
ITEM 69: PREFER CONCURRENCY UTILITIES TO WAIT AND NOTIFY 273

Item 69: Prefer concurrency utilities to wait and notify

The first edition of this book devoted an item to the correct use of wait and
notify (Bloch01, Item 50). Its advice is still valid and is summarized at end of this
item, but this advice is far less important than it once was. This is because there is
far less reason to use wait and notify. As of release 1.5, the Java platform pro-
vides higher-level concurrency utilities that do the sorts of things you formerly had
to hand-code atop wait and notify. Given the difficulty of using wait and
notify correctly, you should use the higher-level concurrency utilities instead.

The higher-level utilities in java.util.concurrent fall into three categories:
the Executor Framework, which was covered only briefly in Item 68; concurrent
collections; and synchronizers. Concurrent collections and synchronizers are cov-
ered briefly in this item.

The concurrent collections provide high-performance concurrent implementa-
tions of standard collection interfaces such as List, Queue, and Map. To provide
high concurrency, these implementations manage their own synchronization inter-
nally (Item 67). Therefore, it is impossible to exclude concurrent activity from
a concurrent collection; locking it will have no effect but to slow the program.

This means that clients can’t atomically compose method invocations on con-
current collections. Some of the collection interfaces have therefore been extended
with state-dependent modify operations, which combine several primitives into a
single atomic operation. For example, ConcurrentMap extends Map and adds sev-
eral methods, including putIfAbsent(key, value), which inserts a mapping for
a key if none was present and returns the previous value associated with the key,
or null if there was none. This makes it easy to implement thread-safe canonical-
izing maps. For example, this method simulates the behavior of String.intern:

// Concurrent canonicalizing map atop ConcurrentMap - not optimal
private static final ConcurrentMap<String, String> map =

new ConcurrentHashMap<String, String>();

public static String intern(String s) {
String previousValue = map.putIfAbsent(s, s);
return previousValue == null ? s : previousValue;

}

In fact, you can do even better. ConcurrentHashMap is optimized for retrieval
operations, such as get. Therefore, it is worth invoking get initially and calling
putIfAbsent only if get indicates that it is necessary:

CHAPTER 10 CONCURRENCY274

// Concurrent canonicalizing map atop ConcurrentMap - faster!
public static String intern(String s) {

String result = map.get(s);
if (result == null) {

result = map.putIfAbsent(s, s);
if (result == null)

result = s;
}
return result;

}

Besides offering excellent concurrency, ConcurrentHashMap is very fast. On my
machine the optimized intern method above is over six times faster than
String.intern (but keep in mind that String.intern must use some sort of weak
reference to keep from leaking memory over time). Unless you have a compelling reason
to do otherwise, use ConcurrentHashMap in preference to Collections.synchro-
nizedMap or Hashtable. Simply replacing old-style synchronized maps with concurrent
maps can dramatically increase the performance of concurrent applications. More gener-
ally, use concurrent collections in preference to externally synchronized collections.

Some of the collection interfaces have been extended with blocking opera-
tions, which wait (or block) until they can be successfully performed. For exam-
ple, BlockingQueue extends Queue and adds several methods, including take,
which removes and returns the head element from the queue, waiting if the queue
is empty. This allows blocking queues to be used for work queues (also known as
producer-consumer queues), to which one or more producer threads enqueue
work items and from which one or more consumer threads dequeue and process
items as they become available. As you’d expect, most ExecutorService imple-
mentations, including ThreadPoolExecutor, use a BlockingQueue (Item 68).

Synchronizers are objects that enable threads to wait for one another, allowing
them to coordinate their activities. The most commonly used synchronizers are
CountDownLatch and Semaphore. Less commonly used are CyclicBarrier and
Exchanger.

Countdown latches are single-use barriers that allow one or more threads to
wait for one or more other threads to do something. The sole constructor for
CountDownLatch takes an int that is the number of times the countDown method
must be invoked on the latch before all waiting threads are allowed to proceed.

It is surprisingly easy to build useful things atop this simple primitive. For
example, suppose you want to build a simple framework for timing the concurrent
execution of an action. This framework consists of a single method that takes an
executor to execute the action, a concurrency level representing the number of

ITEM 69: PREFER CONCURRENCY UTILITIES TO WAIT AND NOTIFY 275

actions to be executed concurrently, and a runnable representing the action. All of
the worker threads ready themselves to run the action before the timer thread
starts the clock (this is necessary to get an accurate timing). When the last worker
thread is ready to run the action, the timer thread “fires the starting gun,” allowing
the worker threads to perform the action. As soon as the last worker thread fin-
ishes performing the action, the timer thread stops the clock. Implementing this
logic directly on top of wait and notify would be messy to say the least, but it is
surprisingly straightforward on top of CountDownLatch:

// Simple framework for timing concurrent execution
public static long time(Executor executor, int concurrency,

final Runnable action) throws InterruptedException {
final CountDownLatch ready = new CountDownLatch(concurrency);
final CountDownLatch start = new CountDownLatch(1);
final CountDownLatch done = new CountDownLatch(concurrency);
for (int i = 0; i < concurrency; i++) {

executor.execute(new Runnable() {
public void run() {

ready.countDown(); // Tell timer we're ready
try {

start.await(); // Wait till peers are ready
action.run();

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

} finally {
done.countDown(); // Tell timer we're done

}
}

});
}
ready.await(); // Wait for all workers to be ready
long startNanos = System.nanoTime();
start.countDown(); // And they're off!
done.await(); // Wait for all workers to finish
return System.nanoTime() - startNanos;

}

Note that the method uses three countdown latches. The first, ready, is used
by worker threads to tell the timer thread when they’re ready. The worker threads
then wait on the second latch, which is start. When the last worker thread
invokes ready.countDown, the timer thread records the start time and invokes
start.countDown, allowing all of the worker threads to proceed. Then the timer
thread waits on the third latch, done, until the last of the worker threads finishes
running the action and calls done.countDown. As soon as this happens, the timer
thread awakens and records the end time.

CHAPTER 10 CONCURRENCY276

A few more details bear noting. The executor that is passed to the time
method must allow for the creation of at least as many threads as the given concur-
rency level, or the test will never complete. This is known as a thread starvation
deadlock [Goetz06 8.1.1]. If a worker thread catches an InterruptedException,
it reasserts the interrupt using the idiom Thread.currentThread().interrupt()
and returns from its run method. This allows the executor to deal with the inter-
rupt as it sees fit, which is as it should be. Finally, note that System.nanoTime is
used to time the activity rather than System.currentTimeMillis. For interval
timing, always use System.nanoTime in preference to System.currentTime-
Millis. System.nanoTime is both more accurate and more precise, and it is not
affected by adjustments to the system’s real-time clock.

This item only scratches the surface of the concurrency utilities. For example,
the three countdown latches in the previous example can be replaced by a single
cyclic barrier. The resulting code is even more concise, but it is more difficult to
understand. For more information, see Java Concurrency in Practice [Goetz06].

While you should always use the concurrency utilities in preference to wait
and notify, you might have to maintain legacy code that uses wait and notify.
The wait method is used to make a thread wait for some condition. It must be
invoked inside a synchronized region that locks the object on which it is invoked.
Here is the standard idiom for using the wait method:

// The standard idiom for using the wait method
synchronized (obj) {

while (<condition does not hold>)
obj.wait(); // (Releases lock, and reacquires on wakeup)

... // Perform action appropriate to condition
}

Always use the wait loop idiom to invoke the wait method; never invoke it
outside of a loop. The loop serves to test the condition before and after waiting.

Testing the condition before waiting and skipping the wait if the condition
already holds are necessary to ensure liveness. If the condition already holds and
the notify (or notifyAll) method has already been invoked before a thread
waits, there is no guarantee that the thread will ever wake from the wait.

Testing the condition after waiting and waiting again if the condition does not
hold are necessary to ensure safety. If the thread proceeds with the action when
the condition does not hold, it can destroy the invariant guarded by the lock. There
are several reasons a thread might wake up when the condition does not hold:

ITEM 69: PREFER CONCURRENCY UTILITIES TO WAIT AND NOTIFY 277

• Another thread could have obtained the lock and changed the guarded state be-
tween the time a thread invoked notify and the time the waiting thread woke.

• Another thread could have invoked notify accidentally or maliciously when
the condition did not hold. Classes expose themselves to this sort of mischief
by waiting on publicly accessible objects. Any wait contained in a synchro-
nized method of a publicly accessible object is susceptible to this problem.

• The notifying thread could be overly “generous” in waking waiting threads.
For example, the notifying thread might invoke notifyAll even if only some
of the waiting threads have their condition satisfied.

• The waiting thread could (rarely) wake up in the absence of a notify. This is
known as a spurious wakeup [Posix, 11.4.3.6.1; JavaSE6].

A related issue is whether you should use notify or notifyAll to wake wait-
ing threads. (Recall that notify wakes a single waiting thread, assuming such a
thread exists, and notifyAll wakes all waiting threads.) It is often said that you
should always use notifyAll. This is reasonable, conservative advice. It will
always yield correct results because it guarantees that you’ll wake the threads that
need to be awakened. You may wake some other threads, too, but this won’t affect
the correctness of your program. These threads will check the condition for which
they’re waiting and, finding it false, will continue waiting.

As an optimization, you may choose to invoke notify instead of notifyAll
if all threads that could be in the wait-set are waiting for the same condition and
only one thread at a time can benefit from the condition becoming true.

Even if these conditions appear true, there may be cause to use notifyAll in
place of notify. Just as placing the wait invocation in a loop protects against
accidental or malicious notifications on a publicly accessible object, using noti-
fyAll in place of notify protects against accidental or malicious waits by an
unrelated thread. Such waits could otherwise “swallow” a critical notification,
leaving its intended recipient waiting indefinitely.

In summary, using wait and notify directly is like programming in “concur-
rency assembly language,” as compared to the higher-level language provided by
java.util.concurrent. There is seldom, if ever, a reason to use wait and
notify in new code. If you maintain code that uses wait and notify, make sure
that it always invokes wait from within a while loop using the standard idiom.
The notifyAll method should generally be used in preference to notify. If
notify is used, great care must be taken to ensure liveness.

