
Chapter 6
Thread Programming

Several parallel computing platforms, in particular multicore platforms, offer a shared
address space. A natural programming model for these architectures is a thread model
in which all threads have access to shared variables. These shared variables are then
used for information and data exchange. To coordinate the access to shared variables,
synchronization mechanisms have to be used to avoid race conditions in case of
concurrent accesses. Basic synchronization mechanisms are lock synchronization
and condition synchronization, see Sect. 3.8 for an overview.

In this chapter, we consider thread programming in more detail. In particu-
lar, we have a closer look at synchronization problems like deadlocks or priority
inversion that might occur and present programming techniques to avoid such prob-
lems. Moreover, we show how basic synchronization mechanisms like lock syn-
chronization or condition synchronization can be used to build more complex syn-
chronization mechanisms like read/write locks. We also present a set of parallel
patterns like task based or pipelined processing that can be used to structure a par-
allel application. These issues are considered in the context of popular program-
ming environments for thread-based programming to directly show the usage of the
mechanisms in practice. The programming environments Pthreads, Java threads, and
OpenMP are introduced in detail. For Java, we also give an overview of the pack-
age java.util.concurrent which provides many advanced synchronization
mechanisms as well as a task-based execution environment. The goal of the chapter
is to enable the reader to develop correct and efficient thread programs that can be
used, for example, on multicore architectures.

6.1 Programming with Pthreads

POSIX threads (also called Pthreads) defines a standard for the programming with
threads, based on the programming language C. The threads of a process share a
common address space. Thus, the global variables and dynamically generated data

T. Rauber and G. Rünger, Parallel Programming, 287
DOI: 10.1007/978-3-642-37801-0_6, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-37801-0_3

288 6 Thread Programming

objects can be accessed by all threads of a process. In addition, each thread has a
separate runtime stack which is used to control the functions activated and to store
their local variables. These variables declared locally within the functions are local
data of the executing thread and cannot be accessed directly by other threads. Since
the runtime stack of a thread is deleted after a thread is terminated, it is dangerous
to pass a reference to a local variable in the runtime stack of a thread A to another
thread B.

The data types, interface definitions and macros of Pthreads, are usually available
via the header file <pthread.h>. This header file must therefore be included into
a Pthreads program. The functions and data types of Pthreads are defined according
to a naming convention. According to this convention, Pthreads functions are named
in the form

pthread[_<object>]_<operation> ()

where <operation> describes the operation to be performed and the optional
<object> describes the object to which this operation is applied. For example,
pthread_mutex_init() is a function for the initialization of a mutex variable;
thus, the <object> is mutex and the <operation> is init; we give a more
detailed description later.

For functions which are involved in the manipulation of threads, the specification
of <object> is omitted. For example, the function for the generation of a thread
is pthread_create(). All Pthreads functions yield a return value 0, if they are
executed without failure. In case of a failure, an error code from <error.h> will
be returned. Thus, this header file should also be included in the program. Pthreads
data types describe, similarly to MPI, opaque objects whose exact implementation
is hidden from the programmer. Data types are named according to the syntax form

pthread_ < object > _t

where <object> specifies the specific data object. For example, a mutex variable
is described by the data type pthread_mutex_t. If <object> is omitted, the
data type pthread_ t for threads results. The following table contains important
Pthread data types which will be described in more detail later.

Pthreads data types meaning
pthread_t Thread ID
pthread_mutex_t mutex variable
pthread_cond_t condition variable
pthread_key_t access key
pthread_attr_t thread attributes object
pthread_mutexattr_t mutex attributes object
pthread_condattr_t condition variable attributes object
pthread_once_t one time initialization control context

6.1 Programming with Pthreads 289

For the execution of threads, we assume a two-step scheduling method according
to Fig. 3.17 in Sect. 3, as this is the most general case. In this model, the programmer
has to partition the program into a suitable number of user threads which can be
executed concurrently with each other. The user threads are mapped by the library
scheduler to system threads which are then brought to execution on the processors
of the computing system by the scheduler of the operating system. The programmer
cannot control the scheduler of the operating system and has only little influence on
the library scheduler. Thus, the programmer cannot directly perform the mapping of
the user-level threads to the processors of the computing system, e.g., by a scheduling
at program level. This facilitates program development, but also prevents an efficient
mapping directly by the programmer according to his specific needs. It should be
noted that there are operating system specific extensions that allow thread execution
to be bound to specific processors. But in most cases, the scheduling provided by the
library and the operating system leads to good results and relieves the programmer
from additional programming effort, thus providing more benefits than drawbacks.

In this section, we give an overview of the programming with Pthreads.
Section 6.1.1 describes thread generation and management in Pthreads. Section 6.1.2
describes the lock mechanism for the synchronization of threads accessing shared
variables. Sections 6.1.3 and 6.1.4 introduce Pthreads condition variables and an
extended lock mechanism using condition variables. Sections 6.1.6 – 6.1.8 describe
the use of the basic synchronization techniques in the context of more advanced
synchronization patterns, like task pools, pipelining, and client-server coordination.
Section 6.1.9 discusses additional mechanisms for the control of threads, including
scheduling strategies. We describe in sect. 6.1.10 how the programmer can influ-
ence the scheduling controlled by the library. The phenomenon of priority inver-
sion is then explained in Sect. 6.1.11 and finally thread-specific data are considered
in Sect. 6.1.12. Only the most important mechanisms of the Pthreads standard are
described; for a more detailed description, we refer to [25, 119, 132, 145, 161].

6.1.1 Creating and Merging Threads

When a Pthreads program is started, a single main thread is active, executing the
main() function of the program. The main thread can generate more threads by
calling the function

int pthread_create (pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg)

The first argument is a pointer to an object of type pthread_t which is also
referred to as thread identifier (TID); this TID is generated bypthread_create()
and can later be used by other Pthreads functions to identify the generated thread.
The second argument is a pointer to a previously allocated and initialized attributes

http://dx.doi.org/10.1007/978-3-642-37801-0_3
http://dx.doi.org/10.1007/978-3-642-37801-0_3

290 6 Thread Programming

object of type pthread_attr_t, defining the desired attributes of the generated
thread. The argument value NULL causes the generation of a thread with default
attributes. If different attribute values are desired, an attribute data structure has to
be created and initialized before calling pthread_create(); this mechanism
is described in more detail in Sect. 6.1.9. The third argument specifies the function
start_routine()which will be executed by the generated thread. The specified
function should expect a single argument of type void * and should have a return
value of the same type. The fourth argument is a pointer to the argument value with
which the thread function start_routine() will be executed.

To execute a thread function with more than one argument, all arguments must be
put into a single data structure; the address of this data structure can then be specified
as argument of the thread function. If several threads are started by a parent-thread
using the same thread function but different argument values, separate data structures
should be used for each of the threads to specify the arguments. This avoids situations
where argument values are overwritten too early by the parent thread before they are
read by the child threads or where different child threads manipulate the argument
values in a common data structure concurrently.

A thread can determine its own thread identifier by calling the function

pthread_t pthread_self()

This function returns the thread ID of the calling thread. To compare the thread ID
of two threads, the function

int pthread_equal (pthread_tt1,pthread_tt2)

can be used. This function returns the value 0 if t1 and t2 do not refer to the same
thread. Otherwise, a nonzero value is returned. Since pthread_t is an opaque
data structure, only pthread_equal should be used to compare thread IDs. The
number of threads that can be generated by a process is typically limited by the system.
The Pthreads standard determines that at least 64 threads can be generated by any
process. But depending on the specific system used, this limit may be larger. For
most systems, the maximum number of threads that can be started can be determined
by calling

maxThreads = sysconf (_SC_THREAD_THREADS_MAX)

in the program. Knowing this limit, the program can avoid to start more than
maxThreads threads. If the limit is reached, a call of the pthread_create()
function returns the error value EAGAIN. A thread is terminated if its thread func-
tion terminates, e.g., by calling return. A thread can terminate itself explicitly by
calling the function

void pthread_exit (void ∗ valuep)

6.1 Programming with Pthreads 291

The argument valuep specifies the value that will be returned to another thread
which waits for the termination of this thread using pthread_join(). When
a thread terminates its thread function, the function pthread_exit() is called
implicitly, and the return value of the thread function is used as argument of this
implicit call of pthread_exit(). After the call to pthread_exit(), the call-
ing thread is terminated, and its runtime stack is freed and can be used by other
threads. Therefore, the return value of the thread should not be a pointer to a local
variable of the thread function or another function called by the thread function.
These local variables are stored on the runtime stack and may not exist any longer
after the termination of the thread. Moreover, the memory space of local variables
can be reused by other threads, and it can usually not be determined when the mem-
ory space is overwritten, thereby destroying the original value of the local variable.
Instead of a local variable, a global variable or a variable that has been dynamically
allocated should be used.

A thread can wait for the termination of another thread by calling the function

int pthread_join (pthread_t thread,void ∗ ∗valuep)

The argument thread specifies the thread ID of the thread for which the call-
ing thread waits to be terminated. The argument valuep specifies a memory
address where the return value of this thread should be stored. The thread call-
ing pthread_join() is blocked until the specified thread has terminated. Thus,
pthread_join() provides a possibility for the synchronization of threads. After
the thread with TID thread has terminated, its return value is stored at the specified
memory address. If several threads wait for the termination of the same thread, using
pthread_join(), all waiting threads are blocked until the specified thread has
terminated. But only one of the waiting threads successfully stores the return value.
For all other waiting threads, the return value of pthread_join() is the error
value ESRCH. The runtime system of the Pthreads library allocates for each thread an
internal data structure to store information and data needed to control the execution
of the thread. This internal data structure is preserved by the runtime system also
after the termination of the thread to ensure that another thread can later successfully
access the return value of the terminated thread using pthread_join().

After the call to pthread_join(), the internal data structure of the terminated
thread is released and can no longer be accessed. If there is no pthread_join()
for a specific thread, its internal data structure is not released after its termination
and occupies memory space until the complete process is terminated. This can be
a problem for large programs with many thread creations and terminations without
corresponding calls to pthread_join(). The preservation of the internal data
structure of a thread after its termination can be avoided by calling the function

int pthread_detach (pthread_t thread)

This function notifies the runtime system that the internal data structure of the thread
with TID thread can be detached as soon as the thread has terminated. A thread

292 6 Thread Programming

may detach itself, and any thread may detach any other thread. After a thread has
been set into a detached state, calling pthread_join() for this thread returns the
error value EINVAL.

Example: We give a first example for a Pthreads program; Figure 6.1 shows a
program fragment for the multiplication of two matrices, see also [145]. The matrices
MA and MB to be multiplied have a fixed size of eight rows and eight columns. For
each of the elements of the result matrix MC, a separate thread is created. The IDs
of these threads are stored in the array thread. Each thread obtains a separate data
structure of type matrix_type_t which contains pointers to the input matrices

Fig. 6.1 Pthreads program for the multiplication of two matrices MA and MB. A separate thread is
created for each element of the output matrix MC. A separate data structure work is provided for
each of the threads created.

6.1 Programming with Pthreads 293

MA and MB, the output matrix MC, and the row and column position of the entry of MC
to be computed by the corresponding thread. Each thread executes the same thread
functionthread_mult()which computes the scalar product of one row ofMA and
one column of MB. After creating a new thread for each of the 64 elements of MC to be
computed, the main thread waits for the termination of each of these threads using
pthread_join(). The program in Fig. 6.1 creates 64 threads which is exactly
the limit defined by the Pthreads standard for the number of threads that must be
supported by each implementation of the standard. Thus, the given program works
correctly. But it is not scalable in the sense that it can be extended to the multiplication
of matrices of any size. Since a separate thread is created for each element of the
output matrix, it can be expected that the upper limit for the number of threads that
can be generated will be reached even for matrices of moderate size. Therefore, the
program should be re-written when using larger matrices such that a fixed number
of threads is used and each thread computes a block of entries of the output matrix;
the size of the blocks increases with the size of the matrices. �

6.1.2 Thread Coordination with Pthreads

The threads of a process share a common address space. Therefore, they can concur-
rently access shared variables. To avoid race conditions, these concurrent accesses
must be coordinated. To perform such coordinations, Pthreads provides mutex vari-
ables and condition variables.

6.1.2.1 Mutex variables

In Pthreads, a mutex variable denotes a data structure of the predefined opaque
type pthread_mutex_t. Such a mutex variable can be used to ensure mutual
exclusion when accessing common data, i.e., it can be ensured that only one thread
at a time has exclusive access to a common data structure, all other threads have to
wait. A mutex variable can be in one of two states: locked and unlocked. To ensure
mutual exclusion when accessing a common data structure, a separate mutex variable
is assigned to the data structure. All accessing threads must behave as follows: Before
an access to the common data structure, the accessing thread locks the corresponding
mutex variable using a specific Pthreads function. When this is successful, the thread
is the owner of the mutex variable. After each access to the common data structure,
the accessing thread unlocks the corresponding mutex variable. After the unlocking,
it is no longer owner of the mutex variable and another thread can become owner
and is allowed to access the data structure.

When a thread A tries to lock a mutex variable that is already owned by another
thread B, thread A is blocked until thread B unlocks the mutex variable. The Pthreads
runtime system ensures that only one thread at a time is the owner of a specific mutex
variable. Thus, a conflicting manipulation of a common data structure is avoided if

294 6 Thread Programming

each thread uses the described behavior. But if a thread accesses the data structure
without locking the mutex variable before, mutual exclusion is no longer guaranteed.

The assignment of mutex variables to data structures is done implicitly by the
programmer by protecting accesses to the data structure with locking and unlocking
operations of a specific mutex variable. There is no explicit assignment of mutex
variables to data structures. The programmer can improve the readability of Pthreads
programs by grouping a common data structure and the protecting mutex variable
into a new structure.

In Pthreads, mutex variables have the predefined typepthread_mutex_t. Like
normal variables, they can be statically declared or dynamically generated. Before a
mutex variable can be used, it must be initialized. For a mutex variable mutex that
is allocated statically, this can be done by

mutex = PTHREAD_MUTEX_INITIALIZER

where PTHREAD_MUTEX_INITIALIZER is a predefined macro. For arbitrary
mutex variables (statically allocated or dynamically generated), an initialization can
be performed dynamically by calling the function

int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

For attr = NULL, a mutex variable with default properties results. The proper-
ties of mutex variables can be influenced by using different attribute values, see
Sect. 6.1.9. If a mutex variable that has been initialized dynamically is no longer
needed, it can be destroyed by calling the function

int pthread_mutex_destroy (pthread_mutex_t *mutex)

A mutex variable should only be destroyed if none of the threads are waiting for
the mutex variable to become owner and if there is currently no owner of the mutex
variable. A mutex variable that has been destroyed can later be re-used after a new
initialization. A thread can lock a mutex variable mutex by calling the function

int pthread_mutex_lock (pthread_mutex_t *mutex)

If another thread B is owner of the mutex variable mutex when a thread A issues
the call of pthread_mutex_lock(), then thread A is blocked until thread B
unlocks mutex. When several threads T1, . . . , Tn try to lock a mutex variable which
is owned by another thread, all threads T1, . . . , Tn are blocked and are stored in a
waiting queue for this mutex variable. When the owner releases the mutex variable,
one of the blocked threads in the waiting queue is unblocked and becomes the new
owner of the mutex variable. Which one of the waiting threads is unblocked may
depend on their priorities and the scheduling strategies used, see Sect. 6.1.9 for more
information. The order in which waiting threads become owner of a mutex variable is
not defined in the Pthreads standard and may depend on the specific Pthreads library
used.

6.1 Programming with Pthreads 295

A thread should not try to lock a mutex variable when it is already the owner.
Depending on the specific runtime system, this may lead to an error return value
EDEADLK or may even cause a self-deadlock. A thread which is owner of a mutex
variable mutex can unlock mutex by calling the function

int pthread_mutex_unlock (pthread_mutex_t *mutex)

After this call, mutex is in the state unlocked. If there is no other thread waiting for
mutex, there is no owner of mutex after this call. If there are threads waiting for
mutex, one of these threads is woken up and becomes the new owner of mutex. In
some situations, it is useful that a thread can check without blocking whether a mutex
variable is owned by another thread. This can be achieved by calling the function

int pthread_mutex_trylock (pthread_mutex_t *mutex)

If the specified mutex variable is currently not held by another thread, the calling
thread becomes the owner of the mutex variable. This is the same behavior as for
pthread_mutex_lock(). But different frompthread_mutex_lock(), the
calling thread is not blocked if another thread already holds the mutex variable.
Instead, the call returns with error return value EBUSYwithout blocking. The calling
thread can then perform other computations and can later retry to lock the mutex
variable. The calling thread can also repeatedly try to lock the mutex variable until
it is successful (spinlock).

Example: Figure 6.2 shows a simple program fragment to illustrate the use of mutex
variables to ensure mutual exclusion when concurrently accessing a common data
structure, see also [145]. In the example, the common data structure is a linked
list. The nodes of the list have type node_t. The complete list is protected by a
single mutex variable. To indicate this, the pointer to the first element of the list
(first) is combined with the mutex variable (mutex) into a data structure of type
list_t. The linked list will be kept sorted according to increasing values of the
node entry index. The function list_insert() inserts a new element into the
list while keeping the sorting. Before the first call tolist_insert(), the list must
be initialized by calling list_insert(), e.g., in the main thread. This call also
initializes the mutex variable. In list_insert(), the executing thread first locks
the mutex variable of the list before performing the actual insertion. After the inser-
tion, the mutex variable is released again using pthread_mutex_unlock().
This procedure ensures that it is not possible for different threads to insert new ele-
ments at the same time. Hence, the list operations are sequentialized. The function
list_insert() is a thread-safe function, since a program can use this function
without performing additional synchronization.

In general, a (library) function is thread-safe if it can be called by different threads
concurrently, without performing additional operations to avoid race conditions. �

In Fig. 6.2, a single mutex variable is used to control the complete list. This results
in a coarse-grain lock granularity. Only a single insert operation can happen at a
time, independently from the length of the list. An alternative could be to partition
the list into fixed-size areas and protect each area with a mutex variable, or even to

296 6 Thread Programming

Fig. 6.2 Pthread implementation of a linked list. The function list_insert() can be called
by different threads concurrently to insert new elements into the list. In the form presented,
list_insert() cannot be used as the start function of a thread, since the function has more
than one argument. To be used as start function, the arguments of list_insert() have to be
put into a new data structure which is then passed as argument. The original arguments could then
be extracted from this data structure at the beginning of list_insert().

6.1 Programming with Pthreads 297

protect each single element of the list with a separate mutex variable. In this case,
the granularity would be fine grained, and several threads could access different
parts of the list concurrently. But this also requires a substantial re-organization of
the synchronization, possibly leading to a larger overhead.

6.1.2.2 Mutex variables and deadlocks

When multiple threads work with different data structures each of which is protected
by a separate mutex variable, caution has to be taken to avoid deadlocks. A deadlock
may occur, if the threads use a different order for locking the mutex variables. This
can be seen for two threads T1 and T2 and two mutex variables ma and mb as follows:

• thread T1 first locks ma and then mb;
• thread T2 first locks mb and then ma.

If T1 is interrupted by the scheduler of the runtime system after locking ma such that
T2 is able to successfully lock mb, a deadlock occurs:
T2 will be blocked when it is trying to lock ma, since ma is already locked by T1;
similarly, T1 will be blocked when it is trying to lock mb after it has been woken up
again, since mb has already been locked by T2. In effect, both threads are blocked
forever and are mutually waiting for each other. The occurrence of deadlocks can
be avoided by using a fixed locking order for all threads or by employing a backoff
strategy.

When using a fixed locking order, each thread locks the critical mutex variables
always in the same predefined order. Using this approach for the example above,
thread T2 must lock the two mutex variables ma and mb in the same order as T1, e.g.,
both threads must first lock ma and then mb. The deadlock described above cannot
occur now, since T2 cannot lock mb if ma has previously been locked by T1. To lock
mb, T2 must first lock ma. If ma has already been locked by T1, T2 will be blocked
when trying to lock ma, and hence cannot lock mb. The specific locking order used
can in principle be arbitrarily selected, but to avoid deadlocks it is important that the
order selected is used throughout the entire program. If this does not conform to the
program structure, a backoff strategy should be used.

When using a backoff strategy, each participating thread can lock the mutex
variables in its individual order, and it is not necessary to use the same predefined
order for each thread. But a thread must back off when its attempt to lock a mutex
variable fails. In this case, the thread must release all mutex variables that it has
previously locked successfully. After the backoff, the thread starts the entire lock
procedure from the beginning by trying to lock the first mutex variable again. To
implement a backoff strategy, each thread uses pthread_mutex_lock() to lock
its first mutex variable, and pthread_mutex_trylock() to lock the remaining
mutex variables needed. If pthread_mutex_trylock() returns EBUSY, this
means that this mutex variable is already locked by another thread. In this case, the
calling thread releases all mutex variables that it has previously locked successfully
using pthread_mutex_unlock().

298 6 Thread Programming

Example: Backoff strategy (see Fig. 6.3 and 6.4):
The use of a backoff strategy is demonstrated in Fig. 6.3 for two threadsf andbwhich
lock three mutex variables m[0], m[1], and m[2] in different orders, see [25]. The
thread f (forward) locks the mutex variables in the order m[0], m[1], and m[2] by
calling the function lock_forward(). The thread b (backward) locks the mutex
variables in the opposite order m[2], m[1], and m[0] by calling the function
lock_backward(), see Fig. 6.4. Both threads repeat the locking 10 times. The
main program in Fig. 6.3 uses two control variables backoff and yield_flag
which are read in as arguments. The control variablebackoff determines whether a
backoff strategy is used (value 1) or not (value 0). For backoff = 1, no deadlock
occurs when running the program because of the backoff strategy. For backoff =
0, a deadlock occurs in most cases, in particular if f succeeds in locking m[0] and
b succeeds in locking m[2].

But depending on the specific scheduling situation concerning f and b, no dead-
lock may occur even if no backoff strategy is used. This happens when both threads
succeed in locking all three mutex variables, before the other thread is executed. To
illustrate this dependence of deadlock occurrence from the specific scheduling situa-
tion, the example in Fig. 6.3 and 6.4 contains a mechanism to influence the scheduling
of f and b. This mechanism is activated by using the control variableyield_flag.
For yield_flag = 0, each thread tries to lock the mutex variables without inter-
ruption. This is the behavior described so far. For yield_flag = 1, each thread
calls sched_yield() after having locked a mutex variable, thus transferring con-
trol to another thread with the same priority. Therefore, the other thread has a chance
to lock a mutex variable. For yield_flag = -1, each thread calls sleep(1)
after having locked a mutex variable, thus waiting for 1 s. In this time, the other
thread can run and has a chance to lock another mutex variable. In both cases, a
deadlock will likely occur if no backoff strategy is used.

Calling pthread_exit() in the main thread causes the termination of the
main thread, but not of the entire process. Instead, using a normal return would
terminate the entire process, including the threads f and b. �

Compared to a fixed locking order, the use of a backoff strategy typically leads to
larger execution times, since threads have to back off when they do not succeed in
locking a mutex variable. In this case, the locking of the mutex variables has to be
started from the beginning.

But using a backoff strategy leads to an increased flexibility, since no fixed locking
order has to be ensured. Both techniques can also be used in combination by using a
fixed locking order in code regions where this is not a problem, and using a backoff
strategy where the additional flexibility is beneficial.

6.1.3 Condition Variables

Mutex variables are typically used to ensure mutual exclusion when accessing global
data structures concurrently. But mutex variables can also be used to wait for the

6.1 Programming with Pthreads 299

Fig. 6.3 Control program to illustrate the use of a backoff strategy.

occurrence of a specific condition which depends on the state of a global data structure
and which has to be fulfilled before a certain operation can be applied. An example
might be a shared buffer from which a consumer thread can remove entries only if the
buffer is not empty. To apply this mechanism, the shared data structure is protected by
one or several mutex variables, depending on the specific situation. To check whether
the condition is fulfilled, the executing thread locks the mutex variable(s) and then
evaluates the condition. If the condition is fulfilled, the intended operation can be
performed. Otherwise, the mutex variable(s) are released again and the thread repeats
this procedure again at a later time. This method has the drawback that the thread
which is waiting for the condition to be fulfilled may have to repeat the evaluation of
the condition quite often before the condition becomes true. This consumes execution
time (active waiting), in particular because the mutex variable(s) have to be locked
before the condition can be evaluated. To enable a more efficient method for waiting
for a condition, Pthreads provides condition variables.

A condition variable is an opaque data structure which enables a thread to wait for
the occurrence of an arbitrary condition without active waiting. Instead, a signaling
mechanism is provided which blocks the executing thread during the waiting time,
so that it does not consume CPU time. The waiting thread is woken up again as soon
as the condition is fulfilled. To use this mechanism, the executing thread must define
a condition variable and a mutex variable. The mutex variable is used to protect the
evaluation of the specific condition which is waited for to be fulfilled. The use of the
mutex variable is necessary, since the evaluation of a condition usually requires to
access shared data which may be modified by other threads concurrently.

300 6 Thread Programming

Fig. 6.4 Functions lock_forward and lock_backward to lock mutex variables in opposite
directions.

A condition variable has type pthread_cond_t. After the declaration or the
dynamic generation of a condition variable, it must be initialized before it can be
used. This can be done dynamically by calling the function

int pthread_cond_init (pthread_cond_t *cond,
const pthread_condattr_t *attr)

6.1 Programming with Pthreads 301

where cond is the address of the condition variable to be initialized and attr is
the address of an attribute data structure for condition variables. Using attr=NULL
leads to an initialization with the default attributes. For a condition variable cond
that has been declared statically, the initialization can also be obtained by using
the PTHREAD_COND_INITIALIZER initialization macro. This can also be done
directly with the declaration

pthread_cond_t cond = PTHREAD_COND_INITIALIZER.

The initialization macro cannot be used for condition variables that have been gener-
ated dynamically using, e.g., malloc(). A condition variable cond that has been
initialized with pthread_cond_init() can be destroyed by calling the function

int pthread_cond_destroy (pthread_cond_t *cond)

if it is no longer needed. In this case, the runtime system can free the informa-
tion stored for this condition variable. Condition variables that have been initialized
statically with the initialization macro, do not need to be destroyed.

Each condition variable must be uniquely associated with a specific mutex vari-
able. All threads which wait for a condition variable at the same time must use the
same associated mutex variable. It is not allowed that different threads associate dif-
ferent mutex variables with a condition variable at the same time. But a mutex variable
can be associated to different condition variables. A condition variable should only be
used for a single condition to avoid deadlocks or race conditions [25]. A thread must
first lock the associated mutex variable mutex with pthread_mutex_lock()
before it can wait for a specific condition to be fulfilled using the function

int pthread_cond_wait (pthread_cond_t *cond,
pthread_mutex_t *mutex)

where cond is the condition variable used and mutex is the associated mutex
variable. The condition is typically embedded into a surrounding control statement.
A standard usage pattern is:

pthread_mutex_lock (&mutex);
while (!condition())

pthread_cond_wait (&cond, &mutex);
compute_something();
pthread_mutex_unlock (&mutex);

The evaluation of the condition and the call of pthread_cond_wait() are
protected by a mutex variable mutex to ensure that the condition does not change
between the evaluation and the call of pthread_cond_wait(), e.g., because
another thread changes the value of a variable that is used within the condition.
Therefore, each thread must use this mutex variable mutex to protect the manipu-
lation of each variable that is used within the condition. Two cases can occur for this
usage pattern for condition variables:

302 6 Thread Programming

• If the specified condition is fulfilled when executing the code segment from above,
the function pthread_cond_wait() is not called. The executing thread
releases the mutex variable and proceeds with the execution of the succeeding
program part.

• If the specified condition is not fulfilled, pthread_cond_wait() is called.
This call has the effect that the specified mutex variable mutex is implicitly
released and that the executing thread is blocked, waiting for the condition variable
until another thread sends a signal using pthread_cond_signal() to notify
the blocked thread that the condition may now be fulfilled. When the blocked
thread is woken up again in this way, it implicitly tries to lock the mutex variable
mutex again. If this is owned by another thread, the woken-up thread is blocked
again, now waiting for the mutex variable to be released. As soon as the thread
becomes owner of the mutex variable mutex, it continues the execution of the
program. In the context of the usage pattern from above, this results in a new
evaluation of the condition because of the while loop.

In a Pthreads program, it should be ensured that a thread which is waiting for
a condition variable is woken up only if the specified condition is fulfilled. Nev-
ertheless, it is useful to evaluate the condition again after the wake up, because
there are other threads working concurrently. One of these threads might become
owner of the mutex variable before the woken-up thread. Thus, the woken-up thread
is blocked again. During the blocking time, the owner of the mutex variable may
modify common data, such that the condition is no longer fulfilled. Thus, from the
perspective of the executing thread, the state of the condition may change in the
time interval between being woken up and becoming owner of the associated mutex
variable. Therefore, the thread must again evaluate the condition to be sure that it is
still fulfilled. If the condition is fulfilled, it cannot change before the executing thread
calls pthread_mutex_unlock() or pthread_cond_wait() for the same
condition variable, since each thread must be owner of the associated mutex variable
to modify a variable used in the evaluation of the condition.

Pthreads provides two functions to wake up (signal) a thread waiting on a condition
variable:

int pthread_cond_signal (pthread_cond_t *cond)
int pthread_cond_broadcast (pthread_cond_t *cond).

A call ofpthread_cond_signal()wakes up a single thread waiting on the con-
dition variablecond. A call of this function has no effect, if there are no threads wait-
ing for cond. If there are several threads waiting for cond, one of them is selected to
be woken up. For the selection, the priorities of the waiting threads and the scheduling
method used are taken into account. A call of pthread_cond_broadcast()
wakes up all threads waiting on the condition variable cond. If several threads are
woken up, only one of them can become owner of the associated mutex variable. All
other threads that have been woken up are blocked on the mutex variable.
The functions pthread_cond_signal() and pthread_cond_broad-
cast() should only be called if the condition associated with cond is fulfilled.

6.1 Programming with Pthreads 303

Thus, before calling one of these functions, a thread should evaluate the condi-
tion. To do so safely, it must first lock the mutex variable associated with the con-
dition variable to ensure a consistent evaluation of the condition. The actual call
of pthread_cond_signal() or pthread_cond_broadcast() does not
need to be protected by the mutex variable. Issuing a call without protection by the
mutex variable has the drawback that another thread may become owner of the mutex
variable when it has been released after the evaluation of the condition, but before
the signaling call. In this situation, the new owner thread can modify shared variables
such that the condition is no longer fulfilled. This does not lead to an error, since the
woken-up thread will again evaluate the condition. The advantage of not protecting
the call of pthread_cond_signal() or pthread_cond_broadcast()
by the mutex variable is the chance that the mutex variable may not have an owner
when the waiting thread is woken up. Thus, there is a chance that this thread becomes
owner of the mutex variable without waiting. If mutex protection is used, the signal-
ing thread is owner of the mutex variable when the signal arrives, so the woken-up
thread must block on the mutex variable immediately after being woken up.

To wait for a condition, Pthreads also provides the function

int pthread_cond_timedwait (pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *time)

The difference to pthread_cond_wait() is that the blocking on the condi-
tion variable cond is ended with return value ETIMEDOUT after the specified time
interval time has elapsed. This maximum waiting time is specified using type

struct timespec {
time_t tv_sec;
long tv_nsec;
}

where tv_sec specifies the number of seconds and tv_nsec specifies the number
of additional nanoseconds. The time parameter of pthread_cond_timed-
wait() specifies an absolute clock time rather than a time interval. A typical use
may look as follows:

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t c = PTHREAD_COND_INITIALIZER;
struct timespec time;
pthread_mutex_lock (&m);
time.tv_sec = time (NULL) + 10;
time.tv_nsec = 0;
while (!condition)
if (pthread_cond_timedwait (&c, &m, &time) == ETIMEDOUT)

timed_out_work();
pthread_mutex_unlock (&m);

304 6 Thread Programming

In this example, the executing thread waits at most 10 s for the condition to be fulfilled.
The function time() from <time.h> is used to define time.tv_sec. The call
time(NULL) yields the absolute time in seconds elapsed since Jan 1, 1970. If no
signal arrives after 10 s, the function timed_out_work() is called before the
condition is evaluated again.

6.1.4 Extended Lock Mechanism

Condition variables can be used to implement more complex synchronization mech-
anisms that are not directly supported by Pthreads. In the following, we consider
a read/write lock mechanism as an example for an extension of the standard lock
mechanism provided by normal mutex variables. If we use a normal mutex variable
to protect a shared data structure, only one thread at a time can access (read or write)
the shared data structure. The following user-defined read/write locks extend this
mechanism by allowing an arbitrary number of reading threads at a time. But only
one thread at a time is allowed to write to the data structure. In the following, we
describe a simple implementation of this extension, see also [145]. For more complex
and more efficient implementations, we refer to [25, 119].

For the implementation of read/write locks, we define read/write lock variables
(r/w lock variables) by combining a mutex variable and a condition variable as
follows:

ty pedef struct rw_lock {
int num_r, num_w;
pthread_mutex_t mutex;
pthread_cond_t cond;

} rw_lock_t;

Here, num_r specifies the current number of read permits, and num_w specifies
the current number of write permits; num_w should have a maximum value of 1.
The mutex variable mutex is used to protect the access to num_r and num_w. The
condition variable cond coordinates the access to the read/write lock variable.

Figure 6.5 shows the functions that can be used to implement the read/write lock
mechanism. The function rw_lock_init() initializes a read/write lock variable.
The functionrw_lock_rlock() requests a read permit to the common data struc-
ture. The read permit is granted only if there is no other thread that currently has
a write permit. Otherwise, the calling thread is blocked until the write permit is
returned. The function rw_lock_wlock() requests a write permit to the com-
mon data structure. The write permit is granted only if there is no other thread that
currently has a read or write permit.

The function rw_lock_runlock() is used to return a read permit. This may
cause that the number of threads with a read permit decreases to zero. In this case,
a thread which is waiting for a write permit is woken up by pthread_cond
_signal(). The functionrw_lock_wunlock() is used to return a write permit.

6.1 Programming with Pthreads 305

Fig. 6.5 Function for the control of read/write lock variables.

Since only one thread with a write permit is allowed, there cannot be a thread with
a write permit after this operation. Therefore, all threads waiting for a read or write
permit can be woken up using pthread_cond_broadcast().

The implementation sketched in Fig. 6.5 favors read requests over write requests:
If a thread A has a read permit and a thread B waits for a write permit, then other
threads will obtain a read permit without waiting, even if they put their read request

306 6 Thread Programming

long after B has put its write request. Thread B will get a write permit only if there
are no other threads requesting a read permit. Depending on the intended usage, it
might also be useful to give write requests priority over read requests to keep a data
structure up to date. An implementation for this is given in [25].

The read/write lock mechanism can be used for the implementation of a shared
linked list, see Fig. 6.2, by replacing the mutex variable mutex by a read/write lock
variable. In the list_insert() function, the list access will then be protected by
rw_lock_wlock() and rw_lock_wunlock(). A function to search for a spe-
cific entry in the list could use rw_lock_rlock() and tw_lock_runlock(),
since no entry of the list will be modified when searching.

6.1.5 One-Time Initialization

In some situations, it is useful to perform an operation only once, no matter how
many threads are involved. This is useful for initialization operations or opening a
file. If several threads are involved, it sometimes cannot be determined in advance
which of the threads is first ready to perform an operation. A one-time initialization
can be achieved using a boolean variable initialized to 0 and protected by a mutex
variable. The first thread arriving at the critical operation sets the boolean variable
to 1, protected by the mutex variable, and then performs the one time operation. If
a thread arriving at the critical operation finds that the boolean variable has value 1,
it does not perform the operation. Pthreads provides another solution for one time
operations by using a control variable of the predefined type pthread_once_t.
This control variable must be statically initialized using the initialization macro
PTHREAD_ONCE_INIT:

pthread_once_t once_control PTHREAD_ONCE_INIT

The code to perform the one time operation must be put into a separate function
without parameter. We call this function once_routine() in the following. The
one time operation is then performed by calling the function

pthread_once (pthread_once_t *once_control,
void (*once_routine)(void)).

This function can be called by several threads. If the execution of once_rout-
ine() has already been completed, then control is directly returned to the call-
ing thread. If the execution of once_routine() has not yet been started,
once_routine() is executed by the calling thread. If the execution of the function
once_routine() has been started by another thread, but is not finished yet, then
the thread executing pthread_once() waits until the other thread has finished
its execution of once_routine().

6.1 Programming with Pthreads 307

6.1.6 Implementation of a Task Pool

A thread program usually has to perform several operations or tasks. A simple struc-
ture results if each task is put into a separate function which is then called by a
separate thread which executes exactly this function and then terminates. Depending
on the granularity of the tasks, this may lead to the generation and termination of
a large number of threads, causing a significant overhead. For many applications,
a more efficient implementation can be obtained by using a task pool (also called
work crew). The idea is to use a specific data structure (task pool) to store the tasks
that are ready for execution. For task execution, a fixed number of threads is used
which are generated by the main thread at program start and exist until the program
terminates. The threads access the task pool to retrieve tasks for execution. During
the execution of a task, new tasks may be generated which are then inserted into the
task pool. The execution of the parallel program is terminated, if the task pool is
empty and each thread has finished the execution of its task.

The advantage of this execution scheme is that a fixed number of threads is used,
no matter how many tasks are generated. This keeps the overhead for thread manage-
ment small, independent of the number of tasks. Moreover, tasks can be generated
dynamically, thus enabling the realization of adaptive and irregular applications. In
the following, we describe a simple implementation of a task pool, see also [145].
More advanced implementations are described in [25, 119].

Figure 6.6 presents the data structure that can be used for the task pool, and a
function for the initialization of the task pool. The data type work_t represents a
single task. It contains a reference routine to the function containing the code of
the task and the argumentarg of this function. The tasks are organized as a linked list,
andnext is a pointer to the next task element. The data typetpool_t represents the
actual task pool. It contains pointers head and tail to the first and last element of
the task list, respectively. The entry num_threads specifies the number of threads
used for execution of the tasks. The array threads contains the reference to the
thread IDs of these threads. The entries max_size and current_size specify
the maximum and current number of tasks contained in the task pool.

The mutex variable lock is used to ensure mutual exclusion when accessing the
task pool. If a thread attempts to retrieve a task from an empty task pool, it is blocked
on the condition variable not_empty. If a thread inserts a task into an empty task
pool, it wakes up a thread that is blocked on not_empty. If a thread attempts to
insert a task into a full task pool, it is blocked on the condition variable not_full.
If a thread retrieves a task from a full task pool, it wakes up a thread that is blocked
on not_full.

The function tpool_init() in Fig. 6.6 initializes the task pool by allocat-
ing the data structure and initializing it with the argument values provided. More-
over, the threads used for the execution of the tasks are generated and their IDs are
stored in tpl->threads[i] for i=0,...,num_threads-1. Each of these
threads uses the function tpool_thread() as start function, see Fig. 6.7. This
function has one argument specifying the task pool data structure to be used. Task

308 6 Thread Programming

Fig. 6.6 Implementation of a task pool (part 1): The data structure work_t represents a task to be
executed. The task pool data structure tpool_t contains a list of tasks with head pointing to the
first element and tail pointing to the last element, as well as a set of threads threads to execute
the tasks. The function tpool_init() is used to initialize a task pool data structure tpl.

execution is performed in an infinite loop. In each iteration of the loop, a task
is retrieved from the head of the task list. If the task list is empty, the executing
thread is blocked on the condition variable not_empty as described above. Oth-
erwise, a task wl is retrieved from the list. If the task pool has been full before the
retrieval, all threads blocked on not_full, waiting to insert a task, are woken up
using pthread_cond_broadcast(). The access to the task pool structure is
protected by the mutex variable tpl->lock. The retrieved task wl is executed
by calling the stored task function wl->routine() using the stored argument
wl->arg. The execution of the retrieved task wlmay lead to the generation of new

6.1 Programming with Pthreads 309

Fig. 6.7 Implementation of a task pool (part 2): The functiontpool_thread() is used to extract
and execute tasks. The function tpool_insert() is used to insert tasks into the task pool.

tasks which are then inserted into the task pool using tpool_insert() by the
executing thread.

The function tpool_insert() is used to insert tasks into the task pool. If the
task pool is full when calling this function, the executing thread is blocked on the

310 6 Thread Programming

condition variable not_full. If the task pool is not full, a new task structure is
generated and filled, and is inserted at the end of the task list. If the task pool has
been empty before the insertion, one of the threads blocked on the condition variable
not_empty is woken up using pthread_cond_signal(). The access to the
task pool tpl is protected by the mutex variable tpl->lock.

The described implementation is especially suited for a master-slave model. A
master thread uses tpool_init() to generate a number of slave threads each
of which executes the function tpool_thread(). The tasks to be executed are
defined according to the specific requirements of the application problem and are
inserted in the task pool by the master thread using tpool_insert(). Tasks
can also be inserted by the slave threads when the execution of a task leads to the
generation of new tasks. After the execution of all tasks is completed, the master
thread terminates the slave threads. To do so, the master thread wakes up all threads
blocked on the condition variables not_full and not_empty and terminates
them. Threads that are just executing a task are terminated as soon as they have
finished the execution of this task.

6.1.7 Parallelism by Pipelining

In the pipelining model, a stream of data items is processed one after another by a
sequence of threads T1, . . . , Tn where each thread Ti performs a specific operation
on each element of the data stream and passes the element onto the next thread Ti+1:

This results in an input/output relation between the threads: thread Ti receives the
output of thread Ti+1 as input and produces data elements for thread Ti+1, 1 < i < n.
Thread T1 reads the sequence of input elements, thread Tn produces the sequence
of output elements. After a start-up phase with n steps, all threads can work in
parallel and can be executed by different processors in parallel. The pipeline model
requires some coordination between the cooperating threads: thread Ti can start
the computation of its corresponding stage only if the predecessor thread Ti−1 has
provided the input data element. Moreover, thread Ti can forward its output element
to the successor thread Ti+1, if Ti+1 has finished its computation of the previous data
item and is ready to receive a new data element.

The coordination of the threads of the pipeline stages can be organized with the
help of condition variables. This will be demonstrated in the following for a simple
example in which a sequence of integer values is incremented step by step in each
pipeline stage, see also [25]. Thus, in each pipeline stage, the same computation
is performed. But the coordination mechanism can also be applied if each pipeline
stage performs a different computation.

6.1 Programming with Pthreads 311

For each stage of the pipeline, a data structure of type stage_t is used, see
Fig. 6.8. This data structure contains a mutex variable m for synchronizing the access
to the stage and two condition variables avail and ready for synchronizing the
threads of neighboring stages. The condition variable avail is used to notify a
thread that a data element is available to be processed by its pipeline stage. Thus,
the thread can start the computation. A thread is blocked on the condition variable
avail if no data element from the predecessor stage is available. The condition
variable ready is used to notify the thread of the preceding pipeline stage that it can
forward its output to the next pipeline stage. The thread of the preceding pipeline
stage is blocked on this condition variable if it cannot directly forward its output
data element to the next stage. The entry data_ready in the data structure for a
stage is used to record whether a data element is currently available (value 1) for this
pipeline stage or not (value 0). The entry data contains the actual data element to be
processed. For the simple example discussed here, this is a single integer value, but
this could be any data element for more complex applications. The entry thread is
the TID of the thread used for this stage, and next is a reference to the next pipeline
stage.

The entire pipeline is represented by the data structure pipe_t containing a
mutex variable m and two pointers head and tail to the first and the last stages
of the pipeline, respectively. The last stage of the pipeline is used to store the final
result of the computation performed for each data element. There is no computation
performed in this last stage, and there is no corresponding thread associated to this
stage.

The function pipe_send(), shown in Fig. 6.9 is used to send a data element
to a stage of the pipeline. This function is used to send a data element to the first
stage of the pipeline, and it is also used to pass a data element to the next stage of the

Fig. 6.8 Implementation of a pipeline (part 1): Data structures for the implementation of a pipeline
model in Pthreads.

312 6 Thread Programming

pipeline after the computation of a stage has been completed. The stage receiving
the data element is identified by the parameter nstage. Before inserting the data
element, the mutex variable m of the receiving stage is locked to ensure that only
one thread at a time is accessing the stage. A data element can be written into the
receiving stage only if the computation of the previous data element in this stage has
been finished. This is indicated by the condition data_ready=0. If this is not the
case, the sending thread is blocked on the condition variable ready of the receiving
stage. If the receiving stage is ready to receive the data element, the sending thread
writes the element into the stage and wakes up the thread of the receiving stage if it
is blocked on the condition variable avail.

Each of the threads participating in the pipeline computation executes the function
pipe_stage(), see Fig. 6.9. The same function can be used for each stage for our
example, since each stage performs the same computations. The function receives
a pointer to its corresponding pipeline stage as an argument. A thread executing

Fig. 6.9 Implementation of a pipeline (part 2): Functions to forward data elements to a pipeline
stage and thread functions for the pipeline stages.

6.1 Programming with Pthreads 313

the function performs an infinite loop waiting for the arrival of data elements to be
processed. The thread blocks on the condition variable avail if there is currently no
data element available. If a data element is available, the thread performs its computa-
tion (increment by 1) and sends the result to the next pipeline stage stage->next
using pipe_send(). Then it sends a notification to the thread associated with the
next stage, which may be blocked on the condition variable ready. The notified
thread can then continue its computation.

Thus, the synchronization of two neighboring threads is performed by using the
condition variables avail and ready of the corresponding pipeline stages. The
entrydata_ready is used for the condition and determines which of the two threads
is blocked and woken up. The entry of a stage is set to 0 if the stage is ready to receive a
new data element to be processed by the associated thread. The entry data_ready
of the next stage is set to 1 by the associated thread of the preceding stage if a new

Fig. 6.10 Implementation of a pipeline (part 3): Pthreads functions to generate and start a pipeline
computation.

314 6 Thread Programming

data element has been put into the next stage and is ready to be processed. In the
simple example given here, the same computations are performed in each stage, i.e.,
all corresponding threads execute the same function pipe_stage(). For more
complex scenarios, it is also possible that the different threads execute different
functions, thus performing different computations in each pipeline stage.

The generation of a pipeline with a given number of stages can be achieved
by calling the function pipe_create(), see Fig. 6.10. This function generates
and initializes the data structures for the representation of the different stages. An
additional stage is generated to hold the final result of the pipeline computation,
i.e., the total number of stages is stages+1. For each stage except for the last
additional stage, a thread is created. Each of these threads executes the function
pipe_stage().

The function pipe_start() is used to transfer a data element to the first stage
of the pipeline, see Fig. 6.10. The actual transfer of the data element is done by
calling the function pipe_send(). The thread executing pipe_start() does
not wait for the result of the pipeline computation. Instead, pipe_start() returns
control immediately. Thus, the pipeline works asynchronously to the thread which
transfers data elements to the pipeline for computation. The synchronization between
this thread and the thread of the first pipeline stage is performed within the function
pipe_send().

The function pipe_result() is used to take a result value out of the last
stage of the pipeline, see Fig. 6.11. The entry active in the pipeline data structure
pipe_t is used to count the number of data elements that are currently stored in the
different pipeline stages. For pipe->active = 0, no data element is stored in
the pipeline. In this case, pipe_result() immediately returns without providing
a data element. For pipe->active > 0, pipe_result() is blocked on the
condition variable avail of the last pipeline stage until a data element arrives at
this stage. This happens if the thread associated with the next to the last stage uses
pipe_send() to transfer a processed data element to the last pipeline stage, see
Fig. 6.9. By doing so, this thread wakes up a thread that is blocked on the condition
variable avail of the last stage, if there is a thread waiting. If so, the woken-
up thread is the one which tries to take a result value out of the last stage using
pipe_result().

The main program of the pipeline example is given in Fig. 6.11. It first uses
pipe_create() to generate a pipeline with a given number of stages. Then
it reads from stdin lines with numbers, which are the data elements to be
processed. Each such data element is forwarded to the first stage of the pipeline
using pipe_start(). Doing so, the executing main thread may be blocked on
the condition variable ready of the first stage until the stage is ready to receive the
data element. An input line with a single character ’=’ causes the main thread to
call pipe_result() to take a result element out of the last stage, if present.

Figure 6.12 illustrates the synchronization between neighboring pipeline threads
as well as between the main thread and the threads of the first or the next to last
stage for a pipeline with three stages and two pipeline threads T1 and T2. The figure
shows the relevant entries of the data structure stage_t for each stage. The order

6.1 Programming with Pthreads 315

Fig. 6.11 Implementation of a pipeline (part 4): Main program and Pthreads function to remove a
result element from the pipeline.

of the access and synchronization operations performed by the pipeline threads is
determined by the statements in pipe_stage() and is illustrated by circled num-
bers. The access and synchronization operations of the main thread result from the
statements in pipe_start() and pipe_result().

316 6 Thread Programming

Fig. 6.12 Illustration of the synchronization between the pipeline threads for a pipeline with two
pipeline threads and three stages, from the view of the data structures used. The circled numbers
describe the order in which the synchronization steps are executed by the different threads according
to the corresponding thread functions.

6.1.8 Implementation of a Client-Server Model

In a client-server system, we can distinguish between client threads and server
threads. In a typical scenario, there are several server threads and several client
threads. Server threads process requests that have been issued by the client threads.
Client threads often represent the interface to the users of a system. During the
processing of a request by a server thread, the issuing client thread can either wait
for the request to be finished or can perform other operations, working concurrently
with the server, and can collect the result at a later time when it is required. In the
following, we illustrate the implementation of a client-server model for a simple
example, see also [25].

Several threads repeatedly read input lines from stdin and output result lines
to stdout. Before reading, a thread outputs a prompt to indicate which input is
expected from the user. Server threads can be used to ensure the synchronization
between the output of a prompt and the reading of the corresponding input line, so
that no output of another thread can occur in between. Client threads forward requests
to the server threads to output a prompt or to read an input line. The server threads
are terminated by a specific QUIT command. Figure 6.13 shows the data structures
used for an implementation with Pthreads. The data structure request_t repre-
sents requests from the clients for the servers. The entry op specifies the requested
operation to be performed (REQ_READ, REQ_WRITE, or REQ_QUIT). The entry
synchronous indicates whether the client waits for the termination of the request

6.1 Programming with Pthreads 317

Fig. 6.13 Implementation of a client-server system (part 1): Data structure for the implementation
of a client-server model with Pthreads.

(value 1) or not (value 0). The condition variable done is used for the synchroniza-
tion between client and server, i.e., the client thread is blocked on done to wait until
the server has finished the execution of the request. The entries prompt and text
are used to store a prompt to be output or a text read in by the server, respectively.
The data structure tty_server_t is used to store the requests sent to a server.
The requests are stored in a FIFO (first-in, first-out) queue which can be accessed by
first and last. The server thread is blocked on the condition variable request
if the request queue is empty. The entry running indicates whether the corre-
sponding server is running (value 1) or not (value 0). The program described in the
following works with a single server thread, but can in principle be extended to an
arbitrary number of servers.

The server thread executes the function tty_server_routine(), see
Fig. 6.14. The server is blocked on the condition variable request as long as there
are no requests to be processed. If there are requests, the server removes the first
request from the queue and executes the operation (REQ_READ, REQ_WRITE, or
REQ_QUIT) specified in the request. For the REQ_READ operation, the prompt
specified with the request is output and a line is read in and stored into the text

318 6 Thread Programming

Fig. 6.14 Implementation of a client-server system (part 2): Server thread to process client requests.

entry of the request structure. For a REQ_WRITE operation, the line stored in the
text entry is written to stdout. The operation REQ_QUIT causes the server to
finish its execution. If an issuing client waits for the termination of a request (entry
synchronous), it is blocked on the condition variable done in the correspond-
ing request structure. In this case, the server thread wakes up the blocked client

6.1 Programming with Pthreads 319

Fig. 6.15 Implementation of a client-server system (part 3): Forwarding of a request to the server
thread.

thread using pthread_cond_signal() after the request has been processed.
For asynchronous requests, the server thread is responsible to free the request data
structure.

320 6 Thread Programming

Fig. 6.16 Implementation of a client-server system (part 4): Client thread and main thread.

The client threads use the function tty_server_request() to forward a
request to the server, see Fig. 6.15. If the server thread is not running yet, it will be
started intty_server_request(). The function allocates a request structure of
type request_t and initializes it according to the requested operation. The request
structure is then inserted into the request queue of the server. If the server is blocked
waiting for requests to arrive, it is woken up using pthread_cond_signal(). If

6.1 Programming with Pthreads 321

the client wants to wait for the termination of the request by the server, it is blocked
on the condition variable done in the request structure, waiting for the server to
wake it up again. The client threads execute the function client_routine(),
see Fig. 6.16. Each client sends read and write requests to the server using the function
tty_server_request()until the user terminates the client thread by specifying
an empty line as input. When the last client thread has been terminated, the main
thread which is blocked on the condition variableclient_done is woken up again.
The main thread generates the client threads and then waits until all client threads have
been terminated. The server thread is not started by the main thread, but by the client
thread which sends the first request to the server usingtty_server_routine().
After all client threads are terminated, the server thread is terminated by the main
thread by sending a REQ_QUIT request.

6.1.9 Thread Attributes and Cancelation

Threads are created using pthread_create(). In the previous sections, we have
specifiedNULL as the second argument, thus leading to the generation of threads with
default characteristics. These characteristics can be changed with the help of attribute
objects. To do so, an attribute object has to be allocated and initialized before using
the attribute object as parameter of pthread_create(). An attribute object for
threads has type pthread_attr_t. Before an attribute object can be used, it first
must be initialized by calling the function

int pthread_attr_init (pthread_attr_t ∗ attr).

This leads to an initialization with the default attributes, corresponding to the default
characteristics. By changing an attribute value, the characteristics can be changed.
Pthreads provides attributes to influence the return value of threads, setting the size
and address of the runtime stack, or the cancelation behavior of the thread. For
each attribute, Pthreads defines functions to get and set the current attribute value.
But Pthreads implementations are not required to support the modification of all
attributes. In the following, the most important aspects are described.

6.1.9.1 Return value

An important property of a thread is its behavior concerning thread termination. This
is captured by the attribute detachstate. This attribute can be influenced by all
Pthreads libraries. By default, the runtime system assumes that the return value of a
thread T1 may be used by another thread after the termination of T1. Therefore, the
internal data structure maintained for a thread will be kept by the runtime system
after the termination of a thread until another thread retrieves the return value using
pthread_join(), see Sect 6.1.1. Thus, a thread may bind resources even after its

322 6 Thread Programming

termination. This can be avoided if the programmer knows in advance that the return
value of a thread will not be needed. If so, the thread can be generated such that
its resources are immediately returned to the runtime system after its termination.
This can be achieved by changing the detachstate attribute. The following two
functions are provided to get or set this attribute value:

int pthread_attr_getdetachstate (const pthread_attr_t *attr,
int *detachstate)

int pthread_attr_setdetachstate (pthread_attr_t *attr,
int detachstate).

The attribute value detachstate=PTHREAD_CREATE_JOINABLE means that
the return value of the thread is kept until it is joined by another thread. The
attribute value detachstate=PTHREAD_CREATE_DETACHED means that the
thread resources are freed immediately after thread termination.

6.1.9.2 Stack characteristics

The different threads of a process have a shared program and data memory and a
shared heap, but each thread has its own runtime stack. For most Pthreads libraries,
the size and address of the local stack of a thread can be changed, but it is not required
that a Pthreads library supports this option. The local stack of a thread is used to store
local variables of functions whose execution has not yet been terminated. The size
required for the local stack is influenced by the size of the local variables and the
nesting depth of function calls to be executed. This size may be large for recursive
functions. If the default stack size is too small, it can be increased by changing the
corresponding attribute value. The Pthreads library that is used supports this if the
macro

_POSIX_THREAD_ATTR_STACKSIZE

is defined in <unistd.h>. This can be checked by

#ifdef _POSIX_THREAD_ATTR_STACKSIZE or
if (sysconf (_SC_THREAD_ATTR_STACKSIZE) == -1)

in the program. If it is supported, the current stack size stored in an attribute object
can be retrieved or set by calling the functions

int pthread_attr_getstacksize (const pthread_attr_t*attr,
size_t *stacksize)

int pthread_attr_setstacksize (pthread_attr_t *attr,
size_t stacksize).

Here,size_t is a data type defined in<unistd.h>which is usually implemented
as unsigned int. The parameter stacksize is the size of the stack in bytes.
The value of stacksize should be at least PTHREAD_STACK_MIN which is

6.1 Programming with Pthreads 323

predefined by Pthreads as the minimum stack size required by a thread. Moreover,
if the macro

_POSIX_THREAD_ATTR_STACKADDR

is defined in <unistd.h>, the address of the local stack of a thread can also be
influenced. The following two functions

int pthread_attr_getstackaddr (const pthread_attr_t*attr,
size_t **stackaddr)

int pthread_attr_setstackaddr (pthread_attr_t *attr,
size_t *stackaddr)

are provided to get or set the current stack address stored in an attribute object. The
modification of stack-related attributes should be used with caution, since such mod-
ification can result in nonportable programs. Moreover, the option is not supported
by all Pthreads libraries.

After the modification of specific attribute values in an attribute object, a thread
with the chosen characteristics can be generated by specifying the attribute object as
second parameter of pthread_create(). The characteristics of the new thread
are defined by the attribute values stored in the attribute object at the time at which
pthread_create() is called. These characteristics cannot be changed at a later
time by changing attribute values in the attribute object.

6.1.9.3 Thread Cancelation

In some situations, it is useful to stop the execution of a thread from outside, e.g., if
the result of the operation performed is no longer needed. An example could be an
application where several threads are used to search in a data structure for a specific
entry. As soon as the entry is found by one of the threads, all other threads can
stop execution to save execution time. This can be reached by sending a cancelation
request to these threads.

In Pthreads, a thread can send a cancelation request to another thread by calling
the function

int pthread_cancel (pthread_t thread)

where thread is the thread ID of the thread to be terminated. A call of this function
does not necessarily lead to an immediate termination of the specified target thread.
The exact behavior depends on the cancelation type of this thread. In any case, con-
trol immediately returns to the calling thread, i.e., the thread issuing the cancelation
request does not wait for the canceled thread to be terminated. By default, the cance-
lation type of the thread is deferred. This means that the thread can only be canceled
at specific cancelation points in the program. After the arrival of a cancelation
request, thread execution continues until the next cancelation point is reached. The
Pthreads standard defines obligatory and optional cancelation points. Obligatory can-
celation points typically include all functions at which the executing thread may be

324 6 Thread Programming

blocked for a substantial amount of time. Examples arepthread_cond_wait(),
pthread_cond_timedwait(), open(), read(), wait() or pthread_
join(), see [25] for a complete list. Optional cancelation points include many file
and I/O operations. The programmer can insert additional cancelation points into the
program by calling the function

void pthread_testcancel().

When calling this function, the executing thread checks whether a cancelation request
has been sent to it. If so, the thread is terminated. If not, the function has no effect.
Similarly, at predefined cancelation points the executing thread also checks for can-
celation requests. A thread can set its cancelation type by calling the function

int pthread_setcancelstate (int state, int *oldstate).

A call with state = PTHREAD_CANCEL_DISABLE disables the cancelability
of the calling thread. The previous cancelation type is stored in �oldstate. If
the cancelability of a thread is disabled, it does not check for cancelation requests
when reaching a cancelation point or when calling pthread_testcancel(),
i.e., the thread cannot be canceled from outside. The cancelability of a thread can
be enabled again by calling pthread_setcancelstate() with the parameter
value state = PTHREAD_CANCEL_ENABLE.

By default, the cancelation type of a thread is deferred. This can be changed to
asynchronous cancelation by calling the function

int pthread_setcanceltype (int type, int *oldtype)

with type=PTHREAD_CANCEL_ASYNCHRONOUS. This means that this thread
can be canceled not only at cancelation points. Instead, the thread is terminated
immediately after the cancelation request arrives, even if the thread is just perform-
ing computations within a critical section. This may lead to inconsistent states caus-
ing errors for other threads. Therefore, asynchronous cancelation may be harmful
and should be avoided. Calling pthread_setcanceltype() with type =
PTHREAD_CANCEL_DEFERRED sets a thread to the usual deferred cancelation
type.

6.1.9.4 Cleanup Stack

In some situations, a thread may need to restore some state when it is canceled. For
example, a thread may have to release a mutex variable when it is the owner before
being canceled. To support such state restorations, a cleanup stack is associated with
each thread, containing function calls to be executed just before thread cancelation.
These function calls can be used to establish a consistent state at thread cancelation,
e.g., by unlocking mutex variables that have previously been locked. This is necessary
if there is a cancelation point between acquiring and releasing a mutex variable. If a
cancelation happens at such a cancelation point without releasing the mutex variable,
another thread might wait forever to become the owner. To avoid such situations, the

6.1 Programming with Pthreads 325

cleanup stack can be used: when acquiring the mutex variable, a function call (cleanup
handler) to release it is put onto the cleanup stack. This function call is executed when
the thread is canceled. A cleanup handler is put onto the cleanup stack by calling the
function

void pthread_cleanup_push (void (*routine) (void *), void *arg)

where routine is a pointer to the function used as cleanup handler and arg spec-
ifies the corresponding argument values. The cleanup handlers on the cleanup stack
are organized in LIFO (last-in, first-out) order, i.e., the handlers are executed in the
opposite order of their placement, beginning with the most recently added handler.
The handlers on the cleanup stack are automatically executed when the correspond-
ing thread is canceled or when it exits by calling pthread_exit(). A cleanup
handler can be removed from the cleanup stack by calling the function

void pthread_cleanup_pop (int execute).

This call removes the most recently added handler from the cleanup stack. For
execute �=0, this handler will be executed when it is removed. For execute=0,
this handler will be removed without execution. To produce portable programs,
corresponding calls of pthread_cleanup_push() and pthread_clean-
up_pop() should be organized in pairs within the same function.

Example: To illustrate the use of cleanup handlers, we consider the implementation
of a semaphore mechanism in the following. A (counting) semaphore is a data type
with a counter which can have nonnegative integer values and which can be modified
by two operations: a signal operation increments the counter and wakes up a thread
which is blocked on the semaphore, if there is such a thread; a wait operation blocks
the executing thread until the counter has a value > 0, and then decrements the
counter. Counting semaphores can be used for the management of limited resources.
In this case, the counter is initialized with the number of available resources. Binary
semaphores, on the other hand, can only have value 0 or 1. They can be used to
ensure mutual exclusion when executing critical sections.

Figure 6.17 illustrates the use of cleanup handlers to implement a semaphore
mechanism based on condition variables, see also [161]. A semaphore is repre-
sented by the data type sema_t. The function AcquireSemaphore() waits
until the counter has values > 0, before decrementing the counter. The function
ReleaseSemaphore() increments the counter and then wakes up a waiting
thread usingpthread_cond_signal(). The access to the semaphore data struc-
ture is protected by a mutex variable in both cases, to avoid inconsistent states by con-
current accesses. At the beginning, both functions callpthread_mutex_lock()
to lock the mutex variable. At the end, the call pthread_cleanup_pop(1)
leads to the execution of pthread_mutex_unlock(), thus releasing the mutex
variable again. If a thread is blocked in AcquireSemaphore() when execut-
ing the function pthread_cond_wait(&(ps->cond),&(ps->mutex)) it
implicitly releases the mutex variable ps->mutex. When the thread is woken up
again, it first tries to become owner of this mutex variable again. Since pthread_-

326 6 Thread Programming

Fig. 6.17 Use of a cleanup handler for the implementation of a semaphore mechanism.
The function AquireSemaphore() implements the access to the semaphore. The call of
pthread_cond_wait() ensures that the access is performed not before the value count of
the semaphore is larger than zero. The function ReleaseSemaphore() implements the release
of the semaphore.

cond_wait() is a cancelation point, a thread might be canceled while waiting for
the condition variable ps->cond. In this case, the thread first becomes the owner of
the mutex variable before termination. Therefore, a cleanup handler is used to release
the mutex variable again. This is obtained by the function Cleanup_Handler()
in Fig. 6.17. �

6.1.9.5 Producer–Consumer threads

The semaphore mechanism from Fig. 6.17 can be used for the synchronization
between producer and consumer threads, see Fig. 6.18. A producer thread inserts
entries into a buffer of fixed length. A consumer thread removes entries from the
buffer for further processing. A producer can insert entries only if the buffer is not
full. A consumer can remove entries only if the buffer is not empty. To control this,

6.1 Programming with Pthreads 327

two semaphores full and empty are used. The semaphore full counts the num-
ber of occupied entries in the buffer. It is initialized with 0 at program start. The
semaphore empty counts the number of free entries in the buffer. It is initialized
with the buffer capacity. In the example, the buffer is implemented as an array of
length 100, storing entries of typeENTRY. The corresponding data structurebuffer
also contains the two semaphores full and empty.

As long as the buffer is not full, a producer thread produces entries and inserts
them into the shared buffer using produce_item(). For each insert opera-
tion, empty is decremented by using AcquireSemaphore() and full is
incremented by using ReleaseSemaphore(). If the buffer is full, a producer
thread will be blocked when calling AcquireSemaphore() for empty. As
long as the buffer is not empty, a consumer thread removes entries from the
buffer and processes them using consume_item(). For each remove operation,
full is decremented using AcquireSemaphore() and empty is incremented
using ReleaseSemaphore(). If the buffer is empty, a consumer thread will
be blocked when calling the function AcquireSemaphore() for full. The
internal buffer management is hidden in the functions produce_item() and
consume_item().

After a producer thread has inserted an entry into the buffer, it wakes up a con-
sumer thread which is waiting for the semaphore full by calling the function
ReleaseSemaphore(&buffer.full), if there is such a waiting consumer.
After a consumer has removed an entry from the buffer, it wakes up a producer which
is waiting for empty by calling ReleaseSemaphore(&buffer.empty), if
there is such a waiting producer. The program in Fig. 6.18 uses one producer and one
consumer thread, but it can easily be generalized to an arbitrary number of producer
and consumer threads.

6.1.10 Thread Scheduling with Pthreads

The user threads defined by the programmer for each process are mapped to kernel
threads by the library scheduler. The kernel threads are then brought to execution
on the available processors by the scheduler of the operating system. For many
Pthreads libraries, the programmer can influence the mapping of user threads to ker-
nel threads using scheduling attributes. The Pthreads standard specifies a scheduling
interface for this, but this is not necessarily supported by all Pthreads libraries. A
specific Pthreads library supports the scheduling programming interface, if the macro
POSIX_THREAD_PRIORITY_SCHEDULING is defined in <unistd.h>. This
can also be checked dynamically in the program using sysconf() with parameter
_SC_THREAD_PRIORITY_SCHEDULING. If the scheduling programming inter-
face is supported and shall be used, the header file <sched.h> must be included
into the program.

328 6 Thread Programming

Fig. 6.18 Implementation of producer–consumer threads using the semaphore operations from
Fig. 6.17.

6.1 Programming with Pthreads 329

Scheduling attributes are stored in data structures of typestructsched_param
which must be provided by the Pthreads library if the scheduling interface is sup-
ported. This type must at least have the entry

int sched_priority;

The scheduling attributes can be used to assign scheduling priorities to threads and
to define scheduling policies and scheduling scopes. This can be set when a thread
is created, but it can also be changed dynamically during thread execution.

6.1.10.1 Explicit setting of scheduling attributes

In the following, we first describe how scheduling attributes can be set explicitly at
thread creation.

The scheduling priority of a thread determines how privileged the library sched-
uler treats the execution of a thread compared to other threads. The priority of a
thread is defined by an integer value which is stored in the sched_priority
entry of the sched_param data structure and which must lie between a minimum
and maximum value. These minimum and maximum values allowed for a specific
scheduling policy can be determined by calling the functions

int sched_get_priority_min (int policy)
int sched_get_priority_max (int policy),

where policy specifies the scheduling policy. The minimum or maximum priority
values are given as return value of these functions. The library scheduler maintains
for each priority value a separate queue of threads with this priority that are ready
for execution. When looking for a new thread to be executed, the library scheduler
accesses the thread queue with the highest priority that is not empty. If this queue
contains several threads, one of them is selected for execution according to the
scheduling policy. If there are always enough executable threads available at each
point in program execution, it can happen that threads of low priority are not executed
for quite a long time. The two functions

int pthread_attr_getschedparam (const pthread_attr_t *attr,
struct sched_param *param)

int pthread_attr_setschedparam (pthread_attr_t *attr,
const struct sched_param *param)

can be used to extract or set the priority value of an attribute data structure attr.
To set the priority value, the entry param->sched_priority must be set to the
chosen priority value before calling pthread_attr_setschedparam().

The scheduling policy of a thread determines how threads of the same priority
are executed and share the available resources. In particular, the scheduling policy
determines how long a thread is executed if it is selected by the library scheduler for
execution. Pthreads supports three different scheduling policies:

330 6 Thread Programming

• SCHED_FIFO (first-in, first-out): The executable threads of the same priority are
stored in a FIFO queue. A new thread to be executed is selected from the beginning
of the thread queue with the highest priority. The selected thread is executed until
it either exits or blocks, or until a thread with a higher priority becomes ready for
execution. In the latter case, the currently executed thread with lower priority is
interrupted and is stored at the beginning of the corresponding thread queue. Then,
the thread of higher priority starts execution. If a thread that has been blocked, e.g.,
waiting on a condition variable, becomes ready for execution again, it is stored at
the end of the thread queue of its priority. If the priority of a thread is dynamically
changed, it is stored at the end of the thread queue with the new priority.

• SCHED_RR (round-robin): The thread management is similar as for the policy
SCHED_FIFO. The difference is that each thread is allowed to run for only a
fixed amount of time, given by a predefined timeslice interval. After the interval
has elapsed, and another thread of the same priority is ready for execution, the
running thread will be interrupted and put at the end of the corresponding thread
queue. The timeslice intervals are defined by the library scheduler. All threads of
the same process use the same timeslice interval. The length of a timeslice interval
of a process can be queried with the function

int sched_rr_get_interval (pid_t pid, struct timespec *quantum)

where pid is the process ID of the process. For pid=0, the information for that
process is returned to which the calling thread belongs. The data structure of type
timespec is defined as

struct timespec { time_t tv_sec; long tv_nsec; }.

• SCHED_OTHER: Pthreads allows an additional scheduling policy the behavior
of which is not specified by the standard, but completely depends on the specific
Pthreads library used. This allows the adaptation of the scheduling to a specific
operating system. Often, a scheduling strategy is used which adapts the priorities of
the threads to their I/O behavior, such that interactive threads get a higher priority
as compute-intensive threads. This scheduling policy is often used as default for
newly created threads.

The scheduling policy used for a thread is set when the thread is created. If the
programmer wants to use a scheduling policy other than the default he can achieve
this by creating an attribute data structure with the appropriate values and providing
this data structure as argument for pthread_create(). The two functions

int pthread_attr_getschedpolicy (const pthread_attr_t *attr,
int *schedpolicy)

int pthread_attr_setschedpolicy (pthread_attr_t *attr,
int schedpolicy)

can be used to extract or set the scheduling policy of an attribute data structure attr.
On some Unix systems, setting the scheduling policy may require superuser rights.

6.1 Programming with Pthreads 331

The contention scope of a thread determines which other threads are taken into
consideration for the scheduling of a thread. Two options are provided: The thread
may compete for processor resources with the threads of the corresponding process
(process contention scope) or with the threads of all processes on the system (system
contention scope). Two functions can be used to extract or set the contention scope
of an attribute data structure attr:

int pthread_attr_getscope (const pthread_attr_t *attr,
int *contentionscope)

int pthread_attr_setscope (pthread_attr_t *attr,
int contentionscope)

The parameter valuecontentionscope=PTHREAD_SCOPE_PROCESS cor-
responds to a process contention scope, whereas a system contention scope can be
obtained by the parameter value contentionscope=PTHREAD_SCOPE_SYS-
TEM. Typically, using a process contention scope leads to better performance than a
system contention scope, since the library scheduler can switch between the threads
of a process without calling the operating system, whereas switching between threads
of different processes usually requires a call of the operating system, and this is usu-
ally relatively expensive [25]. A Pthreads library only needs to support one of the
two contention scopes. If a call of pthread_attr_setscope() tries to set a
contention scope that is not supported by the specific Pthreads library, the error value
ENOTSUP is returned.

6.1.10.2 Implicit setting of scheduling attributes

Some application codes create a lot of threads for specific tasks. To avoid setting the
scheduling attributes before each thread creation, Pthreads supports the inheritance
of scheduling information from the creating thread. The two functions

int pthread_attr_getinheritsched (const pthread_attr_t *attr,
int *inheritsched)

int pthread_attr_setinheritsched (pthread_attr_t *attr,
int inheritsched)

can be used to extract or set the inheritance status of an attribute data structure attr.
Here, inheritsched=PTHREAD_INHERIT_SCHED means that a thread cre-
ation with this attribute structure generates a thread with the scheduling attributes
of the creating thread, ignoring the scheduling attributes in the attribute structure.
The parameter value inheritsched=PTHREAD_EXPLICIT_SCHED disables
the inheritance, i.e., the scheduling attributes of the created thread must be set explic-
itly if they should be different from the default setting. The Pthreads standard does
not specify a default value for the inheritance status. Therefore, if a specific behavior
is required, the inheritance status must be set explictly.

332 6 Thread Programming

6.1.10.3 Dynamic setting of scheduling attributes

The priority of a thread and the scheduling policy used can also be changed dynam-
ically during the execution of a thread. The two functions

int pthread_getschedparam (pthread_t thread, int *policy,
struct sched_param *param)

int pthread_setschedparam (pthread_t thread, int policy,
const struct sched_param *param)

can be used to dynamically extract or set the scheduling attributes of a thread with TID
thread. The parameter policy defines the scheduling policy, param contains
the priority value.

Figure 6.19 illustrates how the scheduling attributes can be set explicitly before
the creation of a thread. In the example, SCHED_RR is used as scheduling policy.
Moreover, a medium priority value is used for the thread with ID thread_id. The

Fig. 6.19 Use of scheduling attributes to define the scheduling behavior of a generated thread.

6.1 Programming with Pthreads 333

inheritance status is set toPTHREAD_EXPLICIT_SCHED to transfer the scheduling
attributes from attr to the newly created thread thread_id.

6.1.11 Priority Inversion

When scheduling several threads with different priorities, it can happen with an
unsuitable order of synchronization operations that a thread of lower priority prevents
a thread of higher priority from being executed. This phenomenon is called priority
inversion, indicating that a thread of lower priority is running, although a thread of
higher priority is ready for execution. This phenomenon is illustrated in the following
example, see also [145].

Example: We consider the execution of three threads A, B, C with high, medium
and low priority, respectively, on a single processor competing for a mutex variable m.
The threads perform at program points t1, . . . , t6 the following actions, see Fig. 6.20
for an illustration. After the start of the program at time t1, thread C of low priority is
started at time t2. At time t3, thread C calls pthread_mutex_lock(m) to lock m.
Since m has not been locked before, C becomes owner of m and continues execution.
At time t4, thread A of high priority is started. Since A has a higher priority than
C , C is blocked and A is executed. The mutex variable m is still locked by C . At
time t5, thread A tries to lock m using pthread_mutex_lock(m). Since m has
already been locked by C , A blocks on m. The execution of C resumes. At time t6,
thread B of medium priority is started. Since B has a higher priority than C , C is
blocked and B is executed. C is still owner of m. If B does not try to lock m, it may
be executed for quite some time, even if there is a thread A of higher priority. But A
cannot be executed, since it waits for the release of m by C . But C cannot release m,
since C is not executed. Thus, the processor is continuously executing B and not A,
although A has a higher priority than B. �

Pthreads provides two mechanisms to avoid priority inversion: priority ceiling
and priority inheritance. Both mechanisms are optional, i.e., they are not necessarily
supported by each Pthreads library. We describe both mechanisms in the following.

Fig. 6.20 Illustration of a priority inversion.

334 6 Thread Programming

6.1.11.1 Priority ceiling

The mechanism of priority ceiling is available for a specific Pthreads library if the
macro

_POSIX_THREAD_PRIO_PROTECT

is defined in <unistd.h>. If priority ceiling is used, each mutex variable gets a
priority value. The priority of a thread is automatically raised to this priority ceiling
value of a mutex variable, whenever the thread locks the mutex variable. The thread
keeps this priority as long as it is the owner of the mutex variable. Thus, a thread
X cannot be interrupted by another thread Y with a lower priority than the priority
of the mutex variable as long as X is the owner of the mutex variable. The owning
thread can therefore work without interruption and can release the mutex variable as
soon as possible.

In the example given above, priority inversion is avoided with priority ceiling if
a priority ceiling value is used which is equal to or larger than the priority of thread
A. In the general case, priority inversion is avoided if the highest priority at which a
thread will ever be running is used as priority ceiling value.

To use priority ceiling for a mutex variable, it must be initialized appropriately
using a mutex attribute data structure of type pthread_mutex_attr_t. This
data structure must first be declared and initialized using the function

int pthread_mutex_attr_init (pthread_mutex_attr_tattr)

where attr is the mutex attribute data structure. The default priority protocol used
for attr can be extracted by calling the function

int pthread_mutexattr_getprotocol (const pthread_mutex_attr_t
*attr, int *prio)

which returns the protocol in the parameter prio. The following three values are
possible for prio:

• PTHREAD_PRIO_PROTECT: the priority ceiling protocol is used;
• PTHREAD_PRIO_INHERIT: the priority inheritance protocol is used;
• PTHREAD_PRIO_NONE: none of the two protocols are used, i.e., the priority of

a thread does not change if it locks a mutex variable.

The function

int pthread_mutexattr_setprotocol (pthread_mutex_attr_t
*attr, int prio)

can be used to set the priority protocol of a mutex attribute data structure attr
where prio has one of the three values just described. When using the priority
ceiling protocol, the two functions

int pthread_mutexattr_getprioceiling (const pthread_mutex_attr_t
*attr, int *prio)

6.1 Programming with Pthreads 335

int pthread_mutexattr_setprioceiling (pthread_mutex_attr_t
*attr, int prio)

can be used to extract or set the priority ceiling value stored in the attribute structure
attr. The ceiling value specified in prio must be a valid priority value. After a
mutex attributed data structure attr has been initialized and possibly modified, it
can be used for the initialization of a mutex variable with the specified properties,
using the function

pthread_mutex_init (pthread_mutex_t *m, pthread_mutexattr_t
*attr)

see also Section 6.1.2.

6.1.11.2 Priority inheritance

When using the priority inheritance protocol, the priority of a thread which is the
owner of a mutex variable is automatically raised, if a thread with a higher priority
tries to lock the mutex variable and is therefore blocked on the mutex variable. In
this situation, the priority of the owner thread is raised to the priority of the blocked
thread. Thus, the owner of a mutex variable always has the maximum priority of
all threads waiting for the mutex variable. Therefore, the owner thread cannot be
interrupted by one of the waiting threads, and priority inversion cannot occur. When
the owner thread releases the mutex variable again, its priority is decreased again to
the original priority value.

The priority inheritance protocol can be used if the macro

_POSIX_THREAD_PRIO_INHERIT

is defined in <unistd.h>. If supported, priority inheritance can be activated
by calling the function pthread_mutexattr_setprotocol() with parame-
ter value prio = PTHREAD_PRIO_INHERIT as described above. Compared to
priority ceiling, priority inheritance has the advantage that no fixed priority ceiling
value has to be specified in the program. Priority inversion is avoided also for threads
with unknown priority values. But the implementation of priority inheritance in the
Pthreads library is more complicated and expensive, and therefore usually leads to a
larger overhead than priority ceiling.

6.1.12 Thread-specific Data

The threads of a process share a common address space. Thus, global and dynamically
allocated variables can be accessed by each thread of a process. For each thread, a
private stack is maintained for the organization of function calls performed by the
thread. The local variables of a function are stored in the private stack of the calling

336 6 Thread Programming

thread. Thus, they can only be accessed by this thread, if this thread does not expose
the address of a local variable to another thread. But the lifetime of local variables is
only the lifetime of the corresponding function activation. Thus, local variables do
not provide a persistent thread-local storage (TLS). To use the value of a local variable
throughout the lifetime of a thread, it has to be declared in the start function of the
thread and passed as parameter to all functions called by this thread. But depending
on the application, this would be quite tedious and would artificially increase the
number of parameters. Pthreads supports the use of thread-specific data with an
additional mechanism.

To generate thread-specific data, Pthreads provides the concept of keys that are
maintained in a process-global way. After the creation of a key it can be accessed by
each thread of the corresponding process. Each thread can associate thread-specific
data to a key. If two threads associate different data to the same key, each of the two
threads gets only its own data when accessing the key. The Pthreads library handles
the management and storage of the keys and their associated data.
In Pthreads, keys are represented by the predefined data type pthread_key_t. A
key is generated by calling the function

int pthread_key_create (pthread_key_t *key,
void (*destructor)(void *))

The generated key is returned in the parameter key. If the key is used by sev-
eral threads, the address of a global variable or a dynamically allocated vari-
able must be passed as key. The function pthread_key_create() should
only be called once for each pthread_key_t variable. This can be ensured
with the pthread_once() mechanism, see Sect. 6.1.4. The optional parameter
destructor can be used to assign a deallocation function to the key to clean up the
data stored when the thread terminates. If no deallocation is required, NULL should
be specified. A key can be deleted by calling the function

int pthread_key_delete (pthread_key_t key)

After the creation of a key, its associated data are initialized with NULL. Each thread
can associate new data value to the key by calling the function

int pthread_setspecific (pthread_key_t key, void *value)

Typically, the address of a dynamically generated data object will be passed as
value. Passing the address of a local variable should be avoided, since this address
is no longer valid after the corresponding function has been terminated. The data
associated with a key can be retrieved by calling the function

void *pthread_getspecific (pthread_key_t key)

The calling thread always obtains the data value that it has previously associated
with the key using pthread_setspecific(). When no data have been asso-
ciated yet, NULL is returned. NULL is also returned, if another thread has associ-
ated data with the key, but not the calling thread. When a thread uses the function

6.1 Programming with Pthreads 337

pthread_setspecific() to associate new data to a key, data that have previ-
ously been associated to this key by this thread will be overwritten and is lost.

An alternative to thread-specific data is the use of TLS which is provided since the
C99 standard. This mechanism allows the declaration of variables with the storage
class keyword _ _threadwith the effect that each thread gets a separate instance of
the variable. The instance is deleted as soon as the thread terminates. The_ _thread
storage class keyword can be applied to global variables and static variables. It cannot
be applied to block-scoped automatic or nonstatic variables.

6.2 Java Threads

Java supports the development of multi-threaded programs at the language level.
Java provides language constructs for the synchronized execution of program parts
and supports the creation and management of threads by predefined classes. In this
chapter, we demonstrate the use of Java threads for the development of parallel
programs for a shared address space. We assume that the reader knows the principles
of object-oriented programming as well as the standard language elements of Java.
We concentrate on the mechanisms for the development of multi-threaded programs
and describe the most important elements. We refer to [147, 128] for a more detailed
description. For a detailed description of Java, we refer to [57].

6.2.1 Thread Generation in Java

Each Java program in execution consists of at least one thread of execution, the main
thread. This is the thread which executes the main()method of the class which has
been given to the Java Virtual Machine (JVM) as start argument.

More user threads can be created explicitly by the main thread or other user threads
that have been started earlier. The creation of threads is supported by the predefined
class Thread from the standard package java.lang. This class is used for the
representation of threads and provides methods for the creation and management of
threads.

The interface Runnable from java.lang is used to represent the program
code executed by a thread; this code is provided by a run()method and is executed
asynchronously by a separate thread. There are two possibilities to arrange this:
inheriting from the Thread class or using the interface Runnable.

6.2.1.1 Inheriting from the Thread class

One possibility to obtain a new thread is to define a new class NewClass which
inherits from the predefined class Thread and which defines a method run()

338 6 Thread Programming

Fig. 6.21 Thread creation by overwriting the run() method of the Thread class.

containing the statements to be executed by the new thread. The run() method
defined in NewClass overwrites the predefined run() method from Thread.

The Thread class also contains a method start() which creates a new thread
executing the given run() method.

The newly created thread is executed asynchronously to the generating thread.
After the execution of start() and the creation of the new thread, the control
will be immediately returned to the generating thread. Thus, the generating thread
resumes execution usually before the new thread has terminated, i.e., the generating
thread and the new thread are executed concurrently to each other.

The new thread is terminated when the execution of the run() method has been
finished. This mechanism for thread creation is illustrated in Fig. 6.21 with a class
NewClass whose main() method generates an object of NewClass and whose
run() method is activated by calling the start() method of the newly created
object. Thus, thread creation can be performed in two steps:

(1) definition of a class NewClasswhich inherits from Thread and which defines
a run() method for the new thread;

(2) instantiation of an object nc of class NewClass and activation of
nc.start().

The creation method just described requires that the class NewClass inherits from
Thread. Since Java does not support multiple inheritance, this method has the
drawback that NewClass cannot be embedded into another inheritance hierarchy.
Java provides interfaces to obtain a similar mechanism as multiple inheritance. For
thread creation, the interface Runnable is used.

6.2.1.2 Using the interface Runnable

The interface Runnable defines an abstract run() method as follows:

public interface Runnable {
public abstract void run();

}

6.2 Java Threads 339

Fig. 6.22 Thread creation by using the interface Runnable based on the definition of a new class
NewClass.

The predefined class Thread implements the interface Runnable. Therefore,
each class which inherits from Thread, also implements the interface Runnable.
Hence, instead of inheriting from Thread the newly defined class NewClass can
directly implement the interface Runnable.

This way, objects of class NewClass are not thread objects. The creation of a
new thread requires the generation of a new Thread object to which the object
NewClass is passed as parameter. This is obtained by using the constructor

public Thread (Runnable target).

Using this constructor, the start() method of Thread activates the run()
method of the Runnable object which has been passed as argument to the con-
structor.

This is obtained by therun()method ofThread which is specified as follows:

public void run() {
if (target != null) target.run();

}

After activating start(), the run() method is executed by a separate thread
which runs asynchronously to the calling thread. Thus, thread creation can be per-
formed by the following steps:

(1) definition of a class NewClass which implements Runnable and which
defines a run() method with the code to be executed by the new thread;

(2) instantiation of a Thread object using the constructor Thread (Runnable
target) and of an object of NewClass which is passed to the Thread
constructor;

(3) activation of the start() method of the Thread object.

This is illustrated in Fig. 6.22 for a class NewClass. An object of this class is
passed to the Thread constructor as parameter.

340 6 Thread Programming

6.2.1.3 Further methods of the Thread class

A Java thread can wait for the termination of another Java thread t by calling
t.join(). This call blocks the calling thread until the execution of t is termi-
nated. There are three variants of this method:

• void join(): the calling thread is blocked until the target thread is terminated;
• void join (long timeout): the calling thread is blocked until the target

thread is terminated or the given time interval timeout has passed; the time
interval is given in milliseconds;

• void join (long timeout, int nanos): the behavior is similar to
void join (long timeout); the additional parameter allows a more exact
specification of the time interval using an additional specification in nanoseconds.

The calling thread will not be blocked, if the target thread has not yet been started.
The method

boolean isAlive()

of the Thread class gives information about the execution status of a thread: the
method returns true, if the target thread has been started but has not yet been
terminated; otherwise, false is returned. The join() and isAlive() methods
have no effect on the calling thread. A name can be assigned to a specific thread by
using the methods:

void setName (Stringname);
String getName ();

An assigned name can later be used to identify the thread. A name can also be
assigned at thread creation by using the constructor Thread (String name).
The Thread class defines static methods which affect the calling thread or provide
information about the program execution:

static Thread currentThread();
static void sleep (long milliseconds);
static void yield();
static int enumerate (Thread[] th_array);
static int activeCount();

Since these methods are static, they can be called without using a target Thread
object. The call of currentThread() returns a reference to the Thread object
of the calling thread. This reference can later be used to call nonstatic methods of the
Thread object. The method sleep() blocks the execution of the calling thread
until the specified time interval has passed; at this time, the thread again becomes
ready for execution and can be assigned to an execution core or processor. The method
yield() is a directive to the JVM to assign another thread with the same priority
to the processor. If such a thread exists, then the scheduler of the JVM can bring this

6.2 Java Threads 341

thread to execution. The use ofyield() is useful for JVM implementations without
a time-sliced scheduling, if threads perform long-running computations which do not
block. The method enumerate() yields a list of all active threads of the program.
The return value specifies the number of Thread objects collected in the parameter
array th_array. The method activeCount() returns the number of active
threads in the program. The method can be used to determine the required size of
the parameter array before calling enumerate().

Example: Fig. 6.23 gives an example of a class for performing a matrix multipli-
cation with multiple threads. The input matrices are read in into in1 and in2 by
the main thread using the static method ReadMatrix(). The thread creation is
performed by the constructor of the MatMult class, such that each thread computes
one row of the result matrix. The corresponding computations are specified in the
run() method. All threads access the same matrices in1, in2 and out that have
been allocated by the main thread. No synchronization is required, since each thread
writes to a separate area of the result matrix out. �

6.2.2 Synchronization of Java Threads

The threads of a Java program access a shared address space. Suitable synchronization
mechanisms have to be applied to avoid race conditions when a variable is accessed by
several threads concurrently. Java provides synchronized blocks and methods to
guarantee mutual exclusion for threads accessing shared data. A synchronized
block or method avoids a concurrent execution of the block or method by two or
more threads. A data structure can be protected by putting all accesses to it into
synchronized blocks or methods, thus ensuring mutual exclusion. A synchro-
nized increment operation of a counter can be realized by the following method
incr():

public class Counter {
private int value = 0;
public synchronized int incr() {

value = value + 1;
return value;

}
}

Java implements the synchronization by assigning to each Java object an implicit
mutex variable. This is achieved by providing the general class Object with an
implicit mutex variable. Since each class is directly or indirectly derived from the
class Object, each class inherits this implicit mutex variable, and every object
instantiated from any class implicitly possess its own mutex variable. The activation
of asynchronizedmethod of an objectOb by a threadt has the following effects:

342 6 Thread Programming

Fig. 6.23 Parallel matrix multiplication in Java.

6.2 Java Threads 343

• When starting the synchronized method, t implicitly tries to lock the mutex
variable of Ob. If the mutex variable is already locked by another thread s, thread
t is blocked. The blocked thread becomes ready for execution again when the
mutex variable is released by the locking thread s. The called synchronized
method will only be executed after successfully locking the mutex variable of Ob.

• When t leaves the synchronized method called, it implicitly releases the
mutex variable of Ob, so that it can be locked by another thread.

A synchronized access to an object can be realized by declaring all methods access-
ing the object as synchronized. The object should only be accessed with these
methods to guarantee mutual exclusion.

In addition tosynchronizedmethods, Java providessynchronizedblocks:
such a block is started with the keywordsynchronized and the specification of an
arbitrary object that is used for the synchronization in parenthesis. Instead of an arbi-
trary object, the synchronization is usually performed with the object whose method
contains the synchronized block. The above method for the incrementation of a
counter variable can be realized using a synchronized block as follows:

public int incr() {
synchronized (this) {

value = value + 1; return value;
}

}

The synchronization mechanism of Java can be used for the realization of fully syn-
chronized objects (also called atomar objects); these can be accessed by an arbitrary
number of threads without any additional synchronization. To avoid race conditions,
the synchronization has to be performed within the methods of the corresponding
class of the objects. This class must have the following properties:

• all methods must be declared synchronized;
• no public entries are allowed that can be accessed without using a local method;
• all entries are consistently initialized by the constructors of the class;
• the objects remain in a consistent state also in case of exceptions.

Figure 6.24 demonstrates the concept of fully synchronized objects for the exam-
ple of a class ExpandableArray; this is a simplified version of the predefined
synchronized class java.util.Vector, see also [128]. The class implements
an adaptable array of arbitrary objects, i.e., the size of the array can be increased or
decreased according to the number of objects to be stored. The adaptation is realized
by the method add(): if the array data is fully occupied when trying to add a
new object, the size of the array will be increased by allocating a larger array and
using the method arraycopy() from the java.lang.System class to copy
the content of the old array into the new array. Without the synchronization included,
the class could not be used concurrently by more than one thread safely. A conflict
could occur, if, e.g., two threads tried to perform an add() operation at the same
time.

344 6 Thread Programming

Fig. 6.24 Example for a fully synchronized class.

6.2.2.1 Deadlocks

The use of fully synchronized classes avoids the occurrence of race conditions,
but may lead to deadlocks when threads are synchronized with different objects.
This is illustrated in Fig. 6.25 for a class Account which provides a method
swapBalance() to swap account balances, see [128]. A deadlock can occur
when swapBalance() is executed by two threads A and B concurrently: For
two account objects a and b, if A calls a.swapBalance(b) and B calls
b.swapBalance(a) and A and B are executed on different processors or cores,
a deadlock occurs with the following execution order:

• time T1: thread A calls a.swapBalance(b) and locks the mutex variable of
object a;

• time T2: thread A calls getBalance() for object a and executes this function;

6.2 Java Threads 345

Fig. 6.25 Example for a deadlock situation.

• time T2: thread B calls b.swapBalance(a) and locks the mutex variable of
object b;

• time T3: thread A callsb.getBalance() and blocks because the mutex variable
of b has previously been locked by thread B;

• time T3: thread B calls getBalance() for object b and executes this function;
• time T4: thread B callsa.getBalance() and blocks because the mutex variable

of a has previously been locked by thread A.

The execution order is illustrated in Fig. 6.26. After time T4, both threads are blocked:
thread A is blocked, since it could not acquire the mutex variable of object b. This
mutex variable is owned by thread B and only B can free it. Thread B is blocked,
since it could not acquire the mutex variable of object a. This mutex variable is
owned by thread A and only A can free it. Thus, both threads are blocked and none
of them can proceed; a deadlock has occurred.

Deadlocks typically occur, if different threads try to lock the mutex variables of the
same objects in different orders. For the example in Fig. 6.25, thread A tries to lock
first a and then b, whereas thread B tries to lock first b and then a. In this situation,
a deadlock can be avoided by a backoff strategy or by using the same locking order
for each thread, see also Sect. 6.1.2. A unique ordering of objects can be obtained
by using the Java method System.identityHashCode() which refers to the
default implementation Object.hashCode(), see [128]. But any other unique

Fig. 6.26 Execution order to cause a deadlock situation for the class in Fig. 6.25.

346 6 Thread Programming

Fig. 6.27 Deadlock-free implementation of swapBalance() from Fig. 6.25.

object ordering can also be used. Thus, we can give an alternative formulation of
swapBalance()which avoids deadlocks, see Fig. 6.27. The new formulation also
contains an alias check to ensure that the operation is only executed if different
objects are used. The method swapBalance() is not declared synchronized
any more.

For the synchronization of Java methods, several issues should be considered to
make the resulting programs efficient and safe:

• Synchronization is expensive. Therefore, synchronized methods should only
be used for methods that can be called concurrently by several threads and that
may manipulate common object data.
If an application ensures that a method is always executed by a single thread at
each point in time, then a synchronization can be avoided to increase efficiency.

• Synchronization should be restricted to critical regions to reduce the time interval
of locking. For larger methods, the use of synchronized blocks instead of
synchronized methods should be considered.

• To avoid unnecessary sequentializations, the mutex variable of the same object
should not be used for the synchronization of different, noncontiguous critical
sections.

• Several Java classes are internally synchronized; Examples are Hashtable,
Vector, and StringBuffer. No additional synchronization is required for
objects of these classes.

• If an object requires synchronization, the object data should be put into private
or protected instance fields to inhibit nonsynchronized accesses from out-
side. All object methods accessing the instance fields should be declared as
synchronized.

• For cases in which different threads access several objects in different orders,
deadlocks can be prevented by using the same lock order for each thread.

6.2 Java Threads 347

Fig. 6.28 Synchronization
class with variable lock gran-
ularity.

6.2.2.2 Synchronization with variable lock granularity

To illustrate the use of the synchronization mechanism of Java, we consider a syn-
chronization class with a variable lock granularity, which has been adapted from
[147].

The new class MyMutex allows the synchronization of arbitrary object accesses
by explicitly acquiring and releasing objects of the class MyMutex, thus realizing
a lock mechanism similar to mutex variables in Pthreads, see Sect. 6.1.2, page 292.
The new class also enables the synchronization of threads accessing different objects.
The class MyMutex uses an instance field OwnerThread which indicates which
thread has currently acquired the synchronization object. Figure 6.28 shows a first
draft of the implementation of MyMutex.

The method getMyMutex can be used to acquire the explicit lock of the syn-
chronization object for the calling thread. The lock is given to the calling thread
by assigning Thread.currentThread() to the instance field OwnerThread.
The synchronized method freeMyMutex() can be used to release a previ-
ously acquired explicit lock; this is implemented by assigning null to the instance
fieldOwnerThread. If a synchronization object has already been locked by another
thread,getMyMutex() repeatedly tries to acquire the explicit lock after a fixed time
interval of 100 ms. The method getMyMutex() is not declared synchronized.
The synchronized method tryGetMyMutex() is used to access the instance
field OwnerThread. This protects the critical section for acquiring the explicit
lock by using the implicit mutex variable of the synchronization object. This mutex
variable is used both for tryGetMyMutex() and freeMyMutex().

348 6 Thread Programming

Fig. 6.29 Implementation
variant of getMyMutex().

Fig. 6.30 Implementation of
a counter class with synchro-
nization by an object of class
MyMutex.

If getMyMutex() would have been declared synchronized, the activation
of getMyMutex() by a thread T1 would lock the implicit mutex variable of the
synchronization object of the class MyMutex before entering the method. If another
thread T2 holds the explicit lock of the synchronization object, T2 cannot release this
lock with freeMyMutex(), since this would require to lock the implicit mutex
variable which is held by T1. Thus, a deadlock would result. The use of an additional
method tryGetMyMutex() can be avoided by using a synchronized block
within getMyMutex(), see Fig. 6.29.

Objects of the new synchronization class MyMutex can be used for the explicit
protection of critical sections. This can be illustrated for a counter class Counter
to protect the counter manipulation, see Fig. 6.30.

6.2.2.3 Synchronization of static methods

The implementation of synchronized blocks and methods based on the implicit
object mutex variables works for all methods that are activated with respect to an
object. Static methods of a class are not activated with respect to an object, and
thus there is no implicit object mutex variable. Nevertheless, static methods can

6.2 Java Threads 349

Fig. 6.31 Synchronization of static methods.

also be declared synchronized. In this case, the synchronization is implemented
by using the implicit mutex variable of the corresponding class object of the class
java.lang.Class (Class mutex variable). An object of this class is automat-
ically generated for each class defined in a Java program.

Thus, static and nonstatic methods of a class are synchronized by using different
implicit mutex variables. A static synchronized method can acquire both the
mutex variable of the Class object and of an object of this class by using an
object of this class for a synchronized block or by activating a synchronized
nonstatic method for an object of this class. This is illustrated in Fig. 6.31. Similarly,
a synchronized nonstatic method can also acquire both the mutex variables of
the object and of the Class object by calling a synchronized static method.
For an arbitrary class Cl, the Class mutex variable can be directly used for a
synchronized block by using

synchronized (Cl.class) {/*Code*/}

6.2.3 Wait and Notify

In some situations, it is useful for a thread to wait for an event or condition. As soon
as the event occurs, the thread executes a predefined action. The thread waits as long
as the event does not occur or the condition is not fulfilled. The event can be signaled
by another thread; similarly, another thread can make the condition to be fulfilled.
Pthreads provides condition variables for these situations. Java provides a similar
mechanism via the methods wait() and notify() of the predefined Object
class. These methods are available for each object of any class which is explicitly or
implicitly derived from the Object class. Both methods can only be used within
synchronized blocks or methods. A typical usage pattern for wait() is:

350 6 Thread Programming

synchronized (lockObject) {
while (!condition) { lockObject.wait(); }
Action();

}

The call ofwait()blocks the calling thread until another thread callsnotify()
for the same object. When a thread blocks by calling wait(), it releases the
implicit mutex variable of the object used for the synchronization of the surrounding
synchronized method or block. Thus, this mutex variable can be acquired by
another thread.

Several threads may block waiting for the same object. Each object maintains
a list of waiting threads. When another thread calls the notify() method of the
same object, one of the waiting threads of this object is woken up and can continue
running. Before resuming its execution, this thread first acquires the implicit mutex
variable of the object. If this is successful, the thread performs the action specified
in the program. If this is not successful, the thread blocks and waits until the implicit
mutex variable is released by the owning thread by leaving a synchronized
method or block.

The methods wait() and notify() work similarly as the operations
pthread_cond_wait() and pthread_cond_signal() for condition vari-
ables in Pthreads, see Sect. 6.1.3, page 300. The methods wait() and notify()
are implemented using an implicit waiting queue for each object; this waiting queue
contains all blocked threads waiting to be woken up by a notify() operation. The
waiting queue does not contain those threads that are blocked waiting for the implicit
mutex variable of the object.

The Java language specification does not specify which of the threads in the
waiting queue is woken up if notify() is called by another thread. The method
notifyAll() can be used to wake up all threads in the waiting queue; this
has a similar effect as pthread_cond_broadcast() in Pthreads. The method
notifyAll() also has to be called in a synchronized block or method.

6.2.3.1 Producer-Consumer pattern

The Java waiting and notification mechanism described above can be used for the
implementation of a producer–consumer pattern using an item buffer of fixed size.
Producer threads can put new items into the buffer and consumer threads can remove
items from the buffer. Figure 6.32 shows a thread-safe implementation of such a
buffer mechanism adapted from [128] using the wait() and notify() methods
of Java. When creating an object of the class BoundedBufferSignal, an array
array of a given size capacity is generated; this array is used as buffer. The
indices putptr and takeptr indicate the next position in the buffer to put or take
the next item, respectively; these indices are used in a circular way.

The class provides a put() method to enable a producer to enter an item into
the buffer and a take() method to enable a consumer to remove an item from

6.2 Java Threads 351

Fig. 6.32 Realization of a thread-safe buffer mechanism using Java wait() and notify().

the buffer. A buffer object can have one of three states: full, partially full, and
empty. Figure 6.33 illustrates the possible transitions between the states when calling
take() or put(). The states are characterized by the following conditions:

state condition put take
possible possible

full size == capacity no yes
partially full 0 < size < capacity yes yes

empty size == 0 yes no

If the buffer is full, the execution of the put() method by a producer thread
will block the executing thread; this is implemented by a wait() operation. If the

352 6 Thread Programming

Fig. 6.33 Illustration of the states of a thread-safe buffer mechanism.

put() method is executed for a previously empty buffer, all waiting (consumer)
threads will be woken up using notifyAll() after the item has been entered
into the buffer. If the buffer is empty, the execution of the take() method by a
consumer thread will block the executing thread using wait(). If the take()
method is executed for a previously full buffer, all waiting (producer) threads will be
woken up using notifyAll() after the item has been removed from the buffer.
The implementation of put() and take() ensures that each object of the class
BoundedBufferSignal can be accessed concurrently by an arbitrary number
of threads without race conditions.

6.2.3.2 Modification of the MyMutex class

The methods wait() and notify() can be used to improve the synchroniza-
tion class MyMutex from Fig. 6.28 by avoiding the active waiting in the method
getMyMutex(), see Fig. 6.34 (according to [147]).

Additionally, the modified implementation realizes a nested locking mechanism
which allows multiple locking of a synchronization object by the same thread.
The number of locks is counted in the variable lockCount; this variable is
initialized to 0 and is incremented or decremented by each call ofgetMyMutex()or
freeMyMutex(), respectively. In Fig. 6.34, the method getMyMutex() is now
also declared synchronized. With the implementation in Fig. 6.28, this would
lead to a deadlock. But in Fig. 6.34, no deadlock can occur, since the activation of
wait() releases the implicit mutex variable before the thread is suspended and
inserted into the waiting queue of the object.

6.2.3.3 Barrier Synchronization

A barrier synchronization is a synchronization point at which each thread waits
until all participating threads have reached this synchronization point. Only then
the threads proceed with their execution. A barrier synchronization can be imple-
mented in Java using wait() and notify(). This is shown in Fig. 6.35 for a class
Barrier, see also [147]. The Barrier class contains a constructor which initial-
izes a Barrier object with the number of threads to wait for (t2w4). The actual
synchronization is provided by the method waitForRest(). This method must
be called by each thread at the intended synchronization point. Within the method,
each thread decrements t2w4 and calls wait() if t2w4 is > 0. This blocks each

6.2 Java Threads 353

Fig. 6.34 Realization of
the synchronization class
MyMutex with wait() and
notify() avoiding active
waiting.

arriving thread within the Barrier object. The last arriving thread wakes up all
waiting threads using notifyAll().

Objects of the Barrier class can be used only once, since the synchronization
counter t2w4 is decremented to 0 during the synchronization process. An example
for the use of the Barrier class for the synchronization of a multi-phase compu-
tation is given in Fig. 6.36, see also [147]. The program illustrates an algorithm with
three phases (doPhase1(), doPhase2(), doPhase3()) which are separated
from each other by a barrier synchronization using Barrier objects bp1, bp2,
and bpEnd. Each of the threads created in the constructor of ProcessIt executes
the three phases

6.2.3.4 Condition Variables

The mechanism provided by wait() and notify() in Java has some similarities
to the synchronization mechanism of condition variables in Pthreads, see Sect. 6.1.3,
page 300. The main difference lies in the fact that wait() and notify() are
provided by the general Object class. Thus, the mechanism is implicitly bound
to the internal mutex variable of the object for which wait() and notify()

354 6 Thread Programming

Fig. 6.35 Realization of a barrier synchronization in Java with wait() and notify().

are activated. This facilitates the use of this mechanism by avoiding the explicit
association of a mutex variable as needed when using the corresponding mechanism
in Pthreads. But the fixed binding of wait() and notify() to a specific mutex
variable also reduces the flexibility, since it is not possible to combine an arbitrary
mutex variable with the waiting queue of an object.

When calling wait() or notify(), a Java thread must be the owner of the
mutex variable of the corresponding object; otherwise an exception Illegal-
MonitorStateException is raised. With the mechanism of wait() and
notify(), it is not possible to use the same mutex variable for the synchronization
of the waiting queues of different objects. This would be useful, e.g., for the imple-
mentation of producer and consumer threads with a common data buffer, see, e.g.,
Fig. 6.18. But wait() and notify() can be used for the realization of a new class
which mimics the mechanism of condition variables in Pthreads. Figure 6.37 shows an
implementation of such a class CondVar, see also [147, 128]. The class CondVar
provides the methods cvWait(), cvSignal() and cvBroadcast() which
mimic the behavior of pthread_cond_wait(), pthread_cond_signal()
and pthread_cond_broadcast(), respectively. These methods allow the use
of an arbitrary mutex variable for the synchronization. This mutex variable is pro-
vided as a parameter of type MyMutex for each of the methods, see Fig. 6.37.

Thus, a single mutex variable of type MyMutex can be used for the synchroniza-
tion of several condition variables of type CondVar. When calling cvWait(), a
thread will be blocked and put in the waiting queue of the corresponding object of
type CondVar. The internal synchronization within cvWait() is performed with

6.2 Java Threads 355

Fig. 6.36 Use of the
Barrier class for the real-
ization of a multi-phase algo-
rithm.

the internal mutex variable of this object. The class CondVar also allows a simple
porting of Pthreads programs with condition variables to Java programs.

Fig. 6.38 shows as example the realization of a buffer mechanism with producer
and consumer threads by using the new class CondVar, see also [128]. A producer
thread can insert objects into the buffer by using the method put(). A consumer
thread can remove objects from the buffer by using the method take(). The con-
dition objects notFull and notEmpty of type CondVar use the same mutex
variable mutex for synchronization.

6.2.4 Extended Synchronization Patterns

The synchronization mechanisms provided by Java can be used to implement more
complex synchronization patterns which can then be used in parallel application
programs. This will be demonstrated in the following for the example of a semaphore
mechanism, see page 157.

356 6 Thread Programming

Fig. 6.37 Class CondVar for the realization of the Pthreads condition variable mechanism using
the Java signaling mechanism.

6.2 Java Threads 357

Fig. 6.38 Implementation of a buffer mechanism for producer and consumer threads.

A semaphore mechanism can be implemented in Java by using wait() and
notify(). Figure 6.39 shows a simple implementation, see also [128, 147]. The
methodacquire()waits (if necessary), until the internal counter of the semaphore

358 6 Thread Programming

Fig. 6.39 Implementation of
a semaphore mechanism.

object has reached at least the value 1. As soon as this is the case, the counter is decre-
mented. The method release() increments the counter and uses notify() to
wake up a waiting thread that has been blocked in acquire() by calling wait().
A waiting thread can only exist, if the counter had the value 0 before incrementing
it. Only in this case, it can be blocked in acquire(). Since the counter is only
incremented by one, it is sufficient to wake up a single waiting thread. An alternative
would be to use notifyAll(), which wakes up all waiting threads. Only one of
these threads would succeed in decrementing the counter, which would then have
the value 0 again. Thus, all other threads that had been woken up would be blocked
again by calling wait.

The semaphore mechanism shown in Fig. 6.39 can be used for the synchronization
of producer and consumer threads. A similar mechanism has already been imple-
mented in Fig. 6.32 by using wait() and notify() directly. Fig. 6.41 shows
an alternative implementation with semaphores, see [128]. The producer stores the
objects generated into a buffer of fixed size, the consumer retrieves objects from
this buffer for further processing. The producer can only store objects in the buffer,
if the buffer is not full. The consumer can only retrieve objects from the buffer, if
the buffer is not empty. The actual buffer management is done by a separate class
BufferArray which provides methods insert() and extract() to insert
and retrieve objects, see Fig. 6.40. Both methods are synchronized, so multiple
threads can access objects of this class without conflicts. The class BufferArray
does not provide a mechanism to control buffer overflow.

6.2 Java Threads 359

Fig. 6.40 Class
BufferArray for buffer
management.

The classBoundedBufferSema in Fig. 6.41 provides the methods put() and
take() to store and retrieve objects in a buffer. Two semaphores putPermits
and takePermits are used to control the buffer management. At each point in
time, these semaphores count the number of permits to store (producer) and retrieve
(consumer) objects. The semaphore putPermits is initialized to the buffer size,
the semaphore takePermits is initialized to 0. When storing an objects by using
put(), the semaphore putPermits is decremented with acquire(); if the
buffer is full, the calling thread is blocked when doing this. After an object has been
stored in the buffer withinsert(), a waiting consumer thread (if present) is woken
up by calling release() for the semaphore takePermits. Retrieving an object
with take() works similarly with the role of the semaphores exchanged.

In comparison to the implementation in Fig. 6.32, the new implementation in
Fig. 6.41 uses two separate objects (of typeSemaphore) for buffer control. Depend-
ing on the specific situation, this can lead to a reduction of the synchronization
overhead: in the implementation from Fig. 6.32 all waiting threads are woken up
in put() and take(). But only one of these can proceed and retrieve an object
from the buffer (consumer) or store an object into the buffer (producer). All other
threads are blocked again. In the implementation from Fig. 6.41, only one thread is
woken up.

6.2.5 Thread Scheduling in Java

A Java program may consist of several threads which can be executed on one or
several of the processors of the execution platform. The threads which are ready for

360 6 Thread Programming

Fig. 6.41 Buffer management
with semaphores.

execution compete for execution on a free processor. The programmer can influence
the mapping of threads to processors by assigning priorities to the threads. The
minimum, maximum, and default priorities for Java threads are specified in the
following fields of the Thread class:

public static final int MIN_PRIORITY // normally 1
public static final int MAX_PRIORITY // normally 10
public static final int NORM_PRIORITY // normally 5

A large priority value corresponds to a high priority. The thread which executes the
main()method of a class has by default the priority Thread.NORM_PRIORITY.
A newly created thread has by default the same priority as the generating thread. The
current priority of a thread can be retrieved or dynamically changed by using the
methods

public int getPriority();
public int setPriority(int prio);

of the Thread class. If there are more executable threads than free processors, a
thread with a larger priority is usually favored by the scheduler of the JVM. The exact
mechanism for selecting a thread for execution may depend on the implementation of
a specific JVM. The Java specification does not define an exact scheduling mechanism

6.2 Java Threads 361

to increase flexibility for the implementation of the JVM on different operating
systems and different execution platforms. For example, the scheduler might always
bring the thread with the largest priority to execution, but it could also integrate an
aging mechanism to ensure that threads with a lower priority will be mapped to a
processor from time to time to avoid starvation and implement fairness.

Since there is no exact specification for the scheduling of threads with different
priorities, priorities cannot be used to replace synchronization mechanisms. Instead,
priorities can only be used to express the relative importance of different threads to
bring the most important thread to execution in case of doubt.

When using threads with different priorities, the problem of priority inversion
can occur, see also Sect. 6.1.11, page 332. A priority inversion happens if a thread
with a high priority is blocked to wait for a thread with a low priority, e.g., because this
thread has locked the same mutex variable that the thread with the high priority tries
to lock. The thread with a low priority can be inhibited from proceeding its execution
and releasing the mutex variable as soon as a thread with a medium priority is ready
for execution. In this constellation, the thread with high priority can be prevented
from execution in favor of the thread with a medium priority.

The problem of priority inversion can be avoided by using priority inheritance,
see also Sect. 6.1.11: if a thread with high priority is blocked, e.g., because of an
activation of asynchronizedmethod, then the priority of the thread that currently
controls the critical synchronization object will be increased to the high priority of
the blocked thread. Then, no thread with medium priority can inhibit the thread with
high priority from execution. Many JVMs use this method, but this is not guaranteed
by the Java specification.

6.2.6 Package java.util.concurrent

The java.util.concurrent package provides additional synchronization
mechanisms and classes which are based on the standard synchronization mech-
anisms described in the previous section, like synchronized blocks, wait(),
and notify(). The package is available for Java platforms starting with the Java2
platform (Java2 Standard Edition 5.0, J2SE 5.0).

The additional mechanisms provide more abstract and flexible synchronization
operations, including atomic variables, lock variables, barrier synchronization, con-
dition variables, and semaphores as well as different thread-safe data structures like
queues, hash maps, or array lists. The additional classes are similar to those described
in [128]. In the following, we give a short overview of the package and refer to [76]
for a more detailed description.

362 6 Thread Programming

6.2.6.1 Semaphore mechanism

The class Semaphore provides an implementation of a counting semaphore, which
is similar to the mechanism given in Fig. 6.17. Internally, a Semaphore object
maintains a counter which counts the number of permits.

The most important methods of the Semaphore class are:

void acquire();
void release();
boolean tryAcquire()
boolean tryAcquire(int permits, long timeout,

TimeUnit unit)

The method acquire() asks for a permit and blocks the calling thread if no permit
is available. If a permit is currently available, the internal counter for the number of
available permits is decremented and control is returned to the calling thread.

The method release() adds a permit to the semaphore by incrementing the
internal counter. If another thread is waiting for a permit of this semaphore, this
thread is woken up. The method tryAcquire() asks for a permit to a semaphore
object. If a permit is available, a permit is acquired by the calling thread and control
is returned immediately with return value true. If no permit is available, con-
trol is also returned immediately, but with return value false; thus, in contrast to
acquire(), the calling thread is not blocked. There exist different variants of the
method tryAcquire() with varying parameters allowing the additional speci-
fication of a number of permits to acquire (parameter permits), a waiting time
(parameter timeout) after which the attempt of acquiring the specified number
of permits is given up with return value false, as well as a time unit (parameter
unit) for the waiting time. If not enough permits are available when calling a timed
tryAcquire(), the calling thread is blocked until one of the following events
occurs:

• the number of requested permits becomes available because other threads call
release() for this semaphore; in this case, control is returned to the calling
thread with return value true;

• the specified waiting time elapses; in this case, control is returned with return value
false; no permit is acquired in this case, also if some of the requested permits
would have been available.

6.2.6.2 Barrier synchronization

The class CyclicBarrier provides an implementation of a barrier synchroniza-
tion. The prefix cyclic refers to the fact that an object of this class can be re-used
again after all participating threads have passed the barrier. The constructors of the
class

6.2 Java Threads 363

publicCyclicBarrier (int n);
publicCyclicBarrier (int n,Runnable action);

allow the specification of a number n of threads that must pass the barrier before
execution continues after the barrier. The second constructor allows the additional
specification of an operation action that is executed as soon as all threads have
passed the barrier. The most important methods ofCyclicBarrier areawait()
and reset(). By calling await() a thread waits at the barrier until the specified
number of threads have reached the barrier. A barrier object can be reset into its
original state by calling reset().

6.2.6.3 Lock Mechanisms

The package java.util.concurrent.locks contains interfaces and classes
for locks and for waiting for the occurrence of conditions. The interfaceLock defines
locking mechanisms which go beyond the standard synchronized methods and
blocks and are not limited to the synchronization with the implicit mutex variables
of the objects used. The most important methods of Lock are

void lock();
boolean tryLock();
boolean tryLock (long time, TimeUnit unit);
void unlock();

The method lock() tries to lock the corresponding lock object. If the lock has
already been set by another thread, the executing thread is blocked until the locking
thread releases the lock by calling unlock(). If the lock object has not been set by
another thread when calling lock(), the executing thread becomes owner of the
lock without waiting.

The method tryLock() also tries to lock a lock object. If this is successful,
the return value is true. If the lock object is already set by another thread, the
return value is false; in contrast to lock(), the calling thread is not blocked in
this case. For the method tryLock(), additional parameters can be specified to
set a waiting time after which control is resumed also if the lock is not available,
see tryAcquire() of the class Semaphore. The method unlock() releases a
lock which has previously been set by the calling thread.

The class ReentrantLock() provides an implementation of the interface
Lock. The constructors of this class

public ReentrantLock();
public ReentrantLock (boolean fairness);

364 6 Thread Programming

Fig. 6.42 Illustration of the use of ReentrantLock objects.

allow the specification of an additional fairness parameter fairness. If this is set
to true, the thread with the longest waiting time can access the lock object if several
threads are waiting concurrently for the same lock object. If the fairness parameter
is not used, no specific access order can be assumed. Using the fairness parameter
can lead to an additional management overhead and hence to a reduced throughput.
A typical usage of the class ReentrantLock is illustrated in Fig. 6.42.

6.2.6.4 Signal mechanism

The interface Condition from the package java.util.concurrent.lock
defines a signal mechanism with condition variables which allows a thread to wait for
a specific condition. The occurrence of this condition is shown by a signal of another
thread, similar to the functionality of condition variables in Pthreads, see Sect. 6.1.3,
page 300. A condition variable is always bound to a lock object, see interface Lock.
A condition variable to a lock object can be created by calling the method

Condition newCondition().

This method is provided by all classes which implement the interface Lock. The
condition variable returned by the method is bound to the lock object for which the
method newCondition() has been called. For condition variables, the following
methods are available:

void await();
void await (long time, TimeUnit unit);
void signal();
void signalAll();

6.2 Java Threads 365

Fig. 6.43 Realization of a buffer mechanism by using condition variables.

The method await() blocks the executing thread until it is woken up by another
thread by signal(). Before blocking, the executing thread releases the lock object
as an atomic operation. Thus, the executing thread has to be the owner of the lock
object before calling await(). After the blocked thread is woken up again by a
signal() of another thread, it first must try to set the lock object again. Only after
this is successful, the thread can proceed with its computations.

There is a variant ofawait()which allows the additional specification of a wait-
ing time. If this variant is used, the calling thread is woken up after the time interval
has elapsed, and if no signal() of another thread has arrived in the meantime.
By calling signal(), a thread can wake up another thread which is waiting for a
condition variable. By calling signalAll(), all waiting threads of the condition
variable are woken up. The use of condition variables for the realization of a buffer

366 6 Thread Programming

mechanism is illustrated in Fig. 6.43. The condition variables are used in a similar
way as the semaphore objects in Fig. 6.41.

6.2.6.5 Atomic Operations

The package java.util.concurrent.atomic provides atomic operations
for simple data types, allowing a lock-free access to single variables. An example is
the class AtomicInteger which comprises the following methods

booleancompareAndSet (intexpect,intupdate);
intgetAndIncrement();

The first method sets the value of the variable to the value update, if the variable
previously had the value expect. In this case, the return value is true. If the
variable has not the expected value, the return value is false; no operation is
performed. The operation is performed atomically, i.e., during the execution, the
operation cannot be interrupted.

The second method increments the value of the variable atomically and returns
the previous value of the variable as a result. The class AtomicInteger provides
plenty of similar methods.

6.2.6.6 Task-based execution of programs

The package java.util.concurrent also provides a mechanism for a task-
based formulation of programs. A task is a sequence of operations of the program
which can be executed by an arbitrary thread. The execution of tasks is supported by
the interface Executor:

pub lic int erface Executor {
void execute (Runnable command);

}

wherecommand is the task which is brought to execution by callingexecute(). A
simple implementation of the methodexecute()might merely activate the method
command.run() in the current thread. More sophisticated implementations may
queue command for execution by one of a set of threads. For multicore processors,
several threads are typically available for the execution of tasks. These threads can
be combined in a thread pool where each thread of the pool can execute an arbitrary
task.

Compared to the execution of each task by a separate thread, the use of task pools
typically leads to a smaller management overhead, particularly if the tasks consist of
only a few operations. For the organization of thread pools, the class Executors
can be used. This class provides methods for the generation and management of
thread pools. Important methods are:

6.2 Java Threads 367

static ExecutorService newFixedThreadPool(int n);
static ExecutorService newCachedThreadPool();
static ExecutorService newSingleThreadExecutor();

The first method generates a thread pool which creates new threads when executing
tasks until the maximum number n of threads has been reached. The second method
generates a thread pool for which the number of threads is dynamically adapted to
the number of tasks to be executed. Threads are terminated, if they are not used
for a specific amount of time (60 s). The third method generates a single thread
which executes a set of tasks. To support the execution of task-based programs the
interfaceExecutorService is provided. This interface inherits from the interface
Executor and comprises methods for the termination of thread pools. The most
important methods are

void shutdown();
List<Runnable> shutdownNow();

The method shutdown() has the effect, that the thread pool does not accept fur-
ther tasks for execution. Tasks which have already been submitted are still exe-
cuted before the shutdown. In contrast, the method shutdownNow() additionally
stops the tasks which are currently in execution; the execution of waiting tasks
is not started. The set of waiting tasks is provided in form of a list as return
value. The class ThreadPoolExecutor is an implementation of the interface
ExecutorService.

Figure 6.44 illustrates the use of a thread pool for the realization of a web server
which waits for connection requests of clients at a ServerSocket object. If a
client request arrives, it is computed as a separate task by submitting this task with
execute() to a thread pool. Each task is generated as a Runnable object. The
operationhandleRequest() to be executed for the request is specified asrun()
method. The maximum size of the thread pool is set to 10.

6.3 OpenMP

OpenMP is a portable standard for the programming of shared memory systems.
The OpenMP API (application program interface) provides a collection of compiler
directives, library routines, and environmental variables. The compiler directives can
be used to extend the sequential languages Fortran, C, and C++ with single program
multiple data (SPMD) constructs, tasking constructs, work-sharing constructs, and
synchronization constructs. The use of shared and private data is supported. The
library routines and the environmental variable control the runtime system.

The OpenMP standard was designed in 1997 and is owned and maintained by
the OpenMP Architecture Review Board (ARB). Since then many vendors have

368 6 Thread Programming

Fig. 6.44 Draft of a task-
based web server.

included the OpenMP standard in their compilers. Currently, most compilers support
the Version 2.5 from May 2005 [149]. The most recent update is Version 3.1 from
July 2011 [150], which is, e.g., supported by the gcc4.7 compiler and the Intel Fortran
and C/C++ compilers . Information about OpenMP and the standard definition can
be found at the following website: http://www.openmp.org.

The programming model of OpenMP is based on cooperating threads running
simultaneously on multiple processors or cores. Threads are created and destroyed in
a fork-join pattern. The execution of an OpenMP program begins with a single thread,
the initial thread, which executes the program sequentially until a first parallel
construct is encountered. At the parallel construct, the initial thread creates a team of
threads consisting of a certain number of new threads and the initial thread itself. The
initial thread becomes the master thread of the team. This fork operation is performed
implicitly. The program code inside the parallel construct is called a parallel region
and is executed in parallel by all threads of the team. The parallel execution mode
can be an SPMD style; but an assignment of different tasks to different threads
is also possible. OpenMP provides directives for different execution modes, which

http://www.openmp.org

6.3 OpenMP 369

will be described below. At the end of a parallel region there is an implicit barrier
synchronization, and only the master thread continues its execution after this region
(implicit join operation). Parallel regions can be nested and each thread encountering
a parallel construct creates a team of threads as described above.

The memory model of OpenMP distinguishes between shared memory and private
memory. All OpenMP threads of a program have access to the same shared mem-
ory. To avoid conflicts, race conditions, or deadlocks, synchronization mechanisms
have to be employed, for which the OpenMP standard provides appropriate library
routines. In addition to shared variables, the threads can also use private variables in
the threadprivate memory, which cannot be accessed by other threads.

An OpenMP program needs to include the header file<omp.h>. The compilation
with appropriate options translates the OpenMP source code into multithreaded code.
This is supported by several compilers. The Version 4.2 of GCC and newer versions
support OpenMP; the option-fopenmphas to be used. Intel’s C++ compiler Version
8 and newer versions also support the OpenMP standard and provide additional Intel-
specific directives. A compiler supporting OpenMP defines the variable _OPENMP
if the OpenMP option is activated.

An OpenMP program can also be compiled into sequential code by a translation
without the OpenMP option. The translation ignores all OpenMP directives. How-
ever, for the translation into correct sequential code special care has to be taken for
some OpenMP runtime functions. The variable _OPENMP can be used to control the
translation into sequential or parallel code.

6.3.1 Compiler directives

In OpenMP, parallelism is controlled by compiler directives. For C and C++, OpenMP
directives are specified with the #pragma mechanism of the C and C++ standards.
The general form of an OpenMP directive is

#pragma omp directive [clauses [] ...]

written in a single line. The clauses are optional and are different for different direc-
tives. Clauses are used to influence the behavior of a directive. In C and C++, the
directives are case sensitive and apply only to the next code line or to the block of
code (written within brackets { and }) immediately following the directive.

6.3.1.1 Parallel region

The most important directive is the parallel construct mentioned before with
syntax

#pragma omp parallel [clause [clause] ...]
{ // structured block ... }

370 6 Thread Programming

The parallel construct is used to specify a program part that should be executed
in parallel. Such a program part is called a parallel region. A team of threads is
created to execute the parallel region in parallel. Each thread of the team is assigned
a unique thread number, starting from zero for the master thread up to the number of
threads minus one. The parallel construct ensures the creation of the team but does
not distribute the work of the parallel region among the threads of the team. If there
is no further explicit distribution of work (which can be done by other directives),
all threads of the team execute the same code on possibly different data in an SPMD
mode. One usual way to execute on different data is to employ the thread number
also called thread id. The user-level library routine

int omp_get_thread_num()

returns the thread id of the calling thread as integer value. The number of threads
remains unchanged during the execution of one parallel region but may be different
for another parallel region. The number of threads can be set with the clause

num_threads(expression)

The user-level library routine

int omp_get_num_threads()

returns the number of threads in the current team as integer value, which can be
used in the code for SPMD computations. At the end of a parallel region there is
an implicit barrier synchronization and the master thread is the only thread which
continues the execution of the subsequent program code.

The clauses of a parallel directive include clauses which specify whether data will
be private for each thread or shared among the threads executing the parallel region.
Private variables of the threads of a parallel region are specified by the private
clause with syntax

private(list_of_variables)

where list_of_variables is an arbitrary list of variables declared before. The
private clause has the effect that for each private variable a new version of the
original variable with the same type and size is created in the memory of each thread
belonging to the parallel region. The private copy can be accessed and modified only
by the thread owning the private copy. Shared variables of the team of threads are
specified by the shared clause with the syntax

shared(list_of_variables)

where list_of_variables is a list of variables declared before. The effect of
this clause is that the threads of the team access and modify the same original variable
in the shared memory. The default clause can be used to specify whether variables
in a parallel region are shared or private by default. The clause

default(shared)

6.3 OpenMP 371

Fig. 6.45 OpenMP program with parallel construct.

causes all variables referenced in the construct to be shared except the private vari-
ables which are specified explicitly. The clause

default(none)

requires each variable in the construct to be specified explicitly as shared or private.
The following example shows a first OpenMP program with a parallel region, in
which multiple threads perform an SPMD computation on shared and private data.

Example: The program code in Fig. 6.45 uses a parallel construct for a par-
allel SPMD execution on an array x. The input values are read in the function
initialize() by the master thread. Within the parallel region the variables x
and npoints are specified as shared and the variables iam, np and mypoints are
specified as private. All threads of the team of threads executing the parallel region
store the number of threads in the variable np and their own thread id in the variable
iam. The private variable mypoints is set to the number of points assigned to a
thread. The function compute_subdomain() is executed by each thread of the
team using its own private variables iam and mypoints. The actual computations
are performed on the shared array x. �

A nesting of parallel regions by calling a parallel construct within a parallel
region is possible. However, the default execution mode assigns only one thread to
the team of the inner parallel region. The library function

void omp_set_nested(int nested)

with a parameter nested �= 0 can be used to change the default execution mode to
more than one thread for the inner region. The actual number of threads assigned to
the inner region depends on the specific OpenMP implementation.

372 6 Thread Programming

6.3.1.2 Parallel loops

OpenMP provides constructs which can be used within a parallel region to distribute
the work across threads that already exist in the team of threads executing the parallel
region. The loop construct causes a distribution of the iterates of a parallel loop and
has the syntax

#pragma omp for [clause [clause] ...]
for (i = lower_bound; i op upper_bound; incr_expr) {

{ // loop iterate ... }
}

The use of the for construct is restricted to loops which are parallel loops, in which
the iterates of the loop are independent of each other and for which the total number
of iterates is known in advance. The effect of the for construct is that the iterates of
the loop are assigned to the threads of the parallel region and are executed in parallel.
The index variable i should not be changed within the loop and is considered as
private variable of the thread executing the corresponding iterate. The expression
lower_bound and upper_bound is integer expressions, whose values should
not be changed during the execution of the loop. The operatorop is a boolean operator
from the set {<, <=, >, >= }. The increment expression incr_expr can be of the
form

++i, i++, - -i, i- -, i += incr, i -= incr,
i = i + incr, i = incr + i, i = i - incr,

with an integer expressionincr that remains unchanged within the loop. The parallel
loop of a for construct should not be finished with a break command. The parallel
loop ends with an implicit synchronization of all threads executing the loop, and the
program code following the parallel loop is only executed if all threads have finished
the loop. The nowait clause given as clause of the for construct can be used to
avoid this synchronization.

The specific distribution of iterates to threads is done by a scheduling strategy.
OpenMP supports different scheduling strategies specified by the schedule para-
meters of the following list:

• schedule(static, block_size) specifies a static distribution of iterates
to threads which assigns blocks of size block_size in a round-robin fashion to
the threads available. When block_size is not given, blocks of almost equal
size are formed and assigned to the threads in a blockwise distribution.

• schedule(dynamic, block_size) specifies a dynamic distribution of
blocks to threads. A new block of size block_size is assigned to a thread
as soon as the thread has finished the computation of the previously assigned
block. When block_size is not provided, blocks of size one, i.e., consisting of
only one iterate, are used.

• schedule(guided, block_size) specifies a dynamic scheduling of blocks
with decreasing size. For the parameter value block_size =1, the new block

6.3 OpenMP 373

assigned to a thread has a size which is the quotient of the number of iterates not
assigned yet and the number of threads executing the parallel loop. For a parameter
value block_size = k > 1, the size of the blocks is determined in the same
way, but a block never contains fewer than k iterates (except for the last block
which may contain fewer than k iterates). When no block_size is given, the
blocks consist of one iterate each.

• schedule(auto) delegates the scheduling decision to the compiler and/or
runtime system. Thus, any possible mapping of iterates to threads can be chosen.

• schedule(runtime) specifies a scheduling at runtime. At runtime the envi-
ronmental variable OMP_SCHEDULE, which has to contain a character string
describing one of the formats given above, is evaluated. Examples are

setenv OMP_SCHEDULE "dynamic, 4"
setenv OMP_SCHEDULE "guided"

When the variable OMP_SCHEDULE is not specified, the scheduling used depends
on the specific implementation of the OpenMP library.

A for construct without any schedule parameter is executed according to
a default scheduling method also depending on the specific implementation of the
OpenMP library. The use of the for construct is illustrated with the following
example coding a matrix multiplication.

Example: The code fragment in Fig. 6.46 shows a multiplication of 100 × 100
matrixMAwith a 100×100 matrixMB resulting in a matrixMC of the same dimension.
The parallel region specifies MA, MB, and MC as shared variables and the indices
row, col,i as private. The two parallel loops usestatic scheduling with blocks
of row. The first parallel loop initializes the result matrix MC with 0. The second
parallel loop performs the matrix multiplication in a nested for loop. The for
construct applies to the first for loop with iteration variable row, and thus the
iterates of the parallel loop are the nested loops of the iteration variables col and i.
The static scheduling leads to a row-block-wise computation of the matrix MC. The
first loop ends with an implicit synchronization. Since it is not clear that the first and
the second parallel loops have exactly the same assignment of iterates to threads,
a nowait clause should be avoided to guarantee that the initialization is finished
before the multiplication starts. �

The nesting of the for-construct within the same parallel construct is not
allowed. The nesting of parallel loops can be achieved by nesting parallel con-
structs, so that each parallel construct contains exactly one for construct. This
is illustrated in the following example.

Example: The program code in Fig. 6.47 shows a modified version of the matrix
multiplication in the last example. Again, the for-construct applies to the for loop
with the iteration index row. The iterates of this parallel loop start with another
parallel construct which contains a second for-construct applying to the loop
with iteration index col. This leads to a parallel computation, in which each entry

374 6 Thread Programming

Fig. 6.46 OpenMP program for a parallel matrix multiplication using a parallel region with two
inner for constructs.

of MC can be computed by a different thread. There is no need for a synchronization
between initialization and computation. �

The OpenMP program in Fig. 6.47 implements the same parallelism as the
Pthreads program for matrix multiplication in Fig. 6.1, see page 293. A difference
between the two programs is that the Pthreads program starts the threads explic-
itly. The thread creation in the OpenMP program is done implicitly by the OpenMP
library which deals with the implementation of the nested loop and guarantees the
correct execution. Another difference is that there is a limitation for the number of
threads in the Pthreads program. The matrix size 8×8 in the Pthreads program from
Fig. 6.1 leads to a correct program. A matrix size 100 × 100, however, would lead
to the start of 10000 threads, which is too large for most Pthreads implementation.
There is no such limitation in the OpenMP program.

6.3.1.3 Noniterative Work-Sharing Constructs

The OpenMP library provides the sections construct to distribute noniterative
tasks to threads. Within the sections construct different code blocks are indicated
by the section construct as tasks to be distributed. The syntax for the use of a
sections construct is the following.

6.3 OpenMP 375

Fig. 6.47 OpenMP programm for a parallel matrix multiplication with nested parallel loops.

#pragma omp sections [clause [clause] ...]
{
[#pragma omp section]
{ // structured block ... }

[#pragma omp section
{ // structured block ... }
...

]
}

The section constructs denote structured blocks which are independent of each
other and can be executed in parallel by different threads. Each structured block
starts with #pragma omp sectionwhich can be omitted for the first block. The
sections construct ends with an implicit synchronization unless anowait clause
is specified.

376 6 Thread Programming

6.3.1.4 Single execution

The single construct is used to specify that a specific structured block is executed
by only one thread of the team, which is not necessarily the master thread. This can
be useful for tasks like control messages during a parallel execution. The single
construct has the syntax

#pragma omp single [Parameter [Parameter] ...]
{ // structured block ... }

and can be used within a parallel region. The single construct also ends with an
implicit synchronization unless a nowait clause is specified. The execution of a
structured block within a parallel region by the master thread only is specified by

#pragma omp master
{ // structured block ... }

All other threads ignore the construct. There is no implicit synchronization of the
master threads and the other threads of the team.

6.3.1.5 Syntactic abbreviations

OpenMP provides abbreviated syntax for parallel regions containing only one for
construct or only onesections construct. A parallel region with onefor construct
can be specified as

#pragma omp parallel for [clause [clause] · · ·]
for (i = lower_bound; i op upper_bound; incr_expr) {
{ // loop body ... }

}

All clauses of the parallel construct or the for construct can be used. A parallel
region with only one sections construct can be specified as

#pragma omp parallel sections [clause [clause] · · ·]
{
[#pragma omp section]
{ // structured block ... }

[#pragma omp section
{ // structured block ... }
...

]
}

6.3 OpenMP 377

6.3.2 Execution environment routines

The OpenMP library provides several execution environment routines that can be
used to query and control the parallel execution environment. We present a few of
them. The function

void omp_set_dynamic (int dynamic_threads)

can be used to set a dynamic adjustment of the number of threads by the runtime sys-
tem and is called outside a parallel region. A parameter valuedynamic_threads �=
0 allows the dynamic adjustment of the number of threads for the subsequent parallel
region. However, the number of threads within the same parallel region remains con-
stant. The parameter value dynamic_threads = 0 disables the dynamic adjust-
ment of the number of threads. The default case depends on the specific OpenMP
implementation. The routine

int omp_get_dynamic (void)

returns information about the current status of the dynamic adjustment. The return
value 0 denotes that no dynamic adjustment is set; a return value �= 0 denotes that
the dynamic adjustment is set. The number of threads can be set with the routine

void omp_set_num_threads (int num_threads)

which has to be called outside a parallel region and influences the number of threads in
the subsequent parallel region (without a num_threads clause). The effect of this
routine depends on the status of the dynamic adjustment. If the dynamic adjustment
is set, the value of the parameter num_threads is the maximum number of threads
to be used. If the dynamic adjustment is not set, the value of num_threads denotes
the number of threads to be used in the subsequent parallel region. The routine

void omp_set_nested (int nested)

influences the number of threads in nested parallel regions. The parameter value
nested = 0 means that the execution of the inner parallel region is executed by
one thread sequentially. This is the default. A parameter value nested �= 0 allows
a nested parallel execution and the runtime system can use more than one thread for
the inner parallel region. The actual behavior depends on the implementation. The
routine

int omp_get_nested (void)

returns the current status of the nesting strategy for nested parallel regions.

6.3.3 Coordination and synchronization of threads

A parallel region is executed by multiple threads accessing the same shared data,
so that there is need for synchronization in order to protect critical regions or avoid

378 6 Thread Programming

race condition, see also Chap. 3. OpenMP offers several constructs which can be
used for synchronization and coordination of threads within a parallel region. The
critical construct specifies a critical region which can be executed only by a
single thread at a time. The syntax is

#pragma omp critical [(name)]
structured block

An optional name can be used to identify a specific critical region. When a thread
encounters a critical construct, it waits until no other thread executes a critical
region of the same name name and then executes the code of the critical region.
Unnamed critical regions are considered to be one critical region with the same
unspecified name. The barrier construct with syntax

#pragma omp barrier

can be used to synchronize the threads at a certain point of execution. At such
an explicit barrier construct all threads wait until all other threads of the team
have reached the barrier and only then they continue the execution of the subsequent
program code. Theatomic construct can be used to specify that a single assignment
statement is an atomic operation. The syntax is

#pragma omp atomic
statement

and can contain statements of the form

x binop= E,
x++, ++x, x- -, - -x,

with an arbitrary variable x, a scalar expression E not containing x, and a binary
operator binop ∈ {+, -, *, /, &, ˆ , |, <<, >>}. The atomic construct ensures
that the storage location x addressed in the statement belonging to the construct is
updated atomically, which means that the load and store operations for x are atomic
but not the evaluation of the expression E. No interruption is allowed between the
load and the store operation for variable x. However, the atomic construct does
not enforce exclusive access to x with respect to a critical region specified by a
critical construct. An advantage of the atomic construct over the critical
construct is that also parts of an array variable can be specified as being atomically
updated. The use of a critical construct would protect the entire array.

Example: The following example shows an atomic update of a single array element
a[index[i]] += b.

extern float a[], *p=a, b; int index[];
#pragma omp atomic
a[index[i]] += b;
#pragma omp atomic
p[i] -= 1.0;

�

http://dx.doi.org/10.1007/978-3-642-37801-0_3

6.3 OpenMP 379

Fig. 6.48 Program fragment for the use of the reduction clause.

A typical calculation which needs to be synchronized is a global reduction oper-
ation performed in parallel by the threads of a team. For this kind of calculation
OpenMP provides the reduction clause, which can be used for parallel,
sections and for constructs. The syntax of the clause is

reduction (op: list)

where op ∈{+, -, *, &,ˆ, |, &&, ||} is a reduction operator to be applied and list
is a list of reduction variables which have to be declared as shared. For each of the
variables in list, a private copy is created for each thread of the team. The private
copies are initialized with the neutral element of the operation op and can be updated
by the owning thread. At the end of the region for which the reduction clause is
specified, the local values of the reduction variables are combined according to the
operator op and the result of the reduction is written into the original shared variable.
The OpenMP compiler creates efficient code for executing the global reduction oper-
ation. No additional synchronization, such as the critical construct, has to be
used to guarantee a correct result of the reduction. The following example illustrates
the accumulation of values.

Example: Figure 6.48 shows the accumulation of values in a for construct with
the results written into the variables a, y and am. Local reduction operations are
performed by the threads of the team executing the for construct using private
copies of a, y and am for the local results. It is possible that a reduction operation
is performed within a function, such as the function sum used for the accumulation
onto y. At the end of the for loop, the values of the private copies of a, y and am
are accumulated according to + or ||, respectively, and the final values are written
into the original shared variables a, y and am. �

The shared memory model of OpenMP might also require to coordinate the mem-
ory view of the threads. OpenMP provides the flush construct with the syntax

#pragma omp flush [(list)]

to produce a consistent view of the memory, where list is a list of variables whose
values should be made consistent. For pointers in the list list only the pointer
value is updated. If no list is given, all variables are updated. An inconsistent view
can occur since modern computers provide memory hierarchies. Updates are usually
done in the faster memory parts, like registers or caches, which are not immediately

380 6 Thread Programming

Fig. 6.49 Program fragment for the use of the flush construct.

visible to all threads. OpenMP has a specific relaxed-consistency shared memory in
which updated values are written back later. But to make sure at a specific program
point that a value written by one thread is actually read by another thread, the flush
construct has to be used. It should be noted that no synchronization is provided if
several threads execute the flush construct.

Example: Figure 6.49 shows an example adopted from the OpenMP specifica-
tion [148]. Two threads i (i = 0, 1) compute work[i] of array work which is
written back to memory by the flush construct. The following update on array
sync[iam] indicates that the computation of work[iam] is ready and written
back to memory. The array sync is also written back by a second flush construct.
In the while loop a thread waits for the other thread to have updated its part of
sync. The array work is then used in the function combine() only after both
threads have updated their elements of work. �

Besides the explicit flush construct there is an implicit flush at several points
of the program code, which are:

• a barrier construct,
• entry to and exit from a critical region,
• at the end of a parallel region,
• at the end of a for, sections or single construct without nowait clause,
• entry and exit of lock routines (which will be introduced below).

6.3 OpenMP 381

Fig. 6.50 Program fragment
illustrating the use of nestable
lock variables.

6.3.3.1 Locking mechanism

The OpenMP runtime system also provides runtime library functions for a synchro-
nization of threads with the locking mechanism. The locking mechanism has been
described in Sect. 4.3 and in this Sect. 6 for Pthreads and Java threads. The specific
locking mechanism of the OpenMP library provides two kinds of lock variables on
which the locking runtime routines operate. Simple locks of type omp_lock_t can
be locked only once. Nestable locks of type omp_nest_lock_t can be locked
multiple times by the same thread. OpenMP lock variables should be accessed only
by OpenMP locking routines. A lock variable is initialized by one of the following
initialization routines

void omp_init_lock (omp_lock_t *lock);
void omp_init_nest_lock (omp_nest_lock_t *lock);

http://dx.doi.org/10.1007/978-3-642-37801-0_4

382 6 Thread Programming

for simple and nestable locks, respectively. A lock variable is removed with the
routines

void omp_destroy_lock (omp_lock_t *lock);
void omp_destroy_nest_lock (omp_nest_lock_t *lock);

An initialized lock variable can be in the states locked or unlocked. At the beginning,
the lock variable is in the state unlocked. A lock variable can be used for the synchro-
nization of threads by locking and unlocking. To lock a lock variable the functions

void omp_set_lock (omp_lock_t *lock)
void omp_set_nest_lock (omp_nest_lock_t *lock)

are provided. If the lock variable is available, the thread calling the lock routine locks
the variable. Otherwise, the calling thread blocks. A simple lock is available when
no other thread has locked the variable before without unlocking it. A nestable lock
variable is available when no other thread has locked the variable without unlocking
it or when the calling thread has locked the variable, i.e., multiple locks for one
nestable variable by the same thread are possible counted by an internal counter.
When a thread uses a lock routine to lock a variable successfully, this thread is said
to own the lock variable. A thread owning a lock variable can unlock this variable
with the routines

void omp_unset_lock (omp_lock_t *lock)
void omp_unset_nest_lock (omp_nest_lock_t *lock)

For a nestable lock, the routine omp_unset_nest_lock () decrements the
internal counter of the lock. If the counter has the value 0 afterwards, the lock
variable is in the state unlocked The locking of a lock variable without a possible
blocking of the calling thread can be performed by one of the routines

void omp_test_lock (omp_lock_t *lock)
void omp_test_nest_lock (omp_nest_lock_t *lock)

for simple and nestable lock variables, respectively. When the lock is available, the
routines lock the variable or increment the internal counter and return a result value
�= 1. When the lock is not available, the test routine returns 0 and the calling thread
is not blocked.

Example: Figure 6.50 illustrates the use of nestable lock variables, see [148].
A data structure pair consist of two integers a and b and a nestable lock vari-
able l which is used to synchronize the updates of a, b or the entire pair. It
is assumed that the lock variable l has been initialized before calling f(). The
increment function incr_a() for incrementing a, incr_b() for incrementing b,
and incr_pair() for incrementing both integer variables are given. The function
incr_a() is only called from incr_pair() and does not need an additional
locking. The functions incr_b() and incr_pair() are protected by the lock
since they can be called concurrently. �

6.4 Exercises for Chapter 6 383

6.4 Exercises for Chapter 6

Exercise 6.1. Modify the matrix multiplication program from Fig. 6.1 on page 293,
so that a fixed number of threads is used for the multiplication of matrices of
arbitrary size. For the modification, let each thread compute the number of rows of
the result matrix instead of a single entry. Compute the rows that each thread must
compute, such that each thread has about the same number of rows to compute. Is
there any synchronization required in the program?

Exercise 6.2. Use the task pool implementation from Sect. 6.1.6 on page 306 to
implement a parallel matrix multiplication. To do so, use the function
thread_mult() from Fig. 6.1 to define a task as the computation of one entry of
the result matrix and modify the function if necessary, so that it fits to the require-
ments of the task pool. Modify the main program, so that all tasks are generated
and inserted into the task pool before the threads to perform the computations are
started. Measure the resulting execution time for different numbers of threads and
different matrix sizes and compare the execution time with the execution time of
the implementation of the last exercise.

Exercise 6.3. Consider the read/write lock mechanism in Fig. 6.5. The implemen-
tation given does not provide operations that are equivalent to the function
pthread_mut-
ex_trylock(). Extend the implementation from Fig. 6.5 by specifying func-
tions rw_lock_rtrylock() and rw_lock_wtrylock() which return
EBUSY if the requested read or write permit cannot be granted.

Exercise 6.4. Consider the read/write lock mechanism in Fig. 6.5. The implemen-
tation given favors read request over write requests in the sense that a thread will
get a write permit only if no other threads request a read permit, but read per-
mits are given without waiting also in the presence of other read permits. Change
the implementation such that write permits have priority, i.e., as soon as a write
permit arrives, no more read permits are granted until the write permit has been
granted and the corresponding write operation is finished. To test the new imple-
mentation write a program which starts three threads, two read threads and one
write thread. The first read-thread requests five read permits one after another. As
soon as it gets the read permits it prints a control message and waits for 2 s (use
sleep(2)) before requesting the next read permit. The second read thread does
the same except that it only waits 1 s after the first read permit and 2 s otherwise.
The write thread first waits 5 s and then requests a write permit and prints a control
message after it has obtained the write permit; then the write permit is released
again immediately.

Exercise 6.5. An read/write lock mechanism allows multiple readers to access a
data structure concurrently, but only a single writer is allowed to access the data
structures at a time. We have seen a simple implementation of r/w-locks in Pthreads
in Fig. 6.5. Transfer this implementation to Java threads by writing a new class

384 6 Thread Programming

RWlockwith entries num_r and num_w to count the current number of read and
write permits given. The class RWlock provides methods similar to the functions
in Fig. 6.5 to request or release a read or write permit.

Exercise 6.6. Consider the pipelining programming pattern and its Pthreads imple-
mentation in Sect. 6.1.7. In the example given, each pipeline stage adds 1 to the
integer value received from the predecessor stage. Modify the example such that
pipeline stage i adds the value i to the value received from the predecessor. In the
modification, there should still be only one function pipe_stage() expressing
the computations of a pipeline stage. This function must receive an appropriate
parameter for the modification.

Exercise 6.7. Use the task pool implementation from Sect. 6.1.6 to define a parallel
loop pattern. The loop body should be specified as function with the loop variable
as parameter. The iteration space of the parallel loop is defined as the set of all
values that the loop variable can have. To execute a parallel loop, all possible
indices are stored in a parallel data structure similar to a task pool which can be
accessed by all threads. For the access, a suitable synchronization must be used.

(a) Modify the task pool implementation accordingly, such that functions for the
definition of a parallel loop and for retrieving an iteration from the parallel loop
are provided. The thread function should also be provided.

(b) The parallel loop pattern from (a) performs a dynamic load balancing since a
thread can retrieve the next iteration as soon as its current iteration is finished.
Modify this operation, such that a thread retrieves a chunk of iterations instead
of a single operation to reduce the overhead of load balancing for fine-grained
iterations.

(c) Include guided self-scheduling (GSS) in your parallel loop pattern. GSS adapts
the number of iterations retrieved by a thread to the total number of iterations
that are still available. if n threads are used and there are Ri remaining iterations,
the next thread retrieves

xi = � Ri

n
�

iterations. For the next retrieval, Ri+1 = Ri − xi iterations remain. R1 is the
initial number of iterations to be executed.

(d) Use the parallel loop pattern to express the computation of a matrix multiplication
where the computation of each matrix entry can be expressed as an iteration of
a parallel loop. Measure the resulting execution time for different matrix sizes.
Compare the execution time for the two load balancing schemes (standard and
GSS) implemented.

Exercise 6.8. Consider the client-server pattern and its Pthreads implementation in
Sect. 6.1.8. Extend the implementation given in this section by allowing a cancela-
tion with deferred characteristics. To be cancelation safe, mutex variables that have
been locked must be released again by an appropriate cleanup handler. When a
cancelation occurs, allocated memory space should also be released. In the server

6.4 Exercises for Chapter 6 385

function tty_server_routine(), the variable running should be reset
when a cancelation occurs. Note that this may create a concurrent access. If a can-
celation request arrives during the execution of a synchronous request of a client,
the client thread should be informed that a cancelation has occurred. For a cance-
lation in the function client_routine(), the counter client_threads
should be kept consistent.

Exercise 6.9. Consider the taskpool pattern and its implementation in Pthreads
in Section 6.1.6. Implement a Java class TaskPool with the same functional-
ity. The task pool should accept each object of a class which implements the
interface Runnable as task. The tasks should be stored in an array final
Runnable tasks[]. A constructor TaskPool(int p, int n) should
be implemented which allocates a task array of size n and creates p threads
which access the task pool. The methods run() and insert(Runnable w)
should be implemented according to the Pthreads functions tpool_thread()
and tpool_insert() from Fig. 6.7. Additionally, a method terminate()
should be provided to terminate the threads that have been started in the construc-
tor. For each access to the task pool. a thread should check whether a termination
request has been set.

Exercise 6.10. Transfer the pipelining pattern from Sect. 6.1.7 for which Figs. 6.8–
6.11 give an implementation in Pthreads to Java. For the Java implementation,
define classes for a pipeline stage as well as for the entire pipeline which provide
the appropriate method to perform the computation of a pipeline stage, to send
data into the pipeline, and to retrieve a result from the last stage of the pipeline.

Exercise 6.11. Transfer the client-server pattern for which Figs. 6.13–6.16 give a
Pthreads implementation to Java threads. Define classes to store a request and
for the server implementation explain the synchronizations performed and give
reasons that no deadlock can occur.

Exercise 6.12. Consider the following OpenMP program piece:

int x=0;
int y=0;

void foo1() {
#pragma omp critical (x)

{ foo2(); x+=1; }
}
void foo2() }
#pragma omp critical(y)

{ y+=1; }
}
void foo3() {
#pragma omp critical(y)

{ y-=1; foo4(); }

386 6 Thread Programming

}
void foo4() {
#pragma omp critical(x)

{ x-=1; }
}
int main(int argx, char **argv) {

int x;
#pragma omp parallel private(i) {

for (i=0; i<10; i++)
{ foo1(), foo3(); }

}
printf(’’\%d \%d \n’’, x,y)
}

We assume that two threads execute this piece of code on two cores of a multicore
processors. Can a deadlock situation occur? If so, describe the execution order
which leads to the deadlock. If not, give reasons why a deadlock is not possible.

	6 Thread Programming
	6.1 Programming with Pthreads
	6.1.1 Creating and Merging Threads
	6.1.2 Thread Coordination with Pthreads
	6.1.3 Condition Variables
	6.1.4 Extended Lock Mechanism
	6.1.5 One-Time Initialization
	6.1.6 Implementation of a Task Pool
	6.1.7 Parallelism by Pipelining
	6.1.8 Implementation of a Client-Server Model
	6.1.9 Thread Attributes and Cancelation
	6.1.10 Thread Scheduling with Pthreads
	6.1.11 Priority Inversion
	6.1.12 Thread-specific Data

	6.2 Java Threads
	6.2.1 Thread Generation in Java
	6.2.2 Synchronization of Java Threads
	6.2.3 Wait and Notify
	6.2.4 Extended Synchronization Patterns
	6.2.5 Thread Scheduling in Java
	6.2.6 Package java.util.concurrent

	6.3 OpenMP
	6.3.1 Compiler directives
	6.3.2 Execution environment routines
	6.3.3 Coordination and synchronization of threads

	6.4 Exercises for Chapter6

