
Maple for Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics

Purdue University Calumet
roger@calumet.purdue.edu

3. Solving Equations

3.1. Introduction
Two of Maple's most useful commands are solve , which solves equations symbolically, and
fsolve , which solves equations numerically. The first section of this worksheet gives an overview
of working with these two commands. The rest of this worksheet goes into the details of using the
solve command to solve single equations and systems of equations. We introduce Maple's RootOf
expressions, which are used throughout Maple and are often used in the results returned by solve ,
and we consider the allvalues command for interpreting RootOf expressions. We also consider
what kinds of equations solve can and cannot solve. Finally, we show how the numerical solving
command fsolve can be used when solve does not return a result.

>

3.2. The basics of using solve and fsolve
Recall that an equation is a made up of an equal sign with an expression on either side of it. An
equation can either be true, like = + 2 2 4, or false, like = + 2 2 5. Most of the time, equations

contain one or more unknowns in them, as in = + x2 2 4. When an equation contains an unknown,
then we can ask for which values of the unknown is the equation true. For example, the equation

 = + x2 2 4 is true when the unknown x is given either the value 2 or − 2 . The values that make an
equation true are called the solutions of the equation. Maple has two commands that can be used to
find the solutions to an equation, solve and fsolve . The solve command attempts to solve an
equation symbolically.

> solve(x^2+2=4, x);

The fsolve command attempts to solve an equation numerically.
> fsolve(x^2+2=4, x);

The rest of this section is an overview of using solve and fsolve . The rest of the sections in this
worksheet go into the details of using these two commands.

We use the solve command by giving it an equation in some unknowns and also one specific

unknown that it should solve the equation for. For example, an equation like = 1 − a x2 b has three
unknowns in it. Each of the following solve commands solves this equation for one of the
unknowns (in terms of the other unknowns).

> solve(1=a*x^2-b, a);
> solve(1=a*x^2-b, b);
> solve(1=a*x^2-b, x);

The next two commands check that each solution from the last result really does solve the equation
for x (notice the use of indexed names).

> subs(x=%[1], 1=a*x^2-b);
> subs(x=%%[2], 1=a*x^2-b);
>

Exercise: For each of the following two solve commands, use the subs command to verify that
the solution really does solve the equation.

> solve(1=a*x^2-b, a);
> solve(1=a*x^2-b, b);
>

Exercise: Let us give the equation = 1 − a x2 b a name.
> eqn := 1=a*x^2-b;

Now reuse the solve command to solve this equation for each unknown, as was done above, but
always refer to the equation by its name. Also, use the subs command to verify each solution, but
once again, always refer to the equation by its name.

>

If we put a pair of braces around the unknown we wish to solve for, then solve returns the solution
written as an equation.

> solve(1=a*x^2-b, {a});
> solve(1=a*x^2-b, {b});
> solve(1=a*x^2-b, {x});

The next two commands once again check that each solution from the last result really does solve
the equation for x . Notice how the form of the subs command changes slightly because of the
braces around x in the solve command (since the result from solve is already in the form of an
equation, the subs command does not need its first entry to be an equation).

> subs(%[1], 1=a*x^2-b);
> subs(%%[2], 1=a*x^2-b);
>

Exercise: For the following solve command, there is one equal sign in the input to the command
and another equal sign in the result.

> b=a*x^2-1;
> solve(%, {a});

What can you say about each of these two uses of an equal sign. Do both equal signs have the same
meaning?

>

Exercise: After we solve an equation like the following one
> solve(a=(1+b)/x^2, b);

we can use the subs command to check Maple's solution.
> subs(b=-1+a*x^2, a=(1+b)/x^2);

What can you say about each of the two uses of an equal sign in the last command and the third use
of an equal sign in the command's result. Do each of these equal signs have the same meaning?

>

One reason for putting braces around the unknown being solved for by solve is so that we can use
the assign command (covered in the last worksheet) to assign a solution given by solve to the
unknown variable. Here is an example.

> solve(x^2-x-2=0, {x});

The next command assigns the first of the two solutions to x .
> assign(%[1]);
> x;

The next command tries to assign the second of the two solutions to x .
> assign(%%[2]);

That did not work because x now has a value, so it is no longer an "unknown", and so the assign
command was trying to execute the assignment 2:=-1 . We need to unassign x before we can use
assign to give x the second solution from the solve command.

> x := 'x';
> assign(%%%[2]);
> x;

To avoid problems later on, let us unassign x again.
> x := 'x';
>

It is not always the case that solve can find symbolic solutions to an equation. The equation

 =
x5

2
()cos x9 has three (real) roots, but solve cannot find symbolic expressions for any of them and

so it does not return a result.
> solve((x^5)/2-cos(x^9)=0, x);

We can show that the equation has three roots by using a graph.
> plot([(x^5)/2, cos(x^9)], x=-1.2..1.1, -1.1..1.1);
>

Exercise: In the last plot command, change the comma just after the 2 to a minus sign. What does
this show?

>

The last two graphs show one way that we can discover solutions to an equation when solve

cannot do it for us. But solving equations graphically has the disadvantage of not being very
accurate, plus it is very labor intensive and cannot be done automatically.

Exercise: The equation =
x5

2
()cos x9 has a solution near = x 1. Use the plot command to zoom in

on this solution as much as you can. Using your zoomed in graphs, what is the limit to the number of
decimal places that you can determine for this solution.

>

If solve cannot find a symbolic solution to an equation, and if finding a solution graphically is too
time consuming and inaccurate, then what should we do? Maple has another kind of solve command
called fsolve that finds decimal, rather than symbolic, solutions to equations. The advantage of
fsolve is that it can usually find a decimal approximation to a solution even when solve cannot
find a symbolic solution. The disadvantage of fsolve is that decimal solutions are sometimes less
useful, less informative, than symbolic solutions. But in situations where solve cannot find any
symbolic solutions, fsolve 's decimal solutions are better than nothing.

The fsolve command will try to return a decimal approximation for one root of the equation being
solved. Even if the equation has several roots, fsolve will only approximate one root at a time. In
order to find all the solutions of an equation, it is usually necessary to use fsolve several times,
once for each solution. In the following example, we see how to use fsolve to find several
solutions to an equation.

We know that the equation =
x5

2
()cos x9 has three real roots and solve cannot find any of them.

The fsolve command will readily return one of these roots.
> fsolve(x^5/2-cos(x^9)=0, x);

Let us check this result.
> subs(x=%, x^5/2-cos(x^9)=0);
> simplify(%);

This is close enough to = 0 0 to convince use that fsolve really has found an approximate
solution. But what about the other two solutions? To find them, we need to use an option for
fsolve that allows us to give fsolve a hint about where it should look for a solution. But how
do we know where fsolve should look? We use a graph of the equation (which, you will recall, is
also how we figured out that the equation actually has three solutions).

> plot(x^5/2-cos(x^9), x=-2..2, -2..2);

From the graph we see that the two other two solutions are near −1. The following fsolve
command will find one of these two solutions. We give fsolve a hint of where to find a solution
by giving fsolve a range that we know includes a solution.

> fsolve(x^5/2-cos(x^9)=0, x, -2..-1);

Since the range we gave fsolve included two solutions, we really could not predict which one of

them fsolve would find. To find the other solution, we give fsolve a more specific range to
look in. To find a more specific range, we need to zoom in on our graph near the two solutions.

> plot(x^5/2-cos(x^9), x=-1.4..-1, -1..1);

We need to direct fsolve towards the right most of the two solutions (it has already found the left
most one).

> fsolve(x^5/2-cos(x^9)=0, x, -1.12..-1.1);

So now we have approximate values for all three (real) solutions of the equation. This example is
typical of how we use fsolve with an equation. We need an appropriate graph of the equation to
give us an idea of how many solutions there are and about where they are. Then we use this rough
information from the graph to give fsolve hints so that it can find each of the solutions.

>

Exercise: Part (a): How many solutions does the equation = x2 7 ()cos x2 have? Use fsolve to find
approximations to all of the solutions.

>

Part (b): How many solutions does the equation = z 7 ()cos z have? Use fsolve to find
approximations to all of the solutions.

>

The solve and fsolve commands can also be used to solve systems of equations. A system of
equations is made up of two or more equations in one or more unknowns. A solution to a system of
equations finds values for all of the unknowns that simultaneously solve each of the equations.

Here is an example of using solve to solve a system of two (linear) equations in two unknowns.
> solve({ 3*u+5*v=2, 4*u-v=1 }, {u,v});

Notice how the equations are put inside of a pair of braces and the variables to solve for are placed
inside of another pair of braces.

Now let us look at a system of two nonlinear equations in two unknowns. Nonlinear systems are
much harder to solve than linear systems and solve often cannot solve them. In that case we need
to use fsolve . Consider the two equations

 = y 2 ()cos 5x and = + x2 y2 1
The solution of this system is the intersection of a circle with a graph of a cosine function. Maple
can easily draw a graph of these equations and give us a rough idea of the solutions.

> plots[implicitplot]({y=2*cos(5*x), x^2+y^2=1}, x=-1..1,
y=-2..2);

The solve command cannot solve this system. But fsolve returns one decimal solution.
> fsolve({y=2*cos(5*x), x^2+y^2=1}, {x,y});

From the graph we know that there are 8 solutions. To find the other solutions, we have to give
fsolve hints about where to look. Since there are two variables to solve for, we can give give
fsolve a hint about the value of either or both of the unknowns. Using the above graph of the

solutions to get the hint, here is how we have fsolve find one of the two solutions with x between

0 and 0.5.
> fsolve({y=2*cos(5*x), x^2+y^2=1}, {x,y}, x=0..0.5);

fsolve found the right most of these two solutions. Here is how we can add a hint about y so that

fsolve finds the left most solution with x between 0 and 0.5.
> fsolve({y=2*cos(5*x), x^2+y^2=1}, {x,y}, x=0..0.5, y=0..1);

Notice that if we just give fsolve the y hint, it finds a solution that has a negative x value.
> fsolve({y=2*cos(5*x), x^2+y^2=1}, {x,y}, y=0..1);

With appropriate hints, all of the other solutions can be found.

Exercise: Find decimal approximations to all of the solutions of the above system of equations.
>

Exercise: Given a number y0 between 0 and 1, draw a graph of ()sin x and a parabola ()p x with x

between 0 and π so that = ()p x0 ()sin x0 and =
�

�
��

�

�
��p

π
2

1 where x0 solves = ()sin x y0.

>

Exercise: Given a number y0 between 0 and 1, draw a graph of ()sin x and a parabola ()p x with x

between 0 and π so that = ()p x0 ()sin x0 and =
�

�
��

�

�
��

d

d

x
()p x = x x

0

�

�
��

�

�
��

d

d

x
()sin x = x x

0
 where x0 solves

 = ()sin x y0.
>

>

3.3. Solving a single polynomial equation
If we ask solve to solve a polynomial equation (in one variable) of degree n with n equal to 1, 2, or

3, then solve will always produce n explicit solutions. Some of the solutions may be complex
numbers. Here are a few simple examples.

> solve(x^2+1=0, x);
> solve(x^2+x-1=0, {x});
> solve(x^3-4*x^2+8*x-8=0, x);

When the degree of the polynomial is 3, the solve command can produce some pretty impressive
looking answers.

> solve(x^3-x^2-x-1=0, {x});

If we give solve a polynomial equation of degree n with ≤ 4 n, then solve will always produce n
solutions, but some of the solutions may not be given explicitly. Instead, some of the solutions may
be represented by a RootOf expression. Here is a degree five example with five "solutions".

> solve(x^5+2*x^4-4*x^3-4*x^2-4*x^1-3=0, {x});

One of the solutions of the equation is given explicitly, −3, and the other four solutions are
expressed by the RootOf expressions in the result. A RootOf expression usually (but not always)

means that Maple does not know how to find an explicit symbolic solution for the root (or roots) of
the equation. But a RootOf expression can also be used by Maple as an abbreviation for a very
large symbolic solution, as, for example, in the case of the polynomial x^4-x^3-x^2-x-1 .

> solve(x^4-x^3-x^2-x-1=0, {x});

When solve returns a RootOf expression, we can use the allvalues command to find out
more about the solutions represented by the RootOf expression. In the case where a RootOf
expression solves a polynomial of degree 4, the allvalues command will in fact return symbolic
values for the roots, but as the next command shows, the symbolic result may be so large and
complicated that it is of limited usefulness (and that is why it was represented by a RootOf
expression). Let us apply allvalues to one of the above RootOf expressions.

> allvalues(%[1]);

As we said, this symbolic result is so complicated that it is almost useless. We use the evalf
command to get a decimal approximation of this solution.

> evalf(%);

We can also use evalf to get decimal approximations of all four of the results returned by the last
solve command.

> evalf(%%%);
>

When a RootOf expression solves a polynomial of degree 5 or more, then the allvalues
command applied to the RootOf expression may return unevaluated. In this case, Maple cannot
actually return symbolic results and decimal approximations are the only option. Here is an example.

> solve(x^5-x^4-x^3-x^2-x-1=0, x);

Let us apply allvalues to one of the RootOf expressions.
> allvalues(%[1]);

We can apply evalf to all five of the RootOf expression in just one command.
> evalf(%%);

Notice that we have four complex numbers and one real number. What if we would like to convince
ourselves that these really are correct solutions? The next command substitutes the five decimal
results into the original polynomial.

> for i in % do subs(x=i, x^5-x^4-x^3-x^2-x-1=0) od;

When we substitute a solution into the original equation, we expect to get the equation = 0 0 but that
is not what we got for any of our five decimal numbers. For the single solution that is a real number,

we get the equation = .6 10
()−8

0 when that solution is substituted into the original equation. Does
this mean that we do not have a correct solution? Yes and no. The "solution" in question is
1.965948237. This numerical result is meant to be an approximation of an exact solution, so we
should not expect it to be a correct, exact solution. When this result is substituted into the original
equation, we should not expect to get exactly = 0 0. But we should expect to "almost" get = 0 0, and

that is what we do get, since .6 10
()−8

 is a very small number. The equation = .6 10
()−8

0
approximates the equation = 0 0, so this tells us that 1.965948237 is an approximate solution of the
original equation, not an exact solution. Similarly, the above substitutions tell us that the four

complex solutions are also correct approximations of exact solutions (why?).
>

With a polynomial equation, solve (along with allvalues and evalf) can always return all of
the solutions to the equation, some of the solutions as exact symbolic results and some possibly as
decimal approximations. On the other hand, with a non polynomial equation, there is no guarantee
that solve will return all solutions of the equation (for example, there could be an infinite number
of them), or even any solutions. In the next section we look at some examples of the kinds of results
that solve can return for non polynomial equations.

>

Exercise: In the previous examples we saw that Maple can represent a number with a RootOf
expression. Maple also allows us to convert any number into a RootOf expression. Here is a simple
example.

> convert(sqrt(2), RootOf);

Part (a): Let us do a slightly more comlicated example. Let us take one of the roots of = − x3 1 0 and
convert it from a number into a RootOf expression.

> solve(x^3-1=0, x);

Let us use the root with a positive imaginary part.
> -1/2+I*sqrt(3)/2;
> convert(%, RootOf);

Notice that, even though this number is a root of = − x3 1 0, that is not how Maple converted it into a
RootOf expression. What did Maple do to get the last result?

Part (b): The allvalues command converts RootOf expressions back into numbers.
> convert(sqrt(2), RootOf);
> allvalues(%);

Let us check the result of allvalues with the example from Part (a).
> -1/2+I*sqrt(3)/2:
> convert(%, RootOf);
> allvalues(%);

Notice that there is an index option inside of the RootOf expressions. Here is the last RootOf
expression with the index options removed.

> -1/2+1/2*RootOf(_Z^2+1)*RootOf(_Z^2-3);

Explain the result from the following allvalues command. How many distinct numbers are in
the result?

> allvalues(%);

The following RootOf expression has one of the index options put back into it. Explain the result of
the following allvalues command.

> -1/2+1/2*RootOf(_Z^2+1, index=1)*RootOf(_Z^2-3);
> allvalues(%);

You may want to look in the RootOf help page for the paragraph that describes "root selectors".

> ?RootOf
>

>

3.4. Solving a single nonlinear equation
In the last section we saw that with a polynomial equation, solve will always give us all the
solutions to the equation. On the other hand, with a non polynomial equation there is no guarantee
that solve will return all of the solutions to the equation, or even any solutions. Here are some
examples of the kinds of results that solve can return for a non polynomial equation.

We know from Section 3.2 of this worksheet that the equation =
x5

2
()cos x9 has three real roots, but

solve cannot find symbolic expressions for any of them and solve does not return a result.
> solve((x^5)/2-cos(x^9)=0, x);
>

We know that the equation = ()sin x 0 has an infinite number of solutions, but if we solve it with
solve , we only get one solution.

> solve(sin(x)=0, x);
>

The equation = ()sin − x2 1 0 also has an infinite number of solutions, which we can verify by

graphing the function ()sin − x2 1 .
> plot(sin(x^2-1), x=-8..8);

But if we solve the equation with solve , we get only two solutions, 1 and -1. This is because of the
way that solve approaches this equation. The equation sin(x^2-1)=0 is true if x^2-1=0 ,
which is solved by either 1 or -1 .

> solve(sin(x^2-1)=0, x);
>

The equation = ()sin + x2 1 0 also has an infinite number of real solutions, which we can again verify
using a graph.

> plot(sin(x^2+1), x=-8..8);

But if we solve the equation using solve , we get two imaginary solutions.
> solve(sin(x^2+1)=0, x);
>

Exercise: Explain why solve returned two imaginary solutions for the equation = ()sin + x2 1 0.
>

Similarly, for the two equations = ()sin + x2 1 1 and = ()sin + x2 1 −1, both of which have an infinite
number of real solutions, solve will return two real solutions and two imaginary solutions,
respectively.

> solve(sin(x^2+1)=1, x);
> solve(sin(x^2+1)=-1, x);
>

Exercise: The number π to five decimal places is 3.1415. So the two equations

 = ()sin + + x2 1 π −1
and

 = ()sin + + x2 1 3.1415 −1
are almost the same equation. Explain why the following command produces two real solutions

> solve(sin(x^2+1+Pi)=-1, x);
> evalf(%);

but the following command produces two imaginary solutions. (In the following command 4.1415
is written as 41415/10000 in order to prevent solve from returning a decimal answer.)

> solve(sin(x^2+41415/10000)=-1, x);
> evalf(%);
>

Recall that with polynomial equations, solve sometimes represents solutions with a RootOf
expression. We can also get RootOf expressions as a result of solving non polynomial equations.
Here is a simple example.

> solve(x=cos(x), x);

As with the case of polynomial equations, we can use the allvalues command to find out what
values are represented by the RootOf expression.

> allvalues(%);

So we got a decimal approximation to one solution of the equation (and, strangely enough, that
decimal solution is given inside the RootOf expression). We can get that same approximate
solution by applying evalf , instead of allvalues , to the RootOf expression returned by
solve (or we could apply evalf to the result from allvalues).

> evalf(%%);
> evalf(%%); # which result does this %% refer to?

The following graph shows us that this is the only real solution to the equation.
> plot([x, cos(x)], x=-3*Pi/2..3*Pi/2, -2..2);
>

With non polynomial equations, we can even get results from solve that contain nested RootOf
expressions. Here is an example.

> solve(x^2=cos(x^2), x);

Again we use the allvalues command to find out more about the values that are represented by

the RootOf expression.
> allvalues(%);

Notice that allvalues returned two results. Notice also that each result is partly symbolic (the
square root symbol), partly numeric, and still uses a RootOf expression. These results from
allvalues are not so easy to use. What if we just apply evalf to the original RootOf
expression returned by solve ?

> evalf(%%);

We only get one numeric result. If we instead apply evalf to the result from allvalues , then we
get two numeric results.

> evalf(%%);

The following graph shows us that these are the only two real solutions to the equation, so solve
(with the help of allvalues and evalf) found all of the real solutions.

> plot([x^2, cos(x^2)], x=-3..3, -2..2);
>

Let us go back to the nested RootOf expression returned by the solve command and try to see

exactly how the RootOf expression represents the solutions to the equation = x2 ()cos x2 . Here is
the RootOf expression again.

> solve(x^2=cos(x^2), x);

To derive this RootOf expression, let us start with the equation

 = x2 ()cos x2

and make a substitution = _Z x2 in the equation. So then we have the equation
 = _Z ()cos _Z .

Let the expression RootOf(_Z-cos(_Z)) denote a solution of the equation = − _Z ()cos _Z 0. Given
the solution RootOf(_Z-cos(_Z)) of the equation = − _Z ()cos _Z 0, we plug this solution back in for

_Z in the substitution = _Z x2 and we get the equation

 = ()RootOf − _Z ()cos _Z x2.
Solving this equation for x gives us a solution to our original equation. Let the expression

()RootOf − + ()RootOf − _Z ()cos _Z x2

denote a solution to the equation = − x2 ()RootOf − _Z ()cos _Z 0. Then

()RootOf − + ()RootOf − _Z ()cos _Z x2 also represents a solution to our original equation

 = x2 ()cos x2 . To get the nested RootOf expression returned by solve , the only thing left to do is

replace the variable x in our last nested RootOf expression with the variable _Z. We can do this
because changing the name of the variable used in an equation does not affect the solution values of
the equation. Notice that this means that the variable _Z that appears in the outer RootOf expression
is not the same variable _Z that appears in the inner RootOf expression (the inner _Z is the unknown

in the equation _Z-cos(_Z)=0, and the outer _Z is the unknown in the equation = − r _Z2 0 where r is
a solution of the former equation). The fact that there can be two distinct variables both called _Z in
a nested RootOf expression is one of the things that can make nested RootOf expressions hard to
understand.

>

Exercise: Explain how each of the following three solve commands derived its RootOf
expression.

> solve(x-sin(x^2)=0, x);

(Hint: First take the arcsin of both sides of the equation = x ()sin x2 , and then let = x ()sin _Z .)
> solve(x-sin(x^2)=1, x);

(Hint: First make a substitution = u − x 1. Later, let = u ()sin _Z .)
> solve(x^2-sin(x^2)=1, x);

(Hint: Let = w x2.)
>

Exercise: First, explain how solve derived the following nested RootOf expression from the

equation = x2 ()sin + x2 1 .
> solve(x^2-sin(x^2+1)=0, x);

Now explain how the following nested RootOf expression can also be derived from the equation

 = x2 ()sin + x2 1 .
> RootOf(-RootOf(_Z-sin(_Z)-1)+1+_Z^2);

To prove that the last two nested RootOf expressions both represent the same solutions to the
equation, let us evaluate both of them using allvalues .

> soln1 := solve(x^2-sin(x^2+1)=0, x);
> soln2 := RootOf(-RootOf(_Z-sin(_Z)-1)+1+_Z^2);
> allvalues(soln1);
> allvalues(soln2);
> evalf(%%);
> evalf(%%);

The following graph shows that these are in fact the only two real solutions to the equation.
> plot([x^2, sin(x^2+1)], x=-3..3, -1..2);
>

Exercise: Each of the following four RootOf expressions represents solutions to the equation

 = − x2 ()sin x4 1.
> RootOf(RootOf(u-sin(u)^2-2*sin(u)-1)-u^4);
> RootOf(sin(RootOf(_Z-sin(_Z)^2-2*sin(_Z)-1))+1-u^2);
> RootOf(RootOf(sqrt(u)-sin(u)-1)-u^4);
> RootOf(RootOf(u-sin(u^2)-1)-u^2);

Part (a): Two of the above RootOf expressions were derived by making the substitution = u x2 in
the original equation. The other two RootOf expressions were derived by making the substitution

 = u x4. Show how these substitutions can be used to derive these RootOf expressions.
Part (b): Two of the above RootOf expressions have a small advantage over the other two. What is
the advantage?

>

Exercise: One of the amazing things that Maple can do is algebra with RootOf expressions. Here
is an example (from A Guide to Maple, by E. Kamerich, page 174).

> r := solve(x^5-t*x^2+p=0, x);
> simplify(r^7);
> simplify(r^8);

Explain why these results are correct. (Hint: Derive the first result from the equation in the solve
command. Derive the second result from the first one.) Also, explain why the following result is
correct.

> simplify(r^11);
>

The last several examples have shown what kind of results we can get from the solve command
with non polynomial equations. In summary, we can get no solution, a list of solutions that may or
may not be complete, or we can get RootOf expressions that, when evaluated using allvalues
and evalf , give us a list of decimal approximations of solutions (which may or may not be a
complete list of all the solutions). And the solutions that we get can be either real or complex
numbers.

>

>

3.5. Solving a system of equations
We can use the solve command to solve systems of equations, that is, two or more equations that
we want solved simultaneously. When we work with systems of equations we put the equations to
be solved inside of a pair of braces and we put the variables to be solved for inside another pair of
braces. Here is an example with two (nonlinear) equations in two unknowns.

> solve({x^2-y^2-y=0, x+y^2=0}, {x, y});

As with solving a single equation, sometimes we get the answer given implicitly in terms of RootOf
expressions. As before, we can use the allvalues command to find out more about the solutions
represented by the RootOf expressions. Sometimes allvalues will return symbolic solutions and
sometimes it will return decimal approximations. In the case of the last example, allvalues
returns a list of very complicated symbolic solutions.

> allvalues(%[2]);

We can get decimal approximations of these solutions by using evalf .
> evalf(%);

Notice that the RootOf expressions represented three solutions, one real solution and two complex
solutions (look carefully at the result from allvalues and verify this). The following two
commands check that these really are solutions.

> seq(subs(%%[i], {x^2-y^2-y=0, x+y^2=0}), i=1..3):
> simplify([%]);

>

Here is an interesting result where solve mixes a partly symbolic solution with a RootOf
expression.

> solve({x^2+y^2=9, x^y=2}, {x,y});

And allvalues mixes numeric values with symbolic results.
> allvalues(%);

Let us check that this is a valid solution.
> subs(%, {x^2+y^2=9, x^y=2});
> evalf(%);
>

Exercise: How many real solutions does the system of equations = + x2 y2 9 and = xy 2 have? (Hint:
Graph the equations.)

>
>

Here is another example. Let us find the intersection of a circle and a parabola. The system of

equations = + x2 y2 1 and = y x2 obviously has exactly two real solutions (draw a graph), and they are
not very hard to find using paper and pencil. Are there any other solutions? Here is a way to find out
using Maple.

> equations := {x^2+y^2=1, y-x^2=0};
> solve(equations, {x,y});
> solutions := allvalues(%);

We have four solutions, two of them real and two complex. Here is an easy way to see this.
> evalf(solutions);

The next two commands checks all four of the solutions and show that they are correct.
> seq(subs(solutions[i], equations), i=1..4);
> simplify([%]);

It is interesting to note that earlier versions of Maple returned incorrect answers for this simple
problem. If you have access to a copy of Maple V Release 5, try this problem with it and see what
you get.

>

Exercise: Part (a): Solve the system of equations = + x2 y2 1 and = − y x2 0 using paper and pencil.
Pay close attention to your steps. Notice that there are two approaches to solving the problem; either

substitute for the x2 term in the equation = + x2 y2 1 or substitute for the y2 term.
>

Part (b): Show how the nested RootOf expressions returned by solve can be derived from the
system of equations. Which of the two approaches mentioned in Part (a) did the solve command
use?

>

Part (c): Write a RootOf expression that represents solutions of the system = + x2 y2 1 and = − y x2 0
but is different than the RootOf expression returned by solve . (Hint: Use the approach mentioned
in Part (a) that is not used by solve .) Use allvalues to check that your RootOf expression
represents the same four solutions found above.

>

Part (d): Use the next command to read about the keywords dependent and independent in
the online documentation for allvalues .

> ?allvalues

Try using the independent keyword when applying allvalues to your RootOf expressions
from Part (c). Are the "solutions" returned by allvalues in this case really solutions? Exactly
how did allvalues arrive at them?

>

Exercise: Use solve to try and solve the equation = x2 ()cos x9 . Convert that equation to the

equivalent system of equations = y x2 and = y ()cos x9 and use solve to try solving this system.

Then convert the equation to the system = y x2 and = y ()cos y
9

 and try to use solve to solve this
system. If solve returns a solution for any one of the systems, test the solution in each of the other
systems.

>

>

3.6. Using fsolve
We have seen that the solve command does not always produce all of the solutions of an equation
or system of equations. When that happens, and we need to know the value of some solution that
solve did not find, then we need to use the fsolve command. The fsolve command is used to
find decimal approximations of solutions to equations.

For a single polynomial equation, fsolve will return decimal approximations for all of the real
roots of the equation. Here is an example.

> fsolve(1-x-2*x^3-x^4=0, x);

To get decimal approximations for the complex roots of the polynomial equation we need to use the
keyword complex .

> fsolve(1-x-2*x^3-x^4=0, x, complex);

As with the solve command, if we put braces around the unknown that we are solving for, then
fsolve returns the results as equations (which can make the results a bit easier to read).

> fsolve(1-x-2*x^3-x^4=0, {x}, complex);

For a single polynomial equation, using fsolve does not provide us with anything that we could
not get using solve together with allvalues and evalf . The real use for fsolve is with non
polynomial equations and with systems of equations.

For a single, non polynomial equation, fsolve will try to return a decimal approximation for one
real root of the equation. Even if the equation should have several real roots, fsolve only tries to

approximate one of the roots. We showed earlier that the equation =
x5

2
()cos x9 has three real roots

and solve can not find any of them. The fsolve command will readily return one of the real
roots.

> fsolve(x^5/2-cos(x^9)=0, x);

To find the other two real roots, we use the option for fsolve that allows us to give a hint about
where it should look for a solution. We give fsolve a hint by giving fsolve a range that we
know contains a solution.

> fsolve(x^5/2-cos(x^9)=0, x, -2..-1);

The range that we just gave fsolve actually included two solutions. To find the third solution, we
need to give fsolve a more specific range to look in.

> fsolve(x^5/2-cos(x^9)=0, x, -1.12..-1.1);

Recall that we can get the ranges that we give to fsolve from appropriate graphs of the equation
we are trying to solve.

>

There is another way to give fsolve a hint about where to find a solution. Instead of giving
fsolve a range within which to search for the unknown, we can give fsolve a "starting value"
for the unknown in the equation.

> fsolve(x^5/2-cos(x^9)=0, x=-1);
> fsolve(x^5/2-cos(x^9)=0, x=-1.1);
> fsolve(x^5/2-cos(x^9)=0, x=-1.2);

This way of giving a hint to fsolve is not as good as the previous way. For a given starting value,
it is often difficult to predict which of the equation's solutions fsolve will find. It is not
uncommon for fsolve to find a solution that is far away from a starting value even when there is
another solution very near to the starting value. For an example of the unpredictability of fsolve
when using a starting value, look at the first of the last three commands. Out of the three real roots
of the equation, fsolve found the one that is furthest from the starting value.

>

What about complex solutions for the equation? To get fsolve to look for a complex solution we
need to use the keyword complex . But the keyword complex , by itself, need not lead to a
complex solution.

> fsolve(x^5/2-cos(x^9)=0, x, complex);

Notice that the last result is one of the real solutions that we have already found. In the next
command we give fsolve a complex starting value along with the keyword complex , and then it
finds a complex solution.

> fsolve(x^5/2-cos(x^9)=0, x=1+I, complex);

A different complex starting value leads to a different complex solution.

> fsolve(x^5/2-cos(x^9)=0, x=2+I, complex);

We showed above that fsolve can be a bit unpredictable when we use starting values. To get more
control over fsolve we can use a range with the complex option. Two complex numbers in a
range are interpreted as the lower left hand corner and the upper right hand corner of a rectangle in
the complex plane. For example, the range 1+I..3+2*I describes a rectangle in the complex
plane that is two units long horizontally, one unit high vertically, and has its lower left hand corner
at the point 1+I .

> fsolve(x^5/2-cos(x^9)=0, x=1+I..3+2*I, complex);

Be sure to convince yourself that this solution lies in the rectangle we just described.
>

Exercise: What happens if you give fsolve a complex starting value but not the keyword
complex ?

>

Exercise: Part (a): How many real solutions does the equation = x2 7 ()cos x2 have? Use fsolve to
find approximations to all of these solutions. How many solutions does solve , along with
allvalues and evalf , find?

>

Part (b): Can you find any complex solutions to the equation in part (a)? (Hint: Try many different
complex starting values.)

>

Part (c): How many real solutions does the equation = z 7 ()cos z have? Use fsolve to find
approximations to all of the solutions. How many solutions does solve along with allvalues
find?

>

Part (d): How are the solutions from part (c) related to the solutions from parts (a) and (b)?
>

Part (e): Can you find any complex solutions to the equation in part (c)?
>

Part (f): How are the solutions from part (e) related to the solutions from part (b)?
>

It is interesting to see what happens when we give fsolve a bad hint. In each of the following two
commands, there is no solution of the equation within the range given to fsolve . In the first
example, fsolve does not return any value.

> fsolve(1-x-2*x^3-x^4=0, x, -2..0);

But notice what fsolve does in the next example.
> fsolve(x^3-cos(3*x^2)=0, x, -2..-1);

In this example, fsolve returned unevaluated. I am not sure why, when there is no solution within
the given range, fsolve sometimes does not return a value and sometimes returns unevaluated.
(The difference might be that when fsolve does not return a result, then Maple knows that there is

no solution in the given range, but when fsolve returns unevaluated, it means that Maple could
not find a solution but it does not know how to prove that no solution exits.)

>

>

3.7. Using fsolve with a system of equations
We can use fsolve to find numerical solutions for systems of equations. For example. the system

of equations = + x2 y2 9 and = xy 2 has three real solutions, as the following graph shows.
> plots[implicitplot]({x^2+y^2=9, x^y=2}, x=-4..4, y=-4..4,

 scaling=constrained);

But the solve command can only find one of the solutions.
> solve({x^2+y^2=9, x^y=2}, {x,y});
> allvalues(%);
> evalf(%);

To find approximations for the other two solutions, we need to use the fsolve command.
> fsolve({x^2+y^2=9, x^y=2}, {x,y});

Without any hints, the fsolve command found the same solution that solve and allvalues
found. When solving a system of equations, we can give fsolve hints about either or both of the
unknowns that we are solving for. The next command gives fsolve a hint about the x value of the
solution that we wish to find.

> fsolve({x^2+y^2=9, x^y=2}, {x,y}, x=0..2);

Within that range for x there are two solutions of the system and fsolve found one of them. If we
want to find the other, we can also give fsolve a range for y .

> fsolve({x^2+y^2=9, x^y=2}, {x,y}, x=0..2, y=2..4);

Or, we could just give fsolve a range only for y .
> fsolve({x^2+y^2=9, x^y=2}, {x,y}, y=2..4);
> fsolve({x^2+y^2=9, x^y=2}, {x,y}, y=-4..-2);

As with single equations, we can give fsolve hints by using starting values instead of ranges.
> fsolve({x^2+y^2=9, x^y=2}, {x=1,y=-3});

We can try to find a complex solution to the system by using the keyword complex and giving
fsolve complex starting values.

> fsolve({x^2+y^2=9, x^y=2}, {x=I,y=I}, complex);

Let us check this last solution.
> subs(%, {x^2+y^2=9, x^y=2});

Does that seem reasonable?

Exercise: Find another complex solution for the system of equations = + x2 y2 9 and = xy 2. Be sure
to check any solution that you find.

>

Exercise: Use fsolve to solve the equation = x2 7 ()cos x2 . Convert that equation to the equivalent

system of equations = y x2 and = y 7 ()cos x2 and use fsolve to solve this system. Then convert the

equation to the equivalent system = y x2 and = y 7 ()cos y and use fsolve to solve this system.
>

>

3.8. Solving inequalities
Solving inequalities is not as common with Maple as solving equations, but it is interesting to see
that the solve command can be used to solve many inequalities and it is also interesting to see in
what form Maple returns the results of these kinds of problems.

The solution of the following inequality is an open interval. Notice how Maple denotes an open
interval in the real line.

> solve(x^2-2*x-15<0, x);

The solution of the following inequality is a closed interval.
> solve(x^2-2*x-15<=0, x);

The next solution is the complement of the previous one. Notice that this solution is made up of two
infinite, open intervals.

> solve(x^2-2*x-15>0, x);

Here are the last three inequalities again, but using a different notation for the results (because of the
braces around x).

> solve(x^2-2*x-15<0, {x});
> solve(x^2-2*x-15<=0, {x});
> solve(x^2-2*x-15>0, {x});

Here is a slightly more complicated inequality.
> exp(-x^2)>1/sqrt(2);
> solve(%, x);

Here is the same result in the other notation.
> solve(%%, {x});

Here is a simple inequality. Notice that the form of the result is not really consistent with the form of
the previous results (why not?).

> solve(exp(x)>0, x);
> solve(exp(x)>0, {x});

Even some very simple inequalities cannot be solved by solve .
> solve(sin(x)>0, x);
>

>

3.9. Online help for solving equations

The following command calls up the help page for solve .
> ?solve

The following help pages provide more details about how the solve command works. Each page
discusses a special case of what the solve command can do.

> ?solve,scalar
> ?solve,system
> ?solve,linear
> ?solve,radical
> ?solve,float
> ?solve,ineq

The following command brings up a worksheet, from the New User's Tour, called "Algebraic
Computations". Notice that this worksheet has a section called "Solving Equations and Systems of
Equations" and another section called "Solving Inequalities".

> ?newuser,topic04

The next command brings up one of the "Examples Worksheets" called "Solving Equations".
> ?examples,solve

It is common for solve to return a RootOf expression. Here are two help pages that provide some
information about these expressions.

> ?RootOf
> ?RootOf,indexed

The allvalues command is used to find out more information about the values represented by a
RootOf expression.

> ?allvalues

When solve cannot find a symbolic solution for an equation, we need to use the fsolve
command.

> ?fsolve

The solvefor command is closely related to solve .
> ?solvefor

The eliminate command also, in a sense, allows one to "solve" a set of equations.
> ?eliminate

The following two commands are special kinds of solve commands. The isolve commands
solves equations for integer solutions. The msolve command solves equations for integers
solutions mod m.

> ?isolve
> ?msolve

>

