Maplefor Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

8. How Maple draws graphs
=18.1. Introduction

By now you should have a good sense of how to draw most of the kinds of graphs that you need in
math and science courses. But one of the goals of all these worksheetsisto give you a sense of how
Maple does what it does, a sense of what is going on inside Maple asit produces its results. In this
worksheet we look at how some of Maple's basic graphing commands work. We examine some, but
not all, of the details of what Maple goes through to create a graph. We look at how the pl ot
command draws the graphs of real and vector valued function of asingle variable, how the

i mplicitpl ot command draws the graphs of equations, and how the pl ot 3d command draws
surfaces defined by real valued functions of two variables. The material we go over in these sections
isimportant for several reasons. Besides giving you an idea of how Maple works, this material will
help you understand some of the anomalies and problems that can come up when using Maple's
graphing commands. This material is also agood way to practice using and thinking about Maple's
graphing commands. And the material should also help you to better understand the mathematical
nature of functions, equations, and graphs.

What we go over is these sectionsis not the whole story of how Maple draws graphs. We will go
into more of the details after we have discused the basics of Maple's data structuresin alater
worksheet.

L[>

=18.2. Thepl ot command

What does Maple do to draw a graph? The answer is surprisingly ssmple. Maple does what just
about anyone would do if asked to draw a graph. Maple plots a bunch of points and then connects
them together with straight lines. To help see that thisis the case, there is an option to the pl ot
command that tells Maple to turn off the straight lines that connect the plotted points. Hereis an
example.

> plot(sin(x), x=-Pi/2..Pi/2, style=point, synbol =point,
{ axes=none) ;
Thest yl e=poi nt option turned off thelines. (And st yl e=l i ne turnsthem back on. Try it.)
Thesynbol =poi nt option tells Maple to actually plot points and not some other symbol. The
axes=none option turns off the drawing of the two axes, so that it is easier to see the points. But
the points are still pretty faint and hard to see, so let us use a different symbol to make the position
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of the points more clear.

> plot(sin(x), x=-Pi/2..Pi/2, style=point, synbol =circle,
{ axes=none);
Here are afew more examples of Maple plots without the line segments that should connect the
dots.
[> plot(x"2 , x=-2..2 , style=point, synbol=circle);

> plot(1l/x, x=-10..10, -10..10, style=point, synbol=circle,
{ axes=none) ;
Note: Y ou can put the axes back in by clicking on the graph and then clicking on one of the axes
buttons in the context bar.

> plot(sin(1l/x), x=.05..1, style=point, synbol=circle,
{ axes=none) ;
Play with these examples abit. Usethe st y| e option to turn on and off the line segments. (Y ou can
changethe st yl e option three ways. By modifying the Maple command. By clicking on the graph
and using the Style menu. And by right clicking on the graph and choosing Style from the popup
context menu.) Change the ranges of the graphs to see how that affects the positions of the plotted
points. Try other functions.

[ >

We can even do this with 3-dimensional graphs. Be sure to rotate each of the following examples.

Try changing the st y| e option. In the 3-D case there are more st y| e options to choose from. Try

I i ne,cont our,andpat ch (if you try pat ch, then you will need to get rid of the col or

option).

[ > plot3d( x"2+y"2, x=-4..4,

[ > plot3d( x"2-y"2, x=-4..4
> plot3d( sin(x*y), x=Pi..Pi,

{ col or =bl ack) ;

In another section we will look at how Maple draws surfaces in more detail.

[ >

.4, styl e=point, color=black);
.4, styl e=point, col or=black);
-Pi..Pi, style=point,

y:
y:

-4.
-4.
y:

Let uslook at an example of why it is useful to understand how Maple draws graphs. Consider the
following graph of the function 1/(1 - x).

[> plot(1l/(x-1), x=-4..6, -20..20, color=red);

Notice the vertical red line. That line is not supposed to be part of the graph. Why isit there? Let us
look at the points that Mapleis plotting.

(> plot(1/(x-1), x=-5..5, -20..20, style=point, color=red);

This should answer our question. Maple plots points and then connects all successive points together
with straight lines. Thisincludes the two extreme points on either side of the vertical asymptote at
x = 1. They get connected together in an almost vertical straight line that should not be there. Maple
has away to avoid this problem. The plot option di scont =t r ue tells Maple to avoid drawing
these extralines at vertical asymptotes.

(> plot(1/(x-1), x=-5..5, -20..20, discont=true, color=red);
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Now the vertical red lineis gone. Maple does not have this option on by default because it isan
"expensive" option. It forces Maple do quite abit of extra calculating to find the discontinuities of
the function. So we must turn this option on ourselves whenver we need it.

[ >

Now let uslook further into how Maple draws 2-dimensional graphs. It seemsthat Maple hasa
pretty smplistic way of drawing these graphs. But it turns out that Maple is not so simple minded.
Here iswhat Maple is concerned about. The more dots that are used, the better |ooking the graph
will be, but the more dots that are used the more work (calculations) Maple will need to do. How
many dots might a graph need to look good? Maple tries to use only 49 points for a 2-dimensional
graph and Maple triesto be very clever about how it uses those points. To decide where best to put
those dots Maple uses what is called an adaptive plotting algorithm. This means that Maple does
not space out its points uniformly along the horizontal axis. Maple tries to adapt the horizontal
spacing of the points so that the points are closer together in some places and farther apart in other
places. Where would Maple need fewer dots spaced farther apart? Since the dots are connected by
straight lines, wherever the graph of afunction is nearly straight Maple does not need to use many
points to get a good looking graph (think of the extreme of graphing a straight line). Where would
M aple need more points spaced close together? Wherever the graph is changing directions fairly
quickly. Let us go back to our first example.

> plot(sin(x), x=-Pi/2..Pi/2, style=point, synbol =circle,
{ axes=none);
If you look closely you will notice that the points in the middle of the graph, where the sine function
isamost linear, are more spaced out than the points near the ends of the graph where the sine
function has turning points. But the difference is quite subtle in this case. Let ustry to find amore
extreme example. We want afunction that is very linear-like over alarge interval and then suddenly
changes to a sharply turning graph. To try to get such an example, let us see if we can exagerate
these properties of the sine function. What gives the sine function its overall shape near the origin?
The first few terms of its Taylor series about the origin.
[ > taylor(sin(x), x=0);
L et us see what happens if we use just the first two terms of this series.

> plot(x-(1/6)*x"3, x=-Pi/2..Pi/2, style=point, synbol=circle,
{ axes=none) ;
Almost exactly the same graph. Now, how can we exagerate the linearity vs. the nonlinearity in this
example? After some experimenting with the power and the coefficient of the second term, hereisa
pretty good exampleto look at.

> plot(x-(1/1000)*x"21, x=-1.35..1.35, -2..2, style=point,
{ synbol =circl e, axes=none);
Notice the long stretch of near linearity and then the very sharp turn where points are bunched up.
So we can see how Maple is adaptively plotting points. Maple allows usto use the pl ot option
adapt i ve=f al se toturn off the adaptive point plotting. In the next example, the points are
spaced uniformly along the horizontal axis. Compare this graph to the previous one.

> plot(x-(1/1000)*x"21, x=-1.35..1.35, -2..2, adaptive=false,
{ styl e=point, synbol =circle, axes=none);
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[ >

Let uslook at another example of adaptive vs. non adaptive point plotting. We will also use the
pl ot option nunpoi nt s to control how many points we want plotted. In the case of non adaptive
plotting, nunpoi nt s determines exactly how many points we want Maple to plot. In the case of
adaptive plotting, nunpoi nt s isonly alower bound on the number of points plotted, but in most
cases the exact number plotted is near to nunpoi nt s. The next exampleis asight modification of
the previous example.
> pl ot (x+.0001*x"21, x=0..1.6, 0..4, nunpoints=20, style=point,
{ synbol =circl e);
Here we can see equally spaced points along the linear portion of the graph and bunched up points
near the truning part of the graph. We made nunpoi nt s 20 but there are 29 pointsin the graph
(this example is convenient because we can distinctly see all the point and count them). The next
example setsadapt i ve=f al se and setsnunpoi nt s=29 so the next graph has exactly the same
number of points as the previous graph.
> pl ot (x+.0001*x"21, x=0..1.6, 0..4, adaptive=false,
{ nunpoi nt s=29, styl e=point, synbol =circle);
To really see the difference between the last two graphs, let us combine them together into one
graph.
> pl := plot(x+.0001*x"21, x=0..1.6, 0..4, nunpoints=20,
styl e=point, synbol =circle, color=black):
> p2 := plot(x+.0001*x"21, x=0..1.6, 0..4, adaptive=false,
nunpoi nt s=29, styl e=point, synbol =circle, color=blue):
| > plots[display](pl, p2);
The black circles are the adaptively plotted points and the blue circles are the uniformly spaced
points. Here is another way to compare these two graphs. The next graph once again combines the
adaptive and non adaptive graphs, but this time we shift one of the graphs up a bit to make it easier
to see how points line up between the two graphs.
> pl := plot(x+. 0001*x"21+. 1, x=0..1.6, 0..4, nunpoints=20,
styl e=poi nt, synbol =circle, color=black):
> p2 = plot(x+.0001*x"21, x=0..1.6, 0..4, adaptive=fal se,
nunpoi nt s=29, styl e=point, synbol =circle, col or=blue):
| > plots[display](pl, p2);
Now we can really see that the non adaptive graph (blue circles) has too many pointsin the linear
portion of the graph and not enough pointsin the nonlinear protion of the graph.

[ >

Here are a couple of more examples of adaptive vs. non adaptive plots that are interesting to play

with.

{ > plot(x-.0001*x"21, x=0..1.6, 0..4, nunpoints=20, style=point,
synbol =circl e);

( > plot(x-.0001*x"21, x=0..1.6, 0..4, adaptive=false,
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| nunpoi nts=37, style=point, synbol=circle);

In this last example, try incrementing the value of nunpoi nt s in the adaptive plot to see how the
extra points get used.

[ >

Hereis one last example. When we graph the sine function over a whole period the adaptive plotting

becomes very evident at the critical points. Try several periods of sine.

[ > plot(sin(x), x=-Pi..Pi, style=point, synbol =circle, axes=none);
> plot(sin(x), x=-Pi..Pi, adaptive=fal se, style=point,

{ synbol =circl e, axes=none);

[ >

We have been using the nunpoi nt s option to help us see the affects of adaptive plotting. But
nunpoi nt s isusualy used to help Maple draw better graphs. With some unusual functions, even
Maple's adpative plotting algorithm will fail to plot enough points and the graph of the function gets
distorted. In these cases, setting nunpoi nt s to some high number fixes the graph. Here are some
examples.

Hereisatypica example of aneed for setting avalue for nunpoi nt s.

[ > plot( x/(1-cos(5*x)), x=-5..5, -5..5);

Notice that the critical points of the graph have alot of sharp corners near them. The use of
nunpoi nt s fixesthis.

[ > plot( x/(1-cos(5*x)), x=-5..5, -5..5, nunpoints=200);

Notice that the function x/ ( 1- cos(5*x) ) hasalot of vertical asymptotes. It turns out that we
could have fixed our original graph of this function by using the di scont option instead of
nunpoi nt s.

[ > plot( x/(1-cos(5*x)), x=-5..5, -5..5, discont=true, color=red);
Go back and convert each of the last three graphsto st y| e=poi nt and see where the adaptive
plotting algorithm was putting its ponts.

[ >

Hereisatypica 3-dimensiona example of aneed for nunpoi nt s. Letf represent a parametric
curve in space.

>f :=[cos(t), sin(t),
{ cos(t)”"3*sin(4*sin(t))+sin(t)”2*cos(3*cos(t))];
[ > pl ots[spacecurve] (f, t=0..2*Pi);
Look at the graph carefully. Y ou should notice severa sharp corners near the turning points. We can
improve this graph by using numpoints.
[ > pl ots[spacecurve] (f, t=0..2*Pi, nunpoints=100);
Now the graph is nice and smooth. Experiment with this last example a bit. Try incrementing
nunpoi nt s by 10's starting at 50 and find out when the graph no longer has any sharp corners at
the turning points.
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[ >

Here is an even more dramatic example of aneed for nunpoi nt s. Using the same parametric
curvef , let ustry increasing the range of the parameter t . This should not have any affect on the
graph, since the function f is periodic, but watch what happens.

[ > pl ots[spacecurve] (f, t=0..4*Pi);

What do you think happened? What caused the curve in the graph to get "doubled up"? Try fixing
thislast graph using nunpoi nt s. The next graph is even stranger.

[ > pl ots[spacecurve] (f, t=0..7*Pi);

What do you think happened in this graph? What caused the graph to loose so much if its shape?
How does this example differ from the last one? Try an even longer range for the parameter t .

[ >

The number of points that Maple needs to use for graphing equations can be surprising. The next
graph isabit rough, so it needs to have a higher value for nunpoi nt s. Start with

nunpoi nt s=200. How high do you need to go?

[ > plots[inplicitplot] (x"3+y"3=5*x*y+1-5/4, x=-3..3, y=-3..3);

[ >

Hereis an unusual example of aneed for nunpoi nt s (thisisfrom Introduction to Maple, 2nd Ed.,
by A. Heck, page 432).

[ > plot( (1/10)*(x-25)"2+cos(2*Pi *x), x=0..49);

The graph looks just like a parabola. But it should not. Use a high value of numpoints.

[ > plot( (1/10)*(x-25)"2+cos(2*Pi *x), x=0..49, nunpoi nts=200);
Thisisthe correct graph. The cosine term in the function adds a waviness to the parabolic term. In
the original graph, all of the sample points being plotted were on the parabola part of the graph, the
cosine term was nearly zero at every one of them!

[ >

Hereisavery extreme example of ause of nunpoi nt s. The following graph tries to plot 95
periods of the sine function. Thisisfar more periods than can be redlistically drawn on the computer
screen but the graph is much more bizarre than it should be.

[> plot( sin(x), x=-90*Pi..100*Pi);

The next example tries to fix the previous graph by setting nunpoi nt s very high. The graph looks
much more regular now, though it still has an unusual appearance. Try changing the number of
periods of sine in both the previous graph and this next graph and try changing the value of

nunpoi nt s in the next example. The graphs you get are not very meaningful as far asthe sine
function is concerned, but they can be interesting to look at and to try and figure out where the
patterns come from. (To get another sense of how strange this exampleis, click on these two graphs
and then click on one of the axes buttons on the context bar and see what happens.)

[ > plot( sin(x), x=-90*Pi..100*Pi, nunpoi nts=1000);

[ >
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Exercise: The following command turns off adaptive plotting and draws sin(x) with just afew
points so that you can see the straight lines that make up the graph.

[ > plot( sin(x), x=0..Pi, adaptive=false, nunpoints=5);

Increase the value of nunpoi nt s in small increments until you can no longer see any changein the
graph. Then turn the line drawing off using the st y| e=poi nt option, so that you can see just how
far apart the individual points are. Try the same experiment agian, starting with nunpoi nt s very

low, but with alarger range for the variable x.
[ >

Exercise: Hereisatricky Maple puzzle. Thereal valued function+/ 1 - x isnot defined when x is
greater than one. Maple can graph this function from 0 to 1 with no problem.

(> plot(sqgrt(1l-x), x=0..1);

Suppose we ask Maple to graph the function alittle bit past 1, just to see what happens.

[ > plot(sqrt(1-x), x=0..1.01);

Notice that we lost the last little bit of the graph before 1 (and the vertical asymptote at x = 1 is hot
as evident). Why do you think that happened? Notice that a high value of nunpoi nt s "fixes' this
problem (though the original graph, which did not even need nunpoi nt s, isstill better).

[ > plot(sqgrt(1l-x), x=0..1.01, nunpoints=200);

[ >

Exercise: Consider the following graph.
> plot(sin(100*x), x=-10*Pi .. 10*Pi, nunpoi nts=500,
{ adapti ve=f al se);
Now increment nunpoi nt s from 500 to 510 in steps of one. Can you give any kind of an
explanation for these graphs?

[ >

L[>

=18.3. Theinplicitpl ot command

Of all the basic graphing commandsin Maple, thei npl i ci t pl ot command has the most
difficult job to do. In fact it is not uncommon for thei npl i ci t pl ot command to draw an
incorrect graph, or even no graph, for an equation. Hereis afairly simple example. Let ustry to
graph the equation
(2 +y2) b (D =g
which has the following simpler equation in polar coordinates
2
r2glt-r=1,
Before graphing this equation, let usload the pl ot s package, sincei npl i ci t pl ot isinthis

package.
[> with(plots);
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Hereisthei npl i ci t pl ot command that triesto graph our equation.

[ > inplicitplot((x"2+y"2)*exp(1l-(x"2+y"2))=1, x=-1..1, y=-1..1);
The command produced an empty graph. But what does the graph of this equation look like? Let us
solve the equation using its polar coordinate form. If r = 0, then the equation is not true, so we can

2
assumether® O.If r * 0, we can simplify the equation to 1" =1 whichis only solved by

1- r*=0, whichis solved by the curve given in polar coordinates by r = 1. In other words, the graph
of the equation we gavetothei npl i ci t pl ot command isacircle of radius one centered at the
origin. That is not avery complicated graph, soitisabit surprising that i npl i ci t pl ot could not
graph it. To make things even more surprising, let us show that Maple can solve the equation
symbolically.

[ > sol ve((x"2+y"2) *exp(1l- (x"2+y"2)) =1, {Xx,Vy});

Maple found two symbolic solutions, the upper and lower halves of the circle of radius one centered
at the origin. So this equation is not by any means very complicated, and its graph is certainly not
very complicated, so why doesthei npl i ci t pl ot command have trouble with it? To answer this
guestion we need to look into how thei npl i ci t pl ot command works. After we have explained
how i npl i ci t pl ot works, we will return to this example and afew other examples that give

I nmplicitplot problems.

[ >

Exercise: Draw agraph for the expression ( x*2+y”2) *exp( 1- (x"2+y”"2)) . Whereisthe
solution to the equation in the graph of this expression? Using the graph of the expression, can you
see anything unusual about the solution to the equation that might be causing i npl i ci t pl ot

problems?
[ >

Recall that we have defined an equation as an equal sign with an expression on either side of it. The
i mplicitpl ot command can only graph equations in two variables, so asfar asthe

i mplicitpl ot command isconcerned, an equation isalways of theformf ( x, y) =g(x, y),
where we are using the notation f ( x, y) and g( x, y) to represent expressions (not functions) in x
and y (any two variables can be used; we settle on x and y just for convimience). The very first
thing that thei npl i ci t pl ot command doesis rewrite the equationf ( x, y) =g( x, y) as
f(x,y)-09(x,y)=0.Thesetwo equations are equivaent in the sense that they have the same
graph. But theway that i npl i ci t pl ot writesthe equation isessentia for how i npl i ci t pl ot
works. Soasfarasi npl i ci t pl ot isconcerned, we can say that al equations are of the form
F(x,y)=0,whereweareusing F( x, y) to represent any expressioninx andy.

We haveto givethei npl i ci t pl ot command two ranges, one for the x variable and one for the
y variable. Let us denote these rangesby x=a. . b andy=c. . d, wherea, b, ¢, d are any four red
numbers with a<b and c<d. Thei npl i ci t pl ot command only triesto graph the equation

F( x, y) =0 within the rectangle determined by the four points (a,c), (b,c), (b,d) and (a,d). Let us
recall exactly what itisthat i npl i ci t pl ot istrying to graph. Within the rectangle determined by
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(a,c), (b,c),(b,d)and(a,d),i nplicitpl ot islooking for every ordered pair (x,y) that solves
the equation F( x, y) =0. Since the solution of the equation F( x, y) =0 isin general acurve, there
will usually be an infinite number of pointsin the rectangle that solve the equation. So in fact the

i mplicitpl ot command does not look for every point that solves the equation, just enought of
them so that it can connect the points with straight line segments and get a good approxmation of the
solution curve. But notice right away that there is something very different here from what the pl ot
command does. Thei npl i ci t pl ot command has to search through the rectangle to find points
that it should plot. The pl ot command computes the points that it should plot. Given any value for
the independent variable, the pl ot command has a very specific way to generate a point to plot; it
plugs the indepdent variable into the function to get the value of the dependent variable. The

I nmplicitpl ot command does not have away to automatically generate the points that it should
plot. Thei npl i ci t pl ot command needs a way to search through the rectangle and find points
on the solution curve.

Hereishow thei npl i ci t pl ot command finds pointsthat it should plot. The first step isto
compute a grid of sample points within the rectangle determined by the points (a,c), (b,c), (b,d)
and (a,d). To get the grid points, the intervalsfrom a to b and ¢ to d are each divided into 25
subintervals of size D x = (b-a)/25 and Dy = (d-c)/25, respectively, and then the grid points have
coordinates (x;, yj) =(a+i Dx, c+j Dy) forifrom0to 25 and|j from O to 25 (so the grid has atotal of
676 points). The second step isto evaluate the expression F( x, y) at all 676 grid points (x;, ;). The
third step isto look for pairs of adjacent grid points that have opposite signs. By "adjacent grid
points' we mean the following, for any i between 1 and 25 and any j between 0 and 24, the grid
points adjacent to (X, y;) are (X, ¥; . 1), (%_ 1, ¥)) and (% _ 1, ¥, 1), thatis, the three grid pointsjust
north, west, and northwest of (x;, y;). If apair of adjacent grid points with opposite signsis found,
that means that there is a point from the curve somewhere on the line segment joining the two grid
points. (Why isthe last statement true? What important assumption are we making about the
expression F( x, y) ?). Thefourth step isto compute approximate points on the curve by using
linear interpolation between the adjacent grid points that have opposite signs. For example, if at the
adjacent grid points (x;, y;) and (X, ¥, , ;) theexpression F( x, y) hasvaluesz and z , , (where the
numbers z and z , ; have opposite signs), thenthei npl i ci pl ot command will plot the point
with coordinates

_Ziyj+1'yjzi+1)
3t Fa

These approximation points are the points that are connected by line segments to create the curve
F(x,y) =0.

Exercise: What point is ploted if one of z or z , , is zero? What should be done if both of z and 7 ,
are zero?

[ >
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Exercise: Derive the linear interpolation formula used just above.

[ >

5Y+1” Y541

Exer cise: Assuming that z and 7, , have opposite signs, prove that Z
o

Iiesbetweenyj

andy; , ;. (Hint: Think in terms of weighted averages.)
[ >

Let us notice several things about the four step algorithm given above. First, the grid points (x;, y)
are not the pointsthat i npl i ci t pl ot ends up plotting. The plotted points will usually lie between
the grid points, unless one of the grid points lies right on the curve F( x, y) =0. In that case,

I mplicitpl ot will not use the interpolation formulaand it will plot the grid point. Second, the
number of points used in the grid can be changed. Thei npl i ci t pl ot command hasagri d
optionand gri d=[ m n] tellsi npl i citpl ot touseagridwith mpointsin the x direction and n
pointsin they direction. Third, notice that the third step in the algorithm is the step where the
searching needs to be done. All of the other steps are computed using specific formulas. This
searching step can take quite a bit atime, as the next exercise demonstrates.

Exercise: With the default gr i d=[ 26, 26] , so that there are 676 grid points, how many pairs of
adjacent grid points need to be compared? If the grid ischanged to gr i d=[ 100, 100] , how many

pairs of adjacent grid points need to be compared?
[ >

Exercise: The following command graphs the equation 0=0 over arectangle. What should the graph
look like? Explain why the graph looks as it does. (Hint: Recall the definition of adjacent points that

we gave above.)
[ > inplicitplot(0=0, x=0..10, y=0..10, axes=none);
[ >

Let uslook at asimple example of usingi npl i ci t pl ot . Wewill graph the equation x* +y* =1
with st yl e=poi nt, so that we can seethe pointsthat i npl i ci t pl ot computes.

> inmplicitplot(x*2+y"2=1, x=-1..1, y=-1..1,
{ > styl e=poi nt, synbol =circle, scaling=constrained);
Hereisatrick that will let us graph the grid pointsthat i npl i ci t pl ot used along with the points
from the equation that i npl i ci t pl ot plotted. In the next command we graph both the equation
0=0 (which will produce the grid points for us) and the equation x*2+y”~2=1 using the options
styl e=poi nt andgri d=[ 11, 11] sothat we can see the distinct points more clearly.

> inplicitplot({0=0, x"2+y"2=1}, x=-1..1, y=-1..1, grid=[11, 11],
{ > styl e=poi nt, synbol =circle, scaling=constrained);
It would be nice to use different colors and symbols for the points from the grid and the equation.
We cannot do that withasinglei npl i ci t pl ot command. So the next example uses
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I nmplicitplot twiccandadi spl ay command to combine the two graphs.

> inmplicitplot(0=0, x=-1..1, y=-1..1, color=black, grid=[11, 11],
> styl e=poi nt, synbol =di anond, scal i ng=constrai ned):
> inmplicitplot(x*2+y"2=1, x=-1..1, y=-1..1, color=red,

grid=[11, 11],
> styl e=point, synbol =circle, scaling=constrained):
| > display([%% 9);
[ >

Exercise: For each red point in the last graph, identify which pair of adjacent (black) grid points was
used to generate that point on the graph of the equation.
[ >

Exercise: Thecircle X + y2 = 1isvery symmetric, the square determined by therangesx=- 1. . 1,
y=-1.. 1 isalso very symmetric, and the grid determined in this square region by the option
grid=[11, 11] isasosymmetric. But the computed points on the graph of the equation
xN2+y”~2=1 are not as symmetric as we might expect. Use the algorithm defined above to explain
the loss of symmetry in the computed points.

[ >

Exer cise: Repeat the last two exercises for the following graph of the equation ¢ +y° = 1.

> implicitplot(0=0, x=-1..1, y=-1..1, color=black, grid=[11, 11],
> styl e=poi nt, synbol =di anond, scal i ng=constrai ned):
> inmplicitplot(x"6+y"6=1, x=-1..1, y=-1..1, color=red,

grid=[11, 11],
> styl e=poi nt, synbol =circle, scaling=constrained):
| > display({%% %);

[ >

Exercise: Explain in detail the anomalies in the following two graphs (which are from the last

worksheet) of the equation max(| x|, | y|) =1
{> inmplicitplot( max(abs(x),abs(y))=1, x=-2..2, y=-2..2,

> scal i ng=constrai ned);

{> inplicitplot( max(abs(x),abs(y))=1, x=-1..1, y=-1..1,
> scal i ng=constrai ned);

[ >

Exer cise: Repeat the last exercise for the following graph of | x| + | y| = 1. Canyou explain the
broken (dashed) lines on two of the edges?

> inplicitplot( abs(x)+abs(y)=1, x=-1..1, y=-1..1,
{ > scal i ng=constrai ned);

[ >
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Now let usreturnto our firsti npl i ci t pl ot example. Why isthe following graph empty, even
though we know that the graph of the equation is acircle of radius one centered at the origin?
(> inmplicitplot((x"2+y”"2)*exp(1-(x"2+y"2))=1, x=-1..1, y=-1..1);
To help answer this question, let us graph the expression ( x*2+y”"2) *exp( 1- (x"2+y"2))-1
that i npl i ci t pl ot isworking with.

> pl ot 3d( (x"2+y"2) *exp(1l- (x"2+y"2))-1, x=-2..2, y=-2..2,
{ axes=boxed) ;
From the z-axis in the graph we notice that the expression ( x*2+y”*2) *exp( 1- (x*2+y"2))-1
is aways negative except for whereitisO. In order for thei npl i ci t pl ot algorithm to plot a
point, it needs to find adjacent grid points with opposite signs. But with an expression that is aways
negative, there can never be adjacent grid points with opposite signs. So unless one of the grid
points happens to land right on the graph of the equation (which in not very likely, even with alot of
grid points), thei npl i ci t pl ot agorithm will not plot any points and we get an empty graph.
[ >

In general, the algorithm for i npl i ci t pl ot has problems when the curveit istrying to graph
happens to be near critical points for the expression F( x, y) . If the graph of the expression
F(x,y) islocaly flat near the curve F( x, y) =0, then it isdifficult for thei npl i ci t pl ot
algorithm to find the adjacent grid points with opposite signs that are essential for the algorithm to
work. The next three exercises show other problemsthat i npl i ci t pl ot can have because of
critical points.

[ >

Exercise: Explain the results of the following commands. How are they different than the last

i mplicitplot command?

> inplicitplot((x"2+y"2)*exp(1l-(x"2+y"2))=.99, x=-1.5..1.5,
y=-1.5..1.5,

> scal i ng=constrai ned);

> inplicitplot((x"2+y"2)*exp(1l-(x"2+y"2))=.999, x=-1.5..1.5,
y=-1.5..1.5,

> scal i ng=const rai ned) ;

> inplicitplot((x"2+y"2)*exp(1l-(x"2+y"2))=.999, x=-1.5..1.5,
y=-1.5..1.5,

> grid=[ 100, 100], scaling=constrai ned);

[ >

Exercise: What should the graph of the equation x* - y* = 0 look like? Explain the little square box
at the center of the following graph.

(> implicitplot(x"2-y*2=0, x=-1..1, y=-1..1, axes=none);

[ >
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Exercise: Explainin detail the cause of the difference between the following two graphs. Notice that
the commands differ only inthe gr i d option.
> inmplicitplot(cos(x)=1, x=-6*Pi..6*Pi, y=-6*Pi..6*Pi,
{ grid=[ 25, 25]);
> inmplicitplot(cos(x)=1, x=-6*Pi..6*Pi, y=-6*Pi..6*Pi,
{ grid=[ 26, 26] ) ;
[ >

Hereisan interesting case of i npl i ci t pl ot having trouble drawing a graph. The following
graph is not very accurate.
[ > inmplicitplot(2*xM+yn4-3*x"2*y-2*y"3+y"2=0, x=-2..2, y=0..2.1);
We can increase the grid size and get a better graph (the following graph might take a couple of
minutes to draw).

> inplicitplot(2*x"M4+yN4-3*xN2*y-2*y"3+y"2=0, x=-2..2, y=0..2.1,
{ > grid=[ 200, 200], axes=none);
The last graph is still not complete. There is a hole in the graph at the bottom near the origin. Let us
look at a graph of the expression 2* x4+y"4- 3* xN2*y- 2* y"3+y” 2 to see why the
i mplicitpl ot command ishaving problems. The following command graphs this expression
along with the xy-plane. Where the xy-plane cuts this surface isthe curve i npl i ci t pl ot was
trying to graphing.
[ > plot3d({2*x"4+y"4-3*x"2*y-2*y"3+y"2, 0}, x=-2..2, y=0..2.1);
Notice how the surface just barely passes through xy-plane. The next command stretches the scale on
the z-axis so that we can "blow up" the detail of the shallow part of the graph. The graph isinitially
drawn looking staight down the z-axis, so that we can see a crude trace of the curve
i nplicitpl ot wastrying to graph. Rotate the graph to see the detail of the shallow part. Notice
just how shallow the "inner" bump of the graph is. Can you figure out what the real shape of this
graph is?

> pl ot 3d({2*x"4+y"4- 3*xN2*y-2*y"3+yn2, 0}, x=-2..2, y=-0.2..2.1,
{ > view=-0.1..0.1, grid=[50,50], orientation=[-90,0]);
It is possible to get a very good graph of the curve defined by the equation

2x'+y*- 3x%y- 2y*+y*=0. Thisis done by parameterizing the curve. For the details see
Introduction to Maple, 2nd Ed., by A. Heck, page 419.

[ >

Exercise: Let usdefine the following function.

[>f = exp(-(x-3)"2-y"2)-exp(-(x+3)"2-y"2);

Here isagraph of this function. Notice that it has one spike going up and one going down.

(> plot3d(f, x=-4..4, y=-9..9);

Hereis a (two dimensional) contour diagram for this function. Why do you think that this diagram
appears the way that it does?

[ > plots[contourplot](f, x=-4..4, y=-9..9);

[ >
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L[>

=18.4. Thepl ot 3d command

Let us now look more carefully at how Maple draws three dimensional graphs for functions of two
variables. The basic idea here is still pretty much the same. To draw a graph of a function of two
variables Maple simply plots points. But for functions of two variables Maple does not do any
adaptive spacing of points. Given afunction f(x, y) of two variables and a rectangular domain with x
between a and b and y between ¢ and d, Maple will, by default, chose a 25 point by 25 point grid of
evenly spaced sample points within the rectangle formed by the four points (a, ¢), (b, ¢), (b, d), and (
a, d). Maple will then evaluate f at the 625 sample points and plot these values. Hereisasimple
example. The following command plots a paraboloid using points and then views the plot looking
straight down the z-axis. So the graph shows us the grid that Maple used for evaluating the function.
If you look carefully you can see that the grid is evenly spaced and has 25 points on each edge. If
you click on this grid and then use the mouse to rotate it, you can see the three dimensional aspect of
the graph.
[ > plot3d(x"2+y”2, x=-4..4, y=-4..4, style=point,

orientation=[0,0],
| > col or =bl ack);
Here is another example, thistime using a saddle surface.
[ > plot3d(x"2-y"2, x=-4..4, y=-4..4, style=point,

orientation=[0,0],
> axes=frane, col or=bl ack);
Aswe mentioned just before, Maple does not attempt to do any adaptive spacing of pointsin the
rectangular grid. A default grid of 25 points by 25 points (for atotal of 625 sample points) is good
enough for arough graph of most functions, but as we will soon see, it often does not give very
smooth graphs. We can control the number of pointsin the sample grid using thegr i d option to
pl ot 3d. The next example plots the saddle surface with a grid of 10 points by 15 points.

> plot3d(x"2-y"2, x=-4..4, y=-4..4, style=point, grid=[10, 15],

{ > orientation=[0,0], color=black);
Of course, most of the time we will want to choose grid values that are larger than the default
values, not smaller.

[ >

Once Maple has plotted all of the sample points for the graph, the points should somehow be
connected together. There are two basic choices for connecting the points, using either line segments
or "patches'. First let us try line segments. The next two commands draw the paraboloid and the
saddle using line segments to connect the sample points.

[ > plot3d(x"2+y"2, x=-4..4, y=-4..4, style=line, color=black);

[ > plot3d(x"2-y"2, x=-4..4, y=-4..4, style=line, color=black);

These kinds of graphs are also called wir eframe graphs. The graph is, in a sense, made up of wires
bent into the correct shape. Notice how in these two graphs you can "see through" the graphs since

Page 14



the spaces between the wires are considered empty. For some surfaces this see through aspect of a
wireframe graph can be confusing. So there isaway to draw awireframe graph that is not
transparent. The next command graphs the saddle surface using the hi dden option. Think of thisas
making the spaces between the wire frames opague, so some of the wireframe will be hidden from
view.
[ > plot3d(x"2-y"2, x=-4..4, y=-4..4, style=hidden, col or=black);
Maple has two styles of wireframes that it can draw for asurface, r ect angul ar and
tri angul ar. These styles are for an option that is confusingly called gr i dst yl e. The name
gri dstyl e isconfusing becausether ect angul ar andtri angul ar stylesdo not in any way
affect the rectangular grid of sample points used to graph the surface. These two stylesjust
determine the way the sample points are connected by lines to make the wireframe. The next two
commands draw the saddle surface with the rectangular and triangular wireframe styles (the
rectangular wireframeisin fact the default). The surfaces are initially drawn looking straight down
the z-axis, so that you can see how the two styles of wireframes get their names. Be sure to rotate
both graphs and compare the appearance of each style.
> plot3d(x"2-y*2, x=-4..4, y=-4..4, style=hidden,

gridstyl e=rectangul ar,
> orientation=[0,0], color=black);
[ > plot3d(x"2-y"2, x=-4..4, y=-4..4, style=hidden,

gridstyl e=triangul ar,
> orientation=[0,0], color=black);
If you want to convince yourself that the option gr i dst yl e=t ri angul ar hasno affect on the
rectangular grid of sample points for the graph, just changethe st y| e option from hi dden to
poi nt inthelast command.

[ >

Now let us connect the points with "patches" of surface using the pat ch option.

[ > plot3d(x"2+y"2, x=-4..4, y=-4..4, style=patch);

The pat ch optionisin fact the default option, so we do not really need to include it. Hereisthe
saddl e surface graphed with patches connecting the sample points.

[ > plot3d(x"2-y"2, x=-4..4, y=-4..4);

The pat ch option actually draws both the wireframe and the patches between all the sample points.
This seems to give the most al around useful graph. It is aso possible to graph just the patches,
without the wireframe.

[ > plot3d(x"2+y"2, x=-4..4, y=-4..4, style=patchnogrid);

[ > plot3d(x"2-y"2, x=-4..4, y=-4..4, style=patchnogrid);

We have graphed the paraboloid and the saddle using five different styles, poi nt, | i ne (or

wi ref rane), hi dden, pat ch, and pat chnogri d. Each of these five styles (plus two others)
can be choosen in the pl ot 3d command, or they can be choosen by clicking on a 3D graph and
using buttons from the context bar at the top of the Maple window, or by right clicking on the 3D
graph and using the pop-up context menu.

[ >
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Now let uslook at an example where the default grid of 25 by 25 samples pointsis not realy enough.

The function
f(x) =sin(+/ X’ +y*)

has a maximum value of 1 and a minimum value of -1. The function attains its maximum on circles
of radius p/2 + 2 p n centered at the origin. So the following graph should have a niceflat circular
top to it, but in fact the top edge is quite lumpy.

> f = sin(sqgrt(x"2+y"2));
{> plot3d(f, x=-4*Pi..4*Pi, y=-4*Pi..4*Pi);
To really see the lumpiness, use the context bar for the 3D graph to switch switch between the
pat hnogri d and hi dden plot styles. Notice how the lumpiness follows exactly the grid lines
from the wireframe. These grid lines are al the information that the pl ot 3d command has about
the function. To improve the graph we need the gridlines to be closer together. Let ustry a higher
value for the number of sample points.
[ > plot3d(f, x=-4*Pi..4*Pi, y=-4*Pi..4*Pi, grid=[75,75]);
Now the lumpiness along the top edge is almost gone, but the graph does not really look good with
the wire frame showing since the wireframe is now so dense. Try looking at the graph using the
pat hchnogri d style.

[ >

In the last example, if you try smaller grid sizes you will see that the lumpinessis still pretty evident.
It took a9 fold increase in the number of sample points (from 625 to 5625) to really improve the
graph. Thisisalso a9 fold increase in the amount of time and memory that Maple needsto use to
draw the graph. Thisistypical of drawing surfaces. It takes quite a bit of work to draw accurate
images of surfaces. The default grid size of 25 by 25 pointsis a good compromise between the
accuracy of the image and the time and memory needed to draw the image.

[ >

Exer cise: Maple can draw surfaces over nonrectangular regions, but it will still use essentially a
rectangular grid of sample points. Use the next two commands to try and explain how the pl ot 3d
command determinesits grid of sample points when it is graphing over a nonrectangular region. Try
switching between the poi nt , hi dden and pat ch stylesto help you figure out how the sample
points were choosen (use the context bar). The first command draws the saddle surface over a
nonrectangular region. The graph isinitially drawn looking straight down the z-axis so that you can
see the shape of the region and the grid used in the region.

> plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),
{ > styl e=point, orientation=[0,0], axes=frane);
The next command draws the paraboloid over a circular region, which helps the graph look more
paraboloid like.

> pl ot 3d(x"2+y"2, x=-4..4, y=-sqrt(16-x"2)..sqgrt(16-x"2),
{ > styl e=hi dden, orientation=[0,0], axes=frane);
[ >
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There are many ways to control the appearance of the image that Maple draws for a surface. In the
next several exampleswe will discusstheor i ent at i on, shadi ng, col or,and| i ght options
tothe pl ot 3d command. None of these options can change the accuracy of agraph. A graph's
accuracy is determined by the ranges used for the threee axes and the number of sample points used
to draw the graph. The options that we will go over now are mainly used to control the aesthetic
appearance of agraph, though they can aso be used to highlight, or draw attention to, some detail of

agraph.

Theori ent at i on option determines the point, caled the viewpoint, in three dimensional space
from which the surface is viewed. The viewpoint is determined by two angles, called g and f, that
are measured in degrees. These two angles are essentially the spherical coordinates of the viewpoint
on a sphere centered at the origin and sufficiently large to enclose the whole surface being drawn.
Like spherical coordinates, g measures an angle in the xy-plane from the positive x-axis and f
measures an angle from the positive z-axis. For example, here is the saddle surface with orientation (
g, f) = (45,90), which islooking straight into the "edge" of the xy-plane, "halfway" between the
positive x and y axes.

> plot3d(x"2-y"2, x=-4..4, y=-4..4, orientation=[45,90],
{ axes=franed);
If you click on the last graph, you will seethe q and f coordinatesin little boxes on the left side of
the 3D context bar at the top of the Maple window. There are little up and down arrows next to these
angles that you can click on to change their values. Y ou can aso click directly on either of the boxes
that hold the angles, which puts the cursor in one of the boxes, and then you can change the angle to
any value and the image will chage orientation immediately. And if you click on the graph with the
mouse and rotate it, you can see the orientation angles instantaneously changing as you rotate the
graph. By playing around with these three different ways of setting the orientation, you should be
able to give yourself a good sense of what it means.

[ >

Exercise: The orientation angles q and f are not quite exactly the same thing as spherical
coordinates for the viewpoint. For example, for agiven fixed radiusr , the angles (g, f) = (0,0) and (
g, f) = (45,0) in spherical coordinates describe the same point on the sphere (why?). But the
orientation angles (g, f) = (0,0) and (q, f) = (45,0) do not describe the same orientation. Use the
following two commands to help you explain exactly how and why these two orientations differ.
How would you describe these two orientations in words? For what other values of g and f will the
orientation angles differ from the angles in spherical coordinates?

> plot3d(x"2-y"2, x=-4..4, y=-4..4, orientation=[0,0],
{ axes=nor nmal ) ;

> plot3d(x"2-y"2, x=-4..4, y=-4..4, orientation=[45,0],
{ axes=nor mal ) ;

[ >
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Exercise: The orientation angles (g, f) = (0,0) look straight down the z-axis at the xy-plane. But the
x and y axes are not in their usual position for graphs of the xy-plane. What orientation angles would
look straight down the z-axis and have the xy-plane in the usual position (i.e., positive x-axis to the
right and positive y-axis pointing vertically)?

[ >

Here is a simple demonstration of orientation angles that uses an animation. Theg. (0. . 20) on
the left hand side of the assignment operator creates 21 names g0 through g20. The seq command
on the right of the assignment operator creates 21 3D graphs, which are assigned the names g0
through g20. Each graph created by the seq command has a dlightly different orientation. The
di spl ay command combines the 21 graphs into an animation. Click on the first frame of the
animation, when it is displayed, to get the "VCR" buttons in the context bar.

> ¢g.(0..20) := seq( plot3d(x"2+y"2, x=-4..4, y=-4..4,

> orientation=[45, 45+ *18]),

> i =0..20):

> plots[display]([g.(0..20)], insequence=true);
Notice that in thisanimation it appears asif the surface is rotating. But in fact, the surface isreally
fixed and it is the viewpoint that is moving.

[ >

Now let us turn to the use of color when graphing surfaces. The use of color with the graphs of
curvesisvery straight forward. A curveisgiven asolid color that is used along the whole curve. But
for surfaces, the use of color is much more subtle. First of al, if you look back at any of our graphs
of surfaces, you see that they do not have a solid, uniform color to them. The color varies all about a
surface in amanner that helps make the surface easier to view. In general, color is used with
surfaces as away to help make the shape and detail of a surface easier to see. Color isaso used as
an aesthetic tool, to make the surfaces more pleasing and interesting to look at. For example, hereis
the saddle surface drawn in the solid color blue. This graph isnot all that appealing.

> pl ot 3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{ > styl e=pat ch, col or=bl ue);
If we redraw the graph in solid blue and without the grid lines, then the surface actually becomes
very difficult to visualize. In the following graph, with many choices of orientation it becomes
almost impossible to even see that the graph is a surface.

> plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),
{ > styl e=pat chnogri d, col or=bl ue);
On the other hand, with the default coloring of a surface, even without the grid linesthe graph is
obviously a surface from almost any orientation.

> plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),
{> styl e=pat chnogri d);
These last few examples show that it really does matter how color is choosen for a surface so that
the surface is easy to visualize and pleasing to look at.

[ >
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The pl ot 3d command has two options that control the use of color for surfaces, the col or option
and the shadi ng option. First we will discussthe shadi ng option, which isthe easiest way to get
agood coloring scheme for asurface. The shadi ng option provides five predefined coloring
schemes for surfaces. They arecalled xyz, xy, z, zhue, and zgr ayscal e. The default coloring
schemeisshadi ng=xyz, and thisis the coloring scheme that we have been seeing in all of the
surfaces we have drawn so far. In this scheme, the color assigned to a piece of a surface depends on
all three of the coordinates of the piece. With shadi ng=xy, the color assigned to a piece of a
surface depends on the two horizontal coordinates of the piece. With shadi ng=z, the color
assigned to a piece of a surface depends only on the vertical coordinate of the piece. With

shadi ng=zhue and shadi ng=zgr ayscal e, the color assigned to a piece of a surface also
depends only on the vertical coordinate of the piece. With zgr ayscal e only shades of gray are
used so the graph is drawn in "black and white". With zhue all the colors of the spectrum are used,
from violet to red, with violet at the bottom (minimum) of the surface and red at the top (maximum)
of the surface. The following two commands draw the paraboloid and the saddle surface with

shadi ng=xy. Try changing this option to see what the other shading styles ook like. Y ou can
change this option by editing the commands, or by right clicking on the graphs and using the "Color"
menu item from the pop-up context menu, or by clicking on a graph and using the Color menu in the
main Maple menu bar at the very top of the Maple window. Also try different combinations of
shadi ng and st yl e options

{ > pl ot 3d(x"2+y"2, x=-4..4, y=-sqrt(16-x"2)..sqrt(16-x"2),

> shadi ng=xy, styl e=patch);
{ > pl ot 3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
> shadi ng=xy, styl e=patch);

There is one other shadi ng option, and that isshadi ng=none. This option turns off the color
shading of the surface and draws the surface all in white. We will see what this option is used for
when we discuss the pl ot 3d command's lighting options below.

[ >

The other pl ot 3d option for coloring asurfaceisthe col or option. We have aready seen how
this option can be used, likein the pl ot command, to give a graph a solid, uniform color. But we
have also seen that thisis not avery useful way to color asurface. There is another way to use the
col or option and that isto useit with acolor function. The simplest kind of color functionisan
expression, in the same variables as the function being graphed, that replaces the color name after
the col or option. The expression is used by the pl ot 3d command to compute a color for each
piece of the surface that depends on the horizontal coordinates of the piece (smilar to the

shadi ng=xy option). The full spectrum of colorsis used with the minimum value of the
expression mapped to the color red and the maximum value of the expression mapped to the color
violet (similar to the shadi ng=zhue option). Here are afew simple examples. The next command
graphs the constant function 1, so the graph is aflat plane. The color function is the expression x* y.
Theinitial orientation is looking straight down on the surface so that you can see how color depends
on the x and y coordinates. Notice that in this graph the bands of color are shaped like hyperbolas.
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With the expression x* y as the color function, curves of constant color are hyperbolas (why?).
> plot3d(1, x=0..10, y=0..10, color=x*y, style=patchnogrid,
{> orientation=[0,0]);
The next example uses x+y as the color function. Now the curves of constant color are sloping
lines.
> plot3d(1, x=0..10, y=0..10, col or=x+y, style=patchnogrid,
{> orientation=[0,0]);
The next exampleusessi n( x) *si n(y) asthe color function. Now the coloring is periodicin
both directions.
> plot3d(1l, x=0..10, y=0..10, color=sin(x)*sin(y),
{ styl e=pat chnogri d,
> orientation=[0,0]);

[ >

Exercise: The following command uses the color function x* y on theflat plane z= 1, like in the
first example above, but now the graph is on the domain x=- 10. . 10, y=-10. . 10. The shading
seems to be quite a bit different in this example from the first example. Explain in detail how this
shading was determined. (Hint: Where are the minimum and maximum of x* y in this domain?
What is the order of colorsfrom red (at the min) to violet (at the max)? What color is used half way
between the min and max and where is that color in this shading?)

> plot3d(1, x=-10..10, y=-10..10, col or=x*y, style=patchnogrid,
{> orientation=[0,0]);
[ >

Here is apossible interpretation and use for a color function. Imagine that the plane z= 1 is a sheet
of metal that has nonuniform temperature and that the function T(X, y) = Xy represents the
temperature of the metal at the point with coordinates (X, y). Then the graph of the plane z= 1 with
color function x*y will not only graph the surface but it will also graph the temperature information
by translating temperatures into colors. The next two commands graph the parabolid and the saddle
surface with the color function x* y. In each example, the function being graphed (x*2+y” 2 and
x”2-y”"2 repectively) determines the shape of the surface, and the color function (x* y) can be
interpreted as giving the temperature at a point on the surface. So each of the following two graphs
can be thought of as graphing two functions simultaneously. (Try modifying the color function used
in these graphs to see how that affects the appearance of the surface.)

> pl ot 3d(x"2+y"2, x=-4..4, y=-4..4, color=x*y, orientation=[0,0],
{> styl e=pat chnogri d);

> pl ot 3d(x"2-y"2, x=-4..4, y=-4..4, color=x*y, orientation=[0,0],
{> styl e=pat chnogri d) ;
So a color function can be used to add more information to the graph of a surface. There are many
quantities that a color function could represent besides temperature (for example density, thickness,

slope, curvature, etc.).
[ >
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Now let uslook at a more complex kind of color function. Instead of having a single expression for

the color at a point on the surface, we can have three expressions, one each for the amount of red,

green, and blue color that will be mixed together to form the composite color of the surface at a

point. Here are two examples, one using the paraboloid and one using the saddle surface.

[ > plot3d(x"2+y"2, x=-4..4, y=-4..4, color=[x,y, x*y],

> orientation=[0,0], style=patchnogrid);

> plot3d(x"2-yn2, x=-4..4, y=-4..4,
color=[sin(x),sin(y),cos(x*y)],

> orientation=[0,0], style=patchnogrid);

Notice that, in a certain sense, the last two graphs are simultaneously graphing four function worth

of information. But these kinds of color functions are pretty difficult to interpret and they are mostly

used in specialized situtations.

[ >

Now let us turn to the lighting options of the pl ot 3d command. There are three option related to
lighting, | i ght , anbi ent| i ght,and| i ght nodel . These options simulate having lights
shining on a surface. These lighting options are closely related to the shadi ng and col or options.
Theshadi ng and col or option provides away to give a surface a color scheme. The lighting
options provides away to have ambient or direct light shine on a surface. What makes the lighting
options related to the coloring options is that the light that can shine on a surface will itself have a
color, and so a surface can be colored by the light that shines on it.

Here is asimple example. The following command draws the saddle surface with two lights shining
on it, one above the surface and one below the surface. Each of the two lightsis determined by one
of thetwo | i ght options. Each light option has five parameters, two angles, f and q, that are the
spherical coordinates of the location of the light source (but notice the change in the order of the
angles!) and three numbers between 0 and 1 that give the proportion of red, gren, and blue light in
the light source. The light source above the saddleis green light, and the light source below the
saddleisyellow light. Notice that we also use the option shadi ng=none, so that the saddle

surface itself isuncolored, that is, it is white.
> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),

> light=[0,0,0,1,0], light=[180,0,1,1,0],
> shadi ng=none, styl e=patchnogrid, grid=[50,50]);
[ >

Notice severa thingsin this example. First, as you rotate the surface the lights do not seem to move.
The green light shines from above and the yellow light shines from below. Second, notice that by
using color from lights we can have a surface with different colors on different sides of the surface.
When we used the shadi ng and col or options, the color at any point of the surface was always
the same on both "sides’ of the surface. Third, notice that the intensity, or brightness, of the light on
the surface is related to the angle that the light makes with the surface. The surfaceis at its brightest
wherever the surface is perpendicular to alight source (that is, wherever the normal vector of the
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surface pointsto alight source). The surface becomes darker as the angle the surface makes with the
light beams decreases (that is, as the normal vector becomes more perpendicular to the light rays, the
surface becomes darker). Having the surface become so dark in some spots may not be very
desirable. Maple allows usto shine "ambient” light on a surface. Thisislight that comes from all
directions. The next commands adds a bit of ambient white light. White light is made up of equal
amounts or red, green, and blue light. So the option anbi ent | i ght =[ . 5, . 5, . 5] givesusanot
too bright ambient white light that eliminates much of the dark shading that isin the last example.

> plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),

>

light=[0,0,0,1,0],light=[180,0,1,1,0],anmbientlight=[.5,.5,.5],

> shadi ng=none, styl e=patchnogrid, grid=[50,50]);

[ >

To see that the surface itself does not have any color in these examples, let us shine bright white
light from both the top and the bottom.

> pl ot 3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{> light=[0,0,1,1,1], light=[180,0,1,1,1],

> shadi ng=none, styl e=patchnogrid, grid=[50,50]);
We can mix surface color with color from lighting, but the results can be confusing, unless you
understand color and light. For example, the next command shines yellow light on a magenta
surface, and we end up seeing red. Thisis because the definition of a surface being magentaisthat it
absorbs green light and reflects red and blue light. And yellow light is made of equal partsred and
green light. So when the yellow light shines on the magenta surface, the green component of the
yellow light is absorbed by the surface and only the red component of the yellow light is reflected by
the surface into our eyes. (To see the true color of the surface, change the lights to white light.)

> plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),
{> light=[0,0,1,1,0], light=[180,0,1,1,0],

> col or=magent a, styl e=patchnogrid, grid=[50,50]);
Here is another example. Thisis ared surface with green and blue lights shining on it, but we see
only black. Why?

> plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),
> light=[0,0,0,1,0], Iight=[180,0,0,0,1],
> col or=red, style=patchnogrid, grid=[50,50]);

[ >

Choosing lighting options can be quite difficult. Maple provides four predefined lighting models,
each of which has an interesting combination of direct and ambient lighting. We can choose one of
these lighting models by using the | | ght nodel option. The modelsarecaled| i ght 1,11 ght 2,
i ght3andl i ght 4. Thefollowing command usesthel i ght 1 lighting model with no surface
color, so the only color comes from the lighting scheme. Try the other light models and then try the
different light models combined with different shading schemes. Y ou can make all of the changes
directly in the following comand or you can right click on the graph and choose the "Color" menu
item from the pop-up context menu and change both the lighting model and the shading style from
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this menu.
{ > plot3d(x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqgrt(16+x"2),

> | i ght model =l i ght 1, shadi ng=none, styl e=patchnogrid);
[ >

The use of lighting and color in the graphing of surfacesisreally a part of the subject of computer
graphics. Maples abilities with light and color are not as sophisticated as a dedicated 3D computer
graphics program. For example, the light sources in Maple do not cause shadows to be cast. But
Maple's color and lighting options are easier to use than most 3D computer graphics programs.
Using Maple's lighting and color options is a good way to experiment with these ideas and learn
about basic 3D graphics. If you want to learn more about what Maple can do (for example, how to
get Maple surfaces to cast shadows) then look at the book Discovering Curves and Surfaces with
Maple, by G. Klimek and M. Klimek, Springer-Verlag, 1997.

[ >

L[>

=1 8.5 Defining coor dinate systems

As we have seen many times, drawing graphs boils down to plotting points. Graphing commands do
thelir job by plotting points and then possibly connecting those points together by line segments, or
pieces of planes, in order to form curves or surfaces. But when we look more carefully at what
graphing commands do, we see that what they really do is build certain data structures, PLOT data
structures for 2-dimensional graphs and PLOT3D data structure for 3-dimensional graphs. One of
the many dataitems contained in aPLOT (or PLOT3D) data structureisalist of pairs of numbers
that represent the coordinates of the points that are to be plotted.

PLOT and PLOT3D data structures always contain alist of pointsin cartesian (or rectangular)
coordinates (and the coordinates are computed using hardware floating points). If agraphing
command wants to work in some other coordinate system, after it computes the points it wantsto
graph in the other coordinate system and before it can build the PLOT or PLOT3D data structure, all
of the points need their coordinates converted into cartesian coordinates.

Here is a simple example. The following command graphs a single point in polar coordinates.
[>plot( [[1,Pi/4]], coords=polar, style=point, synbol =di anond );
Let uslook at the PLOT data structure created by the last command.

[> tenp := %

We see that the single point with polar coordinates[1, %] had its coordinates converted to cartesian

coordinates with values [.7071067811865476, .7071067811865475] in the PLOT data structure. On

the other hand, let us graph the single point with cartesian coordinates[1, %] .

> plot( [[1, Pi/4]], coords=cartesian, style=point,
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| synbol =di anond ) ;

Let uslook at the PLOT data structure for thislast graph.

[>temp := %

Since the point we were plotting already was given by cartesian coordinates, no coordinate
transformation was needed.

Here is another example. Let us create alist of pairs of floating point numbers.
{> point list :=1] seq( [eval hf(i/20*4*Pi),

> eval hf (sin(i/20*4*Pi))], i=0..20) ];
Now ask pl ot to graph thelist.
[> plot( point_list );
By default, pl ot uses cartesian coordinates, so it did not apply any change of coordinates
transformation to the list of pairs, as we can see from the next command which shows us the actual
PLOT data stucture used.
[>temp = %
Now ask pl ot to once again graph the list, but thistime it should interpret the pairs of numbers as
pairs of polar coordinates.
[ > plot( point_list, coords=polar );
If welook at the PLOT data structure used in the last graph, we see that the pairs of numbers from
the original list were al transformed (from polar coordinates to rectangular coordinates).
[>temp = %
If we plot the same list of numbers again, using a still another coordinate system, we see that the
original pairs of numbers are transformed in still adifferent way.
[ > plot( point_|ist, coords=cassinian );
[>temp = %

Hereisadight variation on the previous example. Let us start with the same list of pairs of
numbers.

> point_list :=[ seq( [eval hf(i/20*4*Pi),
{> eval hf (sin(i/20*4*Pi))], i=0..20) ];
Now let us perform our own transformation on the list of numbers to create a new list of numbers.
Notice that the transformation uses the usual formuals for converting polar coordinates to
rectangular coordinates.

> transformed_point _list := [seq( [p[1l]*cos(p[2]),
} p[1]*sin(p[2])],

p=point _list)];

Now pl ot the transformed list using rectangular coordinates. We get the same graph as when when
wepl ot theorigina list using polar coordinates.
[ > plot( transformed_point list );
[ >

Whenever we specify a coordinate system inapl ot (or pl ot 3d) command, what we are really
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doing istelling Maple what formulas it should apply to transform pairs of numbersinto what will be
interpreted as pairs of rectangular coordinates. For the predefined coordinates systemsin Maple
those transformations are built into Maple. But what is nice is that we can define our own coordinate
systemsfor the pl ot (and pl ot 3d) command by telling Maple what formulas to use in the
transformation step of building the PLOT (or PLOT3D) data structure.

Here is ageneral idea of how we define a new coordinate system in Maple. Maple'sinternal plotting
mechanism only knows how to plot points using cartesian coordinates. If we want to plot a point and
we know its coordinates in some noncartesian coordinate system, we have to be able to tell Maple
how to convert the noncartesian coordinates into cartesian coordinates so that Maple can figure out
where to plot the point. For example, if we want Maple to plot the point with polar coordinates
(r,q) =(1, p), then Maple needs to know how to compute this point's cartesian coordinates, which
are (- 1, 0). Knowledge of how to convert polar coordinates into cartesian coordinates has already
been built into Maple (and soon we will see how). But in general, when we want to define a new
coordinate system, one of the things we need to tell Maple is how to compute the cartesian
coordinates of a point from the values of its new coordinates (and the other thing that we need to tell
Maple iswhich of the two new coordinates will take on the preferred role of the independent
variable when graphing functions).

We add coordinate systemsto Maple, i.e., we specify anew coordinate transformation to use when
building aPLOT (or PLOT3D) data structure, by using theaddcoor ds command. Before we can
use this command it needs to be read into Maple using ther ead! i b command.

[ > readlib(addcoords);

To define anew coordinate system theaddcoor ds command needs three parameters. The first
parameter is the name we wish to give to our new coordinate system. (Be sure to choose a name that
isnot already in use.) The second parameter is alist of two variable names (that represent the
variables in the new coordinates system). The second of these two names represents the coordinate
that will be the independent variable when graphing a function. The third parameter isalist of the
two formulas that convert our new coordinates into cartesian coordinates. Here is a description of
the syntax of addcoor ds.

addcoor ds( name-of-new-coordinate-system, [ dependent-varaible, independent-variable
1,
[

expressi on-for-horizontal -component-in-ter ms-of-independent-and-dependent-variabl es,
expressi on-for-vertical-component-in-ter ms-of-independent-and-dependent-variables| )
Let uslook at some simple examples of using this command. First, |et us define a new version of

cartesian coordinates that stretches the vertical axis by afactor of two.
[ > addcoords( ny_cartesian, [y, Xx],[X,2*y] );

To make it easier to figure out what is going on, we the well known names x and y for the new
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coordinates. Notice that x is specified as the default independent variable (it is the second coordinate
inthefirst list) and x is used directly as the horizontal coordinate in the final graph (that is, x isthe
first component in the second list). Also notice that, whatever value the new coordinate y has, two
times that value iswhat is plotted in the vertical direction on the graph. So, for example, in this new
coordinate system, the function sin(x) has a maximum of 2.

[> plot( sin(x), x=0..2*Pi, coords=ny_cartesian );

[ >

Now let us see how to define polar coordinates. We define our own version of polar coordinates that
is exactly the same as the built in version.

[ > addcoords( my_polar, [r,theta], [r*cos(theta),r*sin(theta)] );
Notice that the variable g is defined to be the default independent variable since it appears second in
thefirst list. Here is a graph using this new coordinate system.

[ > plot( sin(2*x), x=0..2*Pi, coords=ny_polar );

Notice that the graph is exactly the same if we use the built in polar coordinates.

[ > plot( sin(2*x), x=0..2*Pi, coords=polar );

Let us now create a polar coordinate system that has the radial coordinate as the default coordinate
for the independent variable in agraph. All that we need do is modify the previousaddcoor ds
command so that the variable r appears second in thefirst list.

[ > addcoords( ny_polar, [theta,r], [r*cos(theta),r*sin(theta)] );
Let us regraph the function sin(2 x) (where now the variable x in this function represents the radial
coordinate in the polar plane).

[ > plot( sin(2*x), x=0..2*Pi, coords=ny_polar );

Recall that thisis the same graph that we got in the last worksheet when we used parametric
equations to draw agraph of g =1f(r) in polar coordinates. Here is what the graph looks like if we
also plot this function over a negative range for the independent variable.

(> plot( sin(2*x), x=-2*Pi..2*Pi, coords=ny_polar );

[ >

Exercise: Explain why the following command draws the same graph as the second to last
command.

> plots[inplicitplot]( arctan(y/x)=sin(2*sqgrt(x"2+y"2)),
{ > x=0..6.4, y=-4.7..4, grid=[60,60] );
[ >

Exercise: Explain carefully why the following piece of graph isin the second quadrant.
[> plot( sin(2*r), r=-Pi/2..0, coords=ny_polar );
[ >

Exercise: Usetheaddcoor ds command to create several new cartesian coordinate systems that
give the vertical axisthe preferred role of the independent variable. Create coordinate systems with
the positive coordinate direction going both up and down the vertical axis. Use your new coordinate
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systems to graph functions of the form x = f(y) (where we will continue to label the horzontal axis
asthe x-axis and the vertical axisthe y-axis). Also, create a cartesian coordinate system with the

horizontal axis (the x-axis) as the independent variable, but with positive x coordinates going to the
left.

[ >

Of the six possible graphs that we could make in cylindrical coordinates, there is one graph that
would seem to be a very reasonable choice as the default graph for pl ot 3d. Since the default graph
in rectangular coordinatesis of the form z=1f(Xx, y), and since (X, y) and (r, g) both coordinatize the
plane, then by analogy to rectangular coordinate it would seem reasonable for pl ot 3d to graph
z=1(r, g) when using cylindrical coordinates. Such graphs can in fact be very useful. For example,
suppose we wanted to draw a graph of afunction f(x, y) over the cardiod defined by r = 1 + cos(q).
We might try to do thisusing pl ot 3d's ability to graph over nonrectangular domains in rectangular
coordinates, but that would be difficult. What we would like to do is convert the function to
cylindrical coordinatesusing g(r, q) =f(r cos(q), r sin(q)) and then draw a graph of z=g(r, q)
using cylindrical coordinates with the variable g ranging between 0 and 2 p and the variable r
ranging between 0 and 1 + cos(q). But pl ot 3d with cylindrical coordinates cannot graph functions
of theform z=g(r, q). So we create anew version of cylindrical coordinatesin whichz=g(r,q) is
the default graph.

[ > addcoords( ny_cylindrical, [r,t,z], [r*cos(t),r*sin(t),z] );

L et us graph the piece of a paraboloid that is above a cardiod in the plane.

[ > plot3d( r”2, r=0..1+cos(t), t=0..2*Pi, coords=ny_cylindrical );
Here is a verification that the above graph is correct.

[>9gl =%

> g2 := plot3d( x"2+y"2, x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),
{> style=wirefrane ):

[ > plots[display]( gl, g2 );

[ >

L[>

Page 27



