
Maple for Math Majors
Roger Kraft

Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

12. Data Structures in Maple

12.1. Introduction
Within Maple's internals, there is a big difference between expressions and functions. Expressions
are what computer scientists call data structures, and functions are what they would call procedures.
To put it very briefly, a data structure is a collection of information, and a procedure is a collection
of instructions. In order to explain this difference better, in this and the next few worksheets we look
at some elementary examples of data structures and procedures in Maple. In particular, in this
worksheet we look at Maple's basic data structures, at how a data structure can be manipulated, and
at how Maple stores an expression as a data structure. In the next worksheet we look at some simple
examples of Maple procedures and how mathematical functions can be represented as procedures. In
the last worksheet we look at how a procedure can manipulate a data structure, and this will give us
an idea of how Maple does its work. Many Maple commands (like factor, simplify, expand)
are procedures, written in the Maple programming language, that manipulate data structures. In fact,
that is what much of programming and computer science is all about, procedures that manipulate
data structures.
>

12.2. Basic data structures in Maple
To really understand what makes expressions and functions different in Maple we need to get a
sense of what data structures and procedures are. The rest of this worksheet is a very basic
introduction to how Maple handles data structures.

Let us try to give a definition of a "data structure". Earlier we said that a data structure is a collection
of information but this is an incomplete definition. Since information is the same as "data", we have
left off the "structure" part of "data structure". A data structure is a collection of information that has
been given a structure or organization. In addition, a data structure often has associated with it a
special way of interpreting the data. As we will see below, the structure (and interpretation) aspect
of a data structure is as important as the data aspect. Two different data structures can contain the
exact same pieces of data but give that data different structures (or interpretations).

Now we will look at a few of the basic data types in Maple. Every data structure has a data type
which describes, or names, the kind of data structure it is. The three most basic kinds of data
structures in Maple have the data types expression sequence, list, and set. Maple also has several

Page 1

numeric data types which are used to represent different kinds of numbers. Each of these kinds of
data structures, plus a few other important data types, are described in detail in the following
subsections.
>

12.2.1. Expression sequences
First we look at expression sequences. We said that a data structure is an organized collection
of information (or data). An expression sequence in Maple is the simplest way that some data
can be organized; it is a list of things separated by commas. The things (i.e. the pieces of data) in
the expression sequence can be anything that Maple can work with, e.g., numbers, expressions,
functions, other data structures, etc.

Here is an example of an expression sequence with nine pieces of data in it.
> 1, 2, abc, x^2+1, `hi world`, Pi, x -> x^2, 1/2, 1;

Let us give this expression sequence a name so that it is easier to work with.
> stuff := %;
> stuff;

Maple's whattype command is used to ask "what is the data type" of a data structure .
> whattype(stuff);

Maple uses exprseq as an abbreviation for "expression sequence".

Maple's nops command is used to ask how many pieces of data are in a data structure. The
name nops is an abbreviation of " number of operands" and the word "operand" is often used
to mean a piece of a data structure. Notice that in the next command we need to put square
brackets around the name stuff in order to use nops. (Try removing the brackets.) In the next
subsection we will see why these brackets need to be there.
> nops([stuff]);

Maple's op command is used to access individual elements of a data structure (the name op is
of course an abbreviation of the word "operands"). It can be used to access just one element or a
range of elements from a data structure. The next command asks for the fifth thing in stuff.
> op(5, [stuff]);

The next command asks for the fifth through seventh things in stuff.
> op(5..7, [stuff]);

Notice that the op command used with a range returned an expression sequence which can be
thought of as a subsequence of the original expression sequence. Here is another notation that
allows us to access an individual piece of data from an expression sequence, a subsequences of
data, or the whole sequence.
> stuff[5];
> stuff[5..7];
> stuff[];
>

There is no special interpretation associated to the data in an expression sequence. The only real

Page 2

organization that Maple gives to an expression sequence is that Maple remembers the order that
the data items were given in. So the following two expression sequences are not considered the
same data structure, even though they contain the exact same data items.
> seq1 := a, b, c, d;
> seq2 := b, a, c, d;
> evalb(seq1=seq2);

Remember, seq1=seq2 is an equation that could be either true or false. The Maple command
evalb is used to determine if the equation is true or false. Since the equation is false, the
expression sequences are not the same data structure. Another way to put this is that seq1 and
seq2 have the same data type (exprseq), and they contain the same data, but they are not the
same data structure.

In the next two subsections we will see what brackets ([]) and braces ({}) mean to an
expression sequence. Parentheses however are ignored by expression sequences. The following
commands all define the same expression sequence.
> the, very, same, thing;
> (the, very), (same, thing);
> (the, ((very, same), thing));
>

Expression sequences can be combined into larger expression sequences. Let us define two
expression sequences.
> seq1 := a, b, c, d;
> seq2 := u, v, w, x, y, z;

Here is one way to combine these two into a third expression sequence.
> seq3 := seq1, seq2;

There are many ways to combine the data from two expression sequences into one expression
sequence. What we just did was to concatenate seq1 and seq2. Here is another way to
combine these two expression sequences.
> seq3 := seq2[1..3], seq1, seq2[4..6];
>

Exercise: With seq1 and seq2 defined as above,
> seq1 := a, b, c, d;
> seq2 := u, v, w, x, y, z;

what are the differences between the following four commands
> seq3 := seq1, seq2:
> seq4 := seq1, 'seq2':
> seq5 := 'seq1', 'seq2':
> seq6 := 'seq1, seq2':

since they all seem to produce the same result.
> seq3;

Page 3

> seq4;
> seq5;
> seq6;
>

Exercise: With seq1 and seq2 still defined as above, what does the following command do?
> seq1 := seq1, seq2;
>

There is one very important expression sequence that has a special name. The empty expression
sequence is called NULL.
> NULL;

When Maple evaluates the name NULL, the value it gets is the empty expression sequence, and
since there is not much to print out for the empty expression sequence, Maple does not print
anything.
> whattype('NULL');
> whattype(NULL);
> nops([NULL]);

The last three commands verify that NULL is a name for an expression sequence and that there
are no operands in the expression sequence. The NULL expression sequence comes up fairly
often, but usually in a pretty invisible way. For example, the command
> solve(x^10-sqrt(2)*x^3-Pi=0, x);

did not seem to return any result. But it did return a result. It returned NULL.
> whattype(solve(x^10-sqrt(2)*x^3-Pi=0, x));
> evalb(solve(x^10-sqrt(2)*x^3-Pi=0, x)=NULL);

Whenever a Maple command seems to do its work "silently", without any output, the command
is really returning the NULL expression sequence.
>

Maple has two very important and common uses for expression sequences. First, many Maple
commands, when they want to express several outputs, put the output items in an expression
sequence. The most common example of this is the solve command.
> x:='x':
> solve(x^3-4*x^2-5*x=0, x);

There are three solutions to the equation in the solve command and solve puts the three
answers in an expression sequence. We can ask Maple to verify this by using the whattype
command again.
> whattype(%);

If we modify the solve command a little bit and put braces around the last x in the command,
then we get the solutions in a different form.
> solve(x^3-4*x^2-5*x=0, {x});

The output is still an expression sequence, but now each item in the sequence is an equation

Page 4

with braces around it.
> whattype(%);

Let us give the expression sequence a name.
> solutions := %%;

Now we can access individual solutions using the notations we gave above.
> op(1, [solutions]);
> solutions[2];
> solutions[2..3];
> assign(solutions[3]);
> x;
> x:='x';
>

We just saw that Maple uses expression sequences to represent multiple outputs from a
command. Maple's other common use for expression sequences is to represent multiple inputs to
a command (or function). We want to demonstrate that the inputs to a Maple function are
always contained in an expression sequence. Here is an example. The next command defines
and names an expression sequence.
> test_sequence := x^2, x=-2..2, color=blue, axes=box;

This sequence has four items in it.
> nops([test_sequence]);

Notice that test_sequence looks like the inputs to a plot command. And we can use it
exactly that way.
> plot(test_sequence);

In the next command, the evaluation of plot is delayed but test_sequence is evaluated so
that we can see how the input to plot really is an expression sequence.
> 'plot'(test_sequence);

Now evaluate plot.
> %;

Here is another example. First, let us define our own multivariate function.
> f := (x,y,z,w) -> x+y+z+w;

Here is an expression sequence.
> es := b, c, d;

Now evaluate the function with what looks like (but is not) two inputs.
> f(a,es);

Let us look at what the function really saw as its inputs.
> 'f'(a,es);

Suppose we delay the evaluation of es. What do you think will be the result of the following
function call?
> f(a,'es');
>

The last several examples have shown that expression sequences are basic for representing both

Page 5

the input and output of Maple commands and functions.
>

Maple has a special command, seq, for creating expression sequences. Here are some
examples of its use.
> seq(x^i, i=-2..5);
> seq(Pi, i=-2..2);
> seq(1/n, n=1..10);
> seq(evalf(1/n), n=1..10);
>

>

12.2.2. Lists
The next most basic data type in Maple is a list. A list is an expression sequence with square
brackets around it.

Recall that stuff is our expression sequence from the last section. We redefine it here for
convenience.
> stuff := 1, 2, abc, x^2+1, `hi world`, Pi, x -> x^2, 1/2, 1;

An expression sequence with brackets around it gives us a list.
> [stuff];

Let us give this list a name so that we can work with it.
> liststuff := %;

Let us check the data type of our data structure, and also how many elements are in it.
> whattype(liststuff);
> nops(liststuff);

The op command with only one argument returns all the elements in the data structure.
> op(liststuff);

Notice that the op command returned an expression sequence. So the op command can be used
to convert a list into an expression sequence.
>

We can access an individual element from a list or a range of elements.
> op(5, liststuff);
> op(5..7, liststuff);

Now compare the previous two commands with the next two.
> liststuff[5];
> liststuff[5..7];

Notice that liststuff[5] is an alternate notation for op(5, liststuff), but
liststuff[5..7] is not quite the same as op(5..7, liststuff). How are they
different? Should liststuff[5] really have been the same as op(5, liststuff)? To
make things even a bit more confusing, look at what the next command does. What is it an

Page 6

alternative to?
> liststuff[];
>

Surprisingly enough, we can even use negative numbers to access items from a list. The index
-1 means the last item in a list and as the negative index decreases we access items from right
to left through the list.
> op(-1, [a, b, c, d, e]);
> op(-2, [a, b, c, d, e]);
> op(-3, [a, b, c, d, e]);

But negative indexes do not always work the way you might think they would. Based on the last
three commands, what would you expect the next command to output?
> op(-1..-3, [a, b, c, d, e]);

What about this command?
> op(-3..-1, [a, b, c, d, e]);

Using negative indexes can lead to very non intuitive results. Consider the next two examples.
> op(-4..4, [a, b, c, d, e]);
> op(-3..3, [a, b, c, d, e]);

You might think that in any range m..n you must have m less than n. But things are not that
simple.
> op(4..-4, [a, b, c, d, e]);
> op(3..-3, [a, b, c, d, e]);

In fact, one way to list all the data items in a list is to use the range 1..-1, i.e., from first to
last.
> op(1..-1, [a, b, c, d, e]);

On the other hand, the range -1..1 (from last to first?) causes an error.
> op(-1..1, [a, b, c, d, e]);

We can use negative indexes with the bracket selection notation also.
> [a, b, c, d, e][-3..-1];
>

Exercise: Come up with a simple rule for what is allowed in a range m..n when it is used for
accessing items in a list and either m, n or both is negative.
>

We did not get the op command to produce a range of elements from a list in reverse order, but
we can do this if we use the seq command in combination with op.
> list1 := [a, b, c, d, e];
> [seq(op(-i, list1), i=3..5)];
> [seq(op(-i, list1), i=1..nops(list1))];

We can abbreviate the above commands by using index notation.
> [seq(list1[-i], i=3..5)];

Page 7

Notice that the following command does not work.
> [seq(list1[i], i=-3..-5)];
>

Exercise: Let list1 be defined as in the last example.
> list1 := [a, b, c, d, e];

For each of the following two commands, rewrite the command so that it produces the same
result but is easier to read.
> [seq(op(-i, list1), i=-5..-3)];
> [seq(op(i, list1) , i=-5..-3)];
>

A special case of the op command is op(0, data_structure) which, instead of accessing a
piece of data from the data structure, (usually) returns the data type of the data structure.
> op(0, liststuff);

For most data structures, op(0, data_structure) is the same as whattype(data_structure).
But we will see later that for some data structures, op(0, data_structure) returns something
other than the data type. Also, notice that the following syntax does not do what you think it
might.
> liststuff[0];
>

There is no special interpretation associated to the data in a list. The only real organization that
Maple gives to a list is that Maple remembers the order of the data items in the list. So the
following two lists are not considered the same, even though they contain the exact same data
items.
> list1 := [1, 2, 3, 4];
> list2 := [2, 1, 3, 4];
> evalb(list1=list2);

As with the example with expression sequences, we would say that list1 and list2 have the
same data type (list), and they contain the same data items, but they are not the same data
structure.
>

Exercise: Suppose we have two lists.
> list1 := [a, b, c, d];
> list2 := [u, v, w, x];

Find a command that will combine all the data from the two lists into one list.
> list3 := ???
>

Exercise: Given the following two expression sequences

Page 8

> es1 := a, b, c, d, e;
> es2 := u, v, w, x, y;

use a single seq command to create a third expression sequence es3 that is made by alternating
elements from es1 with elements from es2.
> es3 := ???
>

If L is the name of a list, then Maple will use full evaluation when it is asked the find the value
of L.
> L := [a, b, c, d];
> a := 'b'; b := 2; c := 'b'+1; d := 4;
> L;

Notice that several levels of evaluation were needed to fully evaluate L. The next three
commands show the levels of evaluation.
> eval(L, 1);
> eval(L, 2);
> eval(L, 3);

Recall that in the section on expression sequences we had to put brackets around an expression
sequence before we could use the nops command to find out the number of operands in the
expression sequence.
> nops(stuff);
> nops([stuff]);

By now we know that the brackets convert the expression sequence into a list. Why do we need
the brackets? Because the nops command is defined to accept only one input, the data structure
that we are interested in. But when that data structure is an expression sequence, nops thinks
that it has multiple inputs, which is a mistake, so nops returns an error message. By putting
square brackets around stuff and converting it into a list we do not change the number of
operands in the data structure (stuff and [stuff] have the same number of operands) but
now nops thinks it only has one input, the list. Here is a way to see this. In the following
command, nops is prevented from being evaluated by the right quotes, but stuff is evaluated.
> 'nops'(stuff);

So the nops command thinks it has nine inputs, but it was designed to only have one input.
> %;

On the other and, when we put the brackets around stuff, it then appears to nops as a single
input which is a list.
> 'nops'([stuff]);
> %;
>

Exercise: Can the op(0, data_structure) form of the op command be used somehow on
expression sequences to get the data type?

Page 9

>

>

12.2.3. Sets
Our third basic data type in Maple is called a set. A set looks like an expression sequence with
curly braces around it, but we will see that sets are a little more subtle than that. A set data
structure is usually used to represent the idea of a set from mathematics. So set data structures in
Maple act a lot like sets in mathematics. Here is an example. Let us make a set out of our
original expression sequence stuff by putting braces around stuff and then giving the
resulting set a name. First, let us redefine the expression sequence stuff.
> stuff := 1, 2, abc, x^2+1, `hi world`, Pi, x -> x^2, 1/2, 1;

Now create a set by putting a pair of braces around stuff.
> {stuff};

Now give this set a name.
> setstuff := %;

Let us check the data type and number of operands for setstuff.
> whattype(setstuff);
> nops(setstuff);
> nops([stuff]);

Right away we should notice that something is different. First of all, for a set the order of the
data items is not important so Maple chooses its own order to put them in. Second, sets cannot
have repeated items in them, so there is only one 1 item in setstuff, but there were two 1
items in stuff (and also liststuff, the list version of stuff).

The op command still works like it did with lists.
> op(5, setstuff);
> op(5..7, setstuff);
> op(5..-1, setstuff);

We can also use this alternate notation.
> setstuff[5];
> setstuff[5..7];
> setstuff[5..-1];

Notice that, as with lists, setstuff[5] is the same as op(5, setstuff) but
setstuff[5..7] and op(5..7,setstuff) are different. And we can use the following
alternative to whattype.
> op(0, setstuff);
>

As we stated just above, the elements of a set data structure are interpreted as the elements of a
mathematical set, so the following two sets are the same as data structures.
> set1 := {1,2,3,4,4};
> set2 := {2,1,3,4};

Page 10

> evalb(set1=set2);
>

We can convert a set into an expression sequence by using the op command.
> op(setstuff);

Or we can use index notation.
> setstuff[];

We can convert a set into a list by using op and a pair of brackets.
> [op(setstuff)];

Notice that this last list is not the same as liststuff (why?). The following command uses a
lot of brackets to convert a set into a list.
> [setstuff[]];
>

Exercise: How would you convert a list into a set?
>

Maple has commands for doing common mathematical operations with sets. Here are two sets.
> set1 := {a, b, c, d};
> set2 := {c, d, e, f};

We can form their union and intersection, and also find one set minus the other.
> set1 union set2;
> set1 intersect set2;
> set1 minus set2;
>

Here is a simple example of how the difference between a list and a set can be important in
Maple. In the following plot command there is a list of functions and a list of colors. Since the
lists are ordered, the functions and colors can be associated in an obvious way.
> plot([cos(x), sin(x)], x=-2*Pi..2*Pi, color=[blue, green]);

In the next command we have a set of functions and a list of colors. Since the set is not ordered,
there is no obvious way to associate a color with a function. In my Maple session, the cosine
ends up green and the sine ends up blue, the opposite of what was expected, but this coloring
can change in the next Maple session. Orderings for sets are session dependent and can change
from one Maple session to another. If your session seems to be coloring the graphs the "correct"
way, try switching the order of the functions in the set and re-executing the plot command; the
coloring of the graphs should end up the "wrong" way.
> plot({cos(x), sin(x)}, x=-2*Pi..2*Pi, color=[blue, green]);
>

Exercise: Explain why the empty expression sequence needs a special name, NULL, but the
empty set and the empty list do not need special names.

Page 11

>

>

12.2.4. Some numeric data types
Every kind of number that Maple can work with is actually a data structure with some kind of
numeric data type. Here are some examples.
> whattype(5);
> whattype(1/3);
> whattype(1.0);

Let us look at these numeric data types a bit more carefully, in particular the fraction and
float data types.

A fractional number is represented in Maple by a data structure of type fraction. A
fraction is stored as two integers, the numerator and the denominator. Let us look at an
example, 22/7.
> whattype(22/7);

What are the pieces of data in this data structure?
> op(22/7);
> op(1, 22/7);
> op(2, 22/7);

What are the types of these data items?
> whattype(op(1, 22/7));
> whattype(op(2, 22/7));

To Maple, 22/7 is a data structure with data type fraction and it contains the two data items
22 and 7 in that order. On the other hand, 7/22 is also a fraction type data structure that
contains the two data items 22 and 7, but in a different order.
> op(7/22);
> op(1, 7/22);
> op(2, 7/22);

So 22/7 and 7/22 are data structures with the same data type and they contain the same data
items, but they are not equal data structures. Notice that this is very analogous to the lists
[22,7] and [7,22], which are two data structures with the same data type and contain the
same data items, but [22,7] and [7,22] are not equal data structures.
>

Exercise: Why are 22/7 and [22,7] not equal data structures? They contain the same data
items in the same order. What distinguishes them?
> op(22/7);
> op([22,7]);
>

Page 12

If a fraction is negative, Maple puts the minus sign with the numerator data item.
> op(-1/2);
> op(1/(-2));

So -1/2 and 1/(-2) are stored as the same data structure since they have the same data type (
fraction) and the same data elements, -1 and 2, in the same order.
>

Now we shall turn to decimal numbers. A decimal number is represented in Maple by a data
structure of type float. Like a fraction, a float is stored as two integers, the mantissa
and the exponent. A decimal number like .33 is thought of by Maple as 33*10^(-2). The
33 is called the mantissa and is stored as the first item in the float data structure, and -2 is
called the exponent and is stored as the second item of the float data structure.
> whattype(.33);
> op(.33);
> whattype(op(1, .33));
> whattype(op(2, .33));
>

The number 3.3 is thought of by Maple as 33*10^(-1), and the number 33. is considered
33*10^0.
> op(3.3);
> op(33.);

This gives you an idea why decimal numbers in Maple are called "floats", or "floating point
numbers". All three of the decimal numbers .33, 3.3, and 33. have the same mantissa and
they are distinguished by their different exponents. The exponent causes the decimal point to
"float around" the mantissa to give different decimal numbers. The term "floating point
numbers" is not unique to Maple. It is used throughout engineering and computer science to
mean the way that computers represent decimal numbers.
>

Do not make the mistake of thinking that Maple floats are just Maple's version of real numbers.
Maple floats are more subtle than that. For example the fraction 1/4 is equivalent as a real
number to the decimal number .25 which is also equivalent to the decimal numbers .250 and
.2500 since the trailing zeros do not change anything as far as real number are concerned. But
not in Maple. First of all, in Maple 1/4 is a data structure with type fraction and .25 is a
data structure with type float, so they are not equal.
> evalb(1/4=.25);

What about comparing .25 and .250?
> op(.25);
> op(.250);

Notice that the two data structures do not contain the same data items, so they are not the same
data structure. Not too surprisingly though, the evalb command says that they are equal.

Page 13

> evalb(.25=.250);

Here is an interesting way to see how the numbers 1/4, .25, .250, and .2500 are related in
Maple. Recall that the evalf command is used to approximate an exact number with a decimal
number and the evalf command can take a second input that specifies the number of decimal
digits to use in the approximation. Here are three different decimal approximations of 1/4.
> a := evalf(1/4, 2);
> b := evalf(1/4, 3);
> c := evalf(1/4, 4);

The previous three and the next three commands show that .25, .250, and .2500 are
considered by Maple as three different approximations of 1/4 using different numbers of
decimal digits.
> op(a);
> op(b);
> op(c);

The last example and the next one show that the number of decimal digits in a floating point
number is just the number of digits in the integer that is the mantissa part of the float data
structure. The next four commands compute four different decimal approximations, using
different numbers of decimal digits, of an integer.
> a := evalf(1451, 1);
> b := evalf(1451, 2);
> c := evalf(1451, 3);
> d := evalf(1451, 4);
> op(a);
> op(b);
> op(c);
> op(d);

Here is another example.
> a := 1.;
> b := 1.0;
> c:= 1.00;
> op(a);
> op(b);
> op(c);

These examples show that the numbers 1., 1.0, and 1.00 are three different numbers to
Maple, since they are stored with different data in their data structures. Why should we make a
distinction between 1., 1.0, and 1.00? In engineering and physics applications, these
numbers have different meanings when they are interpreted as the results of making
measurements. The number 1. means a measurement that was not very precise while the
numbers 1.0 and 1.00 represent more precise measurements. An engineer, when told that the
result of a measurement was 1., would know that there was some error in the measurement and
the actual value was somewhere between .5 and 1.5. Told that the result of a measurement

Page 14

was 1.0, the engineer would know that the actual value was between 0.95 and 1.05. When
told that the result of a measurement was 1.00, the engineer would know that the actual value
was between 0.995 and 1.005.
>

Maple can display floating point numbers in several different ways. If a decimal number is not
too big or too small, Maple displays it in the usual way.
> evalf(Pi^Pi);
> evalf(Pi^(-Pi));

If the number gets kind of big (or small) then Maple switches to scientific notation.
> evalf(Pi^(Pi^Pi));
> evalf(Pi^(-Pi^Pi));

If the number gets very big (or small) then Maple displays the actual float data structure.
> evalf(Pi^(Pi^(Pi^2)));
> evalf(Pi^(-Pi^(Pi^2)));

If the number gets really, really big (or small) then the float data structure cannot hold a
representation for the number and so Maple displays an error message (but it is the same error
message for too big and too small).
> evalf(Pi^(Pi^(Pi^Pi)));
> evalf(Pi^(-Pi^(Pi^Pi)));
>

>

12.2.5. Names (or symbols)
The names that we use for assigned and unassigned variables are themselves simple data
structures with the data type symbol. Here are some examples.
> whattype(x);
> whattype(xyz);

Here is a name that needs left quotes.
> whattype(`hello there`);
>

The only piece of data in a data structure of type symbol is the name itself.
> op(xyz);
> nops(xyz);

Notice that the individual letters in the name are not considered the data items. It is the whole
name that is the (single) data item.
> op(`hello there`);
> nops(`hello there`);

Notice that the words in the name are not themselves data items. Again, it is the whole name
which is the data item.

Page 15

Here is an example that shows how evaluation rules can help explain what might otherwise be
pretty confusing results. First, define a list and a function.
> f := [1,2,3]; # A list.
> g := x -> x^2; # A function.

In the next command, whattype uses full evaluation of f.
> whattype(f);

In the next command g points to a function so whattype uses last name evaluation.
> whattype(g);

Here is the way to see what it is that whattype is checking.
> 'whattype'(f);
> 'whattype'(g);

Last name evaluation can sometimes make a name act as if it were unassigned. Here is how we
find out the type of what g points to. We need to force the full evaluation of the name g.
> whattype(eval(g));

As we will see in a later worksheet, functions are data structures with the data type procedure
.
>

Exercise: Explain the results of the following four whattype commands.
> abc := 123;
> whattype(abc);
> whattype('abc');
> whattype(`abc`);
> whattype(`123`);
>

Exercise: Explain the result of the second whattype command.
> whattype(0);
> whattype(%);

Hint: What does % refer to in the last command?
>

>

12.2.6. Strings
Strings are a data structure made up of characters, just like the symbol data structure described
in the last subsection. However, strings are defined in Maple using the double quote key rather
than the left quote key used for symbols. Here are some examples of strings.
> "xyz";
> "a string can contain any characters, like these; &, @ ! ***

=?";
> "0123456789";
> "There is not a lot that you can do with strings.";

Page 16

Strings and symbols may seem more similar than they really are. The symbol `hello
world` and the string "hello world" are not considered equal by Maple.
> evalb(`hello world`="hello world");

They are two data structures with different data types.
> whattype(`hello world`);
> whattype("hello world");

Both data structures contain only one piece of data.
> nops(`hello world`);
> nops("hello world");

But notice in the next two commands that Maple does not quite consider them as containing the
same thing. Also, notice the subtle difference in the fonts used in the next two outputs.
> op(`hello world`);
> op("hello world");

The convert command can be used to convert a name into a string and a string into a name.
> convert(`hello world`, string);
> convert("hello world", name);

We just mentioned that a string data structure contains only one piece of data, and gave as
evidence the nops command. But in fact, it is not really clear just what Maple considers as the
data in a string data structure. For example, let s be a name for the string "hello world"
.
> s := "hello world";
> whattype(s);

The nops command implies that there is only one piece of data in s.
> nops(s);

But consider the following commands.
> s[1];
> s[2];
> s[3];
> s[11];
> s[-1];
> s[-2];

These commands would seem to imply, by analogy with the index notation for the list and
set data types, that s contains 11 pieces of data, i.e., each of the letters in the string. The
length command also backs up this claim.
> length(s);

Whether or not a string has one or many data items in it turns out not to be important. What is
more important is that we can use the index notation to access individual letters from a string,
which is something that we cannot do with the letters in a name.
> "hello world"[3..-3];
> `hello world`[3..-3];

Page 17

The most important difference between strings and symbols is that strings cannot be used as
variable names. Trying to use a string as a variable is an error.
> "hello world" := 0;

Of course the following is allowed.
> `hello world` := 0;
>

Exercise: Why do you think that Maple does not allow index notation with names to refer to the
individual letters of the name as it does with strings?
>

So what are strings used for? Mostly as labels for graphs and as messages to be printed out by
the print command (which we will make use of in later worksheets). Also, Maple's error
messages are strings.
> plot(x^2, x=-10..10, title="A graph of x squared.",
> titlefont=[COURIER, BOLDOBLIQUE, 14]);
> print("This is a message from Maple.");
> plot(); # Cause an error message.
>

It is worth noting that in versions of Maple before Maple V Release 5 there was no distinction
made between symbols and strings. In fact, the string data type did not exist and there was only
the symbol data type. So symbols were used for two kinds of purposes, as variable names and as
"strings", i.e., labels for graphs and messages to be printed out (e.g., error messages). It was
finally decided that it was not very elegant to blur the distinction between these two uses of
strings of characters, so the string data type was defined. The double quote key was chosen to
define strings since it is commonly used for this purpose in other programming languages. But
the double quote key had been the last result variable! So in Maple V Release 5 the last result
variable had to be redefined to be the percent key. If you should ever use an older version of
Maple, it is useful to remember this change in the Maple language.
>

>

12.2.7. Equations and inequalities
Let us restart Maple, to avoid any confusion from previous assignments.
> restart;

Earlier we defined an equation as an equals sign with an expression on either side of it. It turns
out that Maple considers an equation to be a data structure with data type equation. An
equation data structure always has two operands, the left and right hand sides of the equation.
Here are some examples.

Page 18

> whattype(y = x^2);
> op(y = x^2);
> op(1, y = x^2);
> op(2, y = x^2);

Maple has special commands for accessing the operands of an equation data structure, lhs and
rhs.
> lhs(y = x^2);
> rhs(y = x^2);

Now we can be very specific about the meanings of the two kinds of "equals signs" in a Maple
command like the following.
> eqn := y = x^2;

This command gave a name to a data structure. The name given to the data structure is eqn, and
the data structure being named is the equation data structure y=x^2. As far as Maple is
concerned, the following two commands are doing the same kind of thing, they are giving
names to data structures.
> ds1 := 1 = x^2 + y^2;
> ds2 := [1, `=` , x, `^`, 2, `+`, y, `^`, 2];
> whattype(ds1);
> whattype(ds2);

(What are all the left-quotes in ds2 for? Describe in detail the contents of ds2.)
>

There are three other data structures in Maple that are closely related to the equation data
structure. These are the inequality data structures, <>, <=, <. Below are some examples of
inequality data structures.
> x <> y;
> whattype(x<>y);
> op(x<>y);

> u+v <= 5;
> whattype(u+v<=5);
> op(u+v<=5);

> 5 < 0;
> whattype(5<0);
> op(5<0);

Should there be a >= and a > data structure? The answer is no, because they are not needed.
Maple automatically converts any "greater than" inequality into a "less than" data structure.
> 5 > 0;
> whattype(5>0);

Page 19

> op(5>0);

Notice how the order of the data items in the data structure are not what you would expect.
> op(1, 5>0);
> op(2, 5>0);

Unfortunately, this can get to be a bit confusing.
> lhs(5>0);
> rhs(5>0);

Here is another example.
> x-y >= 0;
> whattype(x-y>=0);
> op(x-y>=0);
>

Equations and inequalities in Maple are not entirely equivalent to equations and inequalities in
standard mathematical notation. For example, the mathematical equation x = y = z means that x,
y, and z all have the same value. But if we translate this directly into Maple, we get an error
message.
> x = y = z;

Equations and inequalities in Maple are not transitive. So we need to put parentheses into the
last equation in order for Maple to accept it. But neither
> (x = y) = z;

nor
> x = (y = z);

means the same thing in Maple that x = y = z means in mathematics (we will see why shortly).
Similarly, we would want the following inequality to mean that x is less than y and y is less than
z. But instead it gives us an error message.
> x <= y <= z;

The following two inequalities do not cause an error, but neither one has the meaning that we
want either.
> x <= (y <= z);
> (x <= y) <= z;

We will see later what is the proper way to fix x<=y<=z.
>

We have said before that equations (and also inequalities) are used to ask questions. An
equation or inequality data structure can be interpreted as being either true or false. The Maple
command evalb allows us to evaluate an equation or inequality data structure to see if it is true
of false. Here are some simple examples.
> evalb(0>=5);

Here are two true inequalities.
> evalb(0<1);
> evalb(0<>1);

Page 20

Here is an equation.
> x := 5:
> y := 1:
> evalb(x=5*y);

What do you think should be the result of the next command?
> evalb((x=5*y)=(2*x-5=5*y));

Let us go over this result in detail. Each of x=5*y and 2*x-5=5*y is an equation data
structure, and so (x=5*y)=(2*x-5=5*y) is an equation data structure where each of the left
and right hand sides are themselves equations. It might seem that we are asking if these are the
same two equations. But they are definitely not the same equation, so that is not why the last
command returned true. The last equation is true because Maple uses full evaluation before the
evalb command is evaluated. Here is what the evalb command sees as its input just before it
is evaluated.
> 'evalb'((x=5*y)=(2*x-5=5*y));

If we delay the evaluation of the inner equations, then we can verify that they are not the same
equation.
> evalb(('x=5*y')=('2*x-5=5*y'));
>

As we mentioned earlier, the following equation is syntactically incorrect.
> evalb(1=1=1);

Putting in parentheses corrects the syntax but does not give us what we really intended. Why do
you thing the following two equations are false?
> evalb((1=1)=1);
> evalb(1=(1=1));

Hint: Which equal sign is evalb evaluating? What is on either side of it?

Mathematically, the inequality 0<1<2 is true. But 0<1<2 is not correct Maple syntax so we
cannot even ask if it is true.
> evalb(0<1<2);

If we put parentheses in 0<1<2, then we can correct the syntax.
> (0<1) < 2;
> 0 < (1<2);

But if we put one of these in the evalb command to see if it might be true, we get one of
Maple's most inscrutable error messages.
> evalb((0<1)<2);

Just what sum is it that this message is referring to? Here is a hint.
> a:='a': b:='b':
> evalb(a<b);

It seems that in the process of trying to determine if an inequality is true or not, Maple at some
point converts the inequality into one involving zero. In the case of a<b, since a and b are
unassigned, Maple cannot determine if this inequality is true or false so it just returns the

Page 21

inequality, but in the form a-b<0. (Maple could have chosen to use alphabetical ordering of
names to evaluate this inequality, but it did not.) Now back to (0<1)<2. Maple probably
converted this to (0<1)-2<0.
> (0<1)-2<0;

Now we see what sum Maple means and where it came from.
> (0<1)-2;
>

So how does one express in Maple the fact that 0<1<2. The answer comes from reading this
aloud, "zero is less than 1 and 1 is less than 2". In Maple we translate this as 0<1 and 1<2.
> evalb(0<1 and 1<2);

Similarly, we would express the mathematical notation x = y = z as x=y and y=z.
> x := 3: y := x: z:= y:
> evalb(x=y and y=z);

When we evaluate an equation (or inequality) data structure as either true or false, we are
evaluating the equation (or inequality) as a boolean expression. The command evalb is an
abbreviation for "evaluate boolean". In general, a boolean expression is any expression whose
value is either true or false (as opposed to, say, a number). Any two boolean expressions can be
combined using and or or. For example < 1 x is equivalent to x<-1 or x>1. We will
examine boolean expressions in more detail later in this worksheet and also in the worksheet
about Maple's control statements.
>

While we are discussing inequalities and the evalb command, consider the following
command.
> evalb(Pi<4);

Maple has no problem with the next two commands.
> evalb(3.14<4);
> evalb(evalf(Pi)<4);

I have no idea why Maple cannot make the comparison in the inequality Pi<4.
>

Finally, notice that the equation data structure is a lot like an ordered pair. In fact, Maple often
uses equation data structures as a way to hold ordered pairs. One example of this that we will
see later is the way Maple stores entries in a table data structure (in particular, the remember
table stored in a procedure data structure).
>

>

12.2.8. Ranges
We use ranges in many different situations in Maple. Here are few examples.

Page 22

> x.(0..4);
> seq(x^2, x=0..4);
> plot(x->x^2, 0..4):

In this subsection we show that the "dot dot" operator (..) is really used by Maple to define a
data structure, with the data type range, that holds exactly two pieces of data (somewhat like
the equation and inequality data structures). As we will see, a range data structure is often
interpreted in Maple to mean some kind of range of numbers, but this interpretation is not
universal, and the two pieces of data in a range data structure can actually be used for almost
any purpose.
>

Here is a simple example of a range data structure.
> p..p^2;

We can give it a name.
> r := %;

We can ask what its data type is and what are its pieces of data.
> whattype(r);
> op(r);

We can try to use it.
> seq(i, i=r);
> w.(r);

Since the data items in our range do not yet evaluate to numbers, the range has limited use right
now. We can give p a value, and then try using the range again.
> p := 2;
> w.(r);
> seq(i, i=r);

Here is what the seq command saw as its input before it was evaluated but after r and its two
data items were evaluated.
> 'seq'(i, i=r);

A range data structure can hold any two pieces of data, but if the data items of the range do not
evaluate to numbers, then the range will not work in most Maple commands.
>

Notice that two levels of evaluation are needed before r evaluates to a "real" range. The next
two commands try to show these levels of evaluation.
> eval(r, 1);
> eval(r, 2);
> eval(r);

Notice that the eval command did not evaluate the names inside the range when we asked for
levels of evaluation. When we used eval with a list data structure, eval was able to show the
levels of evaluation of the names inside the list. For some kinds of data structures the eval
command can show the levels of evaluation inside the data structure, but for some other data

Page 23

structures eval cannot (we saw another example of this in the last worksheet with eval and
function calls).
>

Here is another example of using a range that contains expressions instead of numbers. The
following seq command causes an error since the data items in the range do not evaluate to
numbers yet.
> x:='x':
> seq(i, i=x..x^2);

Here is an interesting example of how we can give the expressions in the range a value. We can
take this seq command and nest it inside of another seq command. The outer seq command
gives values to the range in the inner seq.
> seq(seq(i, i=x..x^2), x=1..5);

The last command created an expression sequence of expression sequences. It can be a bit hard
to see where the sub expression sequences begin and end in the output. Here is a slight
modification of the last command that creates an expression sequence of lists.
> seq([seq(i, i=x..x^2)], x=1..5);

Exercise: Write a single command that will generate an expression sequence of lists where each
list contains the first n odd integers.
>

Exercise: Write a single command that will generate a list of lists where each list contains the
first n integers each raised to the nth power.
>

Now let us look at the interpretation that Maple gives to a range data structure. The meaning of
a range a..b need not be "all the numbers from a to b". The meaning of a range depends a
great deal on the context in which it is used. For example in the following command
> seq(i, i=-2..2);

the range -2..2 means all integers from -2 to 2. But in the command
> plot(i, i=-2..2);

the range -2..2 means all real numbers from -2 to 2. And in the command
> op(-2..2, [a, b, c, d, e, f]);

the range -2..2 does not have a meaning, it caused an error. On the other hand the range
2..-2 works fine in the next op command.
> op(2..-2, [a, b, c, d, e, f]);

The range 2..-2 does not cause an error in the following seq command, but it results in no
output (because the range is interpreted here as an empty range).
> seq(i, i=2..-2);

And in the following plot command, 2..-2 seems to be interpreted just like -2..2.
> plot(i, i=2..-2);

Page 24

So the meaning of a range data structure is very command dependent!
>

>

12.2.9. Function calls
The last of Maple's basic data structures that we describe in this section is a function call (also
referred to as an unevaluated function call). This is anything of the form

 name(exprseq)
that is, a name followed by a left parenthesis followed by an expression sequence followed by a
right parenthesis, and where name may be either an assigned or an unassigned variable. Here is
an example of a function call.
> f(x, y, z);
> whattype(%);
> op(%%);

Notice that Maple calls the data type function, which is confusing since f (the name part of
this function call) need not be the name of any Maple function. The operands of the function call
data structure are the operands of the expression sequence between the parentheses. Here is
another example.
> a_funny_name(z^2, [a,b,c], x, 2/3);
> whattype(%);
> op(%%);
>

The unevaluated function call data structure has two main interpretations in Maple depending on
whether the name in the function call is an assigned or unassigned name. The first is, not
surprisingly, to represent function calls in the usual sense when the name in the function call is
assigned to a function definition. Here are a few examples.
> whattype(exp(x));
> whattype('sin(Pi)');

(Why were right-quotes needed in the last example? What would be the type if they were
removed?)
> whattype('(z -> z^2)(w)');
> f := z -> z;
> whattype('f(u)');

Notice the difference between the last whattype command and the next three.
> whattype(f);
> whattype(eval(f));
> whattype(f(u));

Since f points to a function definition, by last name evaluation f evaluates to f, so
whattype(f) returns symbol. If we force full evaluation of f, then
whattype(eval(f)) returns procedure, which is the data type of a Maple function
definition that uses the arrow notation. And by the full evaluation rule and the definition of f,

Page 25

f(u) evaluates to u, which is a name, so whattype(f(u)) returns symbol. This can get a
bit confusing. Remember that a function definition is stored in a data structure with data type
procedure (that we will look at in a different worksheet) and that function is the data type
of a function call data structure that represents just the form of a function call.
>

Maple's other interpretation of a function call data structure is as a kind of tagged, or labeled,
expression sequence. This is the way Maple interprets a function call in the case where the name
at the front of the call is an unassigned name. The name at the front of the function call is the tag
(or label) for the expression sequence inside the parentheses.
> my_so_far_undefined_function(12, -2, 102);
> whattype(%);
> op(%%);

Maple makes use of a lot of these kinds of tagged expression sequences. Here is an example of
Maple returning an unevaluated function call data structure as the result of a Maple command.
> x := 'x':
> solve(x^5-x+1=0);
> whattype(%);
> op(%%);

The information that Maple wanted to pass on as the result of the solve command was placed
in an unevaluated function call data structure.
>

Here is another example of how Maple can store information in an unevaluated function call.
Let us make an assumption about the variable x.
> assume(x>0, x<=5);

Now we ask Maple about x.
> about(x);

We see that Maple stores the information about the assumptions on x in a couple of nested
unevaluated function calls, RealRange(Open(0),5). Try changing the assumption on x
and seeing how Maple stores the new assumption.
>

Here is another example of Maple returning an unevaluated function call as the result of a
command.
> evalf(Pi^(Pi^(Pi^2)));

The number π









π
()π

2

 is too large for Maple to display the usual way, so it displays it as a float
data structure, and it uses an unevaluated function call to display the data structure. Notice
though that the type of this result is float, not function like in the last example.
> whattype(%);
> op(%%);

Page 26

>

Notice that the following two data structures, called fc1 and fc2, have the same data type and
contain the same data items in the same order, but they are not the same data structure. So what
distinguishes them?
> fc1 := h(a, b, c);
> fc2 := k(a, b, c);
> whattype(fc1);
> whattype(fc2);
> op(fc1);
> op(fc2);
> evalb(fc1 = fc2);

A function data structure has a feature that most other data structures do not have, a zero'th
data item. The zero'th data item in a function data structure is the name that appears in front
of the parentheses as part of the function call.
> op(0, fc1);
> op(0, fc2);

So this is how Maple distinguishes fc1 from fc2. If it were not for the function data
structure's zero'th data item, fc1 and fc2 would be indistinguishable. (Recall that for most data
types, the " zero'th data item" as returned by the op command is the data type of the data
structure.)
>

Here is another example of looking at the zero'th data item in an unevaluated function call.
> solve(x^5-x+1=0);
> whattype(%);
> op(0, %%);
> op(%%%);
>

Maple makes extensive use of unevaluated function call data structures. Many of Maple's
predefined internal data structures are unevaluated function call data structures that often
contain other unevaluated function call data structures as operands. A good example of this, that
we will examine in detail later, is the PLOT data structure used to describe Maple's graphs.
>

The official definition of an unevaluated function call data structure and the official definition of
the unevaluated function call data type in the Maple help pages both say it is of the form name(
exprseq). But in reality, Maple has a much broader idea of what an unevaluated function call
is. We have already sneaked into this section one example of this broader definition.
> whattype('(z -> z^2)(w)');
> op(0, '(z->z^2)(w)');

Page 27

> whattype(%);

So we just saw a function data structure of the form procedure(exprseq) and not name
(exprseq). Here is another example.
> whattype('5(-2)');

The next two commands also verify that Maple interprets 5(-2) as a function call data
structure.
> type('5(-2)', function);
> op(0, '5(-2)');

5 is not a name.
> whattype(%);

Notice what 5(-2) evaluates to.
> 5(-2);
>

Exercise: What function does the function call 5(-2) refer to?
>

Here is another example of a function call that is not of the form name(exprseq).
> f(x)(y,z);

Let us check that this really is an unevaluated function call.
> whattype(f(x)(y,z));

What are the operands?
> op(f(x)(y,z));
> op(0, f(x)(y,z));

So f(x)(y,z) is a function call of the form function(exprseq). In particular, the name
of the function being called is f(x). Notice that in f(x)(y,z), the f(x) part represents both
the value of one function call and the function of another function call. To put it another way,
for the expression f(x)(y,z) to make sense, it must be that f represents a function whose
value is another function (in particular, a function of two variables). In an optional section of the
worksheet about functions we looked at examples of functions that return functions. Here is an
example that works with the expression f(x)(y,z).
> f := x -> (u,v)->u^x+v^x;

Notice that f is not a function of three variables. It is a function of one variable that returns a
function of two variables. Here is what f(x) evaluates to.
> f(x);

Here is what f(4) looks like.
> f(4);

Notice how the value of f(4) is a function of two variables. Here is what f(x)(y,z)
evaluates to.
> f(x)(y,z);
>

Page 28

Exercise: What do you think Maple is doing when it evaluates the following expression?
> (a,b)(c,d);
>

Exercise: Let us define an expression named f.
> x:='x':
> f := x^2+x+3;

Recall that we evaluate an expression at a point using the subs (or the eval) command.
> subs(x=1, f);

Recall that we pointed out earlier that it is a mistake to use functional notation to try and
evaluate at a point a function represented as an expression.
> f(1);

Try to make sense out this last output. What did Maple do to get it? In particular, in the next
output, why are the x's displayed using two different typefaces?
> f(x);

(Here is a hint.)
> (h+k)(x);
>

Exercise: Suppose that you mean to enter the expression () + 5 w () − 3 w into Maple and so you
type the following.
> w:='w':
> (5+w)(3-w);

You forgot the multiplication symbol *. Explain, with as much detail as you can, how Maple
parsed the input (5+w)(3-w).
>

Exercise: Suppose you want to represent the mathematical function = ()g x () − x2 3 () − x2 2 as
an expression and then evaluate it at = x 2. So you make the following two mistakes.
> x:='x':
> g := (x^2-3)(x^2-2); # Mistake 1.
> g(2); # Mistake 2.

Explain the last output as best you can.
>

Exercise: Suppose you want to represent the mathematical function = ()g x () − x2 3 () − x2 2 as
a Maple function and then evaluate it at = x 2. So you make the following mistake.
> g := x -> (x^2-3)(x^2-2);

Now evaluate g at 2.
> g(2);

Notice how subtle the mistake is! Explain the last output as best you can.
>

Page 29

If you start to use Maple a lot, believe me, you will make the mistakes that the last four
exercises demonstrate. And these can be hard mistakes to track down in long, complicated
calculations, especially the last one! After years of doing mathematics, we are so used to seeing
(x^2-3)(x^2-2) as correct that it is easy to pass over it when double checking a large
expression.
>

>

12.3. Data vs. data structure vs. data type
Here is an example that shows that a data structure is more than just the data contained in it, but it
also includes the way the data is organized or interpreted (which is expressed as the data structure's
data type). Below are seven data structures.
> data_structure_1 := [1,2]; # a list
> data_structure_2 := {1,2}; # a set
> data_structure_3 := 1=2; # an equation
> data_structure_4 := 1/2; # a fraction
> data_structure_5 := evalf(100,1); # a float
> data_structure_6 := 1..2; # a range
> data_structure_7 := h(1,2); # a function call

All seven of these data structures contain exactly the same data.
> op(data_structure_1);
> op(data_structure_2);
> op(data_structure_3);
> op(data_structure_4);
> op(data_structure_5);
> op(data_structure_6);
> op(data_structure_7);

But they all have distinct data types.
> whattype(data_structure_1);
> whattype(data_structure_2);
> whattype(data_structure_3);
> whattype(data_structure_4);
> whattype(data_structure_5);
> whattype(data_structure_6);
> whattype(data_structure_7);

In every one of these data structures, the data in the data structure is the same and in the same order,
the two integers 1 and 2. But the fact that this data is interpreted differently is very apparent in the
last four examples where 1 and 2 represent the fraction 1/2, the decimal number100 (to one decimal
place), the range from 1 to 2, and the inputs in the function call h(1,2), respectively. The way to
think about this is that a data structure includes not just the data, but it also includes a way of

Page 30

interpreting the data, a way of giving meaning, or structure, to the data.
>

>

12.4. Data types in mathematics
In mathematics, the notion of a "data type" exits, but it is rarely ever mentioned. For example, in a
mathematics book, the notation (1, 2) can have (at least) two distinct meanings: the point in the
plane with coordinates 1 and 2, and the open interval in the real line between 1 and 2. Each of these
meanings of (1,2) has a different "data type", but when you see the notation (a,b) in a math book,
you cannot ask the book "what is the data type of (a,b)?" (that is, "what does (a,b) mean?"). Instead,
you are supposed to realize from the context what the notation means. On the other hand, Maple is
not smart enough to understand an implied context; Maple needs to always be told explicitly what
we are talking about. So if we want to tell Maple about the point (1,2) in the plane, we would use a
list data type [1,2] and if we want to tell Maple about the interval (1,2) we would use a range data
type 1..2. Notice that Maple uses syntax to distinguish different kinds of data types. Some
mathematics books will also try to use syntax to distinguish between different data types. For
example, some books use the notation <1,2> to mean an ordered pair, to distinguish it from the open
interval (1,2). But these different syntaxes are not universally used, and even when used, the idea
that one is trying to distinguish between data types is never mentioned.
>

>

12.5. Nested data structures
Let us restart Maple to avoid any confusion from previous assignments.
> restart;

Here is an example of a data structure where each piece of data in the data structure is itself a data
structure. We will refer to data structures like these as nested data structures.
> complex_data_structure := [[a,b,c,d..abcd], {10,20,30.0}, 1/2

];
> whattype(complex_data_structure);
> nops(complex_data_structure);
> op(complex_data_structure);

The data structure has three pieces to it. What is the data type of each individual piece?
> whattype(op(1, complex_data_structure));
> whattype(op(2, complex_data_structure));
> whattype(op(3, complex_data_structure));

Each piece of the data structure is itself a data structure so the pieces of the data structure have their
own pieces.
Since each piece of the original data structure is a data structure, we can apply the op command to

Page 31

each of the individual pieces.
> op(op(1, complex_data_structure));
> op(op(2, complex_data_structure));
> op(op(3, complex_data_structure));

Now notice that two of the data elements listed above are themselves data structures. We can once
again use the op command to see what the pieces are from these data structures.
> op(4, op(1, complex_data_structure));
> op(op(4, op(1, complex_data_structure)));
> op(3, op(2, complex_data_structure));
> op(op(3, op(2, complex_data_structure)));

Notice how we used nested op commands to "take apart" a nested data structure and look at all of its
most elementary data elements. Nested commands like these are not easy to read, but we will be
using them quite a bit as we dig deeper into how Maple works. Most of the data structures that
Maple uses to do symbolic mathematics are in fact nested data structures.
>

There is a geometric way to visualize how these data structures are nested within data structures.
The two graphs below are called data structure trees. Each shows how data structures are nested
within complex_data_structure. The first graph emphasizes the sub data structures
contained in complex_data_structure.
 [[a,b,c, d..abcd], {10,20,30.0}, 1/2]
 / | \
 / | \
 / | \
 [a,b,c, d..abcd] {10,20,30.0} 1/2
 / / | \ / | \ / \
 / / | \ / | \ / \
 / / | \ / | \ / \
 a b c d..abcd 10 20 30.0 1 2
 / \ / \
 / \ / \
 d abcd 300 -1
>

The second graph emphasizes the data types of the sub data structures contained in each data
structure. Notice how in the second graph, by working your way up from the "bottom" nodes of the
graph to the top node you can reconstruct the original data structure, even though it is not explicitly
shown anywhere in the graph (like it is in the first graph).
 list
 / | \
 / | \
 / | \
 / | \

Page 32

 list set fraction
 / / | \ / | \ / \

 / / | \ / | \ / \
 a b c .. 10 20 float 1 2
 / \ / \
 / \ / \
 d abcd 300 -1

Notice how all of the "bottom" nodes of these graphs are either integers or names. These data
elements are data structures that cannot be taken further apart. We sometimes refer to the data types
of these data elements as primitive data types.
>

Based on this geometric way of visualizing nested data structures we can define what we will call
the levels of a nested data structure. We will say that a piece of data or a data structure is at the n'th
level of a nested data structure if it takes n nested op commands to access the it. For example, the
set {10, 20, 30.0} is at the first level of complex_data_structure, the float 30.0 is at
the second level of complex_data_structure, and the name abcd is at the third level.
> op(2, complex_data_structure); # One op

command.
> op(3, op(2, complex_data_structure)); # Two op

commands.
> op(2, op(4, op(1, complex_data_structure))); # Three op

commands.

Notice how the levels of a nested data structure are exactly the "levels" of its data structure tree. The
nested data structure itself is at level zero, since you do not need an op command to access it, and it
is the top node of the data structure tree. The pieces that are drawn just below the top node are the
pieces that are at level one and you need one op command to access them. As you go down the tree
from one node to a node below it, you need one more op command to access whatever is at the
lower node. (Do not confuse "levels of a data structure" with "levels of evaluation". They are
different ideas.)
>

We will define the height of a nested data structure to be the number of levels that are in the data
structure. So our example complex_data_structure has height 3.

One common thing to do with complicated, nested data structures is to ask if a particular data
structure or piece of data is contained somewhere in the data structure. Maple has two special
commands for asking questions like this, the member and has commands. The command has asks
if something is in a data structure at any level. The command member asks if something is at the
first level of a data structure.

Page 33

> has(complex_data_structure, abcd);
> member(abcd, complex_data_structure);
> member([a,b,c, d..abcd], complex_data_structure);

Notice how, even though these two commands serve very similar purposes, one of them has the data
structure as its first parameter and the other has the data structure as the second parameter. This
makes sense if you think of the commands has and member as being used in an "infix" instead of
"prefix" position. So we could read the command has(data_structure, data_item) as
the question "data_stucture has data_item?". And we would read the command
member(data_item, data_structure) as the question "is data_item a member of
data_structure?".
>

Here is an example of a nested data structure that contains several unevaluated function calls
h(g(x,3,z),w,f([a,b,sin(Pi)])). Here are data structure trees for this data structure.

 h(g(x,3,z), w, f([a,b,sin(Pi)])) or function
 / | \ / | \
 / | \ / | \
 g(x, 3, z) w f([a, b, sin(Pi)]) function w
function

 / | \ | / | \ |
 / | \ | / | \ |
 x 3 z [a, b, sin(Pi)] x 3 z list
 / | \ / |
\
 / | \ / |
\
 a b sin(Pi) a b
function

 |
|
 Pi
Pi
>

Notice that in the second expression tree, the one that emphasizes the data types rather than the sub
expressions, there is something missing. The names of the functions that are being called cannot be
recovered from the tree diagram. So we will sometimes use the following version of a data structure
tree. For unevaluated function call data structures, we will use the name of the function in place of
the name of the data type, function. Recall that the name of the function is the zero'th data
element in a function data structure, so using this notation in the data structure tree allows us to
specify all of a function call's data.
 h

Page 34

 / | \
 / | \
 g w f
 / | \ \
 / | \ \
 x 3 z list
 / | \
 / | \
 a b sin
 |
 Pi
>

Exercise: Draw a data structure tree, similar to the one we just drew, for the data structure
f(h(23,-2),15,g(h(0,1))). Notice how, if you were given the definitions of the functions
f, g and h, you would evaluate this function call by working your way up the data structure tree
from the bottom to the top.
>

Another example of a nested data structure is (x=y)=(0=-2). This is an equation data structure
that contains two more equation data structures. Here is a data structure tree for this equation.
 =
 / \
 / \
 = =
 / \ / \
 / \ / \
 x y 0 -2
>

Exercise: What are the data structure trees for x<=(y<=z) and (x<=y)<=z and (x<=y)>=z?
(Be careful about the third one.)
>

We mentioned earlier that levels of a data structure are not the same thing as levels of evaluation.
Let us look at an example that compares these two ideas. Here is the data structure we will use [a,
[b,c], {d,e,f}] and we will use the following assignments.
> data_structure := '[a, [b,c], {d,e,f}]';
> a:='b'; b:='c'; c:=-1; d:='f'; e:='f'; f:='g';

Now we will evaluate the data structure using different levels of evaluation.
> eval(data_structure, 1);
> eval(data_structure, 2);

Page 35

> eval(data_structure, 3);
> eval(data_structure, 4);

For each level of evaluation we get a new data structure. We could draw a data structure tree for
each of these data structures. Notice how a level of evaluation may or may not lead to a change in
the structure of a data structure tree.
>

Exercise: Draw the data structure trees for each data structure in the last example.
>

Exercise: Start with the same expression as in the last example [a, [b,c], {d,e,f}]. Use
the following assignments
> a:='b'; b:={'c','f'}; c:=-1; d:='a'; e:='f'; f:='g';

and draw the expression tree for each data structure that results from evaluating the original data
structure to a different level.
> eval([a, [b,c], {d,e,f}], 1);
> eval([a, [b,c], {d,e,f}], 2);
> eval([a, [b,c], {d,e,f}], 3);
> eval([a, [b,c], {d,e,f}], 4);
>

Notice how a data structure tree can "grow" in some places and "shrink" in other places as the
original data structure is evaluated.
>

In the next few sections we will see that a Maple expression is an example of a nested data structure.
We will use data structure trees, which we will call expression trees when dealing with expressions,
as a way of understanding the "structure" of an expression.
>

>

12.6. Expressions as data structures
Now that we have looked at some elementary data types and data structures, let us return to the idea
of an expression. We have said several times that an expression is a data structure. So if it is a data
structure, what is its data type? Let us look at an example. Define an expression in the variable x and
give it a name (but first make sure that x is unassigned).
> x := 'x':
> f := x^2+2*x-1;

If it is a data structure, as we are claiming, what is its data type?
> whattype(f);

The expression is a `+` data type because it is a sum of terms. What are the pieces of data stored in
this data structure?

Page 36

> op(f);

The pieces of data are the terms of the expression. But each term of the expression is itself an
expression, so each piece of data in the expression f must itself be a data structure. What are their
data types?
> whattype(x^2);
> whattype(2*x);

The first term of f is a `^` data type because it is an exponential term, and the second term is a
`*` data type because it is a product. What is the data type of the third term?
>

The last four commands show that an expression like x^2+2*x-1 is a data structure (of type `+`)
made up of three pieces of data each of which is itself a data structure (of types `*`, `^`, and
integer). So an expression is an example of a nested data structure.

Notice we say that x^2+2*x-1 is a data structure of type `+`, not +.
> type(x^2+2*x-1, `+`);
> type(x^2+2*x-1, +);

We need the left-quotes around the plus sign because `+` is the name for the data type and in
Maple + cannot be a name. Similarly, 2*x is a data structure of type `*`, not *.
> type(2*x, `*`);
>

The expression a*x^2+b*x+c is also a data structure to Maple. Let us see how it can be
manipulated. First let us define it and give it a name.
> quad := a*x^2+b*x+c;

Check what its data type is and see how many operands it has.
> whattype(quad);
> nops(quad);

Here are the operands of the data structure.
> op(quad);

Let us look more closely at the first operand. What is its data type and what are its operands?
> op(1, quad);
> op(op(1, quad));

Let us look at the second operand in this last output, that is, the second operand of the first operand
of quad.
> whattype(op(2,op(1,quad)));
> op(op(2,op(1,quad)));

What we are doing is taking a data structure (i.e. quad) and tearing it apart, or breaking it down into
its basic components using the op command.
>

We can also built up a data structure. First, let us use the seq command to create an expression

Page 37

sequence data structure
> seq(x^i, i=0..7);

Convert the expression sequence into a list.
> [%];

Now use the add command to convert the list into a `+` data structure. Examine the following
command carefully and make sure you understand the meaning and purpose of every character in it.
> add(op(i,%), i=1..nops(%));

Here is a much more compact and terse version of the last command. This version makes i
successively represent each term from the list data structure, and adds up these terms.
> add(i, i=%%);

We have built up a data structure that represents a polynomial. Now we can use the factor
command to further manipulate our data structure and factor it.
> factor(%);

Of course, this produced a new data structure. What is its data type and what are its operands?
> whattype(%);
> op(%%);

It is important to realize that most of Maple's commands for doing symbolic algebra are really
commands for manipulating data structures.
>

Here is another example of the idea that a data structure is more than just the data contained in it.
First let us make sure that x and y are unassigned.
> x:='x': y:='y':

Here are three different data structures (i.e., expressions), x+y, x*y, and x^y.
> whattype(x+y);
> op(x+y);
> whattype(x*y);
> op(x*y);
> whattype(x^y);
> op(x^y);

So x+y, x*y, and x^y are three different data structures, but all three contain the same data (and in
the same order).
>

Let us look at another example of taking apart an expression. This time the expression is a bit more
complicated and the data structure that represents the expression is not at all obvious. Here is the
expression, a rational function.
> r := (x+1)/(x^2-1);

What is its data type?
> whattype(r);

It would have been reasonable to expect a `/` data type for division, but it turns out that Maple
does not have such a data type. Here are the operands of r. This helps explain why r has a `*`

Page 38

data type
> op(r);

Now let us examine each of the operands of r.
> whattype(op(1,r));
> whattype(op(2,r));

Notice that the second operand of r is of type `^` (for exponentiation). The following command
shows why.
> op(op(2,r));

Maple represents the second operand of r as x^2-1 raised to the -1 power. The following
expression, r2, shows how Maple really thinks of the expression r.
> r2:=(x+1)*(x^2-1)^(-1); # This is how Maple thinks of r,

The next command shows that Maple really does consider r and r2 as the same expression.
> evalb(r=r2);

Here is another way to write the expression r. It can be simplified.
> r3 := simplify(r);

However, Maple does not consider the expression r and its simplified version r3 to be the same
expression. They are very different as data structures.
> evalb(r=r3);

In the next section we will draw data structure trees for r and r3 and see why they are so different.
>

Exercise: Draw the data structure tree for the expression 2*x+3/x.
> 2*x+3/x;
>

Exercise: Draw the data structure tree for the expression 2*x^2+3/x^2.
> 2*x^2+3/x^2;
>

>

12.7. Expression trees
As an exercise, let us take the expression r from the last section and break it down into its most
basic parts and see how they are organized together to make r.
> r := (x+1)/(x^2-1);

Here is what is at the top (zero) level.
> r;
> whattype(r);

Here is what is at the first level of r.
> op(r);
> whattype(op(1, r)), whattype(op(2, r));

Here is part of the second level, the part under op(1,r).

Page 39

> op(op(1,r));

Let us look at these two parts of the second level.
> op(1, op(1,r));
> whattype(op(1, op(1,r)));
> op(2, op(1,r));
> whattype(op(2, op(1,r)));

Now we can go back and look at the other part of the first level.
> op(2,r);
> whattype(op(2,r));

Here is the rest of the second level, the part under op(2,r).
> op(op(2,r));
> whattype(op(1, op(2,r))), whattype(op(2, op(2,r)));

Here is one part of the second level that is under op(2,r).
> op(2, op(2,r));
> whattype(op(2, op(2,r)));

Here is the other part of the second level that is under op(2,r).
> op(1, op(2,r));
> whattype(op(1, op(2,r)));

Now we can look at the third level.
> op(op(1, op(2,r)));

The third level has two pieces. Here is one piece.
> op(2, op(1, op(2,r)));
> whattype(op(2, op(1, op(2,r))));

Here is the other piece of the third level.
> op(1, op(1, op(2,r)));
> whattype(op(1, op(1, op(2,r))));

Finally, we can look at the two pieces of the fourth level of r.
> op(op(1, op(1, op(2,r))));
>

Let us notice a few things. First, to access something from level n of r, we needed to use n op
commands. Recall that this is what we mean by the "levels of a nested data structure" and we will
also use this to define the "levels of an expression". Second, what we have figured out above can be
given a geometric representation as a tree diagram, and the levels of r correspond directly to levels
in the tree diagram.
 (x+1)/(x^2-1)
 / \
 / \
 x+1 (x^2-1)^(-1)
 / \ / \
 / \ / \
 x 1 x^2-1 -1
 / \

Page 40

 / \
 x^2 -1
 / \
 / \
 x 2
This tree diagram is called an expression tree for r. The levels of r are exactly the levels in the tree
diagram. Here is another way to draw an expression tree for r.
>

 `*`
 / \
 / \
 / \
 / \
 `+` `^`
 / \ / \
 / \ / \
 x 1 `+` -1
 / \
 / \
 `^` -1
 / \
 / \
 x 2
The first form of the expression tree emphasizes the sub expressions contained in r. Each node of
the tree is one of r's sub expressions. The second form of the expression tree emphasizes the data
type that each sub expression has. Each node is either the name of a data type or a "primitive" data
structure.
>

Exercise: Draw the expression tree for the expression r3 from the last section (that is, the
simplified expression for r).
> 'r' = r;
> r3 := simplify(r);
>

In the above expression trees, notice how the type of each sub expression is exactly the arithmetic
operator that is evaluated at that level. So the organization of the data structure for r directly reflects
the rules for the precedence of arithmetic operations. The higher an arithmetic operation's
precedence is, the lower it is in the expression tree. Maple would evaluate this expression by
working it way up the tree, from bottom to top. Here is another example that shows this. First let us
define and name another expression.
> q := 3*x^2+y;

Page 41

Here is the top level of the expression.
> q;
> whattype(q);

Here are the sub expressions at the first level.
> op(q);

Here is one of the first level sub expressions.
> op(1, q);
> whattype(op(1,q));

Here are the sub expressions at the second level of q.
> op(op(1,q));

Here is one of the second level sub expressions.
> op(2, op(1,q));
> whattype(op(2, op(1,q)));

Finally, here are the pieces of the third level of q.
> op(op(2, op(1,q)));

The expression trees for q look like the following.

 3*x^2+y or `+`
 / \ / \
 / \ / \
 3*x^2 y `*` y
 / \ / \
 / \ / \
 3 x^2 3 `^`
 / \ / \
 x 2 x 2
The exponential, which has the highest order of precedence in this expression and is computed first,
is almost at the bottom. The multiplication, which is computed next, is at the middle level. And the
addition, which has the lowest order of precedence in this expression, and so it is evaluated last, is at
the top level. Given values for the variables x and y, Maple would evaluate this expression by
working its way up the expression tree.
>

Exercise: You can change the order of the operations in an expression by inserting parentheses into
the expression. Draw the expression trees for the expressions (3*x)^2+y, 3*x^(2+y) and
(3*x)^(2+y), each of which is q with parentheses inserted in it to change the order of the
operations. Notice how, even though the parentheses do not show up in the expression tree, the order
of operations is clear from the structure of the expression tree.
>

Exercise: Draw the expression tree for sin(x^2+x/y)-exp(3*z*f(x,Pi*y)).
>

Page 42

Exercise: This exercise compares the ideas of levels of evaluation and levels of an expression. First
make the following assignments.
> unassign('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h');
> a := 'c': b := 'a': c := 2: d := 'f': e := 1: f := 'b':

Now consider the following expression (3*a+b+h/d)^e+f. Draw an expression tree for this
expression. Then draw an expression tree for the expression that results when we evaluate
(3*a+b+h/d)^e+f to one level (given by the next command).
> eval((3*a+b+h/d)^e+f, 1);

Now draw an expression tree for (3*a+b+h/d)^e+f evaluated to two levels.
> eval((3*a+b+h/d)^e+f, 2);

Draw an expression tree for (3*a+b+h/d)^e+f evaluated to three levels.
> eval((3*a+b+h/d)^e+f, 3);

Draw an expression tree for (3*a+b+h/d)^e+f evaluated to four levels.
> eval((3*a+b+h/d)^e+f, 4);

Draw an expression tree for (3*a+b+h/d)^e+f evaluated to five levels.
> eval((3*a+b+h/d)^e+f, 5);

The expression (3*a+b+h/d)^e+f evaluated to six levels is fully evaluated.
> eval((3*a+b+h/d)^e+f, 6);

Notice how, with each level of evaluation, Maple tries to compute as much of the expression tree as
it can. As the expression is evaluated to more levels, more branches of the expression tree can be
"pruned off" starting from the leaf nodes of the tree and working up the tree.
>

Exercise: Is it possible that a level of evaluation can cause an expression tree to "grow" a branch?
To put it another way, can an expression tree become more complicated as we increase the levels of
evaluation?
>

>

12.8. Why are expression trees important?
Here is an example that seems puzzling at first. Let us define an expression.
> w := x+2+sin(x+2);

Now let us try and do a simple substitution, something that we might do in calculus. We will
substitute u for x+2 in the expression w.
> subs(x+2=u, w);

Why did that not work? Only one of the x+2 terms was replaced in the substitution. The answer
comes from looking at the expression trees for w.
>

 x+2+sin(x+2) or +
 / | \ / | \

Page 43

 / | \ / | \
 x 2 sin(x+2) x 2 sin
 | |
 | |
 x+2 +
 / \ / \
 / \ / \
 x 2 x 2

The explanation of why this is the correct expression tree comes from the following commands.
Notice that at the top level, w is a sum of three terms, and the third term is a function call that
contains only one operand, the sub expression x+2.
> op(w);
> op(3,w);
> op(op(3,w));

Now we can use the expression tree to explain why the subs command did not do what we
expected it to do. The subs command can only replace sub expressions when it does a substitution.
The expression x+2 only appears once in w as a sub expression (see the first expression tree). So the
subs command only did one substitution! In the online help for the subs command, this kind of
substitution is called syntactic substitution.

You might think that adding a pair of parentheses to the expression w would help with the
substitution but it does not. Let w1 be w with an extra pair of parentheses.
> w1 := (x+2)+sin(x+2);

Notice that Maple just dropped the parentheses from w1. And the following command shows that
w1 is exactly the same expression (i.e., has the same expression tree) as w.
> op(w1);

How can we get around this kind of limitation in the subs command? Here is one way, and then we
will look at another way which uses a different substitution command. The first way is to use a trick.
Instead of substituting u for x+2, we shall substitute u-2 for x.
> subs(x=u-2, w);

That worked.

Here is another substitution command that can also be used.
> algsubs(x+2=u, w);

The algsubs command worked the way we originally thought the subs command would. This
substitution command does what the online help calls algebraic substitution (and hence the name
of the command). Algebraic substitutions are more general than the kind of substitutions that are

used in calculus. Consider the following example. Suppose we want to replace x2 in the expression

x3 with u, but in an "algebraic way" rather than in the usual calculus way.
> algsubs(x^2=u, x^3);

Page 44

Notice that the following subs command does not do anything. (What is the expression tree for
x^3?)
> subs(x^2=u, x^3);
>

Exercise: In calculus, what would be the result of letting u be x2 in the expression x3? Try to find a
way of doing this substitution with Maple. (Hint: Use the subs or the algsubs command and use
a trick similar to the one we used above with subs.)
>

Exercise: Find two ways to get Maple to substitute w for x^2/2 in the expression
3*x^2/2*exp(5*x^2/2).
>

Exercise: The following substitution is perfectly legitimate in Maple even though at first glance the
2=3 may not seem to make sense.
> subs(2=3, x^2+sin(2*Pi*x));

Explain this last substitution in terms of the expression tree for x^2+sin(2*Pi*x). Now
consider the following substitution.
> subs(-1=1, 1/x-x);

Explain this last substitution using the expression tree for 1/x-x.
>

In this section we saw the need for expression trees to help us understand the subs command when
it does its form of syntactic substitution. This is just one of many ways that understanding
expression trees is important for working with Maple.

Exercise: Read the help page about the subsop command. Compare and contrast the subs and
subsop commands.
>

Note: If we try to explain the following substitution in terms of an expression tree, we run into
problems.
> subs(1=2, x+y+2);

In the way that we have drawn expression trees, there would be no term 1 anywhere in the
expression tree for x+y+2, so it is not clear how Maple made the substitution. The answer is that
the way we have drawn expression trees is not exactly how Maple represents expressions internally.
Maple's internal representation for an expression is really quite a bit more complicated than an
expression tree. Maple uses something called a directed acyclic graph. If you want to know more
about this, see Introduction to Maple, 2nd Ed., by Andre Heck, Chapter 6.
>

Page 45

>

12.9. Some other basic data types (optional)
According to the online help for the whattype command, Maple has 29 basic data types. So far
we have discussed 17 of these. They are `*`, `+`, `..`, `<`, `<=`, `<>`, `=`, `^`, expseq,
float, fraction, function, integer, list, set, string, and symbol. In this section
we discuss eight of the remaining basic data types. They are the three logical data types `and`,
`or`, and `not`, unevaluated dotted and indexed names, series, uneval, and `::`. In the
next section we discuss two more of the basic data types, table and array. Of the remaining two
basic data types, we will discuss procedure in the worksheets about procedures, and we will not
discuss the hfarray data type.
>

12.9.1. Logical data types
Maple has three logical data types, `and`, `or`, and `not`. These data types and their data
structures are used to build up boolean expressions. A boolean expression is analogous to an
algebraic expression but a boolean expression evaluates to either of the logical values true or
false (instead of an algebraic value, like a number). Just as the `+` and `*` data structures
are used to represent the operations of addition and multiplication in an algebraic expression, the
`and`, `or`, and `not` data structures are used to represent the logical operations of
conjunction, disjunction, and negation in a boolean expression. Here is an example of a
boolean expression.
> not(a or b or c) and d;

Let us analyze this expression much as we would analyze an algebraic expression. First, let us
give our anonymous boolean expression a name.
> bexp := %;

What type of data structure is it?
> whattype(bexp);

How many operands are there?
> nops(bexp);

What are the operands?
> op(bexp);

Check the data type of each operand.
> whattype(op(2, bexp));
> whattype(op(1, bexp));

Let us analyze the first operand of bexp.
> nops(op(1, bexp));
> op(op(1, bexp));
> whattype(op(1, op(1,bexp)));
> nops(op(1, op(1,bexp)));

The last result may be a bit surprising. The next command explains why the result was 2 (and
not 3).

Page 46

> op(op(1, op(1,bexp)));

Notice, interestingly, how the boolean expression a or b or c is stored in a very different
way from an algebraic expression like a + b + c.
> nops(a or b or c);
> nops(a + b + c);
>

Exercise: Use the information from the previous commands to draw an expression tree for the
boolean expression bexp.
>

We should briefly mention the difference between and, or, not and `and`, `or`, `not`.
Each of and, or, and not is a Maple keyword. These three keywords represent in Maple the
three logical operations of conjunction, disjunction, and negation. On the other hand, `and`,
`or`, and `not` are Maple names. These are the names given in Maple to the three logical
data types. Here is an example of the distinction between and and `and`. The following
command asks if the expression a and b is an `and` data structure.
> type(a and b, `and`);

Notice that each of the following commands is a syntax error.
> type(a and b, and);
> type(a `and` b, `and`);

Notice how, in the first of the above two error messages, the placing of left-quotes around the
keyword and is a bit misleading (since a keyword is not a name). Notice also that when Maple
returns the name of a data type, it does not use left-quotes.
> whattype(a and b);
>

We will make quite a bit of use of boolean expression when we get to the worksheets about
Maple programming, in particular when we discuss conditional statements and while-loops. We
will explain a more about boolean expressions in those worksheets.
>

>

12.9.2. Dotted names
An unevaluated dotted name is another data structure that holds an ordered pair of data items,
much like equations and ranges. For example, here is an unevaluated dotted name data structure.
> whattype('x.i');
> nops('x.i');
> op('x.i');

The data structure holds the two items that are on either side of the dot.

If we let Maple evaluate the dotted name, then it becomes a name and is no longer a data

Page 47

structure of type `.`. Here is an example of an evaluated dotted name.
> whattype(x.i);

Unlike the range and equation data structures, an unevaluated dotted name data structure cannot
hold two arbitrary pieces of data. The piece of data on the left side of the dot must be a name. If
we try to put anything other than a name on the left side of the dot, we get a syntax error.
> 27.i;
> (x+y).i;
> (x).i;

On the right hand side of the dot, we can put pretty much any data item. But Maple can evaluate
a dotted name only if the item on the right side of the dot is a name, an integer, or a range. For
example, here is an unevaluated dotted name data structure that cannot be evaluated to a name
(so we do not need left quotes to delay its evaluation).
> whattype(x.(i^j));
> nops(x.(i^j));
> op(x.(i^j));

Here is an example of an evaluated dotted name with a range to the right of the dot.
> x.(-3..3);

Notice that this evaluated to an expression sequence of names. Here is the unevaluated dotted
name data structure that Maple just evaluated..
> whattype('x.(-3..3)');
> nops('x.(-3..3)');
> op('x.(-3..3)');
>

Since an unevaluated dotted name data structure can evaluate to a name, we can put one on the
right of the dot of another dotted name. In other words, we can nest unevaluated dotted name
data structures. Here is an example of a nested, unevaluated dotted name data structure.
> whattype('x.i.j');
> nops('x.i.j');
> op('x.i.j');
> op(1, 'x.i.j');
> whattype(op(1, 'x.i.j'));
> op(2, 'x.i.j');
> whattype(op(2, 'x.i.j'));

Notice how the above commands show that the dot operator is left associative. If we remove the
left quotes, Maple has no trouble evaluating x.i.j, since there is a name on both sides of both
dots.
> x.i.j;

Here is a slight variation on the previous example. In this example we use a pair of parentheses
to change the order of evaluation of the dot operators. Notice how the parentheses in the
expression change the structure of the underlying data structure.

Page 48

> whattype('x.(i.j)');
> nops('x.(i.j)');
> op('x.(i.j)');
> op(1, 'x.(i.j)');
> whattype(op(1, 'x.(i.j)'));
> op(2, 'x.(i.j)');
> whattype(op(2, 'x.(i.j)'));
>

As a final note, notice that even though parentheses are allowed in the expression x.(i.j) to
change the order of the evaluation of the dots, for some reason parentheses are not allowed in an
expression like (x.i).j, which, since the dot operator is left associative, should be equivalent
to x.i.j.
> (x.i).j;
>

>

12.9.3. Indexed names
An unevaluated indexed name data structure is very much like an unevaluated function call data
structure. Here is an example of an unevaluated indexed name data structure.
> f:='f':
> whattype(f[x,y]);
> nops(f[x,y]);
> op(f[x,y]);

Recall that Maple has a special way of typesetting (or pretty printing) an indexed name as a
subscripted name. Remember that typesetting an indexed name is not the same as evaluating it.
The following indexed name is unevaluated since it is still an unassigned name.
> f[x,y];

Like an unevaluated function call data structure, an unevaluated indexed name data structure has
a zero'th data item, which is the header for the indexed name.
> op(0, f[x]);

Like an unevaluated function call data structure, an unevaluated indexed name can hold an
arbitrary number of arbitrary data items. Here is a more complicated example of an unevaluated
indexed name data structure.
> whattype(f[x^2, 12, a-b, u=v^2]);
> nops(f[x^2, 12, a-b, u=v^2]);
> op(f[x^2, 12, a-b, u=v^2]);

If we let Maple typeset this indexed name, then we get a very strange looking name. Again,
remember that typesetting an indexed name is not the same thing as evaluating it. The following
indexed name is still unevaluated.
> f[x^2, 12, a-b, u=v^2];
>

Page 49

Even the header for an indexed name can be pretty complicated. If we want the header to be
something other than a name (or a list or a set), we need to enclose it on a pair of parentheses.
> (r^t=z^3)[x^2, 12, a-b, u=v^2];
> whattype((r^t=z^3)[x^2, 12, a-b, u=v^2]);
> nops((r^t=z^3)[x^2, 12, a-b, u=v^2]);
> op((r^t=z^3)[x^2, 12, a-b, u=v^2]);
> op(0, (r^t=z^3)[x^2, 12, a-b, u=v^2]);
>

Exercise: Say as much as you can about the following expression.
> [][];
>

Here is an example of an evaluated indexed name. The header is the list [a,b,c,d].
> [a,b,c,d][2..3];

Here is the unevaluated indexed name that Maple just evaluated.
> '[a,b,c,d][2..3]';
> whattype('[a,b,c,d][2..3]');
> op(0, '[a,b,c,d][2..3]');
> op('[a,b,c,d][2..3]');
>

We can nest unevaluated indexed name data structures inside of each other. The next three
indexed names show three different ways of nesting unevaluated indexed name data structures.
The first has an indexed name as a regular operand of an indexed name data structure. The
second has an indexed name as the zero'th operand of an indexed name data structure. And the
third has indexed names as both a regular and the zero'th operand of an indexed name data
structure.
> f[g[0]];
> f[g][0];
> f[g][g[0]];

Notice how much the first two look alike when they are typeset. It is very difficult to tell them
apart, though if you look very closely you can see a slight difference in the spacing of the letters.
The following pairs of commands show how each of these three data structures is put together,
which makes it easy to see that they really are different.
> op(0, f[g[0]]);
> op(f[g[0]]);
> op(0, f[g][0]);
> op(f[g][0]);
> op(0, f[g][g[0]]);
> op(f[g][g[0]]);
>

Page 50

Exercise: Say as much as you can about the following expression.
> [a,b,c,d][2..3][-1];
>

Exercise: Describe the structure of the following expressions.
> f[x](y,z);
> f(x)[y,z];
> f[x][y,z];
> f[x]([y,z]);
> (f[x])[y,z];
>

>

12.9.4. Series
An infinite series would obviously be a difficult object to store in a computer. But infinite series
are very common mathematical objects, so Maple needs a way to represent them. Maple
represents infinite series with a series data structure.
>

Infinite series are hard to write down completely on paper also, so mathematics has various
ways of representing them abstractly. In order to distinguish between a sum of a few terms, like
this

 + + + + 1 x
x2

2

x3

6

x4

24
and an infinite series

 + + + + 1 x
x2

2

x3

6

x4

24
 + ...

we often use an ellipsis, that is the three periods in a row (...), to mean "go on adding for ever".
Maple uses a similar kind of notation when it displays a series data structure, but instead of
using the ellipsis notation, Maple uses a "big-oh" kind of notation. Here is a command that
creates a series data structure.
> series(exp(x), x=0, 5);

The last term in the output, ()O x5 , denotes that this output represents a series data structure.

The x5 in the last term indicates that the series is in the variable x and that the next term of the
series will have order 5. Here is another series data structure that represents the same infinite
series but it displays more terms explicitly.
> series(exp(x), x=0, 10);

Let us give our first (anonymous) series data structure a name so that we can analyze it more
conveniently.
> exp_series := %%;

Page 51

Let us check the data type of this data structure.
> whattype(exp_series);

Let us see how many operands the data structure contains and what the operands are.
> nops(exp_series);
> op(exp_series);

This series data structure represents five explicit terms from the infinite series plus the last,
big-oh, term that tells us that this is a series data structure. Each explicit term from the series
is represented in the series data structure by two numbers, the coefficient of the term and the
exponent of the term (in that order). The last, big-oh, term is also represented by two items, the
special item ()O 1 (which is an unevaluated function call data structure) and an integer that
denotes the order of the next term in the series. The next few commands analyze the term ()O 1
to show that it really is just an unevaluated function call.
> op(11, exp_series);
> whattype(op(11, exp_series));
> op(0, op(11, exp_series));
> op(1, op(11, exp_series));
>

Here is another example of a series data structure.
> series(cos(x), x=0, 4);

This data structure should have six operands.
> nops(%);
> op(%%);

Notice that the series data structure is efficient in the sense that it does not waste any space
storing terms from the series that have zero coefficient. In the last example, the first and third
degree terms from the series have zero coefficient, and they are not represented in the data
structure.
>

Notice that the series data structure seems to be missing some information. From just the
data items listed by the op command, we cannot determine the series that the data structure
represents. For example, compare the following series data structure and its contents with the
previous example.
> series(sin(w), w=Pi/2, 4);
> nops(%);
> op(%%);

The last two series data structures contain the exact same data items, though they represent
different series. The information that is missing from a series data structure is the term that

the series is in. The first of the last two examples is a series in x, and the second is a series in

 − w
π

2
. This information is in fact stored in the zero'th data item of the series data structure

(recall that this is where Maple usually stores the data type of a data structure).

Page 52

> series(cos(x), x=0, 4);
> op(0, %);
> series(sin(w), w=Pi/2, 4);
> op(0, %);
>

Maple has three commands that can create series data structures, series, taylor, and
numapprox[laurent] (from the numapprox package). Here are some examples of series
created by these commands.
> exp(x^2*sin(x));
> taylor(%, x=Pi, 4);

The series data structure can represent series that are more general than the power series
from calculus. The following command computes a Laurent series, which allows for negative
exponents in the series.
> exp(x)/sin(x)^2;
> numapprox[laurent](%, x=0, 8);
> whattype(%);
> nops(%%);
> op(%%%);

The series command can produce some pretty unusual series. The next example is a series in

the variable x that has coefficients that are themselves functions in x.
> series(x^x, x=0);
> whattype(%);
> nops(%%);
> op(%%%);
>

Surprisingly, the result of the series command need not be a series data structure.
> series(1/(1+sqrt(x)), x=0);
> whattype(%);
> nops(%%);
> op(%%%);

The last series command produced a sum that looked like a series. The following series
command produces a series that looks like a sum.
> series(3*x^2-2*x+5, x=0);
> whattype(%);
> nops(%%);
> op(%%%);
>

It is worth mentioning that Maple has a command for converting series into sums,
convert/polynom.

Page 53

> series(ln(x+1), x=0);
> convert(%, polynom);
> whattype(%);

The result of the convert/polynom command need not be a polynomial however, since a
series can be more general than a power series.
> series(ln(x+1)/x^3, x=0);
> convert(%, polynom);
> whattype(%);
> type(%%, polynom);
>

Note: In mathematics it is also common to study infinite products along with infinite sums. For
example, here is a very famous infinite product.

 = ()sin z z












∏

 = n 1

∞ 







 − 1

z2

()n π 2

However, Maple does not have a special data structure for representing infinite products like it
has for representing infinite sums.
>

>

12.9.5. Unevaluated expressions
Maple has a highly specialized data structure of type uneval for holding unevaluated
expressions. Consider the following simple example. First give x a value.
> x := 5;

In the next command, Maple fully evaluates x before calling whattype, so 5 is passed to
whattype, which returns integer.
> whattype(x);

In the next command, Maple strips off one layer of delayed evaluation from 'x' before calling
whattype, so x is passed to whattype, which returns symbol.
> whattype('x');

In the next command, Maple strips off one layer of delayed evaluation from ''x'' before
calling whattype, so 'x' is passed to whattype, which returns the special data type
uneval.
> whattype(''x'');

In the last command, whattype was passed a data structure that holds an unevaluated
expression. Here is a slightly more interesting example. First give y a value.
> y := 3;

In the next command, Maple fully evaluates x+y before calling whattype and so passes an
integer to whattype.
> whattype(x+y);

In the next command, Maple removes one layer of delayed evaluation from 'x+y' before

Page 54

calling whattype and so passes to whattype a `+` data structure.
> whattype('x+y');

In the next command, Maple removes one layer of delayed evaluation from ''x+y'' before
calling whattype and so passes to whattype the unevaluated expression 'x+y'.
> whattype(''x+y'');

Maple places the unevaluated expression 'x+y' in a data structure of type uneval. A data
structure of type uneval always holds exactly one data item, the expression that is
unevaluated. Let us confirm this for the unevaluated expression 'x+y'.
> nops(''x+y'');
> op(''x+y'');

Here is another way to verify that 'x+y' is an uneval data structure and that it contains only
one operand.
> op(0, ''x+y'');
> op(1, ''x+y'');
> op(2, ''x+y'');
>

Exercise: Explain how Maple evaluates the following command and why it returns what it does.
> op(''x+y'+y');
>

Note: When we get to Maple procedures we will discuss the idea of procedure parameter type
declarations and the "uneval" procedure parameter type. Unfortunately, the "uneval procedure
parameter type" uses the term "uneval" in a way that is related to, but not exactly the same as,
the "uneval data type".
>

>

12.9.6. `::`

The `::` data structure is, like the equation and range data structures, a data structure that
holds exactly two operands that can be thought of as a left and a right hand side. Here is an
example of a `::` data structure.
> w::integer;
> whattype(%);
> op(%%);
> type(%%%, `::`);

Unlike the equation and range data structures, the `::` data structure is not widely used. In fact
it has only one very specific use. It is used to hold type declarations in the parameter lists for
procedure definitions. A typical use of a `::` data structure would look something like this.
> proc(w::list, n::posint) op(n,w) end;
> op(1, %);

Page 55

> op(1, %%)[1];
> whattype(%);
> op(%%);

We will say much more about type declarations for procedure parameters in the worksheets
about Maple programming (although we will never need to make any reference to `::` data
structures or the `::` data type).
>

Note: The :: notation does have some other uses in Maple. We can use :: as a shorthand for
the type command. Here are a couple of examples.
> type(5, integer);
> evalb(5::integer);
> type(x+y, `+`);
> evalb((x+y)::`+`);
> 5::integer and (x+y)::`+`;

The second bullet item of the help page for the type command mentions that x::t can be
used as a synonym for type(x,t), though we have just seen that it is not a direct synonym
unless it is used in a boolean expression. The patmatch and typematch commands also use
the :: notation as part of their syntax for pattern matching.
>

>

12.10. Tables and arrays (optional)
Tables and arrays are two very important and closely related data structures. Both data structures can
be though of as a way to generalize the list data structure. Arrays allow for more than just one
integer index and tables allow for more general indices than just integers. Both data structures
permit the use of index functions for computing, rather than looking up, the value associated with an
index. Arrays are also the basis for Maple's vector and matrix data types, which are used to model
mathematical vectors and arrays from calculus and linear algebra.
>

12.10.1. Tables
A table data structure can be thought of as a generalization of a list data structure. A list holds
items, and the name of each item is the name of the list indexed with an integer. A table is a data
structure that holds items much like a list, but the name of each item is the name of the data
structure indexed by an arbitrary expression.

When we create a list, Maple "indexes" the items in the list automatically, using the order of the
items in the definition of the list. For example define the following list (of symbols).
> l := [first, second, third];

The items in this list are automatically indexed in the obvious way.

Page 56

> 'l[1]' = l[1],
> 'l[2]' = l[2],
> 'l[3]' = l[3];
>

Now let us see how we create a table and put indexed items into it. Here is a command that
creates a table data structure.
> table();

The table command created an empty table. This table is also anonymous, so let us give it a
name.
> t := %;

Now let us put some items into this table. Since an item in a table can have an arbitrary index,
Maple cannot automatically index a table for us. So when we put an item in a table, we need to
explicitly tell Maple what the index should be for the item. Here is how we put two items in the
table and inform Maple what we want the index for each item to be.
> t[apple] := red;
> t[pear] := green;

By using the name of the table along with an index we can recall an item from the table.
> t[pear], t[apple];

Here is how we can see what is inside the whole table data structure.
> eval(t);
>

It is also possible to simultaneously create a table and put indexed items into it. The following
command creates and initializes a table and then names it t, all in just one command.
> t := table([apple=red, pear=green, orange=orange, math=fun]);

We initialize the table by giving the table command a list of equations. In each equation, the
left hand side is the index for the item on the right hand side. Each pair of an index and an item
is often called a key-value pair. The index is considered a key and the item is the value for the
key. Sometimes it is useful to find out what all the keys or values are for a table. The indices
command returns a sequence of all of the keys in a table.
> indices(t);

The entries command can be used to get a sequence of all of the values in a table.
> entries(t);
>

Exercise: Explain why the list returned by the indices command cannot have any duplicates
in it. Explain why the list returned by the entries command may contain duplicates. We say
that a table is 1-1 if there are no duplicates in the list returned by entries.
>

So far we have seen how to use the table command to create both an empty and a non empty

Page 57

table and we have seen how to add indexed items (i.e. key-value pairs) to a table by using an
assignment statement. We can also remove items from a table by unassigning the item's indexed
name. Let us remove an item from the table named t.
> t[math] := 't[math]';
> eval(t);
>

We can create a table implicitly (as opposed to explicitly by using the table command) by
assigning a value to an indexed name where the header of the indexed name is unassigned. Let
us make sure that the name T is unassigned.
> T := 'T';

The next command (implicitly) creates a table named T.
> T[something] := anything;
> eval(T);

If we now unassign the name T[something], that will not destroy the table named T, it will
just make T an empty table.
> T[something] := 'T[something]';
> eval(T);

To get rid of a table (whether it is empty or not), we need to unassign the table's name.
> T := 'T';
> eval(T);
>

Now let us look more carefully at the contents of a table data structure. A table data structure
needs to store items and an index for each item. Recall that our table data structure named t
holds three key-value pairs.
> eval(t);

So how many operands does this data structure hold, given that the table has three key-value
pairs?
> nops(eval(t));

This table is considered a data structure with two operands in it. But that does not really seem to
make sense for this table. Let us see what these two operands are.
> op(eval(t));

Again, this does not seem to make sense. The above command returned only one operand, a list.
Let us ask for each of the two operands from the table data structure individually.
> op(1, eval(t));
> op(2, eval(t));

The second data item in our table is a list of equations. It is this list that holds the data that we
are interested in, the table items and their respective indexes. Notice that the first data item in
our table is NULL, the empty expression sequence. In general, the first data item of a table is
either NULL or the name for something called an index function. We will discuss index
functions in a later section.

Page 58

In general, a table data structure holds two items. The first item is either the name of an index
function or NULL, and the second item is a list of key-value pairs stored in equation data
structures.
>

Notice that when we were analyzing the structure of the table named t, we always used the
eval command inside the nops and op commands. Here is why. A table is one of the data
structures for which Maple uses last name evaluation.
> whattype(t);
> whattype(eval(t));

So without the eval command, t evaluates to the name t, and nops(t) will return 1.
> nops(t);

But the op command evaluates t in an unusual way. If op(t) were to use last name evaluation
for t, then op(t) would return t, since a symbol is a data structure that contains just one
operand which is the symbol itself. If op(t) were to use full evaluation for t, then op(t)
would return the operands of the table t. But op(t) does neither of these two things.
> op(t);

The command op(t) returns the table itself, so op(t) acts like eval(t). On the other hand,
the command op(0,t) uses last name evaluation.
> op(0, t);

And the command op(1,t), like op(t), acts like eval(t).
> op(1, t);

We will see this kind of behavior from the op command again when we look at the array data
structure in the next section and the procedure data structure in the next worksheet.
>

The table data structure acts differently from other data structures with respect to some other
commands also. Consider how the subs command works with tables. Here is a table named tt
with two key-value pairs.
> tt := table([x^2=x^3, x^4=4]);

Here is what we would expect the data structure tree for this table to look like.
>

 table([x^2=x^3, x^4=4]) or table
 / \ / \
 / \ / \
 / \ / \
 NULL [x^2=x^3, x^4=4] NULL list
 / \ / \

 / \ / \

Page 59

 x^2=x^3 x^4=4 `=` `=`
 / \ / \ / \ / \
 / \ / \ / \ / \
 / \ / \ / \ / \
 x^2 x^3 x^4 4 `^` `^` `^` 4
 / \ / \ / \ / \ / \ / \
 / \ / \ / \ / \ / \ / \
 x 2 x 3 x 4 x 2 x 3 x 4

Let us try doing some substitutions with this table. The expression x^3 is in the table data
structure, so we can substitute for it.
> subs(x^3=sin(x), eval(tt));

The expression 4 is in the table data structure twice, but we can only substitute for one
occurrence of it.
> subs(4=5, eval(tt));

The expression x^2 is in the table data structure, but we cannot substitute for it.
> subs(x^2=new_index, eval(tt));

The expression x^4=4 is also in the table data structure, but we cannot substitute for it either.
> subs((x^4=4)=(new_index=new_item), eval(tt));

It seems that we can only substitute for expressions that are on the right hand side of each
equation data structure within the table data structure.
>

Recall that we described nesting indexed names in the subsection on unevaluated indexed name
data structures. Here are two ways that we can nest indexed names.
> 't1[m[n]]';
> 't2[m][n]';

Notice that the structure of these two names is hardly distinguishable when they are typeset.
Here are their structures as unevaluated indexed name data structures.
> op(0, 't1[m[n]]');
> op('t1[m[n]]');
> op(0, 't2[m][n]');
> op('t2[m][n]');

Let us assign a value to each of these indexed names (which will implicitly create two new
tables).
> t1[m[n]] := Pi;
> t2[m][n] := Pi;

From the structure of the unevaluated indexed name 't1[m[n]]', we would expect the first
assignment to create a table named t1 with a single index named m[n] and a value of Pi. Let
us check this.
> eval(t1);

From the structure of the unevaluated indexed name 't2[m][n]`, we would expect the

Page 60

second assignment to create a table named t2[m] with a single index named n and a value of
Pi. Let us check this.
> eval(t2[m]);

Notice that we now have an indexed name, t2[m], with a value (its value is a table). That
means that we must also have a table named t2 with an index named m and a value that is a
table. Let us check this.
> eval(t2);

So when we assign a value to the nested indexed name t2[m][n], we create nested table data
structures, but when we assign a value to the nested indexed name t1[m[n]] we create a table
data structure but not a nested one. One thing that is a bit odd about this is that the nested
indexed name t2[m][n] does not really look nested, but it creates nested tables, while the
nested indexed name t1[m[n]] really does look nested, but it creates a simple, un-nested
table.
>

Exercise: Look again at the table named t1.
> eval(t1);

There is an indexed name mn in the table with the value π. Why doesn't this mean that there is a
table named m with an index named n and a value of Pi?
> eval(m);
>

Exercise: Explain the structure of each of the following tables. (Notice how, in the typeset
version of each assignment statement, there is almost no distinguishable difference in the form
of the indexed name on the left hand side of the assignment operator.)
> t3[m[n]][o] := Pi;
> t4[m][n[o]] := Pi;
> t5[m][n][o] := Pi;
> eval(t3);
> eval(t4);
> eval(t5);
>

Here is an interesting difference between lists and tables. We have seen that a table is what is
sometimes called a dynamic data structure. That means that the size of a table can be changed
after the table is created. We can add items to and delete items from a table. On the other hand, a
list is not dynamic. We say that a list is a static data structure. Once a list has been created, we
cannot change the length of the list by adding to or deleting from it. For example, here is the list
l that we created at the beginning of this section.
> l;

Suppose that we try to put a fourth item in the list the same way we that would put an item in a
table.

Page 61

> l[4] := fourth;

There is a way to make l a name for the list [first,second,third,fourth]. Here is
how we can do it.
> l := [l[], fourth];

But this command did not really "add fourth to l". It used the old list l to create a new list l
and then the old list l was in fact "destroyed". As this example shows, adding to and deleting
from a list can be cumbersome (think about adding an item to the middle of the list l). One of
the reasons that tables are so useful in Maple is that they are dynamic data structures and so it is
easy to add items to and delete items from them.. In the general study of computer science, the
differences in working with static and dynamic data structures is an important topic.
>

Exercise: Add the item zeroth to the beginning of the list l. Does it really become the zero'th
item in the list?
>

>

12.10.2. Arrays
An array data structure is, like a table, another way to generalize the list data structure. Like lists
and tables, an array data structure holds multiple items and the name of each item in an array is
given by the name of the array and an index. Like tables, an array can have multiple indices, but
like lists, the indices must be integers. Like tables (and unlike lists) an array can be created
without putting anything into it but like lists (and unlike tables) an array is a static data structure,
not a dynamic one, meaning that the size of an array is fixed when the array is created.

We use the array command to create array data structures. Since the size of an array data
structure is fixed when it is created, we need to tell the array command how big of an array to
create. We do this by giving the array command a range of integers. The following command
creates an array that holds five items, and the items are indexed with the integers from 1 to 5.
> array(1..5);

The last command created an empty, anonymous array. Notice that the array displayed itself as
containing five subscripted question marks. This is because the array does not yet have a name
that can be subscripted and there are not yet any values assigned to the slots in the array. Let us
give the array a name.
> a := %;

Notice how the array redisplayed itself in a completely different way. It used a range to denote
the size of the array and it used an empty list to denote that no values have been assigned to the
array yet. The next command shows a third way for this array to display itself, this time using
the name for the array as part of the name for each entry in the array.
> print(a);

Surprisingly, the next two commands display the array the same way as when it was first
created, before it had a name.

Page 62

> eval(a);
> op(a);

Let us put a value in the array.
> a[3] := sqrt(Pi);

The next three commands show three different ways to display the array. They all show that the
array holds five items, indexed from 1 to 5, and that only the third entry in the array holds a
value. In addition, the first display also shows that the array is named a.
> print(a);
> op(a);
> op(eval(a));

Since an array is not a dynamic data structure (like a table), and the array a has length five and is
indexed with the integers from 1 to 5, we can only make assignments to the indexed names
a[1], a[2], a[3], a[4], and a[5]. If we try to use the header a with any other integer
index, we get an error message.
> a[6];
> a[0];

If we use the header a with a symbolic index, Maple does not complain, it just treats the name
as an unevaluated indexed name.
> a[six];
> whattype(%);

This is because the unassigned name six may later be given an integer value between 1 and 5.
But if we try to assign a value to the indexed name a[six] (which we could do if a were a
table), then we get an error message.
> a[six] := 6;
>

When we created the array a we used the range 1..5 to specify two things, that the array
should hold five items and that the items should be indexed with the integers from 1 to 5. We
can create another array that also holds five items but is indexed with a different range of
integers. The next command creates an array of size five with the items in the array indexed
with the integers from -2 to 2. Notice that this array finds still a fourth way to display itself (this
display looks more like the display for a table).
> array(-2..2);

The following command creates an array of size five indexed from 119 to 124.
> array(119..124);

We can give this array a name.
> b := %;

And we can place a couple of values into the array.
> b[120] := sqrt(2);
> b[123] := sin(Pi/9);

The following three commands show three different ways to display this array.
> print(b);

Page 63

> op(b);
> op(eval(b));

We can remove a value from an array by unassigning the value's indexed name.
> b[123] := 'b[123]';

Now the array b has only one value in it.
> op(eval(b));

We can destroy an array by unassigning its name.
> b := 'b';
> op(eval(b));
>

We mentioned above that unlike lists and like tables, arrays can have more than one index. We
create an array with more than one index by giving the array command more than one range
of integers. The following command creates an array that holds 12 items and the items are
indexed with two integers, one index running from 1 to 3 and the other index running from 1 to
4.
> array(1..3, 1..4);

Notice that the array was displayed in a "matrix" form, with three rows and four columns. When
we give the array command two ranges, the first range determines the number of rows and the
second range determines the number of columns. And from looking at the way the indices are
placed on the question marks in the array we see that the first index in an indexed name is the
row index and the second index is the column index. Now let us give this anonymous array a
name.
> c := %;

Let us assign a value to the second entry in the third row of the array.
> c[3,2] := Pi/sqrt(2);

Here is what the array looks like now.
> print(c);

In principle, arrays can have any number of indices. But arrays with one or two indices are the
most important and the most common. Arrays with only one index are called one-dimensional
arrays and arrays with two indices are called two-dimensional arrays. In general, an array with
n indices is called an n-dimensional array.
>

Exercise: Does anything seem unusual about the result of the third of the following three
commands?
> array(1..3, 1..3);
> %[2,2] := 5;
> m := %%;
>

When we use the array command to create an array we can also tell the command to initialize

Page 64

some, or all, of the entries in the array. The following command creates a one-dimensional array
of size five, indexed from 1 to 5, with only the first three entries in the array initialized.
> array(1..5, [1,4,9]);

Notice that the initialization values were placed in a list. If we give the array command a list
of initialization values without a range, then the array will, by default, have the same size as the
initialization list and be indexed from 1 to whatever is the length of the initialization list.
> array([1,4,9,16]);

Notice that the last command looks like its input is a list and its output is again a list. But the
output is not a list, it is a one-dimensional array, as the next command demonstrates.
> op(%);

The fact that one-dimensional arrays can look exactly like lists can cause some confusion. We
will return to this idea in the section on vectors and matrices.
>

We can also initialize two-dimensional arrays when they are created. We do this with a list of
lists. Consider the following list called data.
> data := [[1950,18.6], [1960,19.3], [1970,20.4],
> [1980,21.6], [1990,25.4], [2000,28.1]];

The following array command uses data to initialize a two-dimensional array. Each sub-list
of data is considered a row of the resulting array. Since data has six sub-lists, the array has
six rows. And since each sub-list from data has two entries, each row of the array has length
two. So the array is a 6 by 2 array.
> array(data);
> op(%);

Notice, by way of contrast, that the table command interprets data as a list of lists and uses
data to initialize a one dimensional table whose values are lists of length two.
> table(data);
>

Exercise: With data as the list from the last example, compare how the following two
commands interpret data.
> array(data);
> plot(data);
>

Exercise: Let data represent the following list.
> data := [[1,2], [2,3], [3,4]];

Explain the difference between the following two commands.
> array(data);
> array(1..3, data);
>

Page 65

Exercise: Explain the differences between each of the following three commands.
> a := array([1,2,3]);
> b := array([[1,2,3]]);
> c := array([[1],[2],[3]]);

For each of a, b, and c, what would be the appropriate array command to create an empty
array with the same form?
>

Exercise: In the following command, it seems as if array simply strips off one pair of brackets
from its input to create its output. Give a better explanation of what this command does.
> array([[3]]);

Hint: What do the brackets in the input represent and what do the brackets in the output
represent?
>

Exercise: What conclusion can you draw from the following two commands?
> array([[0,1,2,3],[0,1,2],[0,1]]);
> array([[0,1],[0,1,2],[0,1,2,3]]);
>

There is another way to initialize an array besides using a list of lists. We can use a list of
equations within the array command to assign initial values. On the left of each equation we
put an index and on the right a value. Here is an example.
> array(1..4, [1=Pi, 4=sqrt(2)]);

This has the advantage of allowing us to selectively initialize any of the entries in the array (we
would not have been able to initialize the above array using just a list of values). One
disadvantage of this method is that the syntax for it is a bit odd when we use it with
multidimensional arrays. Here is how we might initialize a two-dimensional array.
> array(1..3, 1..3, [(3,1)=Pi, (2,3)=sqrt(55), (1,1)=-1]);

Notice that each index was contained in a pair of parentheses, not brackets as one might expect.
>

Now let us look at the contents of an array data structure. Recall that a table data structure
contains two items, an expression sequence of names of index functions (which can be NULL)
and a list of equations that hold key-value pairs. An array data structure contains three items.
The first is an expression sequence of names of index functions (which may be NULL), the
second is an expression sequence of integer ranges, and the third is a list of equations holding
key-value pairs (where the keys are always sequences of integers). Here is an example of an
array data structure.
> a := array(symmetric, sparse, 1..3, 1..3, [[5,6,7]]);

Let us analyze this data structure.
> nops(eval(a));
> op(1, eval(a));

Page 66

> op(2, eval(a));
> op(3, eval(a));
> op(eval(a));

An array, like a table, is a data structure for which Maple uses last name evaluation. That is why
in the last five commands we needed to use eval(a) to force the full evaluation of the name a
.
>

>

12.10.3. Last name evaluation and the copy command

Maple uses last name evaluation for names that evaluate to tables and arrays. Last name
evaluation has some non obvious consequences for the use of tables and arrays and in this
section we look at some of these consequences. This will help give us an understanding of why
Maple uses last name evaluation for these two kinds of data structures.

Before turning to tables and arrays, let us look at a very simple example that uses a list. Let a be
a name for a list.
> a := [1,2,3,4];

Now assign a to b.
> b := a;

Make a change in b.
> b[3] := 0;

Only b is changed, a is left unchanged.
> a;
> b;
>

Now let us replace the list with an array. Let a be a name for a (1-dimensional) array.
> a := array([1,2,3,4]);

Now assign a to b.
> b := a;

Make a change in b.
> b[3] := 0;

Now notice that both a and b have changed.
> eval(a);
> eval(b);
>

Let us go through all of these steps again very carefully to see what was different between the
list case and the array case. Make a a list again.
> a := [1,2,3,4];

Page 67

Now assign a to b.
> b := a;

In the last command Maple used full evaluation on the right hand side of the assignment
operator so a was evaluated to the list [1,2,3,4] and then this list was assigned to b. The
key idea here is that what was assigned to b was a copy of the list that is named by a. In other
words, we now have two lists that are copies of each other. If we make a change to one of these
lists, the change does not affect the other list.

Now let us return to the array case. Make a an array again.
> a := array([1,2,3,4]);

And assign a to b.
> b := a;

In the last command, Maple used last name evaluation on the right hand side of the assignment
operator, so a evaluated to a and then the name a was assigned to b. Notice that it is the name a
, not the array that a is a name for, that is assigned to b. Now when we use the name b, it will
evaluate to a which will evaluate to the array. So an assignment like b[3]:=0 causes a change
in the array named by a. The key idea here is that, because of the use of last name evaluation,
there is no copy made of the array. There is only one array. This array has the name a, and b is
indirectly a name for the array. Any change made to the array using either one of the names a or
b will show up through the other name, since both names point (eventually) to the array.

In the case of a list, full evaluation on the right hand side of the assignment b:=a created a copy
of the list named by a. What if we try forcing full evaluation on the right hand side of the
assignment in the case of an array? Will that create a copy of the array? Let us try the following
command.
> c := eval(a);

This looks like it might have made c a name for a copy of the array. But that is not what
happened. Make an assignment using c.
> c[3] := Pi;

Now notice that a has also changed.
> eval(a);

So the names a and c are still names for the same array, there is no extra copy. But is the name
c any different from the name b? Was there any difference between the assignments b:=a and
c:=eval(a)? In fact, there is a subtle difference between these two assignments that makes c
different from b. If we evaluate b to one level, we get the name a (since, by last name
evaluation, b was assigned the unevaluated name a).
> eval(b, 1);

But c evaluates at one level to the array itself.
> eval(c, 1);

In other words, c is itself a name for the array. Or, to put it another way, we now have one array
that has two names, a and c (with a third name b that evaluates indirectly to the array).
>

Page 68

So far we have seen that lists and arrays act quite a bit differently. When a was a name for a list,
the assignment b:=a created a copy of the list and made b a name for the copy. When a was a
name for an array, the assignment b:=a did not create a copy of the array, instead it made b a
name for the name a. And the assignment c:=eval(a) also did not make a copy of the array,
instead it made c another name for the array. So why does Maple treat arrays (and also tables)
so much differently from lists (and the other data structures)?

The answer is that this is a way to make Maple more efficient. In real applications of Maple, it is
very common to have very large arrays and tables. Arrays with tens of thousands of entries are
very common. Copying an array of that size consumes a lot of time and a lot of computer
memory so Maple is designed to do as little copying of arrays as possible. This idea of
preventing the copying of arrays is common to many programming languages. Maple's handling
of tables and arrays has much of the same effect as the use of pointers in the C and C++
programming languages and the use of reference variables in the C++ and Java languages.
>

But if Maple purposely avoids making copies of arrays and tables, what do we do if for some
reason we need a copy? Maple has a command, copy, just for the purpose of making copies of
arrays and tables. The following command makes a copy of our array named a and names the
copy b.
> b := copy(a);

Now make an assignment using the name b.
> b[2] := 0;

The array named b is changed, and the (original) array named a is unchanged.
> eval(b);
> eval(a);
>

The copy command has an interesting quirk to it. The copy command does not make copies of
tables or arrays that are contained in a table or array. Let us explain this with an example. The
following command creates a 2-dimensional array named a.
> a := array(1..2, 1..2);

The next command creates another 2-dimensional array and assigns it to the upper left hand
corner of the array named a.
> a[1,1] := array(1..2, 1..2);

We now have two 2-dimensional arrays, one of which is contained in the other. Here is what the
array named a looks like.
> print(a);

The next command makes a copy of a and names the copy b.
> b := copy(a);

Now we want to show that the copy command did not make a copy of the sub-array contained

Page 69

in a. In other words, we now have three arrays, not four as we might have expected. The three
arrays are the array named a, the array named b, and the sub-array, which is a sub-array of both
a and b. The following command assigns a value to the upper left hand corner entry of the
upper left hand corner sub-array of a.
> a[1,1][1,1] := 0;

If we look at what is in both a and b, we see that they have both been changed by the last
assignment.
> print(a);
> print(b);

So now we know that the upper left hand corner sub-array is common to both a and b. This
sub-array was not copied by the copy command. Another way to put this is that the array
named a[1,1] and the array named b[1,1] are the same array.
> print(a[1,1]);
> print(b[1,1]);

Now let us show that the arrays a and b really are distinct arrays. The next command assigns a
value to the lower left hand entry in the array a.
> a[2,1] := 5;

If we look at the contents of both a and b, we see that the last assignment changed a but not b.
> print(a);
> print(b);

The kind of copy made by the copy command is called by computer scientists a shallow copy
(or, a non-recursive copy). A copy command that would make a copy of an array and also make
copies of any sub-arrays (and also any arrays contained in the sub-arrays, etc.) is called a deep
copy (or, a recursive copy).
>

Exercise: Change the value of an entry in the matrix named b[1,1] and then show that the
same entry is changed in the matrix named a[1,1].
>

Exercise: Create an example that shows that the following command will make a deep copy of
an array a that contains an array.
> b := map(copy, a);

Then create another example to show that this command does not make a deep copy of an array
a that contains an array that contains an array (so the arrays are nested three deep).
>

We end this section with another example of a single array with two names. Create an
anonymous array.
> array(1..2, 1..2, [(2,1)=sqrt(Pi)]);

Now give this array two different names.
> A := %;

Page 70

> B := %%;

Notice that the last two commands displayed the unassigned entries in the array using each of
the array's names. The print command also displays the array this way.
> print(A);
> print(B);

But the eval command displays the unassigned array entries using a question mark.
> eval(A);
> eval(B);
>

>

12.10.4. Names, data structures, and garbage collection
The main theme of this section is that we should not confuse an object with its name. As a
simple example, you are not your name. It is entirely possible for a person to live without a
name. A person exits independently of their name. What has this got to do with computer
programming? If we make an assignment like the following
> a := [1,2,3];

then we often use phrases like "a is a list" and "the list a". But that is confusing an object with
its name. Your name is not a person, and a is not a list, a is a name for a list. It may seem very
picky to say that "a is a list" is wrong and should be replaced with "a is a name for a list" and
that "the list a" should be replaced with "the list named a". In fact, for list data structures the
distinction is not too important. But for tables and arrays, making a distinction like this is very
helpful. We have seen above that tables and arrays act differently than lists and the other data
structures. When we make assignments like
> a := array([1,2,3]);
> b := eval(a);

we know that there is only one array data structure and it has two names. But if we use phrases
like "the array a and the array b", then it can become hard to remember that in fact there is only
one array. On the other hand, the phrase "the array named a and the array name b" is reasonable
even if we are referring to only one array. Here is another example. If we make the following
assignment
> b[1] := 100;

then the phrase "the array a has been changed" is awkward, even if the idea behind it is true. But
the phrase "the array named a has been changed" is very accurate, since it is the array that has
actually been changed and this array just happens to have two names, a and b.

Here is another example of how an array should be distinguished from its names. Create an
array named a1.
> a1 := array([10,11,12]);

Now unassign the name a1.
> a1 := 'a1';

Page 71

Since the array is not its name, unassigning the name of the array does not really have any effect
on the array. The array still exits. Let us change one of its entries.
> %%[1] := 1000;

Here are the contents of the array.
> %%%;

Change another one of its entries.
> %[2] := 2000;

View the array again.
> %%;

Make a (anonymous) copy of the array.
> copy(%);

Change an entry in the copy.
> %[3] := 3000;

View the original array.
> %%%;

View the (changed) copy.
> %%%;

We see that unassigning the array's name really did not effect the array itself. Again, the name is
not the array. If we want to be careful about these things, we should never say "the array a",
instead we should say "the array named a". Similarly, we should not say "a is an array", instead
we should say "a is a name for an array".
>

Exercise: Redo the last example but with a1 as a name for the list [10,11,12]. Show that
the example works essentially the same with a list.
>

Unassigning an array's name brings up an interesting question. If unassigning a name for an
array does not make the array go away, then what does make an array go away? First of all, why
should we care about this? If we are working with very large arrays, say with tens of thousands
of entires, it would not be good if every time we created such an array it stayed in Maple's
memory storage for the rest of the Maple session. If we no longer are using the array, we would
like Maple to reuse the array's storage space, otherwise, we may run out of memory. So we
would like to know that Maple will somehow reclaim the storage space used up by any array
that we are no longer using. This is what we really mean by saying that the array "goes away".
The process of reclaiming storage used up by unneeded data structures is called by computer
scientists garbage collection. So a more precise way to ask "what makes an array go away?" is
"under what circumstances does Maple garbage collect an array data structure?". The answer is
that Maple will reclaim the storage space taken up by an array (i.e., garbage collect the array)
when the array no longer has any possible name. But we need to remember that possible names
for an array can include the last result variables, %, %%, and %%%, and also entries in remember
tables (which we will discuss in the worksheet on Maple procedures). But once Maple decides

Page 72

that an array has no possible name, then it can garbage collect the space used by the array.
>

Garbage collection does not occur immediately when an array (or table) losses all of its possible
names. Maple has a way of periodically sweeping through all of its memory and looking for
"garbage" data structures. But it is possible to force Maple to do this bit of internal
housekeeping. For example, we may know that a very large array no longer has any names and
we want to make sure that Maple reclaims its storage space. Maple has a command, gc, that
forces garbage collection to take place.
> gc();

The gc command does not really have any noticeable effect in most Maple sessions since
Maple's automatic garbage collection does a good enough job of cleaning memory up. Out of
curiosity, we can ask Maple how many times it has done its garbage collecting since we started
this Maple session.
> kernelopts(gctimes);

And we can ask how much "garbage" Maple collected the last time it did its garbage collecting.
> kernelopts(gcbytesreturned);

The last result is the number of bytes of memory space Maple recovered from unused data
structures the last time it did its garbage collecting.
>

>

12.10.5. Vectors and matrices
Maple has two special types of array, called vector and matrix, that are especially meant for
working with linear algebra and vector calculus. A one-dimensional array that is indexed
starting with 1 is a vector. Here is an example of a one-dimensional array that is a vector.
> array(1..2);
> type(%, vector);
> type(%%, array);

Here is an example of a one-dimensional array that is not a vector.
> array(0..2);
> type(%, vector);
> type(%%, array);

A two-dimensional array that is indexed with both of its indices starting with 1 is a matrix. Here
is an example of a two-dimensional array that is a matrix.
> array(1..2, 1..2);
> type(%, matrix);
> type(%%, array);

Here is an example of a two-dimensional array that is not a matrix.
> array(0..2, 1..2);
> type(%, matrix);
> type(%%, array);

Page 73

Notice that the distinction of an array being a vector or matrix helps explain why arrays are
displayed in sometimes very different formats. A one-dimensional array that is a vector is
displayed in a format that looks just like a list. A two-dimensional array that is a matrix is
displayed in a traditional matrix format. Arrays that are neither vectors nor matrices are
displayed in a format that is much like a table.
>

It is worth mentioning that the terminology "1-dimensional array", "2-dimensional array", and,
in general, "n-dimensional array" can be a bit confusing when used in the context of vectors and
matrices. Here are a couple of examples. Consider the following array called v.
> v := array(1..3, [3, 7, -2]);

This array is a 1-dimensional array. But v can also be called a 3-dimensional vector since v can
be used to represent a point in 3-dimensional space. So in one sense v is 1-dimensional and in
another sense v is 3-dimensional. To say that v is 1-dimensional is more of a programmer's way
of looking at v. To a programmer, the most important feature of v is that it has one index. To
say that v is 3-dimensional is more of a mathematician's way of looking at v. To a
mathematician, the most important feature of v is that it has three components. After a while,
one gets very used to this dual way of looking at v. To help keep things straight, we will be
careful to refer to v as a 1-dimensional array and as a 3-dimensional vector.

In a similar vein, consider the following array called m.
> m := array(1..3, 1..4, [[1,2,3,4], [5,6,7,8], [9,10,11,12]]

);

This is a 2-dimensional array. But m can also be called a 3 by 4 matrix. So we have three
different "dimensions" attached to m, 2, 3, and 4. As before, to say that m is 2-dimensional is
more of a programmer's way of looking at m, and to say that m is 3 by 4 is more of a
mathematician's way of looking at m. We will be careful to refer to m as a 2-dimensional array
and as a 3 by 4 matrix.
>

Vectors and matrices are common enough that Maple has two special commands for creating
them, linalg[vector] and linalg[matrix]. These commands have a couple of
advantages over using the array command to create vectors and matrices. First of all, if we
want to create, say, a 3-dimensional vector, we just need to give the vector command the
dimension 3, we do not need to give it the whole range 1..3, since the beginning index of 1 is
understood.
> vector(3);

Similarly, if we want to create a 3 by 4 matrix, we only need to give the matrix command the
parameters 3 and 4, not the whole ranges 1..3, and 1..4.
> matrix(3, 4);

Notice that even though vector and matrix are contained in the linalg package, we do
not need to make any reference to this package in order to use the two commands (linalg is

Page 74

an abbreviation for "linear algebra").
>

Vectors and matrices created with the vector and matrix commands can be given initial
values using either a list or a list of lists, just as with the array command. A nice advantage of
the vector and matrix commands is that they also allow for the use of a function to
initialize a vector or matrix. For example, if h is a function of one variable, and we use h as a
parameter to the vector command, then the vector that is created is initialized with the values
h(i) for i from 1 to whatever the dimension of the vector is. Here are a few examples.
> vector(3, sin);
> vector(4, i -> i^2);
> vector(5, i -> x^i);

Notice how the last two examples used anonymous functions as the initializing function. An
important special case of this kind of initialization is the following command.
> vector(4, 10);

In the last command, the constant 4 is interpreted as the dimension of the vector to be created
and the constant 10 is interpreted as the constant function i->10.
>

Similarly, if h is a function of two variables and we use h as a parameter to the matrix
command, then the matrix that is created is initialized with the values h(i,j) for i from 1 to
the row dimension of the matrix and with j from 1 to the column dimension. Here are a few
examples.
> matrix(3, 2, h);
> matrix(2, 3, (i,j)->sin(i)/cos(j));
> matrix(3, 3, 3);
> matrix(3, 3, (i,j)->x^i*y^j);

Much more elaborate initialization functions can be written using the ideas of Maple procedures
and Maple programming that we will cover in the next few worksheets.
>

Exercise: Create a 4 by 4 matrix whose value for each entry is the difference between the entry's
indices.
>

Exercise: Create a 50-dimensional vector whose initial values are 50 equally spaced samples of
the sin function between 0 and 2 π.
>

In the last section we looked at the way that Maple handles names that evaluate to an array.
Because of the way that Maple handles arrays, and therefore also vectors and matrices, Maple
needs a special command for evaluating algebraic expressions involving vectors and matrices.

Page 75

Here is an example of why we need a special command. Let A and B be names for two 2 by 2
matrices. (Notice how these matrices are being initialized in slightly different ways.)
> A := matrix(2, 2, [1,2,3,4]);
> B := matrix([[5,6], [7,8]]);

Let us try to compute the sum A+B.
> A + B;

That did not get us anywhere because of last name evaluation. Maple will only evaluate A to the
name A and B to the name B, so we get left with the symbolic sum A+B. Let us try to force full
evaluation of the names A and B.
> eval(A+B);

That did not do any good. Let us try full evaluation before doing the addition.
> eval(A) + eval(B);

Maple still did not do the matrix addition. So here is how we can get Maple to add these
matrices. We need to use the evalm command (for "evaluate matrices").
> evalm(A+B);

Here is another example of the need for evalm. Let us try to multiply a matrix with a scalar.
> -2*A;
> -2*eval(A);

We can get Maple to do the multiplication by using evalm.
> evalm(-2*A);

Here is another example of the need for evalm.
> A^2;
> eval(A)^2;

We need evalm to do the matrix exponentiation.
> evalm(%);
>

Here is another way in which matrix algebra is different from the algebra of numbers. In
general, multiplication of matrices is not commutative. So if A and B are matrices, then in

general AB will not be equal to BA, and ABA will not equal A2 B or BA2. But look what Maple
does with the product A*B*A of our matrices A and B.
> A*B*A;

The culprit here is automatic simplification. Maple will automatically simplify any expression
before it tries to do any evaluation. So without even knowing that A and B evaluate to matrices,
Maple simplified A*B*A to A^2*B. Then, because of last name evaluation, Maple does not do
any further evaluation. If we now apply evalm to the last result, then we get an incorrect result

for the calculation of ABA.
> evalm(%);

To prevent Maple from making inappropriate simplifications like these, Maple has a special,
noncommutative, form of the multiplication operator, &*. Here is the correct way to get Maple

to do the multiplication ABA.
> A &* B &* A;

Page 76

> evalm(%);
>

Here is a (possibly dangerous) quirk of the evalm command. If we ask it to multiply two
matrices and inadvertently use the commutative multiplication operator, then we get an error
message.
> evalm(A*B);

But if we ask it to multiply three matrices and use the commutative multiplication operator, then
there is no error message and the resulting calculation is not what we want.
> evalm(A*B*A);

Using the commutative multiplication operator with matrices is an easy mistake to make, but do
not depend on the evalm command to catch it.
>

We have seen that Maple needs a copy command for creating a copy of a matrix and it needs
an evalm command for evaluating algebraic expression involving matrices. Now we will show
that, for the same reason that Maple needs the copy and evalm commands, Maple also needs a
special command, equal, for comparing two matrices (or vectors) to decide if they are equal or
not. Before going over what equal does, let us see why it is needed. Create a matrix and name
it A.
> A := matrix(2, 2, [1,2,3,4]);

Make B another name for the matrix named A.
> B := eval(A);

Create a copy of the matrix and name the copy C.
> C := copy(A);

Now we have two matrices that are exact copies of each other and we have three names for
these two matrices. The equation A=B should be true because A and B are two names for the
same matrix, and the equation A=C should be true since A and C are names for matrices that are
copies of each other. But if we evaluate these equations with evalb we do not get the desired
results.
> evalb(A=B);
> evalb(A=C);

The reason that these equations are false is last name evaluation. Since Maple does not evaluate
the names A, B and C, the equations A=B and A=C are false since A is not the same name as
either B or C. So let us try forcing full evaluation of the names A, B, and C.
> evalb(eval(A) = eval(B));

That seemed to work as it should, since A and B are really two names for the same matrix.
> evalb(eval(A) = eval(C));

But the last command did not return what we expected, even though the matrices named A and C
are exact copies of each other. So the evalb command does not work for comparing the
equality of two matrices. Instead, we need to use the equal command from the linalg
package.

Page 77

> linalg[equal](A, B);
> linalg[equal](A, C);
>

The equal command compare two matrices (or vectors) entry by entry to see if they have the
same values. However, the equal command does a shallow comparison, much like the copy
command does a shallow copy. The equal command will not check the entries of a matrix
contained within a matrix. Here is an example that uses vectors. Let u and v be names for two
vectors that are exactly alike and also contain a sub-vector.
> u := vector(2, [vector(2, [10,20]), 300]);
> v := vector(2, [vector(2, [10,20]), 300]);

We would expect the following command to return true, since every entry of u is equal to the
corresponding entry of v.
> linalg[equal](u, v);

The reason that the last command returned false is somewhat subtle. The second entry of u is
obviously the same value as the second entry of v. And the first entry of u is equal to the first
entry of v, as the next command shows.
> linalg[equal](u[1], v[1]);

But the first entry of u is not the same vector as the first entry of v so the first entry of u does
not have the same value as the first entry of v. The equal command does not check if these
two sub-vectors are equal.

In fact, the equal command does not really work properly with nested vectors and matrices.
Here is a simple example.
> u := vector(2, [vector(2, [10,20]), 300]);
> v := copy(u);
> linalg[equal](u, v);

If two vectors that are copies of each other are not equal, then something is wrong with the
equal command.
>

In a previous section we mentioned that vectors looking exactly like lists can cause some
confusion. Here is an example. Let us define two vector valued functions represented as lists of
expressions.
> v1 := [t, t^2, t^3];
> v2 := [t^3, t^2, t];

Now compute the cross product of v1 and v2.
> v3 := linalg[crossprod](v1, v2);

Even though v3 looks a lot like v1 and v2, it is fundamentally different because v1 and v2 are
lists but v3 is a vector.
> whattype(v1);
> whattype(v2);

Page 78

> whattype(op(v3));

Here is an example of where the distinction between lists and vectors is important. Let us
compute the derivative of each of the functions, v1, v2, and v3.
> diff(v1, t);
> diff(v2, t);
> diff(v3, t);

Notice that the last result is not correct. The diff command does not work directly with
vectors. Here is how to differentiate a vector (i.e., an array).
> map(diff, v3, t);

When doing vector calculus with Maple, we need to be careful which of our "vectors" are lists
and which are Maple vectors.
>

>

12.10.6. Index functions
Recall that we mentioned above that the first item in a table or array data structure is either
NULL or the name of an index function. An index function is a function associated to a table (or
array) that allows the table (or array) to compute, rather than look up, the value associated to
certain keys.

Maple has five built in index functions, symmetric, antisymmetric, diagonal,
sparse, and identity. Here is how we define a table that uses one of the predefined index
functions.
> sym_t := table(symmetric);

Now sym_t is a table that is symmetric, that is for any pair of indices i, j, the value of
sym_t[i,j] will be equal to the value of sym_t[j,i]. Here are some examples.
> sym_t[a,b];
> sym_t[b,a];
> sym_t[4,2];
> sym_t[a,b] := 2;
> sym_t[b,a];

Let us look at what is stored in the table.
> op(sym_t);

Notice that there is no entry in the table for the index (b,a). Instead the index function uses
the entry for the index (a,b) to compute the value for the index (b,a) (the index function
makes it appear as if there is an entry for the index (b,a) when there really isn't one). Let us
try to assign a value to the index (b,a).
> sym_t[b,a] := 12;

Now let us look at what is in the table.
> op(sym_t);

The index function updated the value for the index (a,b) instead of putting in an entry for the

Page 79

index (b,a).
>

Each index function can be used to define a table that has a certain kind of structure. The
antisymmetric index function can be used to define a table t for which t[a,b] is always
equal to -t[b,a]. The identity index function can be used to define a table t for which
t[a,a] is always equal to 1 and t[a,b] is always equal to 0 when a is not the same as b.
The diagonal index function can be used to define a table t for which t[a,a] can be given
any value but t[a,b] is always equal to 0 when a is not the same as b. And the sparse
index function defines a table which returns the value 0 for any index that has not explicitly had
a value assigned to it.
>

It is possible to create tables with other kinds of properties by defining our own index functions.
Defining our own index function is also a good way for us to see just how an index function
works. Below is an example of an index function that will give a table the property that it is odd
in the first index variable, that is t[-i,j] will always be equal to -t[i,j].

Note: The rest of this section will use a lot of the material from the worksheets about procedures
and Maple programming. If you have not read those worksheets yet, then you can skip ahead in
this worksheet to the section on structured data types.
>

An index function is a procedure that has a name that begins with index/. An index function
has two formal parameters (though we will see that it might be called with three actual
parameters). The first formal parameter is a list of indices. The second parameter is the name of
the table that the function is working for. An index function is responsible for both looking up
values from a table and for assigning values to a table. If an index function is being called to
look up a value in a table, then the index function is called with two actual parameters (the
indices and the name of the table). If an index function is being called to assign a value into a
table, then the index function is called with three actual parameters. The third parameter is a list
containing the value to be put in the table.
>

Here is an example of an index function. This index function defines a table (or array) that has
the property of being odd in its first index. That is a[-i] will equal -a[i] for a table or array
a defined to use this index function. Notice that the body of the procedure begins with a test on
the number of actual parameter in the procedure call. This divides the body of the procedure into
the two cases of looking up a value and assigning a value.
> `index/odd` := proc(indices, table)
> if (nargs = 2) then # get an entry from the table
> if (assigned(table[op(indices)])) then

Page 80

> table[op(indices)];
> else
> -table[-op(1,indices),op(2..-1,indices)]
> fi
> else # put an entry in the table
> table[op(indices)] := op(1, args[3])
> fi
> end;

Here is how we define a table that uses this index function (notice that in the table command
we drop the index/ from the name of the index function).
> t := table(odd);

Now let us test this index function. The table t is currently empty. If we look up a value, the
index function will cause the indexed name to return "unevaluated" but it will do so in a way
that indicates the structure of the table.
> t[a];
> t[-a];

Let us put a value in the table.
> t[a] := -5;
> op(t);

Let us retrieve the value and let us also look up the related index -a.
> t[a];
> t[-a];

Notice that, like the example of the symmetric table, there is no entry in the table for the
index -a. The index function computes the value for this index and makes it appear as if there is
an entry for this index.
> op(t);

Here are a few more examples of how this index function works.
> t[a,b,c];
> t[a,b,c] := d;
> t[-a,b,c];
> t[-a,-b,c];
> t[-x-y];
> t[x+y] := 1,2,3;
> t[-(x+y)];
> t[3] := -4;
> t[-3];
> t[-3] := Pi;
> op(t);

Notice that the last assignment broke the structure of the table, it is no longer odd. This is a flaw
in our design of the index function. Here is a new version of the index function that fixes this
bug. In this version, the index function is careful to check if the associated index is already
assigned before it makes an assignment to the index given in the procedure call.

Page 81

>
> `index/odd` := proc(indices, table)
> if (nargs = 2) then # get an entry from the table
> if (assigned(table[op(indices)])) then
> table[op(indices)];
> else
> -table[-op(1,indices),op(2..-1,indices)]
> fi
> else # put an entry in the table
> if (assigned(table[-op(1,indices),op(2..-1,indices)]))

then
> table[-op(1,indices),op(2..-1,indices)] := -op(1,

args[3])
> else
> table[op(indices)] := op(1, args[3])
> fi
> fi
> end;

Let us define a new table using this new version of the index function.
> t := table(odd);

Let us test this version of the index function.
> t[1] := 1;
> t[-1];
> t[-1] := sqrt(2);
> t[1];
> t[-2] := 0;
> t[2];
> t[2] := -100;
> t[-2];

Notice that, even though there are assignments to the names t[-1] and t[2], there are entries
in the table only for indices 1 and -2, since these indices were assigned to first.
> op(t);
>

Exercise: Write an index function `index/even` that will define an even table, i.e., a table
for which the value of even_t[a] is the same as even_t[-a] for any index a.
>

Exercise: Write an index function `index/doubles` that defines a table so that if an even

index 2 n has a value, then the odd index + 2 n 1 will have the same value.
>

Page 82

Exercise: A table can be defined with more than one index function (see the help page for index
functions). Define tables using both the symmetric index function and the even index
function from the above exercise. These two index functions can be combined two different
ways; see the commands below. Analyze the structure of the resulting tables.
> t1 := table(symmetric, even);
> t2 := table(even, symmetric);
>

Exercise: Define a periodic index function `index/periodic5` that makes a table appear
to be periodic with period 5. Have the index function use the ERROR command to produce an
error message if a non-integer index is used when assigning to the table.
>

As with tables, we can define an array that uses an index function. The following command
creates, and partially initializes, an array using Maple's built in index function symmetric.
> array(symmetric, 1..3, 1..3, [[5,6,7]]);

The next command shows that the array has only three values in it, even though the above
display shows five values. The other two values are computed by the index function.
> op(%);

With one and two dimensional arrays, because of the way that Maple displays them, it is usually
easier to see what an index function does than with tables. For example, the following command
creates an "empty" antisymmetric array. From the display we quickly see that an antisymmetric
array has zeros on the main diagonal and what is below the main diagonal is the negative of
what is above the main diagonal.
> array(antisymmetric, 1..3, 1..3);

The next command shows that this antisymmetric array really does not contain any values. The
zeros on the diagonal are computed by the index function, and the index function determines
that the entry ? ,2 1 is equal to −? ,1 2.
> op (%);
>

Exercise: Create some one and two dimensional arrays using the even, odd, doubles, and
periodic index functions defined above. Try combining two or more of these index functions
to get a quick, visual display of the kind of array that a combination will define.
>

Exercise: Write an index function index/block2 so that if i is an odd integer, then array
entires a[i,i], a[i+1,i], a[i,i+1], and a[i+1,i+1] are all equal. Try combining the
block2 index function with the symmetric and antisymmetric index functions.
>

>

Page 83

12.10.7. Comparing tables with functions
It is interesting and useful to compare tables with functions. They both do something similar,
which is produce a unique output for a given input. Notice how functions and tables also use
very similar notation to represent the output associated to a given input. Functions have
functional notation using parentheses, f(x), and tables have index notation using brackets,
t[x]. The similarity between functions and tables is actually very strong. In fact, in a certain
sense, there is almost no difference between them. As we will see in this section, a table with an
index function and a function with a remember table are almost exactly the same thing.

Here is an index function that squares the (first component of the) index. We will see that a table
with this index function acts just like the squaring function with a remember table.
> `index/squaring` := proc(indices, table)
> if (nargs = 2) then
> if (assigned(table[op(indices)])) then
> table[op(indices)]; # look up the value from the table
> else # calculate the value and store it in the table
> table[op(indices)] := op(1, indices)^2
> fi
> else # make an assignment that bypasses the index function

rule
> table[op(indices)] := op(args[3])
> fi
> end;

Here is a table defined to use this index function.
> t := table(squaring);

Here is the equivalent squaring function with a remember table.
> f := proc(x) option remember; x^2 end;

Now we want to show that the table t and the function f act essentially the same. In particular,
for the table t, if there is no value in the table for an index, then the index function calculates a
value and stores it in the table. If a value for an index is in the table, then the index function just
looks it up. Also, we can put an entry in the table that override the table's index function rule.
And for the function f, if there is no value in the remember table for an input, then the function
calculates a value and stores it in the remember table. If a value for an input is in the remember
table, then the function just looks it up. And we can put an entry directly in the remember table
that overrides the function's rule. Here are specific examples of these operations. First, calculate
a few values that are not in the tables (which are currently empty).
> t[3]; f(3);
> t[y]; f(y);
> t[3,0,1]; f(3,0,1);

Now let us look in the tables to see that the values that were just calculated are there.
> eval(t);
> op(eval(f));

Page 84

Put values in the tables that override the squaring rule (i.e., 4 squared is not 10).
> t[4] := 10; f(4) := 10;

Check that these values are now in the tables.
> eval(t);
> op(eval(f));

Now have the table and the function return values that are from the tables (including the
"incorrect" values).
> t[y]; f(y);
> t[3,0,1]; f(3,0,1);
> t[4]; f(4);

Correct the "incorrect" values using direct assignments.
> t[4] := 16; f(4) := 16;
> eval(t);
> op(eval(f));

So it appears as though there is little, if any, difference between a table with this index function
and a function with a remember table. Of course, in this example the index function was
purposely written to emulate the action of a remember table. Not every index function will make
a table act like a function with a remember table.
>

>

12.11. Structured data types (optional)

12.11.1. Data types in general
We have not been very precise about what a data type is. Each one of Maple's basic data
structures has a data type, but there are a lot of other data types defined in Maple (well over 100
of them) and we can even define our own data types. So what exactly is a data type? A data
type is a set of values. A data structure is said to have a certain data type if the value stored in
the data structure is in the set of values defined by the data type. Let us try to understand this
definition by looking at an example. Consider the data structures 1/2 and 0.5. We know that
1/2 is stored in a fraction data structure and has type fraction, and 0.5 is stored in a float
data structure and has type float.
> type(1/2, fraction);
> type(0.5, float);

But both 1/2 and 0.5 are a kind of number, and Maple has a data type numeric which is the
set of all possible numeric values.
> type(1/2, numeric);
> type(0.5, numeric);

Both of these numbers are positive numbers. Maple has a data type positive that is the set of
all positive values.
> type(1/2, positive);
> type(0.5, positive);

Page 85

Both 1/2 and 0.5 are also constants, and Maple has a data type constant that is the set of
all constant values.
> type(1/2, constant);
> type(0.5, constant);

So the data structure 1/2 has (at least) the data types fraction, numeric, positive, and
constant. And the data structure 0.5 has the data types float, numeric, positive,
and constant.

Notice that the data types fraction and float are fundamentally different from the data
types numeric, positive, and constant. We have just seen that 1/2 and 0.5 each have
(at least) four different data types, but the whattype command will return exactly one data
type for each of them and it is always fraction for 1/2 and float for 0.5.
> whattype(1/2);
> whattype(0.5);

The data type fraction not only describes the value stored in the data structure 1/2, it also
describes exactly how Maple stores the value. Similarly, the data type float describes exactly
how Maple stores the value of the data structure 0.5. On the other hand, a data type like
positive tells us something about the value in a data structure, but it does not tell us much
about how the value is stored, since a data structure with type positive could be an integer, a
fraction, or a float data structure. The data types returned by the whattype command are
called the basic data types and these are the data types that exactly match Maple's data
structures. Maple has 29 basic data types but Maple has well over 100 pre-defined data types
(and, as we will see, we can also define our own data types).

While we are on the subject of type vs. whattype, notice that the type command always
uses full evaluation (that is, it does not use last name evaluation).
> s := t;
> t := table();
> type(s, table);

On the other hand, the whattype command will sometimes use last name evaluation instead
of full evaluation.
> whattype(s);
> whattype(t);

With whattype we sometimes need to force full evaluation.
> whattype(eval(s));

I do not know why these two commands should use different evaluation rules. It seems
needlessly confusing.
>

Here is another example of a data structure with many data types. Consider the data structure -2
. It has the following data types (among others).
> z := -2;

Page 86

> type(z, integer);
> type(z, even);
> type(z, negative);
> type(z, negint);
> type(z, nonposint);
> type(z, rational);
> type(z, complex);
> type(z, numeric);
> type(z, literal);
> type(z, atomic);
> type(z, algebraic);
> type(z, constant);
> type(z, realcons);
> type(z, complexcons);
> type(z, scalar);
> type(z, algnum);
> type(z, radnum);
> type(z, monomial);
> type(z, polynom);
> type(z, ratpoly);
> type(z, anything);

This example is meant to give you an idea of how rich the supply of Maple data types is. If you
want a precise definition for any of the above data types, just click on one of them and hit the F1
key (at the top of the keyboard) to call up Maple's help page for the data type.

If you do look at some of the data type definitions, you will see that data types are defined in
various ways. Some data types are unions of other data types. For example, the numeric data
type is the union of the integer, fraction, and float data types. Other data types are
subsets of a data type. For example even and posint are subsets of the integer data type,
and positive is a subset of the numeric data type. Then there are data types that have more
complex definitions. For example, the data type polynom models the mathematical idea of a
polynomial and it is not easy to express the polynom data type in terms of other data types. A
polynomial can have a `+`, `*`, `^`, numeric, or symbol data type, but of course not
every data structure with these data types is a polynomial.
> 3*x^2+x+1;
> type(%, polynom);
> whattype(%%);
> a*x^3;
> type(%, polynom);
> whattype(%%);
> x^3;
> type(%, polynom);

Page 87

> whattype(%%);
> x;
> type(%, polynom);
> whattype(%%);
> 3;
> type(%, polynom);
> whattype(%%);

And some expressions that look mathematically like a polynomial do not have the polynom
data type (see the following exercise).
>

Exercise: Explain why the expression 3 xn is not considered a polynomial by the type
command.
> 3*x^n;
> type(%, polynom);

Hint: Carefully read the help page for `type/polynom`.
>

It is useful to compare data types with the properties used in Maple's assume facility. Both
types and properties are ways of describing sets of values. A type is something that a data
structure can have and it tells us something about the value stored in the data structure. A
property is something that an unassigned variable can have and it tells us something about the
value that the unassigned variable is supposed to represent. For example, let us make an
assumption about the values that the unassigned name x can represent.
> x := 'x':
> assume(x, posint);

The is command allows us to ask about the value that x is supposed to represent.
> is(x, posint);
> is(x, positive);
> is(x, integer);
> is(x, rational);
> is(x, real);

The type command cannot tell us anything about what x is suppose to represent.
> type(x, posint);

An unassigned variable always has the type name.
> type(x, name);

Notice that the is command also works with data structures.
> type(5, posint);
> is(5, posint);
> type(x^2+3*x+6, polynom);
> is(x^2+3*x+6, polynom);

Unfortunately, the ways in which we describe types and properties in Maple are not compatible.

Page 88

Every type can be used as a property, but there are ways of describing simple properties that do
not work for types. For example, it is easy to define a property posfrac that describes positive
fractions.
> posfrac := AndProp(fraction, RealRange(Open(0),infinity));

Here is an example of its use.
> assume(x, posfrac);
> is(x, positive);
> is(x , fraction);

We can use this property with the is command and a data structure.
> is(2/3, posfrac);

But we cannot use this property with the type command.
> type(2/3, posfrac);

I do not know of an easy way to define a simple type like posfrac (though we will return to
this problem in the section below on defining types). It would be nice if Maple had a unified
syntax for describing sets of values, i.e., types and properties.
>

>

12.11.2. Structured data types
Some data types describe the values in a data structure with more detail and precision than other
data types. These more precise data types are called structured data types. In this section we
explain what structured data types are and we explain how to define them.

Let us start our discussion of structured data types with an example. The expression 5*x has the
data type `*`.
> type(5*x, `*`);

The above type command did not really tell us much about the actual value stored in the `*`
data structure. Consider the following type command, which uses a structured data type.
> type(5*x, numeric &* name);

The structured data type numeric&*name describes a product of a number and a name. The
last type command told us quite a bit about the value in the `*` data structure. It told us that
the value is some number times some name (though it does not tell us what the number and
name are). The expressions y*x and 5*x*y also have the type `*`, but they do not have the
structured type numeric&*name.
> type(x*y, `*`);
> type(5*x*y, `*`);
> type(x*y, numeric &* name);
> type(5*x*y, numeric &* name);

Here are structured data types that more accurately reflect the values in the data structures y*x
and 5*x*y.
> type(y*x, name &* name);

Page 89

> type(5*x*y, `&*`(numeric,name,name));

The structured data type name&*name describes a product of two names, and the structured
data type `&*`(numeric,name,name) describes a product of exactly three things, a
number and two names.
>

Here is another example. Consider the following list.
> l := [1, 1/2, 2, 3/2, 3];

This list has, of course, the data type of list.
> type(l, list);

But we can say more about this list. It is a list of rational numbers. It also happens to be a list of
positive numbers. In addition, we can say that the list named l is not a list of integers nor is it a
list of fractions but it is a list of integers and fractions. Here are type commands that express
these last few sentences using structured data types.
> type(l, list(rational));
> type(l, list(positive));
> type(l, list(integer));
> type(l, list(fraction));
> type(l, list({integer,fraction}));

Here are two lists of lists.
> list_1 := [[a,b,c], [1,2], [apple,orange], [f]];
> list_2 := [[1.2, 3.9], [2.2, 12.0], [-3.2, 7.5]];

The structured type list(list) describes lists of lists.
> type(list_1, list(list));
> type(list_2, list(list));

But list_2 has a bit more structure than list_1. We can describe list_2 as a list of pairs,
and more specifically as a list of pairs of numbers. Here are structured data types that make
these distinctions.
> type(list_1, list([anything,anything]));
> type(list_2, list([anything,anything]));
> type(list_2, list([numeric,numeric]));
>

Structured data types are a special kind of Maple expression that have their own syntax. This
syntax is described in the help page for structured data types, but it may be a bit difficult to read
if you have never seen a syntax definition before. Instead of trying to formally define the syntax
for structured data types (which is what is done in the help page), here we give examples and
explanations of the most important forms of structured data types.

A structured data type of the form list(type1) matches a list data structure, all of whose
operands have type1 (where type1 could itself be another structured data type).
> type([1,2,3], list(integer));

Page 90

> type([u,v,w], list(symbol));

A structured data type of the form [type1,type2,type3] matches a list with exactly three
operands with types type1, type2, and type3, respectively. (This kind of structured data
type can have any number of types inside of the brackets, not just three.)
> type([1/3, 3/5, 0.5], [fraction,fraction,float]);
>

A structured data type of the form function(type1) will match any unevaluated function
call with (any number of) inputs of type type1.
> type(g(1), function(integer));
> type(g(1,2,3,4), function(integer));
> type(f(), function(integer));
> type(sin(Pi/2), function(constant));
> type('sin'(Pi/2), function(constant));

The structured data type function(anything) will match any unevaluated function call (it
is really equivalent to the data type function).
> type(f(x, 2, apples=oranges, g(y)), function(anything));

A structured data type of the form anyfunc(type1,type2,type3) will match any
unevaluated function call with exactly three inputs with types type1, type2, and type3
respectively. (This kind of structured data type can have any number of types inside of the
parentheses).
> type(g(1,2,3), anyfunc(integer));
> type(g(1,2,3), anyfunc(integer,integer,integer));
> type('plot'(f, -1..2), anyfunc(name, `..`));

A structured data type of the form specfunc(type1,f) will match an unevaluated function
call of the function named f with (any number of) inputs of type type1. (Any name can be
used in place of the name f.)
> type(g(1), specfunc(integer,g));
> type(g(1,2,3,4), specfunc(integer,g));
> type(f(1), specfunc(integer,g));
> type('plot'(f, -1..2), specfunc(anything, plot));

There is no structured data type for an unevaluated function call of a specific function with a
specific number and type of inputs.
>

Structured data types of the form `&+`(type1,type2,type3) and
`&*`(type1,type2,type3) match sum and product data structures (respectively) with
exactly three operands of type type1, type2, and type3, respectively. (These structured
data types can have two or more types inside of the parentheses.)
> type(x[1]+x[2]+y[0], `&+`(indexed));
> type(x[1]+x[2]+y[0], `&+`(indexed,indexed,indexed));
> type(1/2*x*y[0], `&*`(fraction,symbol,indexed));

Page 91

>

A structured data type of the form {type1,type2} means a union of the data types type1
and type2. In other words, a data structure has the structured type {type1,type2} if it has
type1 or it has type2. (There can be any number of types inside of the braces.)
> type(1/2, {fraction,name});
> type(x[0], {fraction,name});
> type([1/2, x[0], y, 2/3], list({fraction,name}));
> type(3*x, `&*`({numeric,name},name));
> type(a*x, `&*`({numeric,name},name));
>

A structured type of the form type1^type2 matches a `^` data structure whose first operand
has type type1 and whose second operand has type type2.
> type(x^2, {name^numeric, name^name});
> type(x^n, {name^numeric, name^name});
> type(2^x, {name^numeric, name^name});

Notice that the following syntax seems to make sense, and should be equivalent to the above
structured data type, but it does not work (in Maple VR5.1).
> type(x^2, name^{numeric,name});
>

A structured type of the form type1=type2 matches a `=` data structure whose left hand
side has type1 and whose right hand side has type2.
> type(x^2-x-1=0, polynom=numeric);

Notice that the following works, even though 0 is not a name for a type.
> type(x^2-x-1=0, polynom=0);

But the following does not work.
> type(x^2-x-1=z, polynom=z);
>

A structured type of the form name(type1) matches an unevaluated name that evaluates (at
one level) to a value of type type1.
> y := 'x'; x := 0;
> type(x, name(integer));
> type('x', name(integer));
> type('y', name(integer));
> type('y', name(name));
> type('y', name(name(integer)));
>

Exercise: Create a structured data type that represents lists of lists where the inner lists are pairs

Page 92

or triples. So the list [[a,b],[a,b,c],[1,2]] will have this data type but the list
[[a],[a,b],[a,b,c]] will not.
>

Exercise: Create a structured data type that matches any unevaluated function call with exactly
two inputs.
>

Create a structured data type that matches any unevaluated function call with three or less inputs
but no unevaluated function call with four or more inputs.
>

Exercise: Write a structured data type that describes expressions where a variable is given a
range of numbers, like x=1..5, z=1..sqrt(5), or theta=0..Pi.
>

Exercise: Look at the help page for structured data types and figure out what is wrong with the
last two bullet items (just before the examples). Hint: Essentially the same mistake is made in
each of the bullet items and it is a mistake in the logic.
>

>

12.11.3. Surface and nested data types
There are many ways to classify data types. For example, the data types that we have discussed
so far all fall into one of three classes of data types. The first class is the 29 basic data types that
directly reflect Maple's 29 basic data structures. The second class is the system data types, which
are the (100 or so) data types that are defined and named by the Maple system. The third class is
the structured data types that we define using the syntax from the last section.
>

Another way to classify data types is as surface types or as nested types (but, as we will see,
some data types are neither surface types nor nested types). We define surface and nested data
types in terms of data structure trees. A surface data type is a data type that is checked by
examining only the top node of a data structure tree. A nested data type is a data type that is
checked by examining all of the nodes of a data structure tree.
>

All of the basic data types are surface data types (why?). Many system types are also surface
types. For example, the system type numeric is a surface type since it is the union of the three
basic types integer, fraction, and float. Some structured types are surface types. For
example, the structured type [anything,anything] is a surface type since we only need to
check that the top node is a list data structure and that the top node has two operands. We do not
need to know anything about these two operands, so we do not need to examine any level of the

Page 93

data structure tree except the top node (i.e., the zero'th level).
>

On the other hand, the structured type [equation,equation] is not a surface type nor is it
a nested type. It is not a surface type since we need to examine the first level of a data structure
tree to find out if the operands have the type equation. And this is not a nested data type
since we do not need to know anything about the structure of the equation data structures in the
list.

A good example of a nested data type is constant. To determine if an expression represents a
constant, all of the parts of the expression need to be examined to see if there are any variables
anywhere.
> type(sin(Pi/7)-5^Pi/(2+exp(2)), constant);
> type(sin(Pi/7)-5^Pi/(2+exp(x)), constant);

Another common example of a nested data type is polynom, i.e., polynomials. Small changes
in the structure of an expression can change it from a polynomial into a non polynomial. So
every part of an expression needs to checked to determine if the expression is a polynomial.
> type((x+a)^5*(x^3-3*z^2)^3-w*x, polynom);
> type((x+a)^5*(x^3-3*z^a)^3-w*x, polynom);
>

Exercise: Give examples of structured types for which you need to examine three levels and
four levels of a data structure tree, but not all of the data structure tree, in order to check for the
structured types.
>

Exercise: The help page for surface and nested data types claims that the system types linear,
listlist (which is synonymous with the structured type list(list)), monomial,
point, radical, and sqrt are surface data types. Is the help page correct?
>

The distinction between surface and nested data types is interesting, but it does not seem to be
very useful. We will never need to rely on this distinction in order to solve a problem or explain
some other aspect of Maple.
>

>

12.11.4. Defining data types
We have mentioned that not only does Maple have a very rich collection of over 100 predefined
data types, but we can also add to this list by defining our own data types. There are several
ways to define our own data types, from very simple ways to quite sophisticated ways that make
use of the material on procedures from later worksheets. In this section we give several

Page 94

examples of defining data types. We give both simple examples and a couple of more
sophisticated examples.
>

We define a new data type by defining a new data type name that can be recognized by the
type command. For example, suppose we want to define a new data type called my_type. In
order to make my_type a data type recognized by the type command, we need to provide a
definition for the name `type/my_type`.

Here is a specific example. The structured type list(numeric) matches a list of numbers.
For this data type to match a single number, the number must be in a list, like this [4]. Suppose
we wanted a data type that would match lists of numbers and also a single number that might
not be put inside of brackets. Here is how we can define such a data type. We call this new data
type my_type.
> `type/my_type` := {numeric, list(numeric)};

Let us test this new data type.
> type([1,2,3,4], my_type);
> type([a,2,3,4], my_type);
> type([4], my_type);
> type(4, my_type);

Note carefully that the name we defined to Maple was the name `type/my_type` but the
name we use in the type command is my_type. Notice that the name my_type is
unassigned.
> assigned(my_type);

What might happen now if we assign a value to the name my_type? Let us see.
> my_type := x*y;

Let us try using my_type in a type command.
> type([1,2,3], my_type);

What went wrong? Let us use one of our delayed evaluation tricks to see what parameters were
passed to the type command.
> 'type'([1,2,3], my_type);

The type command uses full evaluation and the expression x*y is not a valid name for a data
type, so we got an error message above. We can avoid the error message by preventing the
evaluation of the name my_type.
> type([4], 'my_type');

Here is a good rule to follow. When we use a type name with the type command, it is wise to
right quote the type name to protect ourselves from the possiblility that the type name has been
assigned a value. If you look at the source code to most Maple commands (we will see how to
do that in a later worksheet), you will see that this is a rule that is always followed by Maple
programmers.
>

Page 95

Now suppose we want to define a data type similar to my_type so that it matches either sets of
numbers or a single number not in a set. We decide to call the data type our_type and we
define it like this.
> our_type := {numeric, set(numeric)};

Does this work? Let us try it out.
> type({1,2,3,4}, our_type);
> type({a,2,3,4}, our_type);
> type({4}, our_type);
> type(4, our_type);

It seems to work. But mindful of our rule stated just above, we should try the next command.
> type({4}, 'our_type');

Now it doesn't work. Why did it seem to work? Use delayed evaluation again to see what we
were really doing.
> 'type'({4}, our_type);

So when we used the name our_type as a "type name", what we were really doing was
passing directly to the type command the structured data type named by our_type. The
name our_type is not in fact a name for a data type recognized by the type command. This
example shows that it is not realy wise to define "data types" by just assigning a name to a
structured data type.
>

Exercise: Make your_type a name recognized by the type command for a data type that
matches a list or set of numbers plus any number by itself.
>

The above example shows how we can use structured data types to define new data types known
to the type command. But not all data types that we might be interested in can be defined using
structured data types. For example, suppose we want to define a data type posfrac that
describes the subset of fraction that is positive (much like posint describes the subset of
integer that is positive). We might want to do this by defining a structured data type that is
the intersection of fraction and positive. But the syntax for structured data types does
not seem to allow for the intersection of two data types (it does allow for the union of two data
types). So here is another way to define a data type. We need to define a boolean valued
procedure named `type/posfrac` that takes a single parameter and returns true when the
value of the parameter has the data type we want and returns false otherwise. Using ideas
from the worksheets on procedures, here is how we can define this data type.
> `type/posfrac` := proc(x)
> if type(x, fraction) and type(x, positive) then true
> else false
> fi
> end;

Here are some examples using this type.

Page 96

> type(1/2, 'posfrac');
> type(2/(-3), 'posfrac');
> type(5, 'posfrac');
>

Recall that every data type can also be used as a property with Maple's assume facility. So we
can use our data type posfrac in the following way.
> is(3/4, 'posfrac');

But it is interesting to note that the syntax for properties allows for an easy way to form the
intersection of two properties (while the syntax for structured data type does not allow for the
intersection of two data types). Here is how we can easily get a property equivalent to our data
type posfrac.
> is(3/2, AndProp(fraction, positive));

Unfortunately, the syntax for properties does not work with the type command.
> type(3/2, AndProp(fraction, positive));

As we mentioned earlier, it would be nice if Maple had a unified syntax for defining sets of
values like data types and properties.
>

Exercise: Explain why the following structured data type does not define posfrac that way
we want it defined.
> `type/posfrac` := fraction and positive;
> type(1/2, 'posfrac');

What kind of data structures does the structured type fraction and positive match?
>

Let us look at an example of using a procedure to define a "parameterized data type". Let us
define a data type called more_positive_than(n) that takes a parameter n, which is a
number, and the data type defines the subset of numeric with values greater than n.
> `type/more_positive_than` := proc(x, n::numeric)
> if type(x,numeric) and x > n then true
> else false
> fi
> end;

Notice carefully that the procedure `type/more_positive_than` has two parameters.
The first parameter is for the object whose type is being checked and the second parameter is the
parameterof the data type, the parameter used with the name of the data type in the type
command. So in the following command, 7 is the actual parameter for the formal parameter x in
the definition of `type/more_positive_than` and 2 is the actual parameter for the
formal parameter n.
> type(7, more_positive_than(2));
> type(-1, more_positive_than(-12));

Page 97

> type(-1, more_positive_than(0));
> type(-1, more_positive_than(n));
>

Exercise: Earlier we mentioned that it is wise to right quote the name of a data type in a type
command. Should we right quote a parameterized data type like more_positive_than(n)
?
>

Exercise: Write a definition for a parameterized data type polynom_degree(n) that
matches polynomials with degree less than or equal to n.
>

>

12.12. Online help for data structures and data types
The basic commands for manipulating data structures are op and nops. They are both described in
the same help page.
> ?op

The alternative notation for accessing individual data items in expression sequences, lists and sets,
the bracket notation, is described in the next page.
> ?selection

We briefly mentioned the length command, which will compute the "length" of any data
structure, which is not necessarily the same as the number of operands in the data structure.
> ?length

We kept checking the data type of a data structure by using the whattype command. The next
command brings up the help page for the whattype command. This help page also lists all the
basic data types in Maple.
> ?whattype

The following command brings up the help page for the expression sequence data structure.
> ?exprseq

The list and set data structures are described by the following help page (the following two
commands are equivalent).
> ?lists
> ?sets

The list and set data types are described by the following help page (the following two
commands are equivalent).
> ?type,list
> ?type,set

Page 98

We looked at three kinds of numeric data structures. The following commands call up each of their
descriptions.
> ?integer
> ?fraction
> ?float

There are numerous data types that include these numeric data structures. Here are a few, listed in
order from simplest to most inclusive.
> ?type,integer
> ?type,fraction
> ?type,rational
> ?type,float
> ?type,numeric
> ?type,literal
> ?type,atomic

The following two commands both bring up the help page for the name (or symbol) data structure.
> ?symbol
> ?name

The following two commands will bring up the help pages for the name and symbol data types.
Notice that the name data type is a bit more general than the symbol data type.
> ?type,symbol
> ?type,name

The following commands brings up the help pages for the string data structure and the string data
type. Recall that this data type is new to Maple V Release 5. In previous versions of Maple, no
distinction was made between symbols and strings.
> ?string
> ?type,string
> ?updates,R5,language

More information about strings can be found in the following example worksheet.
> ?examples,string

We have seen that Maple has a special name for the empty expression sequence, NULL. Maple also
has the notion of an empty string and an empty name, i.e., a string or a name with no characters in it.
Unfortunately, the empty name is called, in the online help, the "null string". It seems that, when
converting from Release 4 to Release 5, this help page was not updated.
> ?nullstr

We have repeatedly said that expressions are examples of data structures. The kinds of expressions
that we use to represent mathematical functions are usually algebraic expressions. The next help
page defines algebraic expressions.
> ?algebraic

Page 99

Algebraic expressions are described in Maple by the algebraic data type.
> ?type,algebraic

The following command brings up information about equation and inequality data structures.
> ?equation

The next two commands bring up information about the equation data type, which describes an
equation data structure, and the relation data type, which describes both equation and inequality
data structures.
> ?type,equation
> ?type,relation

The equation and relation data types are both considered to be special cases of the boolean
data type. The boolean data type is used to describe boolean expressions. Boolean expressions are
analogous to algebraic expressions, but instead of evaluating to a numeric value like algebraic
expressions do, boolean expressions evaluate to either true or false. The next help page defines
boolean expressions.
> ?boolean

The next help page defines the boolean data type.
> ?type,boolean

The boolean data type also includes as a special case the three logical data types.
> ?type,logical

The next command brings up the help page for a range data structure.
> ?range

The next command brings up information about the range data type, which describes a range data
structure.
> ?type,range

There is also a Range function that can be used to test if a number is within a certain range.
> ?type,Range

These commands bring up information about the unevaluated function call data structure and data
type.
> ?function
> ?type,function

The next help page describes the unevaluated dotted name data type.
> ?type,dot

The next help page describes the unevaluated indexed name data type.
> ?type,indexed

The next help page defines the series data structure and data type.

Page 100

> ?type,series

Here is a command for creating a series data structure.
> ?series

There are some more specialized kinds of series data types.
> ?type,taylor
> ?type,laurent

Here are commands for creating taylor and laurent series.
> ?taylor
> ?numapprox,laurent

Here is the command for converting a series data structure into a sum.
> ?convert,polynom

The following help page describes unevaluated expressions without mentioning that they are a
specific kind of data structure.
> ?uneval

The following help page describes the uneval data type without, again, any real mention of the
underlying data structure.
> ?type,uneval

The `::` data structure has such a specific use in Maple that it does not even have a help page that
defines the data structure or the data type. Here is a help page that describes how the `::` data
structure is used in the definition of a procedure. We will say much more about this in the
worksheets about Maple programming.
> ?procedure,paramtype

The :: operator can also be used as a synonym for the type command, as mentioned near the
beginning of the help page for type. And :: is also used as part of the syntax for Maple's pattern
matching commands patmatch and typematch.

The next help page defines the table data type
> ?type,table

Here is a command for creating a table data structure. This help page also describes the table data
structure.
> ?table

The next command defines the array data type.
> ?type,array

Here is a command for creating an array data structure. This help page also describes the array data
structure.
> ?array

Maple has a special command, copy, for creating a copy of an array or a table. This command is
needed because of the special way that Maple evaluates the names for tables and arrays.

Page 101

> ?copy

Recall that both tables and arrays can be given an index function. Here are help pages that describe
the five predefined index functions that are available.
> ?symmetric
> ?antisymmetric
> ?diagonal
> ?sparse
> ?identity

You can also define your own index functions. Here is general information about indexing functions
for tables and arrays including how to write your own.
> ?indexfcn

We mentioned that Maple also has the two data types vector and matrix which are special cases
of the array data type. The next two help pages describe the vector data type and data structure.
> ?vector
> ?type,vector

There is a command in the linear algebra package, linalg, for creating a vector data structure.
> ?linalg,vector

The next two help pages describe the matrix data type and data structure.
> ?matrix
> ?type,matrix

There is a command in the linalg package for creating a matrix data structure.
> ?linalg,matrix

Maple has a special command, evalm, for evaluating algebraic expressions with variables that
evaluate to matrices or vectors. This command is needed because of the special way that Maple
evaluates names for arrays.
> ?evalm

We mentioned that matrix multiplication is noncommutative and so Maple needs a special symbol,
&*, to denote noncommutative multiplication. There does not seem to be a help page for this
particular symbol, but &* is a special case of what Maple calls a neutral operator. Here is a help
page about neutral operators in general.
> ?neutral

And Maple has the special command equal, from the linalg package, for determining the
equality of two matrices or vectors.
> ?linalg,equal

The following command will bring up a general definition of a data type in Maple. The definition is
pretty abstract so do not expect to fully understand it.
> ?type,defn

The definition of a data type in Maple refers to the type procedure. The next command brings up
its documentation. This help page also includes a list of most of the data types predefined by Maple.

Page 102

> ?type

Besides all the data types listed in the help page for the type procedure (over 100 of them) Maple
also has predefined the data types described in the next help page.
> ?type,surface

The previous help pages did not list all of Maple's predefined data types. If you want to get a sense
of how important data structures are to Maple and how many data types Maple has defined, go to the
"Topic Search" menu item in the Help menu and enter "type"; you will get a list of about 140 entries,
almost all of which are various predefined data types.

Maple also allows you to define your own descriptions of complex data structures. These
descriptions are call structured data types. We will make some use of these when we get to the
worksheets on procedures.
> ?type,structured

Finally, you might think that the next command would bring up general information about Maple's
data structures, but it does not. Instead, it brings up a help page about one particular Maple data
structure, the data structure that defines a "context menu", the kind of menu that appears when you
right click on a Maple object. This shows two things: first, Maple's help pages are not organized as
well as they might be, and second, almost everything in Maple really is a data structure, even parts
of the graphical user interface!
> ?datastructures

>

Page 103

