. No matter which branch is guessed, it will be wrong 
half the time.

Conclusion
With the instruction pipeline and branch predictions, we have reached a 
level that you usually do not need to consider when optimizing your Java 
program. I have encountered maybe a handful of cases so far where avoid-
ing branches actually did improve performance noticeably in very hot code 
segments. But pipelining and branch prediction are fascinating neverthe-
less. What this example shows is that for very small data structures, it often 
makes sense to use the simplest algorithm possible. The positive effects 
of clever but complex algorithms can easily be nullified by other effects. 
Therefore, it makes even more sense to adhere to the most important rule 
in software engineering: If in doubt, follow the KISS principle—that is, keep 
it simple. </article>

Figure 4: Branch misprediction
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