Maplefor Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

12. Data Structuresin Maple

=112.1. Introduction

Within Maple'sinternals, thereis abig difference between expressions and functions. Expressions
are what computer scientists call data structures, and functions are what they would call procedures.
To put it very briefly, adata structure is a collection of information, and a procedure is a collection
of instructions. In order to explain this difference better, in this and the next few worksheets we ook
at some elementary examples of data structures and proceduresin Maple. In particular, in this
worksheet we look at Mapl€e's basic data structures, at how a data structure can be manipulated, and
at how Maple stores an expression as a data structure. In the next worksheet we look at some simple
examples of Maple procedures and how mathematical functions can be represented as procedures. In
the last worksheet we ook at how a procedure can manipulate a data structure, and this will give us
an idea of how Maple does its work. Many Maple commands (likef act or, si npl i fy, expand)
are procedures, written in the Maple programming language, that manipulate data structures. In fact,
that is what much of programming and computer science is all about, procedures that manipulate
data structures.

[>

=112.2. Basic data structuresin Maple

To really understand what makes expressions and functions different in Maple we need to get a
sense of what data structures and procedures are. The rest of this worksheet isavery basic
introduction to how Maple handles data structures.

Let ustry to give adefinition of a"data structure”. Earlier we said that a data structure is a collection
of information but thisis an incomplete definition. Since information is the same as "data’, we have
left off the "structure”" part of "data structure”. A data structure is a collection of information that has
been given a structure or organization. In addition, a data structure often has associated with it a
special way of interpreting the data. Aswe will see below, the structure (and interpretation) aspect

of adata structure is as important as the data aspect. Two different data structures can contain the
exact same pieces of data but give that data different structures (or interpretations).

Now we will look at afew of the basic datatypesin Maple. Every data structure has a data type
which describes, or names, the kind of data structure it is. The three most basic kinds of data
structures in Maple have the data types expression sequence, list, and set. Maple also has several

Page 1

numeric data types which are used to represent different kinds of numbers. Each of these kinds of
data structures, plus afew other important data types, are described in detail in the following
subsections.

[>

=] 12.2.1. Expression sequences

First we look at expression sequences. We said that a data structure is an organized collection
of information (or data). An expression sequence in Maple is the simplest way that some data
can be organized; it isalist of things separated by commas. The things (i.e. the pieces of data) in
the expression sequence can be anything that Maple can work with, e.g., numbers, expressions,
functions, other data structures, etc.

Here is an example of an expression sequence with nine pieces of dataiin it.

(> 1, 2, abc, x*2+1, "hi world, Pi, x ->x"2, 1/2, 1,

L et us give this expression sequence a name so that it is easier to work with.

[> stuff := %

[> stuff;

Mapleswhat t ype command isused to ask "what isthedatat ype" of adatastructure.
[> whattype(stuff);

Maple uses expr seq as an abbreviation for "expr ession sequence”.

Maple'snops command is used to ask how many pieces of data are in a data structure. The
name nops isan abbreviation of " number of operands” and the word "operand" is often used
to mean a piece of adata structure. Notice that in the next command we need to put square
brackets around the name st uf f in order to use nops. (Try removing the brackets.) In the next
subsection we will see why these brackets need to be there.

[> nops([stuff]);

Maple'sop command is used to access individual elements of a data structure (the name op is
of course an abbreviation of the word "operands”). It can be used to access just one element or a
range of elements from a data structure. The next command asks for the fifth thingin st uf f .

[> op(5, [stuff]);

The next command asks for the fifth through seventh thingsin st uf f .

[>op(5..7, [stuff]);

Notice that the op command used with arange returned an expression sequence which can be
thought of as a subsequence of the original expression sequence. Here is another notation that
allows us to access an individual piece of datafrom an expression sequence, a subsequences of
data, or the whole sequence.

[> stuff[5];

[> stuff[5..7];

[> stuff[];

[>

There is no specia interpretation associated to the data in an expression sequence. The only real

Page 2

organization that Maple gives to an expression sequence is that Maple remembers the order that
the data items were given in. So the following two expression sequences are not considered the
same data structure, even though they contain the exact same data items.

[>seql :=a, b, c, d,;

[>seq2 := b, a, c, d;

[> eval b(seql=seqg2);

Remember, seql=seqZ2 isan equation that could be either true or false. The Maple command
eval b isused to determineif the equation is true or false. Since the equation is false, the
expression sequences are not the same data structure. Another way to put thisisthat seql and
seq2 have the same datatype (expr seq), and they contain the same data, but they are not the
same data structure.

In the next two subsections we will see what brackets ([]) and braces ({ }) meanto an
expression sequence. Parentheses however are ignored by expression sequences. The following
commands all define the same expression sequence.

> the, very, sane, thing;

> (the, very), (sane, thing);

> (the, ((very, sane), thing));
[>

Expression sequences can be combined into larger expression sequences. Let us define two
exXpression sequences.

[>seql :=a, b, c, d,;

[>seq2 :=u, VvV, W, X, VY, Z

Here is one way to combine these two into athird expression sequence.

[> seq3d : = seqgl, seqz;

There are many ways to combine the data from two expression sequences into one expression
sequence. What we just did was to concatenate seql and seqZ2. Here is another way to
combine these two expression sequences.

[> seq3 := seq2[1..3], seql, seq2[4..6];

[>

Exercise: With seql and seq?2 defined as above,
> seql :=a, b, c, d;
| >seq2 := U, VvV, W, X, VY, Z;
what are the differences between the following four commands
| > seq3 : = seqgl, segZ:
> segd4 : = seql, 'seg2':

> seg5 := 'seql', 'seqQ2':
| > seq6 : = 'seql, seq2':
since they all seem to produce the same result.
(> seq3;

Page 3

> seq4;
> seqbs;
> seqo6;

[>

Exercise: With seql and seq?2 still defined as above, what does the following command do?
[> seql : = seqgl, seqQz;
[>

There is one very important expression sequence that has a special name. The empty expression
sequenceiscaled NULL.

[> NULL;

When Maple evaluates the name NUL L, the value it gets is the empty expression sequence, and
since there is not much to print out for the empty expression sequence, Maple does not print
anything.

[> whattype(' NULL');

[> whattype(NULL);

[> nops([NULL]);

The last three commands verify that NULL isaname for an expression sequence and that there
are no operands in the expression sequence. The NULL expression sequence comes up fairly
often, but usually in a pretty invisible way. For example, the command

[> solve(x"10-sqrt(2)*x"3-Pi =0, x);

did not seem to return any result. But it did return aresult. It returned NULL.

[> whattype(solve(x710-sqrt(2)*x*3-Pi=0, x));

[> eval b(sol ve(x"10-sqgrt(2)*x"3-Pi =0, x)=NULL);

Whenever aMaple command seemsto do itswork "silently"”, without any output, the command
isreally returning the NULL expression sequence.

[>

Maple has two very important and common uses for expression sequences. First, many Maple
commands, when they want to express several outputs, put the output itemsin an expression
sequence. The most common example of thisisthe sol ve command.

> x:="x":
{ > sol ve(x"3-4*x"2-5*x=0, X);
There are three solutions to the equation in the sol ve command and sol ve putsthe three
answersin an expression sequence. We can ask Maple to verify thisby using thewhat t ype
command again.
[> whattype(%);
If we modify the sol ve command alittle bit and put braces around the last x in the command,
then we get the solutionsin adifferent form.
[> solve(x"3-4*x"2-5*x=0, {x});
The output is still an expression sequence, but now each item in the sequence is an equation

Page 4

with braces around it.

[> whattype(%);

L et us give the expression sequence a name.
[> solutions := %4

Now we can access individual solutions using the notations we gave above.
[> op(1, [solutions]);

[> solutions|2];

[> solutions[2..3];

[> assign(solutions[3]);

[> X;

[> x:="Xx";

[>

We just saw that M aple uses expression sequences to represent multiple outputs from a
command. Maple's other common use for expression sequences is to represent multiple inputs to
acommand (or function). We want to demonstrate that the inputs to a Maple function are
always contained in an expression sequence. Here is an example. The next command defines
and names an expression sequence.

[> test _sequence := x"2, x=-2..2, color=blue, axes=box;

This sequence has four itemsin it.

[> nops([test _sequence]);

Noticethatt est _sequence looksliketheinputsto apl ot command. And we can use it
exactly that way.

[> plot(test_sequence);

In the next command, the evaluation of pl ot isdelayed butt est sequence isevaluated so
that we can see how the input to pl ot really is an expression sequence.

[> '"plot'(test_sequence);

Now evaluate pl ot .

> %

Here is another example. First, let us define our own multivariate function.
[>f 1= (X,y,2,W) -> X+ty+z+w,

Here is an expression sequence.

[>es := b, c, d;

Now evaluate the function with what looks like (but is not) two inputs.

[> f(a,es);

Let uslook at what the function really saw asitsinputs.

[>'"f'(a,es);

Suppose we delay the evaluation of es. What do you think will be the result of the following
function call?

[> f(a,'es");

[>

The last severa examples have shown that expression sequences are basic for representing both

Page 5

the input and output of Maple commands and functions.

[>

Maple has a special command, seq, for creating expression sequences. Here are some
examples of its use.

[> seq(x"Mi, 1=-2..5);

[>seq(Pi, i=-2..2);

[>seq(1/n, n=1..10);

[> seq(evalf(1/n), n=1..10);

[>

L=
=l12.22 Lists

The next most basic datatypein Mapleisalist. A list is an expression sequence with square
brackets around it.

Recall that st uf f isour expression sequence from the last section. We redefine it here for
convenience.

[> stuff :=1, 2, abc, x*2+1, " hi world, Pi, x -> x"2, 1/2, 1,
An expression sequence with brackets around it givesus alist.

[> [stuff];

Let us give thislist aname so that we can work with it.

[> liststuff := %

L et us check the data type of our data structure, and also how many elements arein it.

[> whattype(|iststuff);

[> nops(liststuff);

The op command with only one argument returns al the elementsin the data structure.

[> op(liststuff);

Notice that the op command returned an expression sequence. So the op command can be used
to convert alist into an expression sequence.

[>

We can access an individual element from alist or arange of elements.

[> op(5, liststuff);

[>op(5..7, liststuff);

Now compare the previous two commands with the next two.

[> liststuff[5];

(> liststuff[5..7];

Noticethat | i st st uf f[5] isanaternate notationfor op(5, |iststuff),but
l'iststuff[5..7] isnotquitethesameasop(5..7, |iststuff).How arethey
different? Should | i st st uf f [5] really have beenthesameasop(5, |iststuff)?To
make things even a bit more confusing, look at what the next command does. What isit an

Page 6

alternative to?
[> liststuff[];

[>

Surprisingly enough, we can even use negative numbers to access items from alist. The index
- 1 meansthe last item in alist and as the negative index decreases we access items from right
to left through the list.

[>op(-1, [a, b, ¢, d, e]);

(> op(-2, [a, b, c, d, e]);

(> op(-3, [a, b, c, d, e]);

But negative indexes do not always work the way you might think they would. Based on the last
three commands, what would you expect the next command to output?

[>op(-1..-3, [a, b, ¢, d, e]);

What about this command?

[>op(-3..-1, [a, b, ¢, d, e]);

Using negative indexes can lead to very non intuitive results. Consider the next two examples.
[>op(-4..4, [a, b, c, d, e]);

[>op(-3..3, [a, b, ¢, d, €]);

Y ou might think that in any range m . n you must have mless than n. But things are not that
simple.

[>op(4..-4, [a, b, ¢, d, €]);

[>op(3..-3, [a, b, c, d, e]);

In fact, oneway tolist all the dataitemsinalististo usetherangel. . - 1, i.e, fromfirst to
last.

[>op(1..-1, [a, b, ¢, d, €]);

On the other hand, therange- 1. . 1 (from last to first?) causes an error.

[>op(-1..1, [a, b, ¢, d, €]);

We can use negative indexes with the bracket selection notation al so.

(>[a, b, ¢, d, e][-3..-1];

[>

Exercise: Come up with asimple rule for what isallowed inarangem . n when it is used for
accessing itemsin alist and either m n or both is negative.

[>

We did not get the op command to produce arange of elements from alist in reverse order, but
we can do thisif we use the seq command in combination with op.

[>listl :=1[a, b, c, d, e];

(> [seq(op(-i, listl), i=3..5) 1];

[> [seq(op(-i, listl), i=1..nops(listl))];

We can abbreviate the above commands by using index notation.

[>][seq(listl][-i], i=3..5)];

Page 7

Notice that the following command does not work.
[>] seq(list1[i], 1=-3..-5)];
[>

Exercise: Let| i st 1 be defined asin the last example.

[>1listl :=[a, b, ¢, d, e];

For each of the following two commands, rewrite the command so that it produces the same
result but is easier to read.

[>[seq(op(-i, listl), i=-5..-3)];
[>] seq(op(i, listl) , i=-5..-3)];
[>

A special case of theop commandisop(0, data structure) which, instead of accessing a
piece of data from the data structure, (usually) returns the data type of the data structure.

[> op(O, liststuff);

For most data structures, op(0, data_structure) isthe sameaswhat t ype(data_structure) .
But we will see later that for some data structures, op(0, data structure) returns something
other than the data type. Also, notice that the following syntax does not do what you think it
might.

[> liststuff[O0];

[>

There is no specia interpretation associated to the datain alist. The only real organization that
Maple givesto alist isthat Maple remembers the order of the dataitemsin the list. So the
following two lists are not considered the same, even though they contain the exact same data
items.

[>1listl :=1[1, 2, 3, 4];

[>1list2 :=1[2, 1, 3, 4];

(> evalb(listl=list2);

As with the example with expression sequences, wewould say that | i st 1 and | i st 2 havethe
same datatype (I i st), and they contain the same data items, but they are not the same data
structure.

[>

Exer cise: Suppose we have two lists.
[>listl :=1]a, b, c, d];

[>1list2 :=Ju, v, w, X];

Find acommand that will combine all the data from the two listsinto one list.
[>1list3 := 2?27

[>

Exercise: Given the following two expression sequences

Page 8

>esl :=a, b, ¢, d, e
{> es2 :=u, Vv, W, X, VY,
use asingle seq command to create a third expression sequence es 3 that is made by alternating
elementsfrom es 1 with elementsfrom es 2.
[> es3 (= ?7?

[>

If L isthe name of alist, then Maple will use full evaluation when it is asked the find the value
of L.

[>L :=1[a, b, c, d];
(>a:="b'; b:=2, ¢c:="b+1;, d := 4
(> L

Notice that several levels of evaluation were needed to fully evaluate L. The next three
commands show the levels of evaluation.

>eval(L, 1);

>eval(L, 2);

>eval(L, 3);

Recall that in the section on expression sequences we had to put brackets around an expression
sequence before we could use the nops command to find out the number of operandsin the
expression sequence.

[> nops(stuff);

[> nops([stuff]);

By now we know that the brackets convert the expression sequence into alist. Why do we need
the brackets? Because the nops command is defined to accept only one input, the data structure
that we are interested in. But when that data structure is an expression sequence, nops thinks
that it has multiple inputs, which isamistake, so nops returns an error message. By putting
square brackets around st uf f and converting it into alist we do not change the number of
operandsin the data structure (st uf f and [st uf f | have the same number of operands) but
now nops thinksit only has one input, the list. Here is away to see this. In the following
command, nops is prevented from being evaluated by the right quotes, but st uf f isevaluated.
[> '"nops' (stuff);

So the nops command thinks it has nine inputs, but it was designed to only have one input.
> %

On the other and, when we put the brackets around st uf f , it then appearsto nops asasingle
input which isalist.

[> '"nops' ([stuff]);

> %

[>

Exercise: Cantheop(0, data_structure) form of the op command be used somehow on
expression sequences to get the data type?

Page 9

[>

(>
=112.2.3. Sets

Our third basic datatype in Mapleiscaled aset. A set looks like an expression sequence with
curly braces around it, but we will see that sets are alittle more subtle than that. A set data
structure is usually used to represent the idea of a set from mathematics. So set data structuresin
Maple act alot like sets in mathematics. Here is an example. Let us make a set out of our
original expression sequence st uf f by putting braces around st uf f and then giving the
resulting set a name. First, let us redefine the expression sequence st uf f .

[> stuff := 1, 2, abc, x*"2+1, "hi world, Pi, x -> x"2, 1/2, 1;
Now create a set by putting apair of bracesaround st uf f .

[> {stuff};

Now give this set a name.

[> setstuff := %

L et us check the data type and number of operandsfor set st uf f .

[> whattype(setstuff);

[> nops(setstuff);

[> nops([stuff]);

Right away we should notice that something is different. First of all, for a set the order of the
dataitemsis not important so Maple chooses its own order to put them in. Second, sets cannot
have repeated itemsin them, so thereisonly one 1 iteminset st uf f , but there weretwo 1
itemsinstuff (andalsol i st st uf f, thelist version of st uf).

The op command still workslikeit did with lists.

[> op(5, setstuff);

[> op(5..7, setstuff);

[> op(5..-1, setstuff);

We can also use this alternate notation.

[> setstuff[5];

[> setstuff[5..7];

[> setstuff[5..-1];

Notice that, aswith lists, set st uf f [5] isthesameasop(5, setstuff) but
setstuff[5..7] andop(5..7, setstuff) aredifferent. And we can use the following
aternativeto what t ype.

[> op(O, setstuff);

[>

Aswe stated just above, the elements of a set data structure are interpreted as the elements of a
mathematical set, so the following two sets are the same as data structures.

[>setl :={1,2,3,4,4};

[>set2 :={2,1, 3, 4};

Page 10

[> eval b(setl=set2);

[>

We can convert a set into an expression sequence by using the op command.

[> op(setstuff);

Or we can use index notation.

[> setstuff[];

We can convert aset into alist by using op and a pair of brackets.

[> [op(setstuff)];

Notice that thislast listisnot thesameas| i st st uf f (why?). The following command uses a
lot of brackets to convert aset into alist.

[> [setstuff[]];

[>

Exercise: How would you convert alist into a set?

[>

Maple has commands for doing common mathematical operations with sets. Here are two sets.
[>setl :={a, b, c, d};

[>set2 :={c, d, e, f},;

We can form their union and intersection, and also find one set minus the other.

[> setl union set2;

[> setl intersect set?2;

[> setl mnus set2;

[>

Hereis a simple example of how the difference between alist and a set can be important in
Maple. Inthefollowing pl ot command thereisalist of functions and alist of colors. Since the
lists are ordered, the functions and colors can be associated in an obvious way.

[> plot([cos(x), sin(x)], x=-2*Pi..2*Pi, color=[blue, green]);
In the next command we have a set of functions and alist of colors. Since the set is not ordered,
there is no obvious way to associate a color with afunction. In my Maple session, the cosine
ends up green and the sine ends up blue, the opposite of what was expected, but this coloring
can change in the next Maple session. Orderings for sets are session dependent and can change
from one Maple session to another. If your session seems to be coloring the graphs the "correct”
way, try switching the order of the functions in the set and re-executing the pl ot command; the
coloring of the graphs should end up the "wrong" way.

[> plot({cos(x), sin(x)}, x=-2*Pi..2*Pi, color=[blue, green]);
[>

Exercise: Explain why the empty expression sequence needs a special name, NULL, but the
empty set and the empty list do not need special names.

Page 11

[>

L[>
=] 12.2.4. Some numeric data types

Every kind of number that Maple can work with is actually a data structure with some kind of
numeric datatype. Here are some examples.

[> whattype(5);

[> whattype(1/3);

[> whattype(1.0);

Let uslook at these numeric data types a bit more carefully, in particular thef r act i on and
fl oat datatypes.

A fractional number is represented in Maple by a data structure of typef r act i on. A
fracti on isstored astwo integers, the numerator and the denominator. Let uslook at an
example, 22/ 7.

[> whattype(22/7);

What are the pieces of datain this data structure?

[> op(22/7);

[> op(1, 22/7);

[> op(2, 22/7);

What are the types of these data items?

[> whattype(op(1, 22/7));

[> whattype(op(2, 22/7));

ToMaple, 22/ 7 isadata structure with datatypef r act i on and it contains the two data items
22 and 7 inthat order. On the other hand, 7/ 22 isalso af r act i on type data structure that
contains the two dataitems 22 and 7, but in adifferent order.

[> op(7/22);

(> op(1, 7/22);

(> op(2, 7/22);

So 22/ 7 and 7/ 22 are data structures with the same data type and they contain the same data
items, but they are not equal data structures. Notice that thisis very analogous to the lists
[22, 7] and[7, 22] , which are two data structures with the same data type and contain the
same dataitems, but [22, 7] and[7, 22] are not equal data structures.

[>

Exercise: Why are 22/ 7 and [22, 7] not equal data structures? They contain the same data
itemsin the same order. What distinguishes them?
> op(22/ 7);
L op([22,7]);
[>

Page 12

If afraction is negative, Maple puts the minus sign with the numerator data item.
> op(-1/2);
{> op(1/(-2));
So-1/2and 1/ (-2) arestored asthe same data structure since they have the same data type (
fracti on) and the same data elements, - 1 and 2, in the same order.

[>

Now we shall turn to decimal numbers. A decima number is represented in Maple by a data
structure of typef | oat . Likeafracti on,af| oat isstored astwo integers, the mantissa
and the exponent. A decima number like . 33 isthought of by Mapleas33* 10" (- 2). The
33 iscaled the mantissaand is stored as thefirst iteminthef | oat datastructure, and- 2 is
called the exponent and is stored as the second item of the f | oat data structure.

[> whattype(.33);

[> op(.33);

[> whattype(op(1, .33));

[> whattype(op(2, .33));

[>

The number 3. 3 isthought of by Mapleas 33* 107 (- 1) , and the number 33. isconsidered
33*10”0.

[> op(3.3);

[> op(33.);

This gives you an ideawhy decimal numbersin Maple are called "floats", or "floating point
numbers'. All three of the decimal numbers. 33, 3. 3, and 33. have the same mantissa and
they are distinguished by their different exponents. The exponent causes the decimal point to
"float around" the mantissa to give different decimal numbers. The term "floating point
numbers' is not unique to Maple. It is used throughout engineering and computer science to
mean the way that computers represent decimal numbers.

[>

Do not make the mistake of thinking that Maple floats are just Mapl€'s version of real numbers.
Mapl e floats are more subtle than that. For example the fraction 1/4 is equivalent as areal
number to the decimal number .25 which is also equivalent to the decimal numbers .250 and
.2500 since the trailing zeros do not change anything as far as real number are concerned. But
not in Maple. First of all, in Maple 1/ 4 isadatastructure withtypef racti onand. 25 isa
data structure with typef | oat , so they are not equal.

[> eval b(1/4=.25);

What about comparing . 25 and . 2507

(> op(.25);

[> op(.250);

Notice that the two data structures do not contain the same data items, so they are not the same
data structure. Not too surprisingly though, the eval b command says that they are equal.

Page 13

[> eval b(.25=.250);

Hereis an interesting way to see how the numbers 1/ 4, . 25,. 250, and . 2500 arerelated in
Maple. Recall that theeval f command is used to approximate an exact number with a decimal
number and theeval f command can take a second input that specifies the number of decimal
digitsto use in the approximation. Here are three different decimal approximationsof 1/ 4.

>a:=evalf(1/4, 2);
{>b::evalf(l/4, 3);
>c :=evalf(1/4, 4);

The previous three and the next three commands show that . 25, . 250, and . 2500 are
considered by Maple as three different approximations of 1/ 4 using different numbers of
decimal digits.

> op(a);
{ >op(b);

> op(¢);

The last example and the next one show that the number of decimal digitsin afloating point
number is just the number of digitsin the integer that is the mantissa part of the float data
structure. The next four commands compute four different decimal approximations, using
different numbers of decimal digits, of an integer.
> a .= evalf(1451, 1);
b := evalf(1451, 2);
c := eval f(1451, 3);
d := eval f(1451, 4);
op(a);
op(b);
op(¢);
L>op(d);
Here is another example.
[>a = 1.;

>b :=1.0;
| > c.= 1.00;
(> op(a);

> op(b);
L>op(c);
These examples show that the numbers 1. , 1. 0, and 1. 00 are three different numbers to
Maple, since they are stored with different datain their data structures. Why should we make a
distinction between 1. , 1. 0, and 1. 007 In engineering and physics applications, these
numbers have different meanings when they are interpreted as the results of making
measurements. The number 1. means a measurement that was not very precise while the
numbers 1. 0 and 1. 00 represent more precise measurements. An engineer, when told that the
result of ameasurement was 1. , would know that there was some error in the measurement and
the actual value was somewhere between . 5 and 1. 5. Told that the result of a measurement

[
V V.V V V V

Page 14

was 1. 0, the engineer would know that the actual value was between 0. 95 and 1. 05. When
told that the result of a measurement was 1. 00, the engineer would know that the actual value
was between 0. 995 and 1. 005.

[>

Maple can display floating point numbersin severa different ways. If adecimal number is not
too big or too small, Maple displaysit in the usual way.
(> evalf(Pi"Pi);
| > evalf(Pir(-Pi));
If the number gets kind of big (or small) then Maple switches to scientific notation.
> evalf(Pir(Pi™Pi));
| > evalf(Pir(-Pi"Pi));
If the number gets very big (or small) then Maple displays the actua float data structure.
> evalf(Pir(PirN(PIi"N2)));
| > evalf(Pir(-Pir(PiN2)));
If the number getsreally, really big (or small) then the float data structure cannot hold a
representation for the number and so Maple displays an error message (but it is the same error
message for too big and too small).
> eval f(PiN(PiNPi~PI)));
{> eval f(PiN(-Pir(Pi"Pi)));
[>

L[>
=] 12.2.5. Names (or symbols)

The names that we use for assigned and unassigned variables are themselves simple data
structures with the datatype synbol . Here are some examples.

[> whattype(X);

[> whattype(xyz);

Here is a name that needs left quotes.

[> whattype(" hello there);

[>

The only piece of datain a data structure of type synbol isthe nameitself.

[> op(Xyz);

[> nops(xyz);

Notice that the individual letters in the name are not considered the dataitems. It is the whole
name that is the (single) dataitem.

[> op(hello there);

[> nops(hello there);

Notice that the words in the name are not themselves data items. Again, it is the whole name
which isthe data item.

Page 15

Here is an example that shows how evaluation rules can help explain what might otherwise be
pretty confusing results. First, define alist and afunction.

(>f :=11,2,3]; # A list.

[> g :=x ->x"2; # A function.

In the next command, what t ype usesfull evaluation of f .

[> whattype(f);

In the next command g pointsto afunction so what t ype uses last name evaluation.

[> whattype(g);

Here isthe way to see what it isthat what t ype is checking.

[> "whattype' (f);

[> "whattype' (g);

L ast name evaluation can sometimes make a name act asif it were unassigned. Here is how we
find out the type of what g pointsto. We need to force the full evaluation of the name g.

[> whattype(eval (g));

Aswewill seein alater worksheet, functions are data structures with the data type pr ocedur e

>

Exercise: Explain the results of the following four what t ype commands.
[> abc := 123;

[> whattype(abc);

[> whattype('abc');

[> whattype(“abc™);

[> whattype(123);

[>

Exercise: Explain the result of the second what t ype command.
[> whattype(0);

[> whattype(%);

Hint: What does %refer to in the last command?

[>

L[>
ﬂ 12.2.6. Strings

Strings are a data structure made up of characters, just like the symbol data structure described
in the last subsection. However, strings are defined in Maple using the double quote key rather
than the left quote key used for symbols. Here are some examples of strings.

[> "Xxyz";
{> "a string can contain any characters, |ike these;, & @! ***
:?II;

[> "0123456789";
[> "There is not a lot that you can do with strings.";

Page 16

Strings and symbols may seem more similar than they really are. The symbol ~ hel | o

wor | d* andthestring " hel | o wor | d" arenot considered equal by Maple.

[> evalb("hello world ="hello world");

They are two data structures with different data types.

[> whattype("hello world);

[> whattype("hello world");

Both data structures contain only one piece of data.

[> nops(" hello world);

[> nops("hello world");

But notice in the next two commands that Maple does not quite consider them as containing the
same thing. Also, notice the subtle difference in the fonts used in the next two outputs.

[> op(" hello world);

[> op("hello world");

Theconvert command can be used to convert a name into a string and a string into a name.
[> convert(hello world, string);

[> convert("hello world", nanme);

We just mentioned that ast r i ng data structure contains only one piece of data, and gave as
evidence the nops command. But in fact, it isnot really clear just what Maple considers as the
datainast r i ng datastructure. For example, let s be anamefor thestring " hel | o wor | d"

[>s :="hello world";

[> whattype(s);

Thenops command impliesthat thereis only one piece of datain s.

[> nops(s);

But consider the following commands.

[> s[1];

[> s[2];

[> s[3];

[> s[11];

[> s[-1];

[> s[-2];

These commands would seem to imply, by analogy with the index notation for thel i st and
set datatypes, that s contains 11 pieces of data, i.e., each of the lettersin the string. The

| engt h command also backs up this claim.

[> length(s);

Whether or not a string has one or many dataitemsin it turns out not to be important. What is
more important is that we can use the index notation to access individual |etters from a string,
which is something that we cannot do with the lettersin a name.

[> "hello world"[3..-3];

[> "hello world [3..-3];

Page 17

The most important difference between strings and symbolsis that strings cannot be used as
variable names. Trying to use astring asavariable is an error.

[> "hello world" := 0;
Of course the following is allowed.
[> "hello world := 0O
[>

Exercise: Why do you think that Maple does not allow index notation with names to refer to the
individual letters of the name as it does with strings?

[>

So what are strings used for? Mostly as labels for graphs and as messages to be printed out by
the pri nt command (which we will make use of in later worksheets). Also, Maple's error
messages are strings.

> plot(x*2, x=-10..10, title="A graph of x squared.",
{ > titlefont=[COURI ER, BOLDOBLI QUE, 14]);
[> print("This is a nessage from Maple.");
[> plot(); # Cause an error nessage.

[>

It isworth noting that in versions of Maple before Maple V Release 5 there was no distinction
made between symbols and strings. In fact, the string data type did not exist and there was only
the symbol datatype. So symbols were used for two kinds of purposes, as variable names and as
"strings', i.e., labels for graphs and messages to be printed out (e.g., error messages). It was
finally decided that it was not very elegant to blur the distinction between these two uses of
strings of characters, so the string data type was defined. The double quote key was chosen to
define strings since it is commonly used for this purpose in other programming languages. But
the double quote key had been the last result variable! Soin Maple V Release 5 the last result
variable had to be redefined to be the percent key. If you should ever use an older version of
Maple, it is useful to remember this change in the Maple language.

[>

[>

=l1227. Equations and inequalities

Let us restart Maple, to avoid any confusion from previous assignments.
[> restart;

Earlier we defined an equation as an equals sign with an expression on either side of it. It turns
out that Maple considers an equation to be a data structure with datatype equat i on. An
equation data structure a\ways has two operands, the left and right hand sides of the equation.
Here are some examples.

Page 18

[> whattype(y = x"2);

[>op(y =Xx"2);

[>op(1, y =x"2);

[>op(2, y = x"2);

Maple has specia commands for accessing the operands of an equation data structure, | hs and
r hs.

[>1lhs(y =
[>rhs(vy

I |

xX X
> >
NN
SN N

Now we can be very specific about the meanings of the two kinds of "equals signs’ in aMaple
command like the following.

[> egn =y = x"2;

This command gave a hame to a data structure. The name given to the data structureiseqn, and
the data structure being named is the equation data structure y=x”" 2. Asfar as Mapleis
concerned, the following two commands are doing the same kind of thing, they are giving
names to data structures.

[>dsl := 1 = x"2 + y"2;

[>ds2 :=[1, "= , x, N, 2 "+, vy, "~,2];

[> whattype(dsl);

[> whattype(ds2);

(What are dl the left-quotesin ds 2 for? Describe in detail the contents of ds2.)

[>

There are three other data structuresin Maple that are closely related to the equation data
structure. These are the inequality data structures, <>, <=, <. Below are some examples of
inequality data structures.

[> X <> y;

[> whattype(x<>y);

[> op(x<>y);

[> utv <= 5;
[> whattype(u+v<=5);
[> op(u+v<=5);

[>5 <0
[> whattype(5<0);
[> op(5<0);

Should there be a>= and a > data structure? The answer is no, because they are not needed.

Maple automatically converts any "greater than" inequality into a"less than" data structure.
[>5 >0
[> whattype(5>0);

Page 19

[> op(5>0);

Notice how the order of the data itemsin the data structure are not what you would expect.
(> op(1, 50);

[> op(2, 550);

Unfortunately, this can get to be a bit confusing.
[> 1lhs(550);

[> rhs(5>0);

Here is another example.

[> X-y >=0;

[> whattype(X-y>=0);

[> op(x-y>=0);

[>

Equations and inequalitiesin Maple are not entirely equivalent to equations and inequalitiesin
standard mathematical notation. For example, the mathematical equation x =y =z means that X,
y, and z all have the same value. But if we trandate this directly into Maple, we get an error
message.
[>X =Yy =z
Equations and inequalitiesin Maple are not transitive. So we need to put parentheses into the
last equation in order for Maple to accept it. But neither
[>(x =y) =1z
nor
[>x =(y = 2);
means the same thing in Maple that x =y = z means in mathematics (we will see why shortly).
Similarly, we would want the following inequality to mean that x islessthan y and y isless than
z. But instead it gives us an error message.
[> X <=y <= Z;
The following two inequalities do not cause an error, but neither one has the meaning that we
want either.

> x <= (y <= 2);
L (x <=y) <=1z
We will see later what is the proper way to fix x<=y<=z.

[>

We have said before that equations (and also inequalities) are used to ask questions. An
equation or inequality data structure can be interpreted as being either true or false. The Maple
command eval b alows usto evaluate an equation or inequality data structure to seeif it istrue
of false. Here are some simple examples.

[> eval b(0>=5);

Here are two true inequalities.

[> eval b(0<1);

[> eval b(0<>1);

Page 20

Hereis an equation.

> X = b

>y =1

> eval b(x=5*y);
What do you think should be the result of the next command?
[> eval b((x=5*y)=(2*x-5=5*Yy));
Let us go over thisresult in detail. Each of x=5*y and 2* x- 5=5* y isan equation data
structure, and so (x=5*y) =(2* x- 5=5*y) isan equation data structure where each of the left
and right hand sides are themselves equations. It might seem that we are asking if these are the
same two equations. But they are definitely not the same equation, so that is not why the last
command returned true. The last equation is true because Maple uses full evaluation before the
eval b command is evaluated. Here iswhat the eval b command sees asitsinput just before it
IS evaluated.
[> "eval b' ((x=5*y)=(2*x-5=5*y));
If we delay the evaluation of the inner equations, then we can verify that they are not the same
equation.
[> eval b((' x=5*y")=("'2*x-5=5*y"));
[>

Aswe mentioned earlier, the following equation is syntactically incorrect.

[> eval b(1=1=1);

Putting in parentheses corrects the syntax but does not give us what we really intended. Why do
you thing the following two equations are false?

[> evalb((1=1)=1);

[> eval b(1=(1=1));

Hint: Which equal signiseval b evaluating? What is on either side of it?

Mathematically, the inequality 0<1<2 istrue. But 0<1<2 isnot correct Maple syntax so we
cannot even ask if itistrue.
[> eval b(0<1<2);
If we put parentheses in 0<1<2, then we can correct the syntax.

> (0<1) < 2
{ >0 < (1<2);
But if we put one of thesein theeval b command to seeif it might be true, we get one of
Maple's most inscrutable error messages.
[> eval b((0<1)<2);
Just what sum isit that this message isreferring to? Here is a hint.

>a:="a: b:="b":
{> eval b(a<b);
It seems that in the process of trying to determine if an inequality istrue or not, Maple at some
point converts the inequality into one involving zero. In the case of a<b, sincea and b are
unassigned, Maple cannot determine if thisinequality istrue or false so it just returns the

Page 21

inequality, but in the form a- b<0. (Maple could have chosen to use alphabetical ordering of
names to evaluate this inequality, but it did not.) Now back to (0<1) <2. Maple probably
converted thisto (0<1) - 2<0.

[> (0<1) - 2<0;

Now we see what sum Maple means and where it came from.

[> (0<1)-2;

[>

So how does one express in Maple the fact that 0<1<2. The answer comes from reading this
aloud, "zeroislessthan 1 and 1 islessthan 2". In Maple we trandate thisas 0<1 and 1<2.
[> eval b(0<1 and 1<2);
Similarly, we would express the mathematical notationx=y=zasx=y and y=z.

> X =3y =X zZ:= V!
{ > eval b(x=y and y=z);
When we evaluate an equation (or inequality) data structure as either true or false, we are
evaluating the equation (or inequality) as a boolean expression. The command eval b isan
abbreviation for "eval uate boolean”. In general, a boolean expression is any expression whose
valueis ether true or false (as opposed to, say, a number). Any two boolean expressions can be
combined using and or or . For example 1 <| x| isequivalenttox<-1 or x>1.Wewill
examine boolean expressions in more detail later in this worksheet and also in the worksheet
about Maple's control statements.

[>

While we are discussing inequalities and the eval b command, consider the following
command.

[> evalb(Pi<4);

Maple has no problem with the next two commands.

[> eval b(3.14<4);

[> eval b(eval f(Pi)<4);

| have no idea why Maple cannot make the comparison in the inequality Pi <4.

[>

Finally, notice that the equation data structure is alot like an ordered pair. In fact, Maple often
uses equation data structures as away to hold ordered pairs. One example of this that we will
see later isthe way Maple stores entries in atable data structure (in particular, the remember
table stored in a procedure data structure).

[>

L[>

=] 12.2.8. Ranges

We use ranges in many different situations in Maple. Here are few examples.

Page 22

[> x.(0..4);

[> seq(x"2, x=0..4);

[> plot(x->x"2, 0..4):

In this subsection we show that the "dot dot" operator (. .) isreally used by Mapleto define a
data structure, with the datatyper ange, that holds exactly two pieces of data (somewhat like
the equation and inequality data structures). Aswe will see, ar ange data structure is often
interpreted in Maple to mean some kind of range of numbers, but this interpretation is not
universal, and the two pieces of data in arange data structure can actually be used for almost
any purpose.

[>

Here is a simple example of arange data structure.

> p..ph2;

We can giveit a name.

(>r =%

We can ask what its datatype is and what are its pieces of data.

[> whattype(r);

[>op(1);

We cantry to useit.

[>seq(i, i=r);

[> w.(r);

Since the dataitems in our range do not yet evaluate to numbers, the range has limited use right
now. We can give p avalue, and then try using the range again.

> p o= 2

[> w (r);

[>seq(i, i=r);

Hereiswhat the seq command saw asits input before it was evaluated but after r and itstwo
data items were eval uated.

[>'"seq (i, i=r);

A range data structure can hold any two pieces of data, but if the data items of the range do not
evaluate to numbers, then the range will not work in most Maple commands.

[>

Notice that two levels of evaluation are needed beforer evaluatesto a'real” range. The next
two commands try to show these levels of evaluation.

[>eval(r, 1);

[>eval(r, 2);

[>eval(r);

Notice that theeval command did not evaluate the names inside the range when we asked for
levels of evaluation. When we used eval with alist data structure, eval was able to show the
levels of evaluation of the names inside the list. For some kinds of data structuresthe eval
command can show the levels of evaluation inside the data structure, but for some other data

Page 23

structureseval cannot (we saw another example of thisin the last worksheet with eval and
function calls).

[>

Here is another example of using a range that contains expressions instead of numbers. The
following seq command causes an error since the dataitems in the range do not evaluate to
numbers yet.

> x:="x":
{> seq(i, i=x..x"2);
Here is an interesting example of how we can give the expressions in the range a value. We can
take this seq command and nest it inside of another seq command. The outer seq command
gives valuesto the rangein theinner seq.
[> seq(seq(i, i=x..x"2), x=1..5);
The last command created an expression sequence of expression sequences. It can be a bit hard
to see where the sub expression sequences begin and end in the output. Hereisa slight
modification of the last command that creates an expression sequence of lists.
[> seq([seq(i, i=x..x"2)], x=1..5);

Exercise: Write asingle command that will generate an expression sequence of lists where each
list contains the first n odd integers.

[>

Exercise: Write asingle command that will generate alist of lists where each list contains the
first nintegers each raised to the nth power.

[>

Now let uslook at the interpretation that Maple gives to arange data structure. The meaning of
arange a. . b need not be "all the numbers from a to b". The meaning of arange depends a
great deal on the context in which it is used. For example in the following command
[>seq(i, 1=-2..2);

therange- 2. . 2 means al integers from -2 to 2. But in the command

[>plot(i, i=-2..2);

therange- 2. . 2 means all real numbers from -2 to 2. And in the command

[>op(-2..2, [a, b, ¢, d, e,]);

therange- 2. . 2 does not have a meaning, it caused an error. On the other hand the range

2. .- 2 worksfinein the next op command.

(> op(2..-2, [a, b, ¢, d, e, f]);

Therange 2. . - 2 does not cause an error in the following seq command, but it resultsin no
output (because the range is interpreted here as an empty range).

[>seq(i, 1=2..-2);

Andinthefollowing pl ot command, 2. . - 2 seemsto beinterpreted just like- 2. . 2.
[>plot(i, i=2..-2);

Page 24

So the meaning of arange data structure is very command dependent!

[>

L[>
=] 12.2.9. Function calls

The last of Mapl€e's basic data structures that we describe in this section isafunction call (also
referred to as an unevaluated function call). Thisis anything of the form

nane(expr seq)
that is, aname followed by aleft parenthesis followed by an expression sequence followed by a
right parenthesis, and where nane may be either an assigned or an unassigned variable. Hereis
an example of afunction call.
[> f(x, Yy, 2);
[> whattype(%);
[> op(%%0);
Notice that Maple callsthe datatypef unct i on, whichisconfusing sincef (the name part of
this function call) need not be the name of any Maple function. The operands of the function call
data structure are the operands of the expression sequence between the parentheses. Hereis
another example.
[> a_funny_name(z"2, [a,b,c], x, 2/3);
[> whattype(%);
[> op(%%0);
[>

The unevaluated function call data structure has two main interpretations in Maple depending on
whether the name in the function call is an assigned or unassigned name. Thefirst is, not
surprisingly, to represent function callsin the usual sense when the name in the function call is
assigned to a function definition. Here are afew examples.

[> whattype(exp(x));

[> whattype("sin(Pi)");

(Why were right-quotes needed in the last example? What would be the type if they were

removed?)

[> whattype('(z -> z"2)(wW)');
>f 1=z -> z:

L whattype("f(u)");

Notice the difference between the last what t ype command and the next three.

[> whattype(f);

[> whattype(eval (f));

[> whattype(f(u));

Sincef pointsto afunction definition, by last name evaluation f evaluatesto f , so

what t ype(f) returnssynbol . If weforcefull evaluation of f , then

what t ype(eval (f)) returnspr ocedur e, which isthe data type of a Maple function
definition that uses the arrow notation. And by the full evaluation rule and the definition of f ,

Page 25

f (u) evaluatesto u, whichisaname, sowhat t ype(f (u)) returnssynbol . Thiscan get a
bit confusing. Remember that a function definition is stored in a data structure with data type
procedur e (that we will look at in a different worksheet) and that f unct i on isthe datatype
of afunction call data structure that represents just the form of a function call.

[>

Mapl€e's other interpretation of afunction call data structure is as akind of tagged, or labeled,
expression sequence. Thisisthe way Maple interprets a function call in the case where the name
at the front of the call is an unassigned name. The name at the front of the function call is the tag
(or 1abel) for the expression sequence inside the parentheses.

[> nmy_so_far_undefined function(12, -2, 102);

[> whattype(%);

[> op(%%);

Maple makes use of alot of these kinds of tagged expression sequences. Here is an example of
Maple returning an unevaluated function call data structure as the result of a Maple command.
[> X = "X":

[> solve(x"5-x+1=0);

[> whattype(%);

[> op(%%);

The information that Maple wanted to pass on as the result of the sol ve command was placed
in an unevaluated function call data structure.

[>

Here is another example of how Maple can store information in an unevaluated function call.
L et us make an assumption about the variable x.

[> assunme(x>0, x<=5);

Now we ask Maple about x.

[> about(x);

We see that Maple stores the information about the assumptions on x in a couple of nested
unevaluated function calls, Real Range(Open(0), 5) . Try changing the assumption on x
and seeing how Mapl e stores the new assumption.

[>

Here is another example of Maple returning an unevaluated function call as the result of a
command.
(> evalf(PIN(PIMNPIiN2)));

ACRY
%]

The number p P istoo large for Maple to display the usual way, so it displaysit as afloat
data structure, and it uses an unevaluated function call to display the data structure. Notice
though that the type of thisresultisf | oat , not f unct i on likein the last example.

[> whattype(%);

[> op(%%0);

Page 26

[>

Notice that the following two data structures, called f c1 and f c2, have the same data type and
contain the same data items in the same order, but they are not the same data structure. So what
distinguishes them?

> fcl .= h(a, b, ¢);
| > fc2 .= k(a, b, ¢);
> whattype(fcl);
| > whattype(fc2);
> op(fcl);

> op(fc2);

[> evalb(fcl =fc2);
A funct i on datastructure has a feature that most other data structures do not have, a zero'th
dataitem. The zero'th dataiteminaf unct i on data structureisthe nane that appearsin front
of the parentheses as part of the function call.

> op(0, fcl);
{> op(0, fc2);
So thisis how Maple distinguishesf c1 from f c2. If it were not for thef unct i on data
structure's zero'th dataitem, f ¢ 1 and f ¢c2 would be indistinguishable. (Recall that for most data
types, the " zero'th dataitem” as returned by the op command is the data type of the data
structure.)
[>

Here is another example of looking at the zero'th dataitem in an unevaluated function call.
[> sol ve(x"5-x+1=0);

[> whattype(%);

[>op(O, %0);

[> op(%866);

[>

M aple makes extensive use of unevaluated function call data structures. Many of Maple's
predefined internal data structures are unevaluated function call data structures that often
contain other unevaluated function call data structures as operands. A good example of this, that
we will examinein detail later, isthe PLOT data structure used to describe Mapl€e's graphs.

[>

The official definition of an unevaluated function call data structure and the official definition of
the unevaluated function call datatype in the Maple help pages both say it is of the form nane(
expr seq). But in reality, Maple has a much broader idea of what an unevaluated function call
Is. We have aready sneaked into this section one example of this broader definition.

[> whattype('(z -> z"2)(wW)");

[>op(0, "(z->z"2)(W)");

Page 27

[> whattype(%);

Sowejust saw af unct i on datastructure of the form pr ocedur e(expr seq) and not nane
(expr seq). Hereis another example.

[> whattype('5(-2)");

The next two commands also verify that Maple interprets 5(- 2) asafunction call data
structure.

[> type('5(-2)', function);

[>op(0, "5(-2)");

5 isnot aname.

[> whattype(%);

Noticewhat 5(- 2) evaluatesto.

[>5(-2);

[>

Exercise: What function does the function call 5(- 2) refer to?

[>

Here is another example of afunction call that is not of the form nane(expr seq).

[> f(x)(y,2);

Let us check that thisreally is an unevaluated function call.

[> whattype(f(x)(y,z));

What are the operands?

[> op(f(x)(y,2z));

[>op(O, f(x)(y,2z));

Sof (x)(y, z) isafunction cal of theformf unct i on(expr seq). In particular, the name
of the function being calledisf (x) . Noticethatinf (x) (v, z),thef (x) part represents both
the value of one function call and the function of another function call. To put it another way,
for the expressionf (x) (y, z) to make sense, it must bethat f represents a function whose
value is another function (in particular, a function of two variables). In an optional section of the
worksheet about functions we looked at examples of functions that return functions. Hereis an
example that works with the expressionf (x) (v, z) .

[>f 1= x -> (u,V)->UrX+v/X;

Noticethat f isnot afunction of three variables. It isafunction of one variable that returns a
function of two variables. Hereiswhat f (x) evaluatesto.

[> f(x);

Hereiswhat f (4) lookslike.

[> f(4);

Notice how thevalue of f (4) isafunction of two variables. Hereiswhat f (x) (y, z)
evaluates to.

[> f(x)(y,2);

[>

Page 28

Exercise: What do you think Maple is doing when it evaluates the following expression?
[> (a,b)(c,d);
[>

Exercise: Let us define an expression named f .
> x:="x":
{ > f = XN2+X+3;
Recall that we evaluate an expression at a point using the subs (or the eval) command.
[> subs(x=1, f);
Recall that we pointed out earlier that it is amistake to use functional notation to try and
evaluate at a point a function represented as an expression.
[> f(1);
Try to make sense out this last output. What did Maple do to get it? In particular, in the next
output, why are the x's displayed using two different typefaces?
[> f(x);
(Hereisahint.)
[> (h+k) (x);
[>

Exer cise: Suppose that you mean to enter the expression (5 +w) (3 - w) into Maple and so you
type the following.

> Wo="W
L (5+w) (3-wW) ;
Y ou forgot the multiplication symbol * . Explain, with as much detail as you can, how Maple
parsed the input (5+w) (3-w) .
[>

Exer cise: Suppose you want to represent the mathematical function g(x) = (- 3) (- 2) as
an expression and then evaluate it at x = 2. So you make the following two mistakes.

> x:="x":
{> g = (x"2-3)(x"2-2); # Mstake 1.
(> 9(2); # M st ake 2.
Explain the last output as best you can.
[>

Exer cise: Suppose you want to represent the mathematical function g(x) = (x* - 3) (* - 2) as
aMaple function and then evaluate it at x = 2. So you make the following mistake.

[> g =X -> (x"2-3)(x"2-2);

Now evaluate g at 2.

[>9(2);

Notice how subtle the mistake is! Explain the last output as best you can.

[>

Page 29

expression.

[>

L[>

> data_structure 1 :=[1,2];

> data_structure 2 := {1, 2};

> data_structure 3 := 1=2;

> data_structure 4 := 1/2;

> data_structure_5 := eval (100, 1);
> data_structure 6 := 1..2;

> data_structure 7 := h(1,2);

> op(
> op(
> op(
> op(
> op(
> op(
> op(

data_structure_1);

data_structure_2);
data_structure_3);
data_structure_4);
data_structure 5);
data_structure_6);

data_structure 7);

But they al have distinct data types.

> what t ype(
> what t ype(
what t ype(
what t ype(
what t ype(
what t ype(
what t ype(

VVVVV

data_structure_1);

data_structure_ 2);
data_structure_3);
data_structure_4);
data_structure_ 5);
data_structure_6);

data_structure 7);

Page 30

#
#
#
#
#
#
#

If you start to use Maple alot, believe me, you will make the mistakes that the last four
exercises demonstrate. And these can be hard mistakes to track down in long, complicated
calculations, especialy the last one! After years of doing mathematics, we are so used to seeing
(x"2-3) (x"2-2) ascorrect that it is easy to pass over it when double checking alarge

=112.3. Data vs. data structurevs. data type

Here is an example that shows that a data structure is more than just the data contained in it, but it
also includes the way the data is organized or interpreted (which is expressed as the data structure's
data type). Below are seven data structures.

a list

a set

an equation

a fraction

a float

a range

a function cal

AI | seven of these data structures contain exactly the same data.

I n every one of these data structures, the data in the data structure is the same and in the same order,
thetwo integers 1 and 2. But the fact that this datais interpreted differently is very apparent in the
last four examples where 1 and 2 represent the fraction 1/2, the decimal number100 (to one decimal
place), the range from 1 to 2, and the inputs in the function call h(1,2), respectively. The way to
think about thisisthat a data structure includes not just the data, but it also includes away of

interpreting the data, away of giving meaning, or structure, to the data.
[>

L L>
=112.4. Data typesin mathematics

In mathematics, the notion of a"datatype” exits, but it israrely ever mentioned. For example, in a
mathematics book, the notation (1, 2) can have (at least) two distinct meanings. the point in the
plane with coordinates 1 and 2, and the open interval in thereal line between 1 and 2. Each of these
meanings of (1,2) has adifferent "data type", but when you see the notation (a,b) in a math book,
you cannot ask the book "what is the data type of (a,b)?" (that is, "what does (a,b) mean?'). Instead,
you are supposed to realize from the context what the notation means. On the other hand, Mapleis
not smart enough to understand an implied context; Maple needs to always be told explicitly what
we are talking about. So if we want to tell Maple about the point (1,2) in the plane, we would use a
list datatype|[1, 2] andif we want to tell Maple about the interval (1,2) we would use arange data
typel. . 2. Notice that Maple uses syntax to distinguish different kinds of data types. Some
mathematics books will aso try to use syntax to distinguish between different data types. For
example, some books use the notation <1,2> to mean an ordered pair, to distinguish it from the open
interval (1,2). But these different syntaxes are not universally used, and even when used, the idea
that one istrying to distinguish between data typesis never mentioned.

[>

>
I=112.5. Nested data structures

Let us restart Maple to avoid any confusion from previous assignments.
[> restart;

Hereis an example of adata structure where each piece of datain the data structure isitself a data

structure. We will refer to data structures like these as nested data structures.

{ > conpl ex_data structure :=[[a,b,c,d..abcd], {10,20,30.0}, 1/2
1;

[> whattype(conplex _data_structure);

[> nops(conplex _data_structure);

[> op(conplex data_structure);

The data structure has three pieces to it. What is the data type of each individual piece?

[> whattype(op(1l, conplex data_structure));

[> whattype(op(2, conplex_data structure));

[> whattype(op(3, conplex _data structure));

Each piece of the data structure isitself a data structure so the pieces of the data structure have their

own pieces.

Since each piece of the original data structure is a data structure, we can apply the op command to

Page 31

each of the individual pieces.

[> op(op(1l, conplex_data_structure));

[> op(op(2, conplex _data_structure));

[> op(op(3, conplex data_structure));

Now notice that two of the data elements listed above are themselves data structures. We can once
again use the op command to see what the pieces are from these data structures.

[> op(4, op(l, conplex data structure));

[> op(op(4, op(l, conplex_data _structure)));

[> op(3, op(2, conplex data_structure));

[> op(op(3, op(2, conplex data structure)));

Notice how we used nested op commands to "take apart” a nested data structure and look at all of its
most elementary data elements. Nested commands like these are not easy to read, but we will be
using them quite a bit as we dig deeper into how Maple works. Most of the data structures that
Maple uses to do symbolic mathematics are in fact nested data structures.

[>

There is ageometric way to visualize how these data structures are nested within data structures.
The two graphs below are called data structur e trees. Each shows how data structures are nested
withinconpl ex_dat a_st ruct ur e. Thefirst graph emphasizes the sub data structures
contained inconpl ex_data_struct ure.

[[a,b,c, d..abcd], {10,20,30.0}, 1/2]

/ | \
/ | \
/ | \
[a, b,c, d..abcd] {10, 20, 30. 0} 1/ 2
[1] \ . \ /\
T \ / | \ [\
[\ / | \ [\
a b c d..abcd 10 20 30.0 1 2
/ \ /\
/ \ [\
d abcd 300 -1

[>
The second graph emphasizes the data types of the sub data structures contained in each data
structure. Notice how in the second graph, by working your way up from the "bottom" nodes of the
graph to the top node you can reconstruct the original data structure, even though it is not explicitly
shown anywhere in the graph (likeit isin the first graph).

list

Page 32

| ist set fraction

1]\ /\ /\
[1]\ [\ / \
a b c¢c .. 10 20 float 1 2
/[\ /\
/ \ [\
d abcd 300 -1

Notice how al of the "bottom" nodes of these graphs are either integers or names. These data
elements are data structures that cannot be taken further apart. We sometimes refer to the data types
of these data elements as primitive data types.

[>

Based on this geometric way of visualizing nested data structures we can define what we will call
the levels of anested data structure. We will say that a piece of data or a data structure is at then'th
level of a nested data structureif it takes n nested op commands to access theit. For example, the
set{10, 20, 30.0} isatthefirstlevel of conpl ex _data_struct ure,thefloat 30. 0 isat
the second level of conpl ex_dat a_st ruct ur e, andthenameabcd isat thethird level.

> op(2, conplex _data structure); # One op
command.

> op(3, op(2, conplex data_structure)); # Two op

| commands.

> op(2, op(4, op(l, conplex data_structure))); # Three op
comands.

Notice how the levels of a nested data structure are exactly the "levels' of its data structure tree. The
nested data structure itself is at level zero, since you do not need an op command to accessit, and it
is the top node of the data structure tree. The pieces that are drawn just below the top node are the
pieces that are at level one and you need one op command to access them. As you go down the tree
from one node to a node below it, you need one more op command to access whatever is at the
lower node. (Do not confuse "levels of a data structure” with "levels of evaluation”. They are
different ideas.)

[>

We will define the height of a nested data structure to be the number of levelsthat arein the data
structure. So our exampleconpl ex_dat a_st ruct ur e hasheight 3.

One common thing to do with complicated, nested data structuresisto ask if a particular data
structure or piece of datais contained somewhere in the data structure. Maple has two special
commands for asking questions like this, the nenber and has commands. The command has asks
if something isin adata structure at any level. The command nenber asksif something is at the
first level of adata structure.

Page 33

[> has(conplex_data_structure, abcd);

[> menber (abcd, conplex_data structure);

[> menber([a,b,c, d..abcd], conplex data structure);

Notice how, even though these two commands serve very similar purposes, one of them has the data
structure asits first parameter and the other has the data structure as the second parameter. This
makes sense if you think of the commands has and nenber asbeing used in an "infix" instead of
"prefix" position. So we could read the command has(dat a_structure, data_item as
the question"dat a_st uct ure has data_it enf?'. And we would read the command
menber (data_item data_structure) asthequestion"isdata it emanenber of
data_structure?'.

[>

Here is an example of a nested data structure that contains several unevaluated function calls
h(g(x,3,z),w,f([a,b,sin(Pi)])).Herearedatastructure treesfor this data structure.

h(g(x,3,z), w, f([a,b,sin(Pi)])) or function
/ | \ /A A
/ | \ / | \
g(x, 3, z) w f([a, b, sin(Pi)]) function w
function
A | I\ |
A | N I
X 3 z [a, b, sin(Pi)] X 3 z list
I \ I
\
/ | \ I
\
a b sin(Pi) a b
function
I
|
Pi
Pi
[>

Notice that in the second expression tree, the one that emphasizes the data types rather than the sub
expressions, there is something missing. The names of the functions that are being called cannot be
recovered from the tree diagram. So we will sometimes use the following version of a data structure
tree. For unevaluated function call data structures, we will use the name of the function in place of
the name of the datatype, f unct i on. Recall that the name of the function is the zero'th data
elementinaf unct i on datastructure, so using this notation in the data structure tree allows us to

specify al of afunction cal's data.
h

Page 34

[>

Exercise: Draw adata structure tree, smilar to the one we just drew, for the data structure
f(h(23,-2),15,9(h(0,1))).Noticehow, if you were given the definitions of the functions
f, g and h, you would evaluate this function call by working your way up the data structure tree
from the bottom to the top.

[>

Another example of a nested data structureis (x=y) =(0=- 2) . Thisis an equation data structure
that contains two more equation data structures. Here is a data structure tree for this equation.

[>

Exercise: What are the data structure trees for x<=(y<=z) and (x<=y) <=z and (x<=y) >=z7?
(Be careful about the third one.)
[>

We mentioned earlier that levels of a data structure are not the same thing as levels of evaluation.
Let uslook at an example that compares these two ideas. Here is the data structure we will use|[a,
[b,c], {d, e, f}] andwewill usethe following assignments.

[> data_structure :="'[a, [b,c], {d, e, f}]";
[>a:=Db"; b:="c¢'; c:=-1;, d:="f"; e:="f"; f:=¢9g";
Now we will evaluate the data structure using different levels of evaluation.
[> eval (data_structure, 1);

[> eval (data_structure, 2);

Page 35

[> eval (data_structure, 3);

[> eval (data_structure, 4);

For each level of evaluation we get a new data structure. We could draw a data structure tree for
each of these data structures. Notice how alevel of evaluation may or may not lead to a change in

the structure of a data structure tree.
[>

Exercise: Draw the data structure trees for each data structure in the last example.

[>

Exercise: Start with the same expression asin the last example[a, [b,c], {d,e, f}].Use
the following assignments

[>a:="b"; b:={"'c,'"f'}; c:=-1;, d:="a"; e:="f"; f:="¢g";

and draw the expression tree for each data structure that results from evaluating the original data
structure to a different level.

(> eval([a, [b,c], {d,e, f}], 1
[>eval([a, [b,c], {d,e, f}], 2
[>eval([a, [b,c], {d,e f}], 3
[>eval([a, [b,c], {d,e, f}], 4
[>

Notice how a data structure tree can "grow" in some places and "shrink" in other places asthe
original data structure is evaluated.

[>

In the next few sections we will see that a Maple expression is an example of a nested data structure.
We will use data structure trees, which we will call expression trees when dealing with expressions,
asaway of understanding the "structure” of an expression.

[>

(>
=112.6. Expressions as data structures

Now that we have |looked at some elementary data types and data structures, let us return to the idea
of an expression. We have said several times that an expression is adata structure. So if it isa data
structure, what isits data type? Let us look at an example. Define an expression in the variable x and
give it aname (but first make sure that x is unassigned).

> X = "X
{ > f = xN2+2*x-1;
If it isadata structure, as we are claiming, what isits data type?
[> whattype(f);
Theexpressionisa ™ + datatype becauseit isasum of terms. What are the pieces of data stored in
this data structure?

Page 36

[>op(f);

The pieces of data are the terms of the expression. But each term of the expression isitself an
expression, so each piece of datain the expression f must itself be a data structure. What are their
data types?

[> whattype(x"2);

[> whattype(2*x);

Thefirstterm of f isa™ " datatype becauseit is an exponentia term, and the second termisa

" *° datatype becauseit is a product. What is the data type of the third term?

[>

The last four commands show that an expression like x*2+2* x- 1 is adata structure (of type " +")
made up of three pieces of data each of which isitself adata structure (of types™ **, "~ , and
I nt eger). So an expression is an example of anested data structure.

Notice we say that x"2+2* x- 1 isadata structure of type +" , not +.

[> type(x"2+2*x-1, "+);

[> type(x"2+2*x-1, +);

We need the left-quotes around the plus sign because ™ +° isthe name for the datatype and in
Maple + cannot be aname. Similarly, 2* x isadata structure of type " * * , not *.

[> type(2*x, ~*°);

[>

The expression a* x 2+b* x+c isalso adata structure to Maple. Let us see how it can be
manipulated. First let us define it and give it a name.

[> quad : = a*x"2+b*x+c;

Check what its data typeis and see how many operands it has.

[> whattype(quad);

[> nops(quad);

Here are the operands of the data structure.

[> op(quad);

Let uslook more closely at the first operand. What is its data type and what are its operands?

[> op(1l, quad);

[> op(op(1l, quad));

Let uslook at the second operand in this last output, that is, the second operand of the first operand
of quad.

[> whattype(op(2,op(1,quad)));

[> op(op(2,0p(1, quad)));

What we are doing is taking a data structure (i.e. quad) and tearing it apart, or breaking it down into
its basic components using the op command.

[>
We can also built up adata structure. First, let us use the seq command to create an expression

Page 37

sequence data structure

[> seq(x™i, 1=0..7);
Convert the expression sequence into alist.
[>[%;

Now use the add command to convert thelistintoa™ + data structure. Examine the following
command carefully and make sure you understand the meaning and purpose of every character init.
[> add(op(i,%, i=1..nops(%);

Here is a much more compact and terse version of the last command. This version makes i
successively represent each term from the list data structure, and adds up these terms.

[> add(i, i=%%b);

We have built up a data structure that represents a polynomial. Now we can usethef act or
command to further manipulate our data structure and factor it.

[> factor(%);

Of course, this produced a new data structure. What is its data type and what are its operands?

[> whattype(%);

[> op(%0);

It isimportant to realize that most of Maple's commands for doing symbolic algebra are really
commands for manipulating data structures.

[>

Here is another example of the idea that a data structure is more than just the data contained in it.
First let us make sure that x and y are unassigned.

(> xi=x" y:="y':

Here are three different data structures (i.e., expressions), x+y, x*y, and xy.

[> whattype(x+y);

L > op(x+y);

[> whattype(x*y);

L > op(x*y);

[> whattype(x"y);

L > op(XMy);

So x+y, x*y, and x"y are three different data structures, but all three contain the same data (and in
the same order).

[>

Let uslook at another example of taking apart an expression. Thistime the expression is a bit more
complicated and the data structure that represents the expression is not at al obvious. Here isthe
expression, arational function.

[>7r1r = (x+1)/(x"2-1);

What isits data type?

[> whattype(r);

It would have been reasonableto expect a™ / = datatype for division, but it turns out that Maple
does not have such adatatype. Here are the operands of r . Thishelpsexplainwhy r hasa™ *°

Page 38

datatype
[>op(1);
Now let us examine each of the operands of r .
> whattype(op(1,r));
L whattype(op(2,r));
Notice that the second operand of r isof type " (for exponentiation). The following command
shows why.
[> op(op(2,r));
Mapl e represents the second operand of r asx” 2- 1 raised to the - 1 power. The following
expression, r 2, shows how Maple really thinks of the expressionr .
[> r2:=(x+1)*(x*2-1)"~(-1); # This is how Mapl e thinks of r,
The next command shows that Maple really does consider r and r 2 as the same expression.
(> evalb(r=r2);
Here is another way to write the expression r . It can be simplified.
[(>r3 :=simplify(r);
However, Maple does not consider the expression r and its smplified version r 3 to be the same
expression. They are very different as data structures.
[> evalb(r=r3);
In the next section we will draw data structure treesfor r and r 3 and see why they are so different.

[>

Exercise: Draw the data structure tree for the expression 2* x+3/ x.
[> 2*x+3/ X;

[>

Exercise: Draw the data structure tree for the expression 2* x*2+3/ x" 2.
[> 2*x"2+3/ x"2;
[>

L[>

=112.7. Expression trees

Asan exercise, let ustake the expression r from the last section and break it down into its most
basic parts and see how they are organized together to maker .
[>7r1 = (x+1)/(x"2-1);
Hereiswhat is at the top (zero) level.
> r;
| > whattype(r);
Hereiswhat isat thefirst level of r .
[>op(r);
| > whattype(op(1l, r)), whattype(op(2, r));
Hereis part of the second level, the part under op(1, r) .

Page 39

[> op(op(1l,r));

Let uslook at these two parts of the second level.

> op(1, op(1,r));

| > whattype(op(1, op(1,r)));

> op(2, op(1,r));

| > whattype(op(2, op(1l,r)));

Now we can go back and look at the other part of the first level.

> op(2,r);

L > whattype(op(2,r));

Here isthe rest of the second level, the part under op(2, r) .

> op(op(2,r));

L > whattype(op(1, op(2,r))), whattype(op(2, op(2,r)));

Here is one part of the second level that isunder op(2, r) .

(> op(2, op(2,r1));

. > whattype(op(2, op(2,r)));

Here is the other part of the second level that isunder op(2, r) .

> op(1, op(2,r));

| > whattype(op(1, op(2,r)));

Now we can look at the third level.

[> op(op(1, op(2,r)));

Thethird level has two pieces. Hereis one piece.

> op(2, op(l, op(2,r)));

| > whattype(op(2, op(1l, op(2,r))));

Here is the other piece of the third level.

> op(1, op(1l, op(2,r)));

. > whattype(op(1, op(1l, op(2,r))));

Finally, we can look at the two pieces of the fourth level of r .

[> op(op(1l, op(l, op(2,r))));

[>

Let us notice afew things. First, to access something from level n of r , we needed to use n op
commands. Recall that thisiswhat we mean by the "levels of a nested data structure” and we will
also use thisto define the "levels of an expression”. Second, what we have figured out above can be
given a geometric representation as a tree diagram, and the levels of r correspond directly to levels
in the tree diagram.

(x+1)/(x"2-1)

/ \
/ \
xX+1 (x"2-1)"M(-1)
[\ / \
/ \ / \
X 1 x"2-1 -1
/ \

Page 40

X 2
Thistree diagram is called an expression treefor r . Thelevelsof r are exactly the levelsin the tree
diagram. Hereisanother way to draw an expression treefor r .

[>
/ \
/ \
/ \
/ \
N N
/[\ / \
/ \ / \
X 1 T+ -1
/[\
/ \
A -1
I\
/ \
X 2

The first form of the expression tree emphasizes the sub expressions contained in r . Each node of
thetreeisone of r 's sub expressions. The second form of the expression tree emphasizes the data

type that each sub expression has. Each node is either the name of a data type or a"primitive" data
structure.

[>

Exercise: Draw the expression tree for the expression r 3 from the last section (that is, the
simplified expression for r).
>'r' o=
{> r3 :=simlify(r);
[>

In the above expression trees, notice how the type of each sub expression is exactly the arithmetic
operator that is evaluated at that level. So the organization of the data structure for r directly reflects
the rules for the precedence of arithmetic operations. The higher an arithmetic operation's
precedence is, the lower it isin the expression tree. Maple would evaluate this expression by
working it way up the tree, from bottom to top. Here is another example that shows this. First let us
define and name another expression.

[> q = 3*Xx"2+y;

Page 41

Hereisthe top level of the expression.

> Q;
{> whattype(q);
Here are the sub expressions at thefirst level.

[>op(q);
Hereis one of thefirst level sub expressions.
{> op(1, q);

> whattype(op(1,q));

Here are the sub expressions at the second level of g.
[> op(op(1,q));
Here is one of the second level sub expressions.
{> op(2, op(1,q));
> whattype(op(2, op(1,q)));
Finally, here are the pieces of the third level of .
[> op(op(2, op(1l,q)));
The expression trees for g ook like the following.

3*XN2+y or T+
/ \ / o\

/ \ / \
3*x"2 y * y
[\ [\

/ \ / \
3 X2 3 A
[\ I\
X 2 X 2

The exponential, which has the highest order of precedence in this expression and is computed first,
isamost at the bottom. The multiplication, which is computed next, is at the middle level. And the
addition, which has the lowest order of precedence in this expression, and so it is evaluated last, is at
the top level. Given values for the variables x and y, Maple would evaluate this expression by
working its way up the expression tree.

[>

Exercise: Y ou can change the order of the operations in an expression by inserting parentheses into
the expression. Draw the expression trees for the expressions (3* x) 2+y, 3* x*(2+y) and
(3*x)"(2+y) , each of whichisq with parenthesesinserted in it to change the order of the
operations. Notice how, even though the parentheses do not show up in the expression tree, the order
of operationsis clear from the structure of the expression tree.

[>

Exercise: Draw the expression treefor si n(x"2+x/y) -exp(3*z*f (x, Pi *y)).
[>

Page 42

Exercise: This exercise compares the ideas of levels of evaluation and levels of an expression. First
make the following assignments.

> unassign('a', 'b', 'c', 'd, 'e, "'f', 'g", "h);
{>a ='¢c': b:='a:c:=2.d:="f': e:=1. f :="Db":
Now consider the following expression (3* a+b+h/ d) “e+f . Draw an expression tree for this
expression. Then draw an expression tree for the expression that results when we evaluate
(3*a+b+h/ d) ~e+f toonelevel (given by the next command).
[> eval ((3*atb+h/d)”e+f, 1);
Now draw an expression treefor (3* a+b+h/ d) “e+f evaluated to two levels.
[> eval ((3*atb+h/d)”e+f, 2);
Draw an expression treefor (3* a+b+h/ d) “e+f evaluated to three levels.
[> eval ((3*at+b+h/d)”e+f, 3);
Draw an expression treefor (3* a+b+h/ d) ~e+f evaluated to four levels.

> eval ((3*a+b+h/d)"e+f, 4);
{ Draw an expression treefor (3* a+b+h/ d) “e+f evaluated to five levels.
[> eval ((3*a+b+h/d)"e+f, 5);
The expression (3* a+b+h/ d) “e+f evaluated to six levelsisfully evaluated.
[> eval ((3*atb+h/d)”e+f, 6);
Notice how, with each level of evaluation, Maple tries to compute as much of the expression tree as
it can. Asthe expression is evaluated to more levels, more branches of the expression tree can be

"pruned off" starting from the leaf nodes of the tree and working up the tree.
[>

Exercise: Isit possible that alevel of evaluation can cause an expression tree to "grow™ a branch?
To put it another way, can an expression tree become more complicated as we increase the levels of

evaluation?
[>

L L>
=112.8. Why ar e expression treesimportant?

Here is an example that seems puzzling at first. Let us define an expression.
[> w = X+2+si n(x+2);
Now let us try and do a simple substitution, something that we might do in calculus. We will
substitute u for x+2 in the expression w.
[> subs(x+2=u, w);
Why did that not work? Only one of the x+2 terms was replaced in the substitution. The answer
comes from looking at the expression trees for w.
[>
X+2+si n(x+2) or +
/ | \]\

Page 43

I I]\

X 2 sin(x+2) X 2 sin
| |
| |
X+2 +
[\ / o\
/ \ / \
X 2 X 2

The explanation of why thisisthe correct expression tree comes from the following commands.
Notice that at the top level, wisasum of three terms, and the third term is a function call that
contains only one operand, the sub expression x+2.

[> op(w);

[> op(3,W);

[> op(op(3, W));

Now we can use the expression tree to explain why the subs command did not do what we
expected it to do. The subs command can only replace sub expressions when it does a substitution.
The expression x+2 only appears once in w as a sub expression (see the first expression tree). So the
subs command only did one substitution! In the online help for the subs command, this kind of
substitution is called syntactic substitution.

Y ou might think that adding a pair of parentheses to the expression wwould help with the
substitution but it does not. Let wl be wwith an extra pair of parentheses.

[> wl = (x+2)+si n(x+2);

Notice that Maple just dropped the parentheses from wl. And the following command shows that
wl isexactly the same expression (i.e., has the same expression tree) as w.

[>op(WL);

How can we get around this kind of limitation in the subs command? Here is one way, and then we
will look at another way which uses a different substitution command. The first way isto use atrick.
Instead of substituting u for x+2, we shall substitute u- 2 for x.

[> subs(x=u-2, w);

That worked.

Here is another substitution command that can also be used.

[> al gsubs(x+2=u, w);

Theal gsubs command worked the way we originally thought the subs command would. This
substitution command does what the online help calls algebraic substitution (and hence the name
of the command). Algebraic substitutions are more general than the kind of substitutions that are
used in calculus. Consider the following example. Suppose we want to replace X* in the expression

2 with u, but in an "algebraic way" rather than in the usual calculus way.
[> al gsubs(x"2=u, x"3);

Page 44

Notice that the following subs command does not do anything. (What is the expression tree for
xX"37)
[> subs(x"2=u, x"3);

[>

Exercise: In calculus, what would be the result of letting u be X* in the expression x*? Try to find a
way of doing this substitution with Maple. (Hint: Usethe subs or theal gsubs command and use

atrick similar to the one we used above with subs.)
[>

Exercise: Find two ways to get Maple to substitute wfor x*2/ 2 inthe expression
3*x"2/ 2*exp(5*x"2/ 2).
[>

Exercise: The following substitution is perfectly legitimate in Maple even though at first glance the
2=3 may not seem to make sense.

[> subs(2=3, x"2+sin(2*Pi*x));

Explain this last substitution in terms of the expression tree for x*2+si n(2* Pi *x) . Now
consider the following substitution.

[> subs(-1=1, 1/x-x);

Explain this last substitution using the expression tree for 1/ x- x.

[>

In this section we saw the need for expression trees to help us understand the subs command when
it does its form of syntactic substitution. Thisisjust one of many ways that understanding
expression trees isimportant for working with Maple.

Exer cise: Read the help page about the subsop command. Compare and contrast the subs and
subsop commands.

[>

Note: If we try to explain the following substitution in terms of an expression tree, we run into
problems.

[> subs(1=2, x+y+2);

In the way that we have drawn expression trees, there would be no term 1 anywhere in the
expression tree for x+y+2, so it is not clear how Maple made the substitution. The answer is that
the way we have drawn expression trees is not exactly how Maple represents expressions internally.
Maple'sinterna representation for an expression is really quite a bit more complicated than an
expression tree. Maple uses something called a directed acyclic graph. If you want to know more
about this, see Introduction to Maple, 2nd Ed., by Andre Heck, Chapter 6.

[>

Page 45

L[>
=112.9. Some other basic data types (optional)

According to the online help for thewhat t ype command Maple has 29 basic data types. So far
we have discussed 17 of these. Theyare **, "+, .., <, <=, <> "= "N expseq,
float,fraction,function,integer,|ist,set,string,andsynbol .Inthissection
we discuss eight of the remaining basic data types. They are the three logical datatypes ™ and",

“or ,and not ", unevaluated dotted and indexed names, ser i es,uneval ,and :: " .Inthe
next section we discuss two more of the basic datatypes, t abl e and ar r ay. Of the remaining two
basic data types, we will discuss pr ocedur e in the worksheets about procedures, and we will not
discussthe hf ar r ay datatype.

[>

=] 12.9.1. Logical datatypes

Maple has three logical datatypes, and , or ,and not . These datatypes and their data
structures are used to build up boolean expressions. A boolean expression is analogous to an
algebraic expression but a boolean expression evaluates to either of the logical valuest r ue or
f al se (instead of an algebraic value, like anumber). Just asthe + and ~ *° data structures
are used to represent the operations of addition and multiplication in an algebraic expression, the
“and’, or ,and not datastructures are used to represent the logical operations of
conjunction, digunction, and negation in a boolean expression. Here is an example of a
boolean expression.

[>not(a or b or ¢) and d;

L et us analyze this expression much as we would analyze an algebraic expression. First, let us
give our anonymous boolean expression a name.

[> bexp := %

What type of data structureisit?

[> whattype(bexp);

How many operands are there?

[> nops(bexp);

What are the operands?

[> op(bexp);

Check the data type of each operand.

[> whattype(op(2, bexp));

[> whattype(op(1l, bexp));

Let us analyze the first operand of bexp.

[> nops(op(1, bexp));

[> op(op(1l, bexp));

[> whattype(op(1, op(1,bexp)));

[> nops(op(1, op(1,bexp)));

The last result may be a bit surprising. The next command explains why the result was 2 (and
not 3).

Page 46

[> op(op(1, op(1,bexp)));

Notice, interestingly, how the boolean expressiona or b or c isstoredinavery different
way from an algebraic expression likea + b + c.

[> nops(a or b or c);

[>nops(a +b +c);

[>

Exercise: Use the information from the previous commands to draw an expression tree for the
boolean expression bexp.

[>

We should briefly mention the difference between and, or , not and ~ and” T, not’
Each of and, or, and not isaMaple keyword. These three keywordsrepreﬁentln Maplethe
three logical operations of conjunction, disunction, and negation. On the other hand, “ and ",
“or ,and not areMaple names. These are the names given in Maple to the three | ogical
data types. Hereis an example of the distinction between and and ~ and" . The following
command asksif theexpressiona and bisan and datastructure.

[>type(a and b, "and);

Notice that each of the following commandsis a syntax error.

[> type(a and b, and);

[>type(a and b, "and’);

Notice how, in the first of the above two error messages, the placing of left-quotes around the
keyword and is abit misleading (since a keyword is not a name). Notice also that when Maple
returns the name of a datatype, it does not use left-quotes.

[> whattype(a and b);

[>

We will make quite a bit of use of boolean expression when we get to the worksheets about
Maple programming, in particular when we discuss conditional statements and while-loops. We
will explain a more about boolean expressions in those worksheets.

[>

[>
=] 12.9.2. Dotted names
An unevaluated dotted name is another data structure that holds an ordered pair of dataitems,
much like equations and ranges. For example, here is an unevaluated dotted name data structure.
[> whattype('"x.i");
[> nops("x.i');
[>op("x.1");
The data structure holds the two items that are on either side of the dot.

If we let Maple evaluate the dotted name, then it becomes a name and is no longer a data

Page 47

structure of type " . * . Hereis an example of an evaluated dotted name.
[> whattype(x.i);

Unlike the range and equation data structures, an unevaluated dotted name data structure cannot
hold two arbitrary pieces of data. The piece of data on the |eft side of the dot must be a name. If
we try to put anything other than a name on the left side of the dot, we get a syntax error.

(> 27.1;

[> (X+y).i;

> (x). 10

On the right hand side of the dot, we can put pretty much any dataitem. But Maple can evaluate
adotted name only if the item on the right side of the dot is a name, an integer, or arange. For
example, hereis an unevaluated dotted name data structure that cannot be evaluated to a name
(so we do not need left quotes to delay its evaluation).

[> whattype(x.(i%]));

[> nops(x. (i));

[>op(x. (i%));

Here is an example of an evaluated dotted name with arange to the right of the dot.

[> X.(-3..3);

Notice that this evaluated to an expression sequence of names. Here is the unevaluated dotted
name data structure that Maple just evaluated..

[> whattype("x.(-3..3)");

(> nops("x.(-3..3)");

[>op("x.(-3..3)");

[>

Since an unevaluated dotted name data structure can evaluate to a name, we can put one on the
right of the dot of another dotted name. In other words, we can nest unevaluated dotted name
data structures. Here is an example of a nested, unevaluated dotted name data structure.
[> whattype("x.i.j)");
[> nops("x.i.}]");
[>op("x.0i.]");

> op(1, "x.i.]");
{> whattype(op(1, "x.i.j"));

> op(2, "X.0i.j");
{> whattype(op(2, "x.i.j"));
Notice how the above commands show that the dot operator is left associative. If we remove the
left quotes, Maple has no trouble evaluating x. i . j , since there is a name on both sides of both
dots.
(> x.0.];

Hereisadlight variation on the previous example. In this example we use a pair of parentheses
to change the order of evaluation of the dot operators. Notice how the parentheses in the
expression change the structure of the underlying data structure.

Page 48

[> whattype("x.(i.j)");
[> nops('"x.(i.j)");
[>op("xX.(i.j)");
{> op(1, "x.(i.j)");

> whattype(op(1, '"x.(i.j)"));
{> op(2, "x.(i.j)");

> whattype(op(2, 'x.(i.j)"));:
[>

Asafinal note, notice that even though parentheses are allowed in the expression x. (1.]) to
change the order of the evaluation of the dots, for some reason parentheses are not allowed in an
expression like (x. i) . | , which, since the dot operator is|eft associative, should be equivalent
tox.i.].

[> (x.0).];

[>

L L>
ﬂ 12.9.3. Indexed names

An unevaluated indexed name data structure is very much like an unevaluated function call data
structure. Hereis an example of an unevaluated indexed name data structure.

(> f:=1f":

[> whattype(f[x,y]);

[> nops(f[x,y]);

[>op(f[x,y]);

Recall that Maple has a special way of typesetting (or pretty printing) an indexed name as a
subscripted name. Remember that typesetting an indexed name is not the same as evaluating it.
The following indexed name is unevaluated since it is still an unassigned name.

L[> f[x,y];

Like an unevaluated function call data structure, an unevaluated indexed name data structure has
azero'th dataitem, which isthe header for the indexed name.

[>op(O, f[x]);

Like an unevaluated function call data structure, an unevaluated indexed name can hold an
arbitrary number of arbitrary dataitems. Here is amore complicated example of an unevaluated
indexed name data structure.

[> whattype(f[x"2, 12, a-b, u=v"2]);

[> nops(f[x"2, 12, a-b, u=v~™2]);

(> op(f[x"2, 12, a-b, u=v"2]);

If we let Maple typeset thisindexed name, then we get a very strange looking name. Again,
remember that typesetting an indexed name is not the same thing as evaluating it. The following
indexed nameis still unevaluated.

[> f[x"2, 12, a-b, u=v"2];

[>

Page 49

Even the header for an indexed name can be pretty complicated. If we want the header to be
something other than aname (or alist or a set), we need to enclose it on a pair of parentheses.
[> (r~™t=z7"3)[x"2, 12, a-b, u=v"2];

[> whattype((r"t=z"3)[x"2, 12, a-b, u=v”2]);

[> nops((r~t=z"3)[x"2, 12, a-b, u=v"2]);

[> op((r*t=z73)[x"2, 12, a-b, u=v~”2]);

[>op(O, (r*t=z73)[x"2, 12, a-b, u=v~™2]);

[>

Exercise: Say as much as you can about the following expression.
> [1[1;
[>

Here is an example of an evaluated indexed name. The header isthelist[a, b, c, d] .
[>[a,b,c,d][2..3];

Here is the unevaluated indexed name that Maple just evaluated.
[>'[]a,b,c,d][2..3]";

[> whattype('[a,b,c,d][2..3]");

[>op(O, "[a,b,c,d][2..3]");

[>op("[a,b,c,d][2..3]");

[>

We can nest unevaluated indexed name data structures inside of each other. The next three
indexed names show three different ways of nesting unevaluated indexed name data structures.
Thefirst has an indexed name as aregular operand of an indexed name data structure. The
second has an indexed name as the zero'th operand of an indexed name data structure. And the
third has indexed names as both aregular and the zero'th operand of an indexed name data
structure.

L[> f[o[0]];

[> f[0][0];

[> fl[ol[9[0]];

Notice how much thefirst two look alike when they are typeset. It is very difficult to tell them
apart, though if you look very closely you can see adlight difference in the spacing of the letters.
The following pairs of commands show how each of these three data structures is put together,
which makes it easy to see that they really are different.

> op(0, f[g[0]]);

op(f[g[O]]);

op(0, f[g]l[0]);

op(f[gl[0]);

op(0, f[gl[g[0]]);

op(f[gll[g[O]]);

[
vV V.V V V V

[

Page 50

Exercise: Say as much as you can about the following expression.
[>[a,b,c,d][2..3][-1];
[>

Exer cise: Describe the structure of the following expressions.
[> fIx](y,2);

[> () [y, z];

[> fIx]ly. z];

> fIx]([y.z]);

L[> (F[x]) [y, z];

[>

L[>
=112.9.4. Series

An infinite series would obviously be a difficult object to store in a computer. But infinite series
are very common mathematical objects, so Maple needs away to represent them. Maple
representsinfinite serieswith aser i es data structure.

[>

Infinite series are hard to write down completely on paper also, so mathematics has various
ways of representing them abstractly. In order to distinguish between a sum of afew terms, like
this
X X X
1+x+—+—+—
2 6 24
and an infinite series

3 X4

I+X+ T+ +—+..
2 6 24

we often use an ellipsis, that is the three periodsin arow (...), to mean "go on adding for ever".
Maple uses asimilar kind of notation when it displaysaser i es data structure, but instead of
using the ellipsis notation, Maple uses a "big-oh" kind of notation. Here is a command that
createsaser i es data structure.

[> series(exp(x), x=0, 5);

The last term in the output, O(x°), denotes that this output representsaser i es data structure.

The X in the last term indicates that the seriesisin the variable x and that the next term of the
serieswill have order 5. Hereisanother ser i es data structure that represents the same infinite
series but it displays more terms explicitly.

[> series(exp(x), x=0, 10);

Let usgive our first (anonymous) ser i es data structure a name so that we can analyze it more

conveniently.
[> exp_series := %%

Page 51

L et us check the data type of this data structure.

[> whattype(exp_series);

L et us see how many operands the data structure contains and what the operands are.

[> nops(exp_series);

[> op(exp_series);

Thisser i es datastructure represents five explicit terms from the infinite series plus the last,
big-oh, term that tellsusthat thisisaser i es data structure. Each explicit term from the series
isrepresented intheser i es data structure by two numbers, the coefficient of the term and the
exponent of the term (in that order). The last, big-oh, term is aso represented by two items, the
specia item O(1) (which is an unevaluated function call data structure) and an integer that
denotes the order of the next term in the series. The next few commands analyze the term O(1)
to show that it really isjust an unevaluated function call.

[> op(1ll, exp_series);

[> whattype(op(1ll, exp_series));

[> op(0, op(ll, exp_series));

[> op(1l, op(1ll, exp_series));

[>

Here is another example of aser i es data structure.

[> series(cos(x), x=0, 4);

This data structure should have six operands.

[> nops(%);

[> op(%%0);

Notice that theser i es datastructureis efficient in the sense that it does not waste any space
storing terms from the series that have zero coefficient. In the last example, the first and third
degree terms from the series have zero coefficient, and they are not represented in the data
structure.

[>

Notice that theser i es data structure seems to be missing some information. From just the
dataitemslisted by the op command, we cannot determine the series that the data structure
represents. For example, compare the following ser i es data structure and its contents with the
previous example.

[> series(sin(w, w=Pi /2, 4);

[> nops(%);

[> op(%%0);

Thelast two ser i es data structures contain the exact same data items, though they represent
different series. The information that ismissing fromaser i es datastructure is the term that

the seriesisin. Thefirst of the last two examplesis aseriesin x, and the second isa seriesin

W - % Thisinformation isin fact stored in the zero'th dataitem of the ser i es data structure

(recall that thisiswhere Maple usually stores the data type of a data structure).

Page 52

[> series(cos(x), x=0, 4);
[> op(0, 9;

[> series(sin(w, w=Pi /2, 4);
[> op(0, %;

[>

Maple has three commands that can create ser | es data structures, seri es, t ayl or, and
numappr ox|[| aurent] (fromthe numappr ox package). Here are some examples of series
created by these commands.

[> exp(x"2*sin(x));

(> taylor(% x=Pi, 4);

Theser i es datastructure can represent series that are more general than the power series
from calculus. The following command computes a Laurent series, which alows for negative
exponents in the series.

[> exp(x)/sin(x)"2;

[> numapprox[laurent](% x=0, 8);

[> whattype(%);

[> nops(%%0);

[> op(%8%0);

Theser i es command can produce some pretty unusual series. The next exampleisaseriesin
the variable x that has coefficients that are themselves functionsin x.

[> series(x"x, x=0);

[> whattype(%);

[> nops(%%0);

[> op(%86);

[>

Surprisingly, the result of theser i es command need not beaser i es data structure.
[> series(1/(1+sqgrt(x)), x=0);

[> whattype(%);

[> nops(9%%);

[> op(%866);

Thelast ser i es command produced a sum that looked like a series. Thefollowing ser i es
command produces a series that looks like a sum.

[> series(3*x"2-2*x+5, x=0);

[> whattype(%);

[> nops(9%%);

[> op(%66);

[>

It is worth mentioning that Maple has a command for converting seriesinto sums,
convert/ pol ynom

Page 53

[> series(In(x+1l), x=0);

[> convert(% polynom);

[> whattype(%);

Theresult of theconver t / pol ynomcommand need not be a polynomial however, since a
series can be more general than a power series.

[> series(In(x+1)/x"3, x=0);

[> convert(% polynom);

[> whattype(%);

[> type(%% polynom);

[>

Note: In mathematicsit is aso common to study infinite products along with infinite sums. For
example, hereis avery famous infinite product.
ekt 50
sin(z)=z§0 Eel 2 e
n=1 (n p) ﬂb
However, Maple does not have a special data structure for representing infinite products like it
has for representing infinite sums.

[>

[>

=] 12.9.5. Unevaluated expressions

Maple has a highly specialized data structure of type uneval for holding unevaluated
expressions. Consider the following simple example. First give x avalue.

| > X 1= 5;

In the next command, Maple fully evaluates x before calling what t ype, so 5 is passed to
what t ype, whichreturnsi nt eger .

[> whattype(x);

In the next command, Maple strips off one layer of delayed evaluation from' x' before calling
what t ype, so x ispassed to what t ype, which returnssynbol .

[> whattype('x');

In the next command, Maple strips off one layer of delayed evaluation from' ' x' ' before
calingwhat t ype, so' x' ispassed towhat t ype, which returns the special datatype
uneval .

[> whattype("'x'");

In the last command, what t ype was passed a data structure that holds an unevaluated
expression. Here is a dlightly more interesting example. First givey avalue.

([>y = 3;

In the next command, Maple fully evaluates x +y before calling what t ype and so passes an
integer to what t ype.

[> whattype(x+y);

In the next command, Maple removes one layer of delayed evaluation from* x+y' before

Page 54

calingwhat t ype and so passestowhat t ype a” + data structure.

[> whattype('Xx+y');

In the next command, Maple removes one layer of delayed evaluation from"' ' x+y"' ' before
caling what t ype and so passesto what t ype the unevaluated expression ' x+y" .

[> whattype("'Xx+y'');

Mapl e places the unevaluated expression ' x+y" in adatastructure of typeuneval . A data
structure of type uneval aways holds exactly one dataitem, the expression that is
unevaluated. Let us confirm this for the unevaluated expression ' x+y' .

[> nops("' Xx+y'");

[>op(""x+y'");

Here is another way to verify that ' x+y' isanuneval datastructure and that it contains only
one operand.

[> op(0, ""x+y'");

[>op(1, ""x+y'");

[>op(2, ""x+y'");

[>

Exercise: Explain how Maple evaluates the following command and why it returns what it does.
[> op("' x+y' +y");
[>

Note: When we get to Maple procedures we will discuss the idea of procedure parameter type
declarations and the "uneval" procedure parameter type. Unfortunately, the "uneval procedure
parameter type" uses the term "uneval” in away that isrelated to, but not exactly the same as,
the "uneval datatype”.

[>
L[>
=l1296."::"
The : : " datastructureis, like the equation and range data structures, a data structure that
holds exactly two operands that can be thought of as aleft and aright hand side. Hereis an
exampleof a” : : ~ datastructure.

[> w :integer;

[> whattype(%);

[> op(%%0);

[> type(%8 "::);

Unlike the equation and range data structures, the " : : * data structure is not widely used. In fact
it has only one very specific use. It is used to hold type declarations in the parameter lists for
procedure definitions. A typical useof a” : : = data structure would look something like this.

[> proc(w :list, n::posint) op(n,w end,

[>op(1, %);

Page 55

[>op(1, %W06)[1];
[> whattype(%);

[> op(%%0);

We will say much more about type declarations for procedure parameters in the worksheets
about Maple programming (although we will never need to make any referenceto " : : ~ data
structuresor the " : : ~ datatype).

[>

Note: The: : notation does have some other usesin Maple. We can use: : as a shorthand for
thet ype command. Here are a couple of examples.

[> type(5, integer);

[> eval b(5::integer);

[> type(x+y, "+);

[> eval b((x+y):: +);

[> 5::integer and (x+y):: +;

The second bullet item of the help page for thet ype command mentionsthat x: : t can be
used asasynonymfort ype(x, t), though we have just seen that it is not a direct synonym
unlessit is used in aboolean expression. The pat mat ch and t ypenat ch commands also use
the: : notation as part of their syntax for pattern matching.

[>

L L[>

=112.10. Tables and arrays (optional)

Tables and arrays are two very important and closely related data structures. Both data structures can
be though of as away to generalize the list data structure. Arrays alow for more than just one
integer index and tables allow for more general indices than just integers. Both data structures
permit the use of index functions for computing, rather than looking up, the value associated with an
index. Arrays are also the basis for Maple's vector and matrix data types, which are used to model
mathematical vectors and arrays from calculus and linear algebra.

[>

=112.10.1. Tables

A table data structure can be thought of as a generalization of alist data structure. A list holds
items, and the name of each item is the name of the list indexed with an integer. A tableis adata
structure that holds items much like alist, but the name of each item is the name of the data
structure indexed by an arbitrary expression.

When we create alist, Maple "indexes' the items in the list automatically, using the order of the
itemsin the definition of the list. For example define the following list (of symboals).

[>1| :=[first, second, third];

Theitemsin thislist are automatically indexed in the obvious way.

Page 56

> ' 1[1]"
> " [2]"
>
>

1[1],
1121,
1[3];

(3]

[

Now let us see how we create atable and put indexed itemsinto it. Here is a command that
creates a table data structure.

[> table();

Thet abl e command created an empty table. Thistable is also anonymous, so let us giveit a
name.

[>t =%

Now let us put some items into this table. Since an item in a table can have an arbitrary index,
Maple cannot automatically index atable for us. So when we put an item in atable, we need to
explicitly tell Maple what the index should be for the item. Here is how we put two itemsin the
table and inform Maple what we want the index for each item to be.

[> t[apple] := red;

[> t[pear] := green;

By using the name of the table along with an index we can recall an item from the table.

[> t[pear], t[apple];

Here is how we can see what isinside the whole table data structure.

(> eval(t);

[>

It is also possible to ssmultaneoudly create atable and put indexed itemsinto it. The following
command creates and initializes a table and then namesit t , all in just one command.

[>t .= table([appl e=red, pear=green, orange=orange, math=fun]);
We initialize the table by giving thet abl e command alist of equations. In each equation, the
left hand side is the index for the item on the right hand side. Each pair of an index and an item
is often called akey-value pair. The index is considered a key and the item is the value for the
key. Sometimesit is useful to find out what all the keys or values are for atable. Thei ndi ces
command returns a sequence of al of the keysin atable.

[>indices(t);

Theent ri es command can be used to get a sequence of all of the valuesin atable.

[> entries(t);

[>

Exercise: Explain why thelist returned by the i ndi ces command cannot have any duplicates
init. Explain why thelist returned by theent r i es command may contain duplicates. We say
that atableis 1-1if there are no duplicatesin thelist returned by ent r i es.

[>

So far we have seen how to usethet abl e command to create both an empty and a non empty

Page 57

table and we have seen how to add indexed items (i.e. key-value pairs) to atable by using an
assignment statement. We can also remove items from atable by unassigning the item's indexed
name. Let us remove an item from the table named t .

[>t[math] := "t[math]";

[>eval(t);

[>

We can create atable implicitly (as opposed to explicitly by using thet abl e command) by
assigning a value to an indexed name where the header of the indexed name is unassigned. Let
us make sure that the name T is unassigned.

> T =T
The next command (implicitly) creates atable named T.
[> T[sonething] := anything;

[>eval(T);

If we now unassign the name T[sonet hi ng] , that will not destroy the table named T, it will
just make T an empty table.

[> T[sonmething] :="'T[sonething]";

[>eval(T);

To get rid of atable (whether it is empty or not), we need to unassign the table's name.

> T =T

[>eval(T);

[>

Now let uslook more carefully at the contents of atable data structure. A table data structure
needs to store items and an index for each item. Recall that our table data structure named t
holds three key-value pairs.

[>eval(t);

So how many operands does this data structure hold, given that the table has three key-value
pairs?

[> nops(eval (t));

Thistable is considered a data structure with two operands in it. But that does not really seem to
make sense for thistable. Let us see what these two operands are.

[> op(eval (t));

Again, this does not seem to make sense. The above command returned only one operand, alist.
Let us ask for each of the two operands from the table data structure individually.

(> op(1, eval(t));

(> op(2, eval(t));

The second dataitem in our table is alist of equations. It isthislist that holds the data that we
are interested in, the table items and their respective indexes. Notice that the first dataitemin
our tableis NULL, the empty expression sequence. In general, the first dataitem of atableis
either NULL or the name for something called an index function. We will discuss index
functionsin alater section.

Page 58

In general, atable data structure holds two items. The first item is either the name of an index
function or NULL, and the second item isalist of key-value pairs stored in equation data
structures.

[>

Notice that when we were analyzing the structure of the table named t , we always used the
eval command insidethenops and op commands. Hereiswhy. A tableis one of the data
structures for which Maple uses last name evaluation.

[> whattype(t);

[> whattype(eval (t));

So without the eval command, t evaluatesto the namet , and nops(t) will return 1.

[> nops(t);

But the op command evaluatest in an unusua way. If op(t) wereto use last name evaluation
fort,thenop(t) wouldreturnt , since asymbol isadata structure that contains just one
operand which isthe symbol itself. If op(t) wereto usefull evaluationfort , thenop(t)
would return the operands of thetablet . But op(t) does neither of these two things.

[>op(t);

The command op(t) returnsthetableitself, soop(t) actslikeeval (t) . On the other hand,
the command op(0, t) useslast name evauation.

[> op(0, t);
Andthecommandop(1,t),likeop(t),actslikeeval (t).
[> op(1, t);

We will see thiskind of behavior from the op command again when we look at the array data
structure in the next section and the procedure data structure in the next worksheet.

[>

The table data structure acts differently from other data structures with respect to some other
commands also. Consider how the subs command works with tables. Hereis atable named t t
with two key-value pairs.

[>tt = table([x"2=x"3, x"4=4]);
Here is what we would expect the data structure tree for this table to look like.
[>
tabl e([x*2=x"3, x"4=4]) or tabl e
[\ / \
/ \ / \
/ \ / \
NULL [x"2=x"3, x"4=4] NUL L list
/ \ / \
/ \ / \

Page 59

xN2=x"3 XxN4=4 = =S

/\ /\ /\ /\
[\ [\ /[\ [\
/ \ / \ [\ [\
X"2 x"3 x4 4 REAREEEEA AT 4
/\ /\ /\ /\ /\ /\
[\ 1\ /[\ A T A N A
X 2 x 3 X 4 X 2 x 3 x 4

Let us try doing some substitutions with this table. The expression x” 3 isin the table data
structure, so we can substitute for it.

[> subs(x"3=sin(x), eval (tt));

The expression 4 isin the table data structure twice, but we can only substitute for one
occurrence of it.

[> subs(4=5, eval (tt));

The expression x”* 2 isin the table data structure, but we cannot substitute for it.

[> subs(x”2=new_i ndex, eval (tt));

The expression x*4=4 isaso in the table data structure, but we cannot substitute for it either.
[> subs((x"4=4)=(new_i ndex=new_iten), eval (tt));

It seems that we can only substitute for expressions that are on the right hand side of each
equation data structure within the table data structure.

[>

Recall that we described nesting indexed names in the subsection on unevaluated indexed name
data structures. Here are two ways that we can nest indexed names.
[>"ti[nmn]]";
[>"t2[m[n]";
Notice that the structure of these two names is hardly distinguishable when they are typeset.
Here are their structures as unevaluated indexed name data structures.
r op(0, "ti[nin]]");
>op("tifnin]]");
r op(0, "t2[m[n]");
>op("t2[m[n]");
Let us assign a value to each of these indexed names (which will implicitly create two new
tables).
[>tl[n]n]] Pi;
[>t2[n[n] := Pi;
From the structure of the unevaluated indexed name' t 1[n{ n]] ' , we would expect the first
assignment to create atable named t 1 with asingleindex named n{ n] and avalue of Pi . Let
us check this.
[>eval (t1);
From the structure of the unevaluated indexed name' t 2[n [n] ~, we would expect the

Page 60

second assignment to create atablenamed t 2[n] with asingle index named n and a value of
Pi . Let us check this.

[>eval(t2[m);

Notice that we now have an indexed name, t 2[nj , with avalue (itsvalue isatable). That
means that we must also have atable named t 2 with an index named mand avaluethat isa
table. Let us check this.

(> eval(t2);

So when we assign avalue to the nested indexed namet 2[ni [n] , we create nested table data
structures, but when we assign a value to the nested indexed namet 1[n| n] | we create atable
data structure but not a nested one. One thing that is a bit odd about thisis that the nested
indexed namet 2[i [n] doesnot really look nested, but it creates nested tables, while the
nested indexed namet 1[n{ n] | really doeslook nested, but it creates a simple, un-nested
table.

[>

Exercise: Look again at the table named t 1.

[>eval (t1);

There is an indexed name m, in the table with the value p. Why doesn't this mean that thereisa
table named mwith an index named n and avalue of Pi ?

[>eval(m);

[>

Exercise: Explain the structure of each of the following tables. (Notice how, in the typeset
version of each assignment statement, there is almost no distinguishable difference in the form
of the indexed name on the left hand side of the assignment operator.)

(> t3[nmn]][0] := Pi;

[>t4[m[n[o]] := Pi;

[>t5[m[n][o] := Pi;

[>eval(t3);

[>eval(t4);

[>eval(t5);

[>

Hereis an interesting difference between lists and tables. We have seen that atableiswhat is
sometimes called a dynamic data structure. That means that the size of atable can be changed
after the tableis created. We can add items to and delete items from atable. On the other hand, a
list is not dynamic. We say that alist is a static data structure. Once alist has been created, we
cannot change the length of the list by adding to or deleting from it. For example, hereisthe list

| that we created at the beginning of this section.

> 1

Suppose that we try to put afourth item in the list the same way we that would put anitemin a
table.

Page 61

[>1[4] .= fourth;

Thereisaway to makel anameforthelist[first, second, third, fourth].Hereis
how we can do it.

(> :=[I[], fourth];

But this command did not really "add f ourt h tol ". It used theold list| to createanew list |
and thentheold list | wasin fact "destroyed". As this example shows, adding to and deleting
from alist can be cumbersome (think about adding an item to the middle of thelist |). One of
the reasons that tables are so useful in Mapleis that they are dynamic data structuresand so it is
easy to add items to and delete items from them.. In the general study of computer science, the
differencesin working with static and dynamic data structures is an important topic.

[>

Exercise: Add theitem zer ot h to the beginning of thelist | . Doesit really become the zero'th
itemin the list?

[>

>
=l 12.10.2. Arrays

An array data structure is, like atable, another way to generalize the list data structure. Like lists
and tables, an array data structure holds multiple items and the name of each iteminan array is
given by the name of the array and an index. Like tables, an array can have multiple indices, but
like lists, the indices must be integers. Like tables (and unlike lists) an array can be created
without putting anything into it but like lists (and unlike tables) an array is a static data structure,
not a dynamic one, meaning that the size of an array is fixed when the array is created.

We usethe ar r ay command to create array data structures. Since the size of an array data
structure is fixed when it is created, we need to tell the ar r ay command how big of an array to
create. We do thisby giving the ar r ay command arange of integers. The following command
creates an array that holds five items, and the items are indexed with the integers from 1 to 5.

[> array(1..5);

The last command created an empty, anonymous array. Notice that the array displayed itself as
containing five subscripted question marks. Thisis because the array does not yet have aname
that can be subscripted and there are not yet any values assigned to the dlots in the array. Let us
give the array a name.

[>a =%

Notice how the array redisplayed itself in a completely different way. It used arange to denote
the size of the array and it used an empty list to denote that no values have been assigned to the
array yet. The next command shows athird way for this array to display itself, thistime using
the name for the array as part of the name for each entry in the array.

[>print(a);

Surprisingly, the next two commands display the array the same way as when it was first
created, before it had aname.

Page 62

[>eval(a);
[>op(a);
Let usput avaueinthe array.
(> a[3] :=sqrt(Pi);
The next three commands show three different ways to display the array. They all show that the
array holdsfive items, indexed from 1 to 5, and that only the third entry in the array holds a
value. In addition, the first display also shows that the array is named a.
[>print(a);
[>op(a);
[> op(eval(a));
Since an array is not a dynamic data structure (like atable), and the array a has length fiveand is
indexed with the integers from 1 to 5, we can only make assignments to the indexed names
al1],a[2],a[3],a[4] ,anda[5] . If wetry to use the header a with any other integer
index, we get an error message.
[> a[6];
[> a[0];
If we use the header a with a symbolic index, Maple does not complain, it just treats the name
as an unevaluated indexed name.

> a[six];
{> whattype(%);
Thisis because the unassigned name si x may later be given an integer value between 1 and 5.
But if wetry to assign avaueto theindexed name a[si x] (which we could doif a werea
table), then we get an error message.
[> a[six] := 6;

[>

When we created the array a we used therange 1. . 5 to specify two things, that the array
should hold five items and that the items should be indexed with the integers from 1 to 5. We
can create another array that also holds five items but is indexed with a different range of
integers. The next command creates an array of size five with the itemsin the array indexed
with the integers from -2 to 2. Notice that this array finds still afourth way to display itself (this
display looks more like the display for atable).

[>array(-2..2);

The following command creates an array of size five indexed from 119 to 124.

[> array(119..124);

We can give this array aname.

[>b =%

And we can place a couple of valuesinto the array.

[> b[120] := sqgrt(2);

[> b[123] := sin(Pi/9);

The following three commands show three different ways to display this array.

[>print(b);

Page 63

[> op(b);

[> op(eval (b));

We can remove a value from an array by unassigning the value's indexed name.
[> b[123] := 'b[123]";

Now the array b has only onevaluein it.

[> op(eval (b));

We can destroy an array by unassigning its name.

[>Db :="Db";
[> op(eval (b));
[>

We mentioned above that unlike lists and like tables, arrays can have more than one index. We
create an array with more than one index by giving the ar r ay command more than one range
of integers. The following command creates an array that holds 12 items and the items are
indexed with two integers, one index running from 1 to 3 and the other index running from 1 to
4.

[>array(1..3, 1..4);

Notice that the array was displayed in a"matrix" form, with three rows and four columns. When
we givethe ar r ay command two ranges, the first range determines the number of rows and the
second range determines the number of columns. And from looking at the way the indices are
placed on the question marks in the array we see that the first index in an indexed nameisthe
row index and the second index is the column index. Now let us give this anonymous array a
name.

[>Cc =%

Let us assign a value to the second entry in the third row of the array.

[>c¢[3,2] := Pi/sqgrt(2);

Here iswhat the array looks like now.

[>print(c);

In principle, arrays can have any number of indices. But arrays with one or two indices are the
most important and the most common. Arrays with only one index are called one-dimensional
arrays and arrays with two indices are called two-dimensional arrays. In general, an array with
nindicesis caled an n-dimensional array.

[>

Exer cise: Does anything seem unusual about the result of the third of the following three
commands?

[>array(1..3, 1..3);

[>%2,2] :=05

[>m:= %W

[>

When we usethe ar r ay command to create an array we can also tell the command to initialize

Page 64

some, or all, of the entriesin the array. The following command creates a one-dimensional array
of sizefive, indexed from 1 to 5, with only the first three entriesin the array initialized.

(> array(1..5, [1,4,9]);

Notice that the initialization values were placed in alist. If we givethe ar r ay command alist
of initialization values without arange, then the array will, by default, have the same size as the
initialization list and be indexed from 1 to whatever is the length of the initialization list.

(> array([1,4,9,16]);

Notice that the last command looks likeitsinput isalist and its output is again alist. But the
output isnot alist, it isaone-dimensional array, as the next command demonstrates.

[> op(%);

The fact that one-dimensional arrays can look exactly like lists can cause some confusion. We
will return to thisideain the section on vectors and matrices.

[>

We can also initialize two-dimensional arrays when they are created. We do thiswith alist of
lists. Consider the following list called dat a.

> data := [[1950, 18.6], [1960, 19.3], [1970, 20. 4],
{ > [1980, 21. 6], [1990, 25.4], [2000,28.1]];
Thefollowing ar r ay command uses dat a to initialize atwo-dimensional array. Each sub-list
of dat a isconsidered arow of the resulting array. Since dat a has six sub-lists, the array has
six rows. And since each sub-list from dat a has two entries, each row of the array has length
two. Sothe array isa 6 by 2 array.
[> array(data);
[> op(%);
Notice, by way of contrast, that thet abl e command interprets dat a asalist of lists and uses
dat a toinitialize a one dimensional table whose values are lists of length two.
[> table(data);

[>

Exercise: With dat a asthelist from the last example, compare how the following two
commands interpret dat a.

[> array(data);

[> plot(data);

[>

Exercise: Let dat a represent the following list.

[>data :=[[1,2], [2,3], [3,4]];

Explain the difference between the following two commands.
[> array(data);

[> array(1..3, data);

[>

Page 65

Exercise: Explain the differences between each of the following three commands.
[>a:=array([1,2,3]);

[>b :=array([[1,2,3]]);

[>c :=array([[1],[2],[3]]);

For each of a, b, and ¢, what would be the appropriate ar r ay command to create an empty
array with the same form?

[>

Exercise: In the following command, it seemsasif ar r ay ssimply strips off one pair of brackets
from itsinput to create its output. Give a better explanation of what this command does.
[>array([[3]]);

Hint: What do the brackets in the input represent and what do the brackets in the output
represent?

[>

Exercise: What conclusion can you draw from the following two commands?
[>array([[0,1,2,3],[0,1,2],[0,1]]);

[>array([[0,1],[0,2,2],[0,1,2,3]]);

[>

There is another way to initialize an array besides using alist of lists. We can use alist of
equations within the ar r ay command to assign initial values. On the left of each equation we
put an index and on the right avalue. Here is an example.

(> array(1..4, [1=Pi, 4=sqrt(2)]);

This has the advantage of allowing usto selectively initialize any of the entriesin the array (we
would not have been able to initialize the above array using just alist of values). One
disadvantage of this method is that the syntax for it is abit odd when we use it with
multidimensional arrays. Here is how we might initialize atwo-dimensional array.

(> array(1..3, 1..3, [(3,1)=Pi, (2,3)=sqrt(55), (1,1)=-1]);
Notice that each index was contained in a pair of parentheses, not brackets as one might expect.

[>

Now let uslook at the contents of an array data structure. Recall that a table data structure
contains two items, an expression sequence of names of index functions (which can be NULL)
and alist of equations that hold key-value pairs. An array data structure contains three items.
Thefirst is an expression sequence of names of index functions (which may be NULL), the
second is an expression sequence of integer ranges, and the third isalist of equations holding
key-value pairs (where the keys are always sequences of integers). Here is an example of an
array data structure.

[>a := array(symetric, sparse, 1..3, 1..3, [[5,6,7]]);

Let us analyze this data structure.

[> nops(eval (a));

[> op(l, eval(a));

Page 66

[> op(2, eval (a));

[> op(3, eval(a));

[> op(eval(a));

An array, like atable, is a data structure for which Maple uses last name evaluation. That is why
in the last five commands we needed to useeval (a) to forcethe full evaluation of the name a

>
L[>

=] 12.10.3. Last name evaluation and the copy command

Maple uses last name evaluation for names that evaluate to tables and arrays. Last name

eval uation has some non obvious consequences for the use of tables and arrays and in this
section we look at some of these consequences. Thiswill help give us an understanding of why
Maple uses last name evaluation for these two kinds of data structures.

Before turning to tables and arrays, let uslook at avery smple example that usesalist. Let a be
anamefor alist.

([>a :=][1,2,3,4];

Now assign a to b.

[> Db := a;

Make achangeinb.

[> b[3] := 0

Only b is changed, a isleft unchanged.
[> &

[> b;

[>

Now let us replace the list with an array. Let a be aname for a (1-dimensional) array.
[>a:=array([1,2,3,4]);
Now assign a to b.

[>b .= a
Make achangein b.
[>Db[3] :=0;

Now natice that both a and b have changed.
(> eval(a);

[>eval(b);

[>

Let us go through all of these steps again very carefully to see what was different between the
list case and the array case. Make a alist again.
[>a:=1[1,2,3,4];

Page 67

Now assign a to b.

[> b := a;

In the last command Maple used full evaluation on the right hand side of the assignment
operator so a wasevaluatedtothelist[1, 2, 3, 4] and thenthislist wasassigned to b. The
key idea here is that what was assigned to b was a copy of thelist that is named by a. In other
words, we now have two lists that are copies of each other. If we make a change to one of these
lists, the change does not affect the other list.

Now let us return to the array case. Make a an array again.

[>a:=array([1,2,3,4]);

Andassignatob.

[> Db := a;

In the last command, Maple used last name evaluation on the right hand side of the assignment
operator, so a evauated to a and then the name a was assigned to b. Notice that it isthe name a
, hot the array that a isanamefor, that isassigned to b. Now when we use the name b, it will
evaluate to a which will evaluate to the array. So an assignment like b[3] : =0 causes a change
in the array named by a. The key idea here is that, because of the use of last name evaluation,
there is no copy made of the array. Thereis only one array. Thisarray hasthenamea, and b is
indirectly aname for the array. Any change made to the array using either one of the names a or
b will show up through the other name, since both names point (eventually) to the array.

In the case of alist, full evaluation on the right hand side of the assignment b: =a created a copy
of the list named by a. What if wetry forcing full evaluation on the right hand side of the
assignment in the case of an array? Will that create a copy of the array? Let ustry the following
command.

[>c :=eval(a);

Thislooks like it might have made ¢ aname for a copy of the array. But that is not what
happened. Make an assignment using .

(> c[3] := Pi;

Now notice that a has also changed.

(> eval(a);

So the names a and ¢ are still names for the same array, there is no extra copy. But is the name
¢ any different from the name b? Was there any difference between the assignments b: =a and
c: =eval (a) ?Infact, thereisasubtle difference between these two assignments that makes c
different from b. If we evaluate b to one level, we get the name a (since, by last name
evaluation, b was assigned the unevaluated name a).

[>eval(b, 1);

But ¢ evaluates at one level to the array itself.

[>eval(c, 1);

In other words, ¢ isitself aname for the array. Or, to put it another way, we now have one array
that has two names, a and ¢ (with athird name b that evaluates indirectly to the array).

[>

Page 68

So far we have seen that lists and arrays act quite a bit differently. When a was aname for alist,
the assignment b: =a created a copy of the list and made b a name for the copy. When a was a
name for an array, the assignment b: =a did not create a copy of the array, instead it made b a
name for the name a. And the assignment c: =eval (a) also did not make acopy of the array,
instead it made ¢ another name for the array. So why does Maple treat arrays (and also tables)
so much differently from lists (and the other data structures)?

The answer is that thisis away to make Maple more efficient. In real applications of Maple, it is
very common to have very large arrays and tables. Arrays with tens of thousands of entries are
very common. Copying an array of that size consumes alot of time and alot of computer
memory so Mapleis designed to do as little copying of arrays as possible. Thisidea of
preventing the copying of arraysis common to many programming languages. Maple's handling
of tables and arrays has much of the same effect as the use of pointersin the C and C++
programming languages and the use of reference variables in the C++ and Java languages.

[>

But if Maple purposely avoids making copies of arrays and tables, what do we do if for some
reason we need a copy? Maple has acommand, copy, just for the purpose of making copies of
arrays and tables. The following command makes a copy of our array named a and names the
copy b.

[> b 1= copy(a);

Now make an assignment using the name b.

[> b[2] := 0

The array named b is changed, and the (original) array named a is unchanged.

[>eval(b);

(> eval(a);

[>

The copy command has an interesting quirk to it. The copy command does not make copies of
tables or arrays that are contained in atable or array. Let us explain this with an example. The
following command creates a 2-dimensional array named a.

(>a:=array(1..2, 1..2);

The next command creates another 2-dimensional array and assignsiit to the upper left hand
corner of the array named a.

[>a[l,1] :=array(1..2, 1..2);

We now have two 2-dimensional arrays, one of which is contained in the other. Here is what the
array named a looks like.

[> print(a);

The next command makes a copy of a and names the copy b.

[> b = copy(a);

Now we want to show that the copy command did not make a copy of the sub-array contained

Page 69

in a. In other words, we now have three arrays, not four as we might have expected. The three
arrays are the array named a, the array named b, and the sub-array, which is a sub-array of both
a and b. The following command assigns a value to the upper left hand corner entry of the
upper left hand corner sub-array of a.

(> a[1,1][1,1] := 0;
If welook at what isin both a and b, we see that they have both been changed by the last
assignment.

[> print(a);

[> print(b);

So now we know that the upper left hand corner sub-array is common to both a and b. This
sub-array was not copied by the copy command. Another way to put thisis that the array
named al 1, 1] andthearray named b[1, 1] arethe same array.

(> print(a[1,1]);

[>print(b[1,1]);

Now let us show that the arrays a and b redlly are distinct arrays. The next command assigns a
value to the lower left hand entry in the array a.

[>a[2,1] := 5

If welook at the contents of both a and b, we see that the last assignment changed a but not b.
[> print(a);

(> print(b);

The kind of copy made by the copy command is called by computer scientists a shallow copy
(or, anon-recursive copy). A copy command that would make a copy of an array and also make
copies of any sub-arrays (and also any arrays contained in the sub-arrays, etc.) is called adeep
copy (or, arecursive copy).

[>

Exer cise: Change the value of an entry in the matrix named b[1, 1] and then show that the
same entry is changed in the matrix named a[1, 1] .

[>

Exercise: Create an example that shows that the following command will make a deep copy of
an array a that contains an array.

[> Db := map(copy, a);

Then create another example to show that this command does not make a deep copy of an array
a that contains an array that contains an array (so the arrays are nested three deep).

[>

We end this section with another example of a single array with two names. Create an
anonymous array.

(> array(1..2, 1..2, [(2,1)=sqrt(Pi)]);

Now give this array two different names.

(> A =%

Page 70

(> B := %%

Notice that the last two commands displayed the unassigned entries in the array using each of
the array's names. The pr i nt command also displays the array thisway.

[>print(A);

[> print(B);

But theeval command displays the unassigned array entries using a question mark.
[>eval(A);

[>eval(B);

[>

L[>
=] 12.10.4. Names, data structures, and gar bage collection

The main theme of this section is that we should not confuse an object with its name. Asa
simple example, you are not your name. It is entirely possible for a person to live without a
name. A person exits independently of their name. What has this got to do with computer
programming? If we make an assignment like the following

[>a:=1[1,2,3];

then we often use phraseslike"a isalist” and "the list a". But that is confusing an object with
itsname. Your name is not aperson, and a isnot alist, a isanamefor alist. It may seem very
picky to say that "a isalist" iswrong and should be replaced with "a isaname for alist" and
that "thelist a" should be replaced with "the list named a". In fact, for list data structures the
distinction is not too important. But for tables and arrays, making a distinction like thisis very
helpful. We have seen above that tables and arrays act differently than lists and the other data
structures. When we make assignments like

[>a:=array([1,2,3]);

[>b :=eval(a);

we know that there is only one array data structure and it has two names. But if we use phrases
like "the array a and the array b", then it can become hard to remember that in fact thereisonly
one array. On the other hand, the phrase "the array named a and the array name b" is reasonable
even if we arereferring to only one array. Here is another example. If we make the following
assignment

[> b[1l] := 100;

then the phrase "the array a has been changed"” is awkward, even if the idea behind it is true. But
the phrase "the array named a has been changed” is very accurate, sinceit isthe array that has
actually been changed and this array just happensto have two names, a and b.

Here is another example of how an array should be distinguished from its names. Create an
array named al.

[>al := array([10,11,12]);

Now unassign thename al.

[>al := "al';

Page 71

Since the array is not its name, unassigning the name of the array does not really have any effect
onthe array. The array still exits. Let us change one of its entries.

[> %4 1] := 1000;

Here are the contents of the array.

[> %84

Change another one of its entries.

[> 9% 2] := 2000;

View the array again.

[> %4

Make a (anonymous) copy of the array.

[> copy(%);

Change an entry in the copy.

[> 9% 3] := 3000;

View the original array.

[> %84

View the (changed) copy.

[> %84

We see that unassigning the array's name really did not effect the array itself. Again, the nameis
not the array. If we want to be careful about these things, we should never say "the array a",
instead we should say "the array named a". Similarly, we should not say "a isan array", instead
we should say "a isaname for an array".

[>

Exercise: Redo the last example but with al asanamefor thelist [10, 11, 12] . Show that
the example works essentially the same with allist.

[>

Unassigning an array's name brings up an interesting question. If unassigning a name for an
array does not make the array go away, then what does make an array go away? First of all, why
should we care about this? If we are working with very large arrays, say with tens of thousands
of entires, it would not be good if every time we created such an array it stayed in Maple's
memory storage for the rest of the Maple session. If we no longer are using the array, we would
like Maple to reuse the array's storage space, otherwise, we may run out of memory. So we
would like to know that Maple will somehow reclaim the storage space used up by any array
that we are no longer using. Thisiswhat we really mean by saying that the array "goes away".
The process of reclaiming storage used up by unneeded data structuresis called by computer
scientists gar bage collection. So amore precise way to ask "what makes an array go away?' is
"under what circumstances does Maple garbage collect an array data structure?'. The answer is
that Maple will reclaim the storage space taken up by an array (i.e., garbage collect the array)
when the array no longer has any possible name. But we need to remember that possible names
for an array can include the last result variables, % %84 and %884 and also entries in remember
tables (which we will discussin the worksheet on Maple procedures). But once Maple decides

Page 72

that an array has no possible name, then it can garbage collect the space used by the array.
[>

Garbage collection does not occur immediately when an array (or table) losses all of its possible
names. Maple has away of periodically sweeping through all of its memory and looking for
"garbage" data structures. But it is possible to force Maple to do this bit of internal
housekeeping. For example, we may know that a very large array no longer has any names and
we want to make sure that Maple reclaims its storage space. Maple has acommand, gc, that
forces garbage collection to take place.

[> gc();

The gc command does not really have any noticeable effect in most Maple sessions since
Maple's automatic garbage collection does a good enough job of cleaning memory up. Out of
curiosity, we can ask Maple how many timesit has done its garbage collecting since we started
this Maple session.

[> kernel opts(gctines);

And we can ask how much "garbage" Maple collected the last time it did its garbage collecting.
[> kernel opts(gcbytesreturned);

The last result is the number of bytes of memory space Maple recovered from unused data
structures the last time it did its garbage collecting.

[>

>
ﬂ 12.10.5. Vectors and matrices

Maple has two special types of array, called vector and matrix, that are especialy meant for
working with linear algebra and vector calculus. A one-dimensional array that is indexed
starting with 1 isavector. Here is an example of a one-dimensional array that is a vector.

[> array(1..2);

[> type(% vector);

[> type(W4 array);

Here is an example of aone-dimensional array that is not a vector.

(> array(0..2);

[> type(% vector);

[> type(W4 array);

A two-dimensional array that isindexed with both of its indices starting with 1 is amatrix. Here
Is an example of atwo-dimensional array that isamatrix.

[>array(1..2, 1..2);

(> type(% matrix);

[> type(%% array);

Here is an example of atwo-dimensional array that is not a matrix.

[> array(0..2, 1..2);

[> type(% matrix);

[> type(%4 array);

Page 73

Notice that the distinction of an array being a vector or matrix helps explain why arrays are
displayed in sometimes very different formats. A one-dimensional array that isavector is
displayed in aformat that looks just like alist. A two-dimensional array that isamatrix is
displayed in atraditional matrix format. Arrays that are neither vectors nor matrices are
displayed in aformat that is much like atable.

[>

It is worth mentioning that the terminology "1-dimensional array", "2-dimensiona array”, and,
in general, "n-dimensional array" can be a bit confusing when used in the context of vectors and
matrices. Here are a couple of examples. Consider the following array called v.

(>v :=array(1..3, [3, 7, -2]);

Thisarray isa 1-dimensional array. But v can aso be called a 3-dimensional vector since v can
be used to represent a point in 3-dimensional space. Soin one sensev is 1-dimensional andin
another sense v is 3-dimensional. To say that v is 1-dimensional is more of a programmer's way
of looking at v. To a programmer, the most important feature of v isthat it has oneindex. To
say that v is 3-dimensional is more of a mathematician'sway of looking at v. To a
mathematician, the most important feature of v isthat it has three components. After awhile,
one gets very used to this dual way of looking at v. To help keep things straight, we will be
careful to refer to v asa 1-dimensiona array and as a 3-dimensional vector.

Inasimilar vein, consider the following array called m

r m:= array(1..3, 1..4, [[1,2,3,4], [5,6,7,8], [9,10,11,12]]
);

Thisisa2-dimensional array. But mcan also be called a 3 by 4 matrix. So we have three

different "dimensions" attached to m 2, 3, and 4. As before, to say that mis 2-dimensional is

more of a programmer's way of looking at m and to say that mis 3 by 4 ismore of a

mathematician's way of looking at m We will be careful to refer to mas a 2-dimensional array

and asa 3 by 4 matrix.

[>

Vectors and matrices are common enough that Maple has two special commands for creating
them, | i nal g[vector] and| i nal g[mat ri x] . These commands have a couple of
advantages over using the ar r ay command to create vectors and matrices. First of al, if we
want to create, say, a 3-dimensional vector, we just need to givethevect or command the
dimension 3, we do not need to give it thewholerange 1. . 3, since the beginning index of 1 is
understood.

[> vector(3);

Similarly, if we want to create a 3 by 4 matrix, we only need to give the nat r i x command the
parameters 3 and 4, not thewholeranges1. . 3,and 1. . 4.

(> matrix(3, 4);

Notice that even though vect or and mat r i x arecontained inthel i nal g package, we do
not need to make any reference to this package in order to use the two commands (I | nal g is

Page 74

an abbreviation for "l i near al gebra").

[>

Vectors and matrices created with thevect or and nat r i x commands can be given initial
valuesusing either alist or alist of lists, just aswith the ar r ay command. A nice advantage of
thevect or and mat r i x commandsisthat they also alow for the use of afunction to
initialize avector or matrix. For example, if h isafunction of one variable, and weuse h asa
parameter to thevect or command, then the vector that is created is initialized with the values
h(i) fori from1towhatever the dimension of the vector is. Here are afew examples.

[> vector(3, sin);

[> vector(4, i ->1"2);

[> vector(5, i ->x"Ni);

Notice how the last two examples used anonymous functions as the initializing function. An
important special case of thiskind of initialization is the following command.

[> vector(4, 10);

In the last command, the constant 4 is interpreted as the dimension of the vector to be created
and the constant 10 isinterpreted as the constant functioni - >10.

[>

Similarly, if h isafunction of two variables and we use h as a parameter to the mat r i x
command, then the matrix that is created isinitialized with thevaluesh (i, j) fori from1to
the row dimension of the matrix and with j from 1 to the column dimension. Here are afew
examples.

[>matrix(3, 2, h);

[(>matrix(2, 3, (i,j)->sin(i)/cos(j));

[>matrix(3, 3, 3);

(> matrix(3, 3, (i,])->xX"i*y?);

Much more elaborate initialization functions can be written using the ideas of Maple procedures
and Maple programming that we will cover in the next few worksheets.

[>

Exercise: Create a4 by 4 matrix whose value for each entry is the difference between the entry's
indices.

[>

Exercise: Create a 50-dimensional vector whose initial values are 50 equally spaced samples of
the si n function between 0 and 2 p.

[>

In the last section we looked at the way that Maple handles names that evaluate to an array.
Because of the way that Maple handles arrays, and therefore a so vectors and matrices, Maple
needs a special command for evaluating algebraic expressions involving vectors and matrices.

Page 75

Hereis an example of why we need a special command. Let A and B be names for two 2 by 2
matrices. (Notice how these matrices are being initialized in dightly different ways.)

(> A:=mtrix(2, 2, [1,2,3,4]);

([>B:=matrix([[5,6], [7,8]]);

Let ustry to compute the sum A+B.

[> A+ B;

That did not get us anywhere because of last name evaluation. Maple will only evaluate A to the
name A and B to the name B, so we get left with the symbolic sum A+B. Let ustry to force full
evaluation of the names A and B.

[> eval (A+B);

That did not do any good. Let ustry full evaluation before doing the addition.

([>eval(A) + eval(B);

Maple still did not do the matrix addition. So here is how we can get Maple to add these
matrices. We need to use the eval mcommand (for "eval uate netrices").

[> evalm(A+B);

Here is another example of the need for eval m Let ustry to multiply amatrix with ascalar.
[> -2%A

(> -2*eval (A);

We can get Maple to do the multiplication by using eval m

[> evalnm(-2*A);

Here is another example of the need for eval m

> AN2,

[> eval (A)"2;

We need eval mto do the matrix exponentiation.

[> evalm %);

[>

Here is another way in which matrix algebrais different from the algebra of numbers. In
genera, multiplication of matricesis not commutative. So if A and B are matrices, thenin
general AB will not be equal to BA, and ABA will not equal A% B or BA?. But look what Maple
does with the product A* B* A of our matrices A and B.

[> A*B*A;

The culprit here is automatic simplification. Maple will automatically simplify any expression
before it tries to do any evaluation. So without even knowing that A and B evaluate to matrices,
Maple simplified A* B* Ato A*2* B. Then, because of last name evaluation, Maple does not do
any further evaluation. If we now apply eval mto the last result, then we get an incorrect result
for the calculation of ABA.

[> evalm %);

To prevent Maple from making inappropriate simplifications like these, Maple has a special,
noncommutative, form of the multiplication operator, &* . Here is the correct way to get Maple

to do the multiplication ABA.
[> A& B & A

Page 76

[> evalm %);
[>

Here is a (possibly dangerous) quirk of the eval mcommand. If we ask it to multiply two
matrices and inadvertently use the commutative multiplication operator, then we get an error
message.

[> evalm A*B);

But if we ask it to multiply three matrices and use the commutative multiplication operator, then
there is no error message and the resulting calculation is not what we want.

[> evalnm(A*B*A);

Using the commutative multiplication operator with matricesis an easy mistake to make, but do
not depend on the eval mcommand to catch it.

[>

We have seen that Maple needsacopy command for creating a copy of amatrix and it needs
an eval mcommand for evaluating algebraic expression involving matrices. Now we will show
that, for the same reason that Maple needs the copy and eval mcommands, Maple also needs a
special command, equal , for comparing two matrices (or vectors) to decide if they are equal or
not. Before going over what equal does, let us see why it is needed. Create a matrix and name
it A

(> A:=mtrix(2, 2, [1,2,3,4]);

Make B another name for the matrix named A.

[>B:=-eval(A);

Create a copy of the matrix and name the copy C.

[> C .= copy(A);

Now we have two matrices that are exact copies of each other and we have three names for
these two matrices. The equation A=B should be true because A and B are two names for the
same matrix, and the equation A=C should be true since A and C are names for matrices that are
copies of each other. But if we evaluate these equations with eval b we do not get the desired
results.

[> eval b(A=B);

[> eval b(A=C);

The reason that these equations are false is last name evaluation. Since Maple does not evaluate
the names A, B and C, the equations A=B and A=C are false since A is not the same name as
either B or C. So let ustry forcing full evaluation of the names A, B, and C.

[> eval b(eval (A) = eval (B));

That seemed to work asit should, since A and B are really two names for the same matrix.

[> eval b(eval (A) = eval (O);

But the last command did not return what we expected, even though the matrices named A and C
are exact copies of each other. Sothe eval b command does not work for comparing the
equality of two matrices. Instead, we need to use the equal command fromthel i nal g
package.

Page 77

[>1linalg[equal](A B)
[> linalg[equal](A C);

[>

Theequal command compare two matrices (or vectors) entry by entry to seeif they have the
same values. However, the equal command does a shallow comparison, much like the copy
command does a shallow copy. The equal command will not check the entries of a matrix
contained within a matrix. Here is an example that uses vectors. Let u and v be names for two
vectors that are exactly aike and also contain a sub-vector.

[>u := vector(2, [vector(2, [10,20]), 300]);

[>v :=vector(2, [vector(2, [10,20]), 300]);

We would expect the following command to return true, since every entry of u isequal to the
corresponding entry of v.

[>linalg[equal](u, v);

The reason that the last command returned false is somewhat subtle. The second entry of u is
obviously the same value as the second entry of v. And the first entry of u isequal to thefirst
entry of v, as the next command shows.

[>linalg[equal](u[l], v[1]);

But the first entry of u isnot the same vector asthefirst entry of v so thefirst entry of u does
not have the same value as the first entry of v. The equal command does not check if these
two sub-vectors are equal .

In fact, theequal command does not really work properly with nested vectors and matrices.
Hereis asimple example.

[>u :=vector(2, [vector(2, [10,20]), 300]);

[> v 1= copy(u);

(> linalg[equal](u, v);

If two vectors that are copies of each other are not equal, then something is wrong with the
equal command.

[>

In a previous section we mentioned that vectors looking exactly like lists can cause some
confusion. Here is an example. Let us define two vector valued functions represented as lists of
expressions.

[(>vl :=[t, t"2, t"3];

[>v2 :=[t"3, t72, t];

Now compute the cross product of v1 and v2.

[>v3 :=linalg[crossprod](vl1, v2);

Even though v3 looksalot likevl1 and v2, it isfundamentally different becausev1 and v2 are
listsbut v3 isavector.

[> whattype(vl);

[> whattype(v2);

Page 78

[> whattype(op(v3));

Hereis an example of where the distinction between lists and vectors isimportant. Let us
compute the derivative of each of the functions, v1, v2, and v3.

[>diff(vl, t);

[>diff(v2, t);

[>diff(v3, t);

Notice that the last result is not correct. The di f f command does not work directly with
vectors. Hereis how to differentiate a vector (i.e., an array).

[> map(diff, v3, t);

When doing vector calculus with Maple, we need to be careful which of our "vectors' are lists
and which are Maple vectors.

[>

>
ﬂ 12.10.6. Index functions

Recall that we mentioned above that thefirst iteminat abl e or ar r ay datastructureis either
NULL or the name of an index function. An index function is a function associated to atable (or
array) that alows the table (or array) to compute, rather than look up, the value associated to
certain keys.

Maple hasfive built in index functions, symrmet ri ¢, anti synmetri c,di agonal ,
sparse,andi dent i ty.Hereishow we define atable that uses one of the predefined index
functions.

[> symt := table(symetric);

Now sym t isatablethat is symmetric, that isfor any pair of indicesi , | , the value of
symt[i,]] will beequal tothevalueof symt[j,i].Herearesomeexamples.

[> symt[a,b];

[> symt][b,a];

[> symt[4,2];

[>symt[a,b] := 2

[> symt][b,a];

Let uslook at what is stored in the table.

[> op(symt);

Notice that there is no entry in the table for the index (b, a) . Instead the index function uses
the entry for theindex (a, b) to compute the value for theindex (b, a) (theindex function
makes it appear asif thereisan entry for theindex (b, a) when therereally isn't one). Let us
try to assign avalueto theindex (b, a) .

[> symt[b,a] := 12;

Now let uslook at what isin the table.

[> op(symt);

The index function updated the value for theindex (a, b) instead of putting in an entry for the

Page 79

index (b, a) .
[>

Each index function can be used to define atable that has a certain kind of structure. The

ant i symet ri ¢ index function can be used to define atablet for whicht [a, b] isaways
equalto-t[b, a].Thei dent ity index function can be used to define atablet for which
t[a, a] isdwaysequaltolandt [a, b] isawaysequa to O when a isnot the sameasb.
Thedi agonal index function can be used to defineatablet for whicht [a, a] canbegiven
any valuebutt [a, b] isawaysequa to O when a isnot thesameasb. Andthespar se
index function defines atable which returns the value O for any index that has not explicitly had
avalue assigned to it.

[>

It is possible to create tables with other kinds of properties by defining our own index functions.
Defining our own index function is also agood way for us to see just how an index function
works. Below is an example of an index function that will give atable the property that it is odd
inthefirst index variable, thatist [-1,] | will dwaysbeequal to-t[i,]].

Note: Therest of this section will use alot of the material from the worksheets about procedures
and Maple programming. If you have not read those worksheets yet, then you can skip ahead in

this worksheet to the section on structured data types.
[>

An index function is a procedure that has a name that beginswithi ndex/ . Anindex function
has two formal parameters (though we will see that it might be called with three actual
parameters). Thefirst formal parameter isalist of indices. The second parameter is the name of
the table that the function is working for. An index function is responsible for both looking up
values from atable and for assigning values to atable. If anindex function is being called to
look up avaluein atable, then the index function is called with two actual parameters (the
indices and the name of the table). If an index function is being called to assign avalueinto a
table, then the index function is called with three actual parameters. The third parameter isalist
containing the value to be put in the table.

[>

Here is an example of an index function. Thisindex function defines atable (or array) that has
the property of being odd initsfirstindex. Thatisal - i | will equal - a[i | for atable or array
adefined to use thisindex function. Notice that the body of the procedure begins with atest on
the number of actual parameter in the procedure call. This divides the body of the procedure into
the two cases of looking up avalue and assigning avalue.

> "index/odd := proc(indices, table)
> if (nargs = 2) then # get an entry fromthe table
> i f (assigned(table[op(indices)])) then

Page 80

> t abl e[op(i ndi ces)];

> el se

> -tabl e[-op(1,indices),op(2..-1,indices)]
> fi

> else # put an entry in the table

> tabl e[op(indices)] := op(1l, args[3])

> fi

> end;

Here is how we define atable that uses thisindex function (notice that in thet abl e command
wedrop thei ndex/ from the name of the index function).

(>t :=table(odd);

Now let ustest thisindex function. Thetablet is currently empty. If we look up avalue, the
index function will cause the indexed name to return "unevaluated” but it will do so in away
that indicates the structure of the table.

[>t[a];

[>t[-a];

Let us put avaluein thetable.

[>t[a] := -5;

[>op(t);

Let usretrieve the value and let us also look up the related index - a.

[>t[a];

[>t[-a];

Notice that, like the example of the synmet r i ¢ table, thereis no entry in the table for the
index - a. The index function computes the value for thisindex and makes it appear asif thereis
an entry for thisindex.

[>op(t);

Here are afew more examples of how thisindex function works.

[>t[a, b, c];

[>t[a,b,c] := d;

(> t[-a,b,c];

[>t[-a,-b,c];

[> t[-x-y];

[> t[x+ty] :=1,2,3;

[> t[-(x+y)];

[>t[3] := -4

[> t[-3];

[>1t[-3] := Pi;

[>op(t);

Notice that the last assignment broke the structure of the table, it isno longer odd. Thisis aflaw
in our design of the index function. Here is a new version of the index function that fixesthis
bug. In thisversion, the index function is careful to check if the associated index is already
assigned before it makes an assignment to the index given in the procedure call.

Page 81

[>
> "index/odd" := proc(indices, table)
> if (nargs = 2) then # get an entry fromthe table
> i f (assigned(table[op(indices)])) then
> tabl e[op(i ndi ces)];
> el se
> -tabl e[-op(1,indices),op(2..-1,indices)]
> fi
> else # put an entry in the table
> i f (assigned(table[-op(1,indices),op(2..-1,indices)]))
t hen
> tabl e[-op(1,indices),op(2..-1,indices)] := -op(1,
args[3])
> el se
> tabl e[op(indices)] := op(1l, args[3])
> fi
> fi
> end;

L et us define a new table using this new version of the index function.
[>t :=table(odd);

Let ustest this version of the index function.

[>t[1] := 1,

[> t[-1];
L[> t[-1]
[> t[1];
[> t[-2]
> t[2];
[>t[2] := -100;
[>t[-2];

sqrt(2);

0;

Notice that, even though there are assignmentsto the namest [- 1] andt [2] , there are entries

inthetable only for indices 1 and - 2, since these indices were assigned to first.
[>op(t);
[>

Exercise: Write an index function " i ndex/ even that will define an even table, i.e.,, atable

for which thevalue of even_t[a] isthesameaseven t[-a] foranyindex a.

[>

Exercise: Write an index function ™ i ndex/ doubl es” that defines atable so that if an even

index 2 n has avalue, then the odd index 2 n + 1 will have the same value.

[>

Page 82

Exercise: A table can be defined with more than one index function (see the help page for index
functions). Define tables using both the synmet r i ¢ index function and the even index
function from the above exercise. These two index functions can be combined two different
ways, see the commands below. Analyze the structure of the resulting tables.

[>tl := table(symetric, even);
[>t2 := table(even, symetric);
[>

Exercise: Define aperiodic index function " i ndex/ peri odi ¢c5° that makes atable appear
to be periodic with period 5. Have the index function use the ERROR command to produce an
error message if anon-integer index is used when assigning to the table.

[>

Aswith tables, we can define an array that uses an index function. The following command
creates, and partially initializes, an array using Maple's built in index function symret ri c.

[> array(symetric, 1..3, 1..3, [[5,6,7]]);

The next command shows that the array has only three valuesin it, even though the above
display shows five values. The other two values are computed by the index function.

[> op(%);

With one and two dimensional arrays, because of the way that Maple displays them, it is usualy
easier to see what an index function does than with tables. For example, the following command
creates an "empty" antisymmetric array. From the display we quickly see that an antisymmetric
array has zeros on the main diagonal and what is below the main diagonal is the negative of
what is above the main diagonal.

[> array(antisymretric, 1..3, 1..3);

The next command shows that this antisymmetric array really does not contain any values. The
zeros on the diagonal are computed by the index function, and the index function determines
that theentry ?, , isequal to - ?, .

[>op (%);

[>

Exer cise: Create some one and two dimensional arrays using theeven, odd, doubl es, and
per i odi ¢ index functions defined above. Try combining two or more of these index functions
to get aquick, visual display of the kind of array that a combination will define.

[>

Exercise: Write an index functioni ndex/ bl ock2 sothat if i isan odd integer, then array
entiresali,i],a[i+1,i],a[i,1+1],andali +1,1 +1] areal equal. Try combining the
bl ock?2 index function withthesymet ri c andant i symret r i ¢ index functions.

[>

[>

Page 83

=] 12.10.7. Comparing tables with functions

It isinteresting and useful to compare tables with functions. They both do something similar,
which is produce a unique output for a given input. Notice how functions and tables also use
very similar notation to represent the output associated to a given input. Functions have
functional notation using parentheses, f (x) , and tables have index notation using brackets,

t [x] . The similarity between functions and tables is actually very strong. In fact, in acertain
sense, thereis almost no difference between them. Aswe will seein this section, atable with an
index function and a function with aremember table are almost exactly the same thing.

Hereis an index function that squares the (first component of the) index. We will see that atable
with thisindex function acts just like the squaring function with a remember table.

> “index/squaring := proc(indices, table)
> if (nargs = 2) then
> i f (assigned(table[op(indices)])) then
> tabl e[op(indices)]; # look up the value fromthe table
> el se # calculate the value and store it in the table
> tabl e[op(indices)] := op(1l, indices)"2
> fi
> el se # make an assignnment that bypasses the index function
rul e
> tabl e[op(indices)] := op(args[3])
> fi
| > end;
Here is atable defined to use thisindex function.
(>t :=table(squaring);
Here is the equivalent squaring function with a remember table.
[>f .= proc(x) option renenber; x"2 end;

Now we want to show that the tablet and the function f act essentially the same. In particular,
for thetablet , if thereis no valuein the table for an index, then the index function calculates a
value and stores it in the table. If avalue for an index isin the table, then the index function just
looksit up. Also, we can put an entry in the table that override the table's index function rule.
And for the function f , if there is no value in the remember table for an input, then the function
calculates avalue and stores it in the remember table. If avalue for an input isin the remember
table, then the function just looks it up. And we can put an entry directly in the remember table
that overrides the function's rule. Here are specific examples of these operations. First, calculate
afew valuesthat are not in the tables (which are currently empty).

[>t[3]; f(3);

[>tlyl: f(y);

[>1t[3,0,1]; f(3,0,1);

Now let uslook in the tables to see that the values that were just calculated are there.
[>eval(t);

[> op(eval (f));

Page 84

Put values in the tables that override the squaring rule (i.e., 4 squared is not 10).

[>t[4] := 10; f(4) := 10;

Check that these values are now in the tables.

[>eval(t);

[> op(eval (f));

Now have the table and the function return values that are from the tables (including the
"incorrect” values).

[>tly]l; f(y);

[>1t[3,0,1]; f(3,0,1);

[>t[4]; f(4);

Correct the "incorrect” values using direct assignments.

[>t[4] .= 16; f(4) .= 16;

[>eval(t);

[> op(eval (f));

So it appears as though there islittle, if any, difference between a table with thisindex function
and a function with aremember table. Of course, in this example the index function was
purposely written to emulate the action of aremember table. Not every index function will make
atable act like afunction with aremember table.

[>
. L[>
=112.11. Structured data types (optional)

=l12111. Datatypesin general

We have not been very precise about what a data type is. Each one of Maple's basic data
structures has a data type, but there are alot of other data types defined in Maple (well over 100
of them) and we can even define our own data types. So what exactly is adatatype? A data
typeisaset of values. A datastructure is said to have a certain data type if the value stored in
the data structure isin the set of values defined by the datatype. Let us try to understand this
definition by looking at an example. Consider the data structures 1/ 2 and 0. 5. We know that
1/ 2 isstored in afraction data structure and hastypef r act i on,and 0. 5 isstored in afloat
data structure and hastypef | oat .

[> type(1/2, fraction);

[> type(0.5, float);

But both 1/ 2 and 0. 5 are akind of number, and Maple has adatatype nuner i ¢ which isthe
set of all possible numeric values.

[> type(1/2, nuneric);

[> type(0.5, nuneric);

Both of these numbers are positive numbers. Maple has adatatype posi t i ve that isthe set of
all positive values.

[> type(1/2, positive);

[> type(0.5, positive);

Page 85

Both 1/ 2 and 0. 5 are also constants, and Maple has adatatype const ant that isthe set of
all constant values.

[> type(1/2, constant);

[> type(0.5, constant);

So the data structure 1/ 2 has (at |east) the datatypesf r act i on, nuneri ¢, posi ti ve, and
const ant . And the data structure 0. 5 hasthe datatypesf | oat , nuneri c, positive,
and const ant .

Notice that the datatypesf ract i on andf | oat arefundamentally different from the data
typesnuneri c, positive,andconst ant . Wehavejust seenthat 1/ 2 and 0. 5 each have
(at least) four different data types, but the what t ype command will return exactly one data
type for each of them and itisalwaysf racti onfor1l/ 2 andf | oat forO. 5.

[> whattype(1/2);

[> whattype(0.5);

Thedatatypef r act i on not only describes the value stored in the data structure 1/ 2, it also
describes exactly how Maple stores the value. Similarly, the datatypef | oat describes exactly
how Maple stores the value of the data structure 0. 5. On the other hand, a data type like

posi ti ve tells us something about the value in a data structure, but it does not tell us much
about how the value is stored, since a data structure with type posi t i ve could be an integer, a
fraction, or afloat data structure. The data types returned by the what t ype command are
called the basic data types and these are the data types that exactly match Mapl€e's data
structures. Maple has 29 basic data types but Maple has well over 100 pre-defined data types
(and, aswe will see, we can aso define our own data types).

While we are on the subject of t ype vs. what t ype, notice that thet ype command always
uses full evaluation (that is, it does not use last name evaluation).

[>s =1,

(>t tabl e();

[> type(s, table);

On the other hand, the what t ype command will sometimes use last name eval uation instead
of full evaluation.

[> whattype(s);

[> whattype(t);

With what t ype we sometimes need to force full evaluation.

[> whattype(eval (s));

I do not know why these two commands should use different evaluation rules. It seems
needlessly confusing.

[>

Here is another example of a data structure with many data types. Consider the data structure - 2

. It has the following data types (among others).
[>z = -2

Page 86

[> type(z, integer);

[> type(z, even);

[> type(z, negative);
(> type(z, negint);

[> type(z, nonposint);
[> type(z, rational);
[> type(z, conplex);

[> type(z, nuneric);

[> type(z, literal);
[> type(z, atomic);

[> type(z, algebraic);
[> type(z, constant);
[> type(z, real cons);
[> type(z, conplexcons);
[> type(z, scalar);

[> type(z, alghum);

[> type(z, radnum);

[> type(z, nonom al);
[> type(z, polynom);

[> type(z, ratpoly);

(> type(z, anything);

This example is meant to give you an idea of how rich the supply of Maple datatypesis. If you
want a precise definition for any of the above data types, just click on one of them and hit the F1
key (at the top of the keyboard) to call up Maple's help page for the data type.

If you do look at some of the data type definitions, you will see that data types are defined in
various ways. Some data types are unions of other data types. For example, the nuner i ¢ data
typeistheunion of thei nt eger,fracti on,andf| oat datatypes. Other datatypesare
subsets of a datatype. For exampleeven and posi nt are subsets of thei nt eger datatype,
and posi t i ve isasubset of thenuner i ¢ datatype. Then there are data types that have more
complex definitions. For example, the datatype pol ynommodels the mathematical idea of a
polynomial and it is not easy to expressthe pol ynomdatatype in terms of other datatypes. A
polynomial canhavea™ + , * ", " nuneri c,or synbol datatype, but of course not
every data structure with these data typesis a polynomial.

[> 3*x"2+x+1;

> type(% polynom);

> whattype(%n);

> a*x”"3;

> type(% polynom);

> whattype(%0);

> xXN3;

> type(% pol ynom);

Page 87

1

V V.V V V V

whattype(%%0);

X;

type(% polynom);

what t ype(%0) ;

3;

type(% polynom);

| > whattype(%%0);

And some expressions that ook mathematically like a polynomial do not have the pol ynom
data type (see the following exercise).

[>

Exercise: Explain why the expression 3 X" is not considered a polynomial by thet ype
command.

[> 3*x"n;

[> type(% polynom);

Hint: Carefully read the help page for * t ype/ pol ynom .

[>

It is useful to compare data types with the properties used in Maple's assume facility. Both
types and properties are ways of describing sets of values. A type is something that a data
structure can have and it tells us something about the value stored in the data structure. A
property is something that an unassigned variable can have and it tells us something about the
value that the unassigned variable is supposed to represent. For example, let us make an
assumption about the values that the unassigned name x can represent.
> x o= "'x':
{ > assune(x, posint);
Thei s command allows usto ask about the value that x is supposed to represent.
[>is(x, posint);
[>is(x, positive);
[> is(x, integer);
[>is(x, rational);
[>is(x, real);
Thet ype command cannot tell us anything about what x is suppose to represent.
[> type(x, posint);
An unassigned variable always has the type nane.
[> type(x, nane);
Notice that thei s command also works with data structures.
[> type(5, posint);
[>is(5, posint);
[> type(x"2+3*x+6, polynom);
[> is(x"2+3*x+6, polynom);
Unfortunately, the ways in which we describe types and propertiesin Maple are not compatible.

Page 88

Every type can be used as a property, but there are ways of describing simple properties that do
not work for types. For example, it is easy to define a property posf r ac that describes positive
fractions.

[> posfrac := AndProp(fraction, Real Range(Open(0),infinity));
Here is an example of its use.

[> assune(x, posfrac);

[>is(x, positive);

[>is(x, fraction);

We can use this property with thei s command and a data structure.

[>1is(2/3, posfrac);

But we cannot use this property with thet ype command.

[> type(2/3, posfrac);

I do not know of an easy way to define asimple type like posf r ac (though we will return to
this problem in the section below on defining types). It would be nice if Maple had a unified
syntax for describing sets of values, i.e., types and properties.

[>

L[>
=] 12.11.2. Structured data types

Some data types describe the values in a data structure with more detail and precision than other
data types. These more precise data types are called structured data types. In this section we
explain what structured data types are and we explain how to define them.

Let us start our discussion of structured data types with an example. The expression 5* x has the
datatype * .

[> type(5*x, "*)

The abovet ype command did not really tell us much about the actual value stored inthe ™ *
data structure. Consider the following t ype command, which uses a structured data type.

[> type(5*x, nuneric & nane);

The structured data type nuner i c&* nanme describes a product of a number and aname. The
last t ype command told us quite a bit about the valueinthe ™ * ° data structure. It told us that
the value is some number times some name (though it does not tell us what the number and
name are). The expressionsy* x and 5* x*y also havethetype ™ * , but they do not have the
structured type nuner i c&* namne.

[> type(x*y, *)

[> type(5*x*y, ~*)]

[> type(x*y, nuneric & nane);

[> type(5*x*y, nuneric & nane);

Here are structured data types that more accurately reflect the values in the data structures y * x
and 5* x*v.

[> type(y*x, nanme & nane);

Page 89

[> type(5*x*y, & (nuneric, name, nane));

The structured data type nane&* nanme describes a product of two names, and the structured
datatype " &* " (numeri c, nanme, nane) describes aproduct of exactly three things, a
number and two names.

[>

Here is another example. Consider the following list.

(>1 =11, 1/2, 2, 3/2, 3];

Thislist has, of course, the datatypeof | i st .

(> type(I, list);

But we can say more about thislist. It isalist of rational numbers. It also happensto be alist of
positive numbers. In addition, we can say that the list named | isnot alist of integers nor isit a
list of fractions but it isalist of integers and fractions. Here aret y pe commands that express
these last few sentences using structured data types.

[> type(|, list(rational));
[> type(|, list(positive));
[> type(|, list(integer));
[> type(|, list(fraction));
[> type(|, list({integer,fraction}));

Here are two lists of lists.

[>1list 1 :=1] [a,b,c], [1,2], [apple,orange], [f]];

(> 1list 2 :=1] [1.2, 3.9], [2.2, 12.0], [-3.2, 7.5]];

The structured typel i st (1 st) describeslistsof lists.

(> type(list_ 1, list(list));

(> type(list_2, list(list));

Butl i st 2 hasabit more structurethan| i st 1. Wecandescribel i st 2 asalist of pairs,
and more specifically asalist of pairs of numbers. Here are structured data types that make
these distinctions.

[> type(list_1, list([anything,anything]));

(> type(list_2, list([anything,anything]));

[> type(list_2, list([numeric,nuneric]));

[>

Structured data types are a special kind of Maple expression that have their own syntax. This
syntax is described in the help page for structured data types, but it may be a bit difficult to read
if you have never seen a syntax definition before. Instead of trying to formally define the syntax
for structured data types (which iswhat is done in the help page), here we give examples and
explanations of the most important forms of structured data types.

A structured datatype of theform | i st (t ypel) matchesalist data structure, al of whose
operands havet ypel (wheret ypel could itself be another structured data type).
[> type([1,2,3], list(integer));

Page 90

[> type([u,v,wW, list(synbol));

A structured datatype of theform [t ypel, t ype2, t ype3] matchesalist with exactly three
operandswith typest ypel, t ype2,andt ype3, respectively. (Thiskind of structured data
type can have any number of typesinside of the brackets, not just three.)

[> type([1/3, 3/5, 0.5], [fraction,fraction,float]);

[>

A structured datatype of theform f unct i on(typel) will match any unevaluated function
call with (any number of) inputs of typet ypel.

[> type(g(1), function(integer));

[> type(9(1,2,3,4), function(integer));

[> type(f(), function(integer));

[> type(sin(Pi/2), function(constant));

[> type('"sin' (Pi/2), function(constant));

The structured datatype f unct i on(anyt hi ng) will match any unevaluated function call (it
isreally equivalent to the datatypef unct i on).

[> type(f(x, 2, apples=oranges, g(y)), function(anything));

A structured data type of theformanyf unc(typel, t ype2, t ype3) will match any
unevaluated function call with exactly three inputs with typest ypel, t ype2,andt ype3
respectively. (Thiskind of structured data type can have any number of typesinside of the
parentheses).

[> type(g(1,2,3), anyfunc(integer));

[> type(g(1,2,3), anyfunc(integer,integer,integer));

[> type('plot' (f, -1..2), anyfunc(nane, ".."));

A structured datatype of theform specf unc(typel, f) will match an unevaluated function
call of the function named f with (any number of) inputs of typet ypel. (Any name can be
used in place of the namef .)

[> type(g(1), specfunc(integer,g));

[> type(g(1,2,3,4), specfunc(integer,g));

[> type(f(1), specfunc(integer,g));

[> type("plot' (f, -1..2), specfunc(anything, plot));

There is no structured data type for an unevaluated function call of a specific function with a
specific number and type of inputs.

[>

Structured data types of theform ™~ &+ (t ypel, t ype2, t ype3) and

& T (typel, type2,type3) match sum and product data structures (respectively) with
exactly three operands of typet ypel, t ype2, andt ype3, respectively. (These structured
data types can have two or more types inside of the parentheses.)

[> type(x[1] +x[2]+y[O0], " &+ (indexed));

[> type(x[1] +x[2]+y[0], " &+ (indexed, i ndexed,indexed));

[> type(1/2*x*y[0], & (fraction,synbol,indexed));

Page 91

[>

A structured datatype of theform {t ypel, t ype2} meansaunion of the datatypest ypel
and t ypeZ2. In other words, a data structure has the structured type{ t ypel, t ype2} if it has
typel orithast ype2. (There can be any number of typesinside of the braces.)

[> type(1/2, {fraction, nane});

[> type(x[0], {fraction, nane});

[> type([1/2, x[0], vy, 2/3], list({fraction,nane}));

[> type(3*x, & ({nuneric, nane}, nane));

[> type(a*x, & ({nuneric, nane}, nane));

[>

A structured type of theformt ypel”t ype2 matchesa™ "~ data structure whose first operand
hastypet ypel and whose second operand hastypet ypeZ2.

[> type(x*2, {nanme”nuneric, nanme’nane});

[> type(x~n, {nanme”nuneric, nanme’nane});

[> type(2”x, {nane”nuneric, nanme”nane});

Notice that the following syntax seems to make sense, and should be equivalent to the above
structured data type, but it does not work (in Maple VR5.1).

[> type(x*2, nanme”™{nuneric, nane});

[>

A structured type of theformt ypel=t ype2 matchesa” =" data structure whose left hand
sidehast ypel and whose right hand side hast ype2.

[> type(x"2-x-1=0, polynonFnuneric);

Notice that the following works, even though O is not a name for atype.

[> type(x"2-x-1=0, polynon=0);

But the following does not work.

[> type(x"2-x-1=z, polynonrz);

[>

A structured type of theform nane(t ypel) matches an unevaluated name that evaluates (at
one level) to avalue of typet ypel.

[(>y ="'Xx"; x :1=0;

[> type(x, nanme(integer));

[> type('x', nane(integer));

[> type('y', nane(integer));

[> type('y', nane(nane));

[> type('y', nanme(name(integer)));
[>

Exercise: Create a structured data type that represents lists of lists where the inner lists are pairs

Page 92

or triples. Sothelist[[a, b] , [a, b, c], [1, 2]] will have this datatype but the list
[[a],[a, b],[a,b,c]] will not.
[>

Exercise: Create a structured data type that matches any unevaluated function call with exactly
two inputs.

[>

Create a structured data type that matches any unevaluated function call with three or lessinputs
but no unevaluated function call with four or more inputs.

[>

Exer cise: Write a structured data type that describes expressions where avariable is given a
range of numbers, likex=1..5,z=1. .sqrt(5),ort heta=0.. Pi .

[>

Exercise: Look at the help page for structured data types and figure out what is wrong with the
last two bullet items (just before the examples). Hint: Essentially the same mistake is made in
each of the bullet items and it is a mistake in the logic.

[>

L[>
=] 12.11.3. Surface and nested data types

There are many waysto classify datatypes. For example, the data types that we have discussed
so far al fall into one of three classes of datatypes. The first classis the 29 basic data types that
directly reflect Maple's 29 basic data structures. The second class is the system data types, which
are the (100 or so) data typesthat are defined and named by the Maple system. The third classis
the structured data types that we define using the syntax from the last section.

[>

Another way to classify datatypesis as surface types or as nested types (but, as we will see,
some data types are neither surface types nor nested types). We define surface and nested data
typesin terms of data structure trees. A surface data typeis adatatype that is checked by
examining only the top node of adata structure tree. A nested data typeisadatatypethat is
checked by examining all of the nodes of a data structure tree.

[>

All of the basic data types are surface data types (why?). Many system types are also surface
types. For example, the system type nuner | ¢ isasurface type since it isthe union of the three
basic typesi nt eger,fracti on,andf| oat . Some structured types are surface types. For
example, the structured type [anyt hi ng, anyt hi ng] isasurface type since we only need to
check that the top nodeis alist data structure and that the top node has two operands. We do not
need to know anything about these two operands, so we do not need to examine any level of the

Page 93

data structure tree except the top node (i.e., the zero'th level).

[>

On the other hand, the structured type [equat i on, equat i on] isnot asurface type nor isit
anested type. It is not a surface type since we need to examine thefirst level of a data structure
tree to find out if the operands have thetype equat i on. And thisis not a nested data type
since we do not need to know anything about the structure of the equation data structuresin the
list.

A good example of anested datatypeisconst ant . To determineif an expression represents a
constant, al of the parts of the expression need to be examined to see if there are any variables
anywhere.

[> type(sin(Pi/7)-5"Pi/(2+exp(2)), constant);

[> type(sin(Pi/7)-5"Pi/(2+exp(x)), constant);

Another common example of anested datatypeispol ynomi.e., polynomias. Small changes
in the structure of an expression can change it from a polynomial into a non polynomial. So
every part of an expression needs to checked to determine if the expression is a polynomial.

[> type((x+a)”"5*(x"3-3*z72)"3-wXx, polynom);

[> type((x+a)”"5*(x"3-3*z"a)”"3-wx, polynom);

[>

Exercise: Give examples of structured types for which you need to examine three levels and
four levels of adata structure tree, but not all of the data structure tree, in order to check for the
structured types.

[>

Exercise: The help page for surface and nested data types claims that the system types| i near
l'istlist (whichissynonymouswith the structured typel i st (1 ist)), nonom al,

poi nt,radi cal ,andsqrt aresurfacedata types. Isthe help page correct?

[>

The distinction between surface and nested data types is interesting, but it does not seem to be
very useful. We will never need to rely on this distinction in order to solve a problem or explain
some other aspect of Maple.

[>

[>

=] 12.11.4. Defining data types

We have mentioned that not only does Maple have a very rich collection of over 100 predefined
data types, but we can also add to thislist by defining our own data types. There are several
ways to define our own data types, from very simple ways to quite sophisticated ways that make
use of the material on procedures from later worksheets. In this section we give severd

Page 94

examples of defining data types. We give both simple examples and a couple of more
sophisticated examples.
[>

We define a new data type by defining a new data type name that can be recognized by the

t ype command. For example, suppose we want to define anew datatypecaled ny type.In
order to make nmy _t ype adatatype recognized by thet ype command, we need to provide a
definition for thename "t ype/ ny_type .

Here is a specific example. The structured typel i st (nuner i ¢) matchesalist of numbers.
For this data type to match a single number, the number must bein aligt, likethis| 4] . Suppose
we wanted a data type that would match lists of numbers and also a single number that might
not be put inside of brackets. Here is how we can define such a data type. We call this new data
typeny_type.

[> "type/ny_type := {nuneric, list(nuneric)};

Let ustest this new datatype.

[> type([1,2,3,4], ny_type);

[> type([a,2,3,4], ny_type);

[> type([4], ny_type);

[> type(4, ny_type);

Note carefully that the name we defined to Maple wasthename " t ype/ nmy_t ype" but the
namewe useinthet ype commandisny_t ype. Noticethat thenameny typeis
unassigned.

[> assigned(ny_type);

What might happen now if we assign avalueto thenameny t ype?Let us see.

[> ny_type := Xx*y;

Letustry usingnmy typeinatype command.

[> type([1,2,3], ny_type);

What went wrong? L et us use one of our delayed evaluation tricks to see what parameters were
passed to thet ype command.

[>"type' ([1,2,3], ny_type);

Thet ype command uses full evaluation and the expression x* y isnot avalid name for a data
type, so we got an error message above. We can avoid the error message by preventing the
evaluation of thenameny _t ype.

[> type([4], "ny_type');

Hereisagood ruleto follow. When we use atype name with thet ype command, it iswiseto
right quote the type name to protect ourselves from the possiblility that the type name has been
assigned avalue. If you look at the source code to most Maple commands (we will see how to
do that in alater worksheet), you will see that thisisarulethat is aways followed by Maple
programmers.

[>

Page 95

Now suppose we want to define adatatype similar to my_t ype so that it matches either sets of
numbers or a single number not in a set. We decide to call the datatype our _t ype and we
defineit like this.

[> our_type := {nuneric, set(nuneric)};

Doesthiswork? Let ustry it out.

(> type({1,2,3,4}, our_type);

[> type({a,2,3,4}, our _type);

[> type({4}, our_type);

[> type(4, our_type);

It seems to work. But mindful of our rule stated just above, we should try the next command.
[> type({4}, 'our_type');

Now it doesn't work. Why did it seem to work? Use delayed evaluation again to see what we
were really doing.

[> "type' ({4}, our_type);

So when we used the name our _t ype asa"type name", what we were really doing was
passing directly to thet ype command the structured data type named by our _t ype. The
nameour type isnotin fact anamefor adatatype recognized by thet ype command. This
example shows that it is not realy wise to define "data types" by just assigning anameto a
structured data type.

[>

Exercise: Makeyour _t ype anamerecognized by thet ype command for a data type that
matches alist or set of numbers plus any number by itself.

[>

The above example shows how we can use structured data types to define new data types known
tothet ype command. But not al data types that we might be interested in can be defined using
structured data types. For example, suppose we want to define adatatype posf r ac that
describes the subset of f r act i on that is positive (much like posi nt describes the subset of

I nt eger that is positive). We might want to do this by defining a structured data type that is
theintersection of f ract i on and posi t i ve. But the syntax for structured data types does
not seem to alow for the intersection of two data types (it does allow for the union of two data
types). So here is another way to define a data type. We need to define a boolean valued
procedure named " t ype/ posf rac’ that takes asingle parameter and returnst r ue when the
value of the parameter has the data type we want and returnsf al se otherwise. Using ideas
from the worksheets on procedures, here is how we can define this data type.

> "type/ posfrac™ := proc(x)

> i f type(x, fraction) and type(x, positive) then true
> el se fal se

> fi

> end;

Here are some examples using this type.

Page 96

[> type(1/2, '"posfrac');

[> type(2/(-3), 'posfrac');
[> type(5, 'posfrac');

[>

Recall that every datatype can also be used as a property with Maple's assume facility. So we
can use our datatype posf r ac in the following way.

[>is(3/4, 'posfrac');

But it isinteresting to note that the syntax for properties alows for an easy way to form the
intersection of two properties (while the syntax for structured data type does not allow for the
intersection of two data types). Here is how we can easily get a property equivalent to our data
type posfrac.

[>is(3/2, AndProp(fraction, positive));

Unfortunately, the syntax for properties does not work with thet ype command.

[> type(3/2, AndProp(fraction, positive));

Aswe mentioned earlier, it would be nice if Maple had a unified syntax for defining sets of
values like data types and properties.

[>

Exercise: Explain why the following structured data type does not define posf r ac that way
we want it defined.

[> "typel/posfrac’ := fraction and positive;

[> type(1/2, 'posfrac');

What kind of data structures does the structured typef r act i on and positi ve match?
[>

Let uslook at an example of using a procedure to define a"parameterized datatype”. Let us
define adatatype called nor e_posi ti ve_t han(n) that takesaparameter n, whichisa
number, and the data type defines the subset of nuner i ¢ with values greater than n.

> "type/nore_positive_than® := proc(x, n::nuneric)
> if type(x,nuneric) and x > n then true

> el se fal se

> fi

> end;

Notice carefully that the procedure " t ype/ nore_posi tive_t han' hastwo parameters.
Thefirst parameter is for the object whose type is being checked and the second parameter isthe
parameterof the data type, the parameter used with the name of the datatypein thet ype
command. So in the following command, 7 isthe actual parameter for the formal parameter x in
the definition of "t ype/ nore_posi tive_ than and2 istheactua parameter for the
formal parameter n.

[> type(7, nore_positive_than(2));

[> type(-1, nore_positive_than(-12));

Page 97

[> type(-1, nore_positive_than(0));
[> type(-1, nore_positive_than(n));

[>

Exercise: Earlier we mentioned that it iswise to right quote the name of adatatypeinat ype

command. Should we right quote a parameterized datatypelikenor e_posi tive_t han(n)
?

>
Exercise: Write a definition for a parameterized data type pol ynom degr ee(n) that
matches polynomials with degree less than or equal to n.

[>

. L[>
=112.12. Online help for data structures and data types

The basic commands for manipulating data structures are op and nops. They are both described in
the same help page.

[> ?0p

The alternative notation for accessing individual data itemsin expression sequences, lists and sets,
the bracket notation, is described in the next page.

[> ?sel ection

We briefly mentioned the | engt h command, which will compute the "length" of any data
structure, which is not necessarily the same as the number of operands in the data structure.
[> ?length

We kept checking the data type of a data structure by using thewhat t ype command. The next
command brings up the help page for thewhat t ype command. This help page also lists al the

basic data typesin Maple.
[> ?whattype

The following command brings up the help page for the expression sequence data structure.
[> ?exprseq

The list and set data structures are described by the following help page (the following two
commands are equivalent).

[> ?lists

[> ?sets

Thel i st and set datatypes are described by the following help page (the following two
commands are equivalent).

[> ?type, |ist

[> ?type, set

Page 98

We |looked at three kinds of numeric data structures. The following commands call up each of their
descriptions.

[> ?integer

[> ?fraction

[> ?fl oat

There are numerous data types that include these numeric data structures. Here are afew, listed in
order from simplest to most inclusive.

[> ?type,integer

[> ?type, fraction

[> ?type, rational

[> ?type, float

[> ?type, nuneric

[> ?type,literal

[> ?type,atomc

The following two commands both bring up the help page for the name (or symbol) data structure.
[> ?synbol

[> ?nanme

The following two commands will bring up the help pages for the nane and synbol datatypes.
Notice that the nane datatypeisabit more general than the synbol datatype.

[> ?type, synbol

[> ?type, nane

The following commands brings up the help pages for the string data structure and the st r i ng data
type. Recall that this datatype is new to Maple V Release 5. In previous versions of Maple, no
distinction was made between symbols and strings.

[> ?string

[> ?type, string

[> ?updat es, R5, | anguage

More information about strings can be found in the following example worksheet.

[> ?exanpl es, string

We have seen that Maple has a specia name for the empty expression sequence, NULL. Maple also
has the notion of an empty string and an empty name, i.e., astring or a name with no charactersiniit.
Unfortunately, the empty nameis called, in the online help, the "null string”. It seems that, when
converting from Release 4 to Release 5, this help page was not updated.

[> ?nul | str

We have repeatedly said that expressions are examples of data structures. The kinds of expressions
that we use to represent mathematical functions are usually algebraic expressions. The next help
page defines algebraic expressions.

[> ?al gebraic

Page 99

Algebraic expressions are described in Maple by the al gebr ai ¢ datatype.
[> ?type, al gebraic

The following command brings up information about equation and inequality data structures.

[> ?equation

The next two commands bring up information about the equat i on datatype, which describes an
equation data structure, and ther el at i on datatype, which describes both equation and inequality
data structures.

[> ?type, equati on

[> ?type,relation

Theequati onandr el at i on datatypes are both considered to be specia cases of the bool ean
datatype. The bool ean datatype is used to describe boolean expressions. Boolean expressions are
analogous to algebraic expressions, but instead of evaluating to a numeric value like algebraic
expressions do, boolean expressions evaluate to either t r ue or f al se. The next help page defines
boolean expressions.

[> ?bool ean

The next help page definesthe bool ean datatype.

[> ?type, bool ean

Thebool ean datatype aso includes as a special casethethreel ogi cal datatypes.

[> ?type, | ogi cal

The next command brings up the help page for arange data structure.

[> ?range

The next command brings up information about the r ange data type, which describes arange data
structure.

[> ?type, range

Thereisaso a Range function that can be used to test if a number iswithin a certain range.

[> ?type, Range

These commands bring up information about the unevaluated function call data structure and data
type.

[> ?function
[> ?type, function

The next help page describes the uneval uated dotted name data type.
[> ?type, dot

The next help page describes the uneval uated indexed name data type.
[> ?type, i ndexed

The next help page defines the series data structure and data type.

Page 100

[> ?type, series

Hereisacommand for creating a series data structure.

[> ?series

There are some more specialized kinds of series data types.
[> ?type, tayl or

[> ?type, | aurent

Here are commands for creating taylor and laurent series.

[> ?tayl or

[> ?numappr ox, | aur ent

Here is the command for converting aser i es data structure into a sum.
[> ?convert, pol ynom

The following help page describes unevaluated expressions without mentioning that they are a
specific kind of data structure.

[> ?uneval

The following help page describesthe uneval datatype without, again, any real mention of the

underlying data structure.
[> ?type, uneval

The : : " datastructure has such a specific use in Maple that it does not even have a help page that
defines the data structure or the datatype. Here is a help page that describeshow the ™ : : * data
structure is used in the definition of a procedure. We will say much more about thisin the
worksheets about M aple programming.

[> ?procedure, parantype

The: : operator can also be used as a synonym for thet ype command, as mentioned near the
beginning of the help pagefor t ype. And: : isalso used as part of the syntax for Maple's pattern
matching commands pat mat ch andt ypenat ch.

The next help page definesthe t abl e datatype

[> ?type, table

Here is acommand for creating atable data structure. This help page also describes the table data
structure.

[> ?table

The next command definesthe ar r ay datatype.

[> ?type, array

Here isacommand for creating an array data structure. This help page al so describes the array data
structure.

[> ?array

Maple has a special command, copy, for creating a copy of an array or atable. Thiscommand is
needed because of the specia way that Maple evaluates the names for tables and arrays.

Page 101

[> ?copy

Recall that both tables and arrays can be given an index function. Here are help pages that describe
the five predefined index functions that are available.

[> ?symmetric

[> ?antisymmetric

[> ?di agonal

[> ?sparse

[> ?identity

Y ou can also define your own index functions. Here is general information about indexing functions
for tables and arrays including how to write your own.

[> ?i ndexfcn

We mentioned that Maple also has the two datatypesvect or and mat r i x which are special cases
of thear r ay datatype. The next two help pages describethe vect or datatype and data structure.
[> ?vector

[> ?type, vector

There isacommand in the linear algebra package, | | nal g, for creating a vector data structure.

[> ?linal g, vector

The next two help pages describe the mat r i x datatype and data structure.

[> ?matrix

[> ?type, matrix

Thereisacommandinthel i nal g package for creating a matrix data structure.

[> ?linalg, mtrix

Maple has a special command, eval m for evaluating algebraic expressions with variables that
evaluate to matrices or vectors. This command is needed because of the specia way that Maple
evaluates names for arrays.

[> ?evalm

We mentioned that matrix multiplication is noncommutative and so Maple needs a special symbol,
&* , to denote noncommutative multiplication. There does not seem to be a help page for this
particular symbol, but &* isaspecial case of what Maple callsaneutral operator. Hereisahelp
page about neutral operatorsin general.

[> ?neutral

And Maple has the special command equal , fromthel i nal g package, for determining the
equality of two matrices or vectors.

[> ?linal g, equal

The following command will bring up ageneral definition of adatatype in Maple. The definition is
pretty abstract so do not expect to fully understand it.

[> ?type, defn

The definition of adatatypein Maple referstothet ype procedure. The next command brings up
its documentation. This help page also includes alist of most of the data types predefined by Maple.

Page 102

[> ?type

Besides all the data types listed in the help page for the t ype procedure (over 100 of them) Maple
also has predefined the data types described in the next help page.

[> ?type, surface

The previous help pages did not list all of Maple's predefined data types. If you want to get a sense
of how important data structures are to Maple and how many data types Maple has defined, go to the
"Topic Search" menu item in the Help menu and enter "type"; you will get alist of about 140 entries,
almost al of which are various predefined data types.

Maple also alows you to define your own descriptions of complex data structures. These
descriptions are call structured data types. We will make some use of these when we get to the

worksheets on procedures.
[> ?type, structured

Finally, you might think that the next command would bring up general information about Maple's
data structures, but it does not. Instead, it brings up a help page about one particular Maple data
structure, the data structure that defines a " context menu”, the kind of menu that appears when you
right click on aMaple object. This shows two things: first, Maple's help pages are not organized as
well as they might be, and second, amost everything in Maple really is a data structure, even parts
of the graphical user interface!

[> ?dat astructures

L[>

Page 103

