
Maple for Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics

Purdue University Calumet
roger@calumet.purdue.edu

3.  Solving Equations

3.1. Introduction
Two of Maple's most useful commands are solve , which solves equations symbolically, and 
fsolve , which solves equations numerically. The first section of this worksheet gives an overview 
of working with these two commands. The rest of this worksheet goes into the details of using the 
solve  command to solve single equations and systems of equations. We introduce Maple's RootOf 
expressions, which are used throughout Maple and are often used in the results returned by solve , 
and we consider the allvalues  command for interpreting RootOf expressions. We also consider 
what kinds of equations solve  can and cannot solve. Finally, we show how the numerical solving 
command fsolve  can be used when solve  does not return a result.

> 

3.2. The basics of using solve  and fsolve
Recall that an equation is a made up of an equal sign with an expression on either side of it. An 
equation can either be true, like  =  + 2 2 4, or false, like  =  + 2 2 5. Most of the time, equations 

contain one or more unknowns in them, as in  =  + x2 2 4. When an equation contains an unknown, 
then we can ask for which values of the unknown is the equation true. For example, the equation 

 =  + x2 2 4 is true when the unknown x is given either the value 2  or − 2 . The values that make an 
equation true are called the solutions of the equation. Maple has two commands that can be used to 
find the solutions to an equation, solve  and fsolve . The solve  command attempts to solve an 
equation symbolically.

> solve( x^2+2=4, x);

The fsolve  command attempts to solve an equation numerically.
> fsolve( x^2+2=4, x);

The rest of this section is an overview of using solve  and fsolve . The rest of the sections in this 
worksheet go into the details of using these two commands.

We use the solve  command by giving it an equation in some unknowns and also one specific 

unknown that it should solve the equation for. For example, an equation like  = 1  − a x2 b has three 
unknowns in it. Each of the following solve  commands solves this equation for one of the 
unknowns (in terms of the other unknowns).



> solve( 1=a*x^2-b, a );
> solve( 1=a*x^2-b, b );
> solve( 1=a*x^2-b, x );

The next two commands check that each solution from the last result really does solve the equation 
for x  (notice the use of indexed names).

> subs( x=%[1], 1=a*x^2-b );
> subs( x=%%[2], 1=a*x^2-b );
> 

Exercise: For each of the following two solve  commands, use the subs  command to verify that 
the solution really does solve the equation.

> solve( 1=a*x^2-b, a );
> solve( 1=a*x^2-b, b );
> 

Exercise: Let us give the equation  = 1  − a x2 b a name.
> eqn := 1=a*x^2-b;

Now reuse the solve  command to solve this equation for each unknown, as was done above, but 
always refer to the equation by its name. Also, use the subs  command to verify each solution, but 
once again, always refer to the equation by its name.

> 

If we put a pair of braces around the unknown we wish to solve for, then solve  returns the solution 
written as an equation.

> solve( 1=a*x^2-b, {a} );
> solve( 1=a*x^2-b, {b} );
> solve( 1=a*x^2-b, {x} );

The next two commands once again check that each solution from the last result really does solve 
the equation for x . Notice how the form of the subs  command changes slightly because of the 
braces around x  in the solve  command (since the result from solve  is already in the form of an 
equation, the subs  command does not need its first entry to be an equation).

> subs( %[1], 1=a*x^2-b );
> subs( %%[2], 1=a*x^2-b );
> 

Exercise: For the following solve  command, there is one equal sign in the input to the command 
and another equal sign in the result.

> b=a*x^2-1;
> solve( %, {a} );

What can you say about each of these two uses of an equal sign. Do both equal signs have the same 
meaning?

> 



Exercise: After we solve an equation like the following one
> solve( a=(1+b)/x^2, b );

we can use the subs  command to check Maple's solution.
> subs( b=-1+a*x^2, a=(1+b)/x^2 );

What can you say about each of the two uses of an equal sign in the last command and the third use 
of an equal sign in the command's result. Do each of these equal signs have the same meaning?

> 

One reason for putting braces around the unknown being solved for by solve  is so that we can use 
the assign  command (covered in the last worksheet) to assign a solution given by solve  to the 
unknown variable. Here is an example.

> solve( x^2-x-2=0, {x} );

The next command assigns the first of the two solutions to x .
> assign( %[1] );
> x;

The next command tries to assign the second of the two solutions to x .
> assign( %%[2] );

That did not work because x  now has a value, so it is no longer an "unknown", and so the assign  
command was trying to execute the assignment 2:=-1 . We need to unassign x  before we can use 
assign  to give x  the second solution from the solve  command.

> x := 'x';
> assign( %%%[2] );
> x;

To avoid problems later on, let us unassign x  again.
> x := 'x';
> 

It is not always the case that solve  can find symbolic solutions to an equation. The equation 

 = 
x5

2
( )cos x9  has three (real) roots, but solve  cannot find symbolic expressions for any of them and 

so it does not return a result.
> solve( (x^5)/2-cos(x^9)=0, x );

We can show that the equation has three roots by using a graph.
> plot( [(x^5)/2, cos(x^9)], x=-1.2..1.1, -1.1..1.1 );
> 

Exercise: In the last plot  command, change the comma just after the 2 to a minus sign. What does 
this show?

> 

The last two graphs show one way that we can discover solutions to an equation when solve  



cannot do it for us. But solving equations graphically has the disadvantage of not being very 
accurate, plus it is very labor intensive and cannot be done automatically.

Exercise: The equation  = 
x5

2
( )cos x9  has a solution near  = x 1. Use the plot  command to zoom in 

on this solution as much as you can. Using your zoomed in graphs, what is the limit to the number of 
decimal places that you can determine for this solution.

> 

If solve  cannot find a symbolic solution to an equation, and if finding a solution graphically is too 
time consuming and inaccurate, then what should we do? Maple has another kind of solve command 
called fsolve  that finds decimal, rather than symbolic, solutions to equations. The advantage of 
fsolve  is that it can usually find a decimal approximation to a solution even when solve  cannot 
find a symbolic solution. The disadvantage of fsolve  is that decimal solutions are sometimes less 
useful, less informative, than symbolic solutions. But in situations where solve  cannot find any 
symbolic solutions, fsolve 's decimal solutions are better than nothing.

The fsolve  command will try to return a decimal approximation for one root of the equation being 
solved.  Even if the equation has several roots, fsolve  will only approximate one root at a time. In 
order to find all the solutions of an equation, it is usually necessary to use fsolve  several times, 
once for each solution. In the following example, we see how to use fsolve  to find several 
solutions to an equation.

We know that the equation  = 
x5

2
( )cos x9  has three real roots and solve  cannot find any of them. 

The fsolve  command will readily return one of these roots.
> fsolve( x^5/2-cos(x^9)=0, x );

Let us check this result.
> subs( x=%, x^5/2-cos(x^9)=0 );
> simplify( % );

This is close enough to  = 0 0 to convince use that fsolve  really has found an approximate 
solution. But what about the other two solutions? To find them, we need to use an option for 
fsolve  that allows us to give fsolve  a hint about where it should look for a solution. But how 
do we know where fsolve  should look? We use a graph of the equation (which, you will recall, is 
also how we figured out that the equation actually has three solutions).

> plot( x^5/2-cos(x^9), x=-2..2, -2..2 );

From the graph we see that the two other two solutions are near −1. The following fsolve  
command will find one of these two solutions. We give fsolve  a hint of where to find a solution 
by giving fsolve  a range that we know includes a solution.

> fsolve( x^5/2-cos(x^9)=0, x, -2..-1 );

Since the range we gave fsolve  included two solutions, we really could not predict which one of 



them fsolve  would find. To find the other solution, we give fsolve  a more specific range to 
look in. To find a more specific range, we need to zoom in on our graph near the two solutions.

> plot( x^5/2-cos(x^9), x=-1.4..-1, -1..1 );

We need to direct fsolve  towards the right most of the two solutions (it has already found the left 
most one).

> fsolve( x^5/2-cos(x^9)=0, x, -1.12..-1.1 );

So now we have approximate values for all three (real) solutions of the equation. This example is 
typical of how we use fsolve  with an equation. We need an appropriate graph of the equation to 
give us an idea of how many solutions there are and about where they are. Then we use this rough 
information from the graph to give fsolve  hints so that it can find each of the solutions.

> 

Exercise: Part (a): How many solutions does the equation  = x2 7 ( )cos x2  have? Use fsolve  to find 
approximations to all of the solutions.

> 

Part (b): How many solutions does the equation  = z 7 ( )cos z  have? Use fsolve  to find 
approximations to all of the solutions.

> 

The solve  and fsolve  commands can also be used to solve systems of equations. A system of 
equations is made up of two or more equations in one or more unknowns. A solution to a system of 
equations finds values for all of the unknowns that simultaneously solve each of the equations.

Here is an example of using solve  to solve a system of two (linear) equations in two unknowns.
> solve( { 3*u+5*v=2, 4*u-v=1 }, {u,v} );

Notice how the equations are put inside of a pair of braces and the variables to solve for are placed 
inside of another pair of braces.

Now let us look at a system of two nonlinear equations in two unknowns. Nonlinear systems are 
much harder to solve than linear systems and solve  often cannot solve them. In that case we need 
to use fsolve . Consider the two equations

 = y 2 ( )cos 5x    and   =  + x2 y2 1
The solution of this system is the intersection of a circle with a graph of a cosine function. Maple 
can easily draw a graph of these equations and give us a rough idea of the solutions.

> plots[implicitplot]( {y=2*cos(5*x), x^2+y^2=1}, x=-1..1, 
y=-2..2);

The solve  command cannot solve this system. But fsolve  returns one decimal solution.
> fsolve( {y=2*cos(5*x), x^2+y^2=1}, {x,y});

From the graph we know that there are 8 solutions. To find the other solutions, we have to give 
fsolve  hints about where to look. Since there are two variables to solve for, we can give give 
fsolve  a hint about the value of either or both of the unknowns. Using the above graph of the 

solutions to get the hint, here is how we have fsolve  find one of the two solutions with x between 



0 and 0.5.
> fsolve( {y=2*cos(5*x), x^2+y^2=1}, {x,y}, x=0..0.5 );

fsolve  found the right most of these two solutions. Here is how we can add a hint about y so that 

fsolve  finds the left most solution with x between 0 and 0.5.
> fsolve( {y=2*cos(5*x), x^2+y^2=1}, {x,y}, x=0..0.5, y=0..1 );

Notice that if we just give fsolve  the y hint, it finds a solution that has a negative x value.
> fsolve( {y=2*cos(5*x), x^2+y^2=1}, {x,y}, y=0..1 );

With appropriate hints, all of the other solutions can be found.

Exercise: Find decimal approximations to all of the solutions of the above system of equations.
> 

Exercise: Given a number y0 between 0 and 1, draw a graph of ( )sin x  and a parabola ( )p x  with x 

between 0 and π so that  = ( )p x0 ( )sin x0  and  = 
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1 where x0 solves  = ( )sin x y0.

> 

Exercise: Given a number y0 between 0 and 1, draw a graph of ( )sin x  and a parabola ( )p x  with x 

between 0 and π so that  = ( )p x0 ( )sin x0  and  = 
�

�
��

�

�
��

d

d

x
( )p x  = x x

0

�

�
��

�

�
��

d

d

x
( )sin x  = x x

0
 where x0 solves 

 = ( )sin x y0.
> 

> 

3.3. Solving a single polynomial equation
If we ask solve  to solve a polynomial equation (in one variable) of degree n with n equal to 1, 2, or 

3, then solve  will always produce n explicit solutions. Some of the solutions may be complex 
numbers. Here are a few simple examples.

> solve( x^2+1=0, x );
> solve( x^2+x-1=0, {x} );
> solve( x^3-4*x^2+8*x-8=0, x );

When the degree of the polynomial is 3, the solve  command can produce some pretty impressive 
looking answers.

> solve( x^3-x^2-x-1=0, {x} );

If we give solve  a polynomial equation of degree n with  ≤ 4 n, then solve  will always produce n 
solutions, but some of the solutions may not be given explicitly. Instead, some of the solutions may 
be represented by a RootOf  expression. Here is a degree five example with five "solutions".

> solve( x^5+2*x^4-4*x^3-4*x^2-4*x^1-3=0, {x} );

One of the solutions of the equation is given explicitly, −3, and the other four solutions are 
expressed by the RootOf  expressions in the result. A RootOf  expression usually (but not always) 



means that Maple does not know how to find an explicit symbolic solution for the root (or roots) of 
the equation. But a RootOf  expression can also be used by Maple as an abbreviation for a very 
large symbolic solution, as, for example, in the case of the polynomial x^4-x^3-x^2-x-1 .

> solve( x^4-x^3-x^2-x-1=0, {x} );

When solve  returns a RootOf  expression, we can use the allvalues  command to find out 
more about the solutions represented by the RootOf  expression. In the case where a RootOf  
expression solves a polynomial of degree 4, the allvalues  command will in fact return symbolic 
values for the roots, but as the next command shows, the symbolic result may be so large and 
complicated that it is of limited usefulness (and that is why it was represented by a RootOf  
expression). Let us apply allvalues  to one of the above RootOf  expressions.

> allvalues( %[1] );

As we said, this symbolic result is so complicated that it is almost useless. We use the evalf  
command to get a decimal approximation of this solution.

> evalf( % );

We can also use evalf  to get decimal approximations of all four of the results returned by the last 
solve  command.

> evalf( %%% );
> 

When a RootOf  expression solves a polynomial of degree 5 or more, then the allvalues  
command applied to the RootOf  expression may return unevaluated. In this case, Maple cannot 
actually return symbolic results and decimal approximations are the only option. Here is an example.

> solve( x^5-x^4-x^3-x^2-x-1=0, x );

Let us apply allvalues  to one of the RootOf  expressions.
> allvalues( %[1] );

We can apply evalf  to all five of the RootOf  expression in just one command.
> evalf( %% );

Notice that we have four complex numbers and one real number. What if we would like to convince 
ourselves that these really are correct solutions? The next command substitutes the five decimal 
results into the original polynomial.

> for i in % do subs( x=i, x^5-x^4-x^3-x^2-x-1=0 ) od;

When we substitute a solution into the original equation, we expect to get the equation  = 0 0 but that 
is not what we got for any of our five decimal numbers. For the single solution that is a real number, 

we get the equation  = .6 10
( )−8

0 when that solution is substituted into the original equation. Does 
this mean that we do not have a correct solution? Yes and no. The "solution" in question is 
1.965948237. This numerical result is meant to be an approximation of an exact solution, so we 
should not expect it to be a correct, exact solution. When this result is substituted into the original 
equation, we should not expect to get exactly  = 0 0. But we should expect to "almost" get  = 0 0, and 

that is what we do get, since .6 10
( )−8

 is a very small number. The equation  = .6 10
( )−8

0 
approximates the equation  = 0 0, so this tells us that 1.965948237 is an approximate solution of the 
original equation, not an exact solution. Similarly, the above substitutions tell us that the four 



complex solutions are also correct approximations of exact solutions (why?).
> 

With a polynomial equation, solve  (along with allvalues  and evalf ) can always return all of 
the solutions to the equation, some of the solutions as exact symbolic results and some possibly as 
decimal approximations. On the other hand, with a non polynomial equation, there is no guarantee 
that solve  will return all solutions of the equation (for example, there could be an infinite number 
of them), or even any solutions. In the next section we look at some examples of the kinds of results 
that solve  can return for non polynomial equations.

> 

Exercise: In the previous examples we saw that Maple can represent a number with a RootOf 
expression. Maple also allows us to convert any number into a RootOf expression. Here is a simple 
example.

> convert( sqrt(2), RootOf );

Part (a): Let us do a slightly more comlicated example. Let us take one of the roots of  =  − x3 1 0 and 
convert it from a number into a RootOf expression.

> solve( x^3-1=0, x );

Let us use the root with a positive imaginary part.
> -1/2+I*sqrt(3)/2;
> convert( %, RootOf );

Notice that, even though this number is a root of  =  − x3 1 0, that is not how Maple converted it into a 
RootOf expression. What did Maple do to get the last result?

Part (b): The allvalues  command converts RootOf expressions back into numbers.
> convert( sqrt(2), RootOf );
> allvalues( % );

Let us check the result of allvalues  with the example from Part (a).
> -1/2+I*sqrt(3)/2:
> convert( %, RootOf );
> allvalues( % );

Notice that there is an index option inside of the RootOf expressions. Here is the last RootOf 
expression with the index options removed.

> -1/2+1/2*RootOf(_Z^2+1)*RootOf(_Z^2-3);

Explain the result from the following allvalues  command. How many distinct numbers are in 
the result?

> allvalues( % );

The following RootOf expression has one of the index options put back into it. Explain the result of 
the following allvalues  command.

> -1/2+1/2*RootOf(_Z^2+1, index=1)*RootOf(_Z^2-3);
> allvalues(%);

You may want to look in the RootOf help page for the paragraph that describes "root selectors".



> ?RootOf
> 

> 

3.4. Solving a single nonlinear equation
In the last section we saw that with a polynomial equation, solve  will always give us all the 
solutions to the equation. On the other hand, with a non polynomial equation there is no guarantee 
that solve  will return all of the solutions to the equation, or even any solutions. Here are some 
examples of the kinds of results that solve  can return for a non polynomial equation.

We know from Section 3.2 of this worksheet that the equation  = 
x5

2
( )cos x9  has three real roots, but 

solve  cannot find symbolic expressions for any of them and solve  does not return a result.
> solve( (x^5)/2-cos(x^9)=0, x );
> 

We know that the equation  = ( )sin x 0 has an infinite number of solutions, but if we solve it with 
solve , we only get one solution.

> solve( sin(x)=0, x );
> 

The equation  = ( )sin  − x2 1 0 also has an infinite number of solutions, which we can verify by 

graphing the function ( )sin  − x2 1 .
> plot( sin(x^2-1), x=-8..8 );

But if we solve the equation with solve , we get only two solutions, 1 and -1. This is because of the 
way that solve  approaches this equation. The equation sin(x^2-1)=0  is true if x^2-1=0 , 
which is solved by either 1 or -1 .

> solve( sin(x^2-1)=0, x );
> 

The equation  = ( )sin  + x2 1 0 also has an infinite number of real solutions, which we can again verify 
using a graph.

> plot( sin(x^2+1), x=-8..8 );

But if we solve the equation using solve , we get two imaginary solutions.
> solve( sin(x^2+1)=0, x );
> 

Exercise: Explain why solve  returned two imaginary solutions for the equation  = ( )sin  + x2 1 0.
> 



Similarly, for the two equations  = ( )sin  + x2 1 1 and  = ( )sin  + x2 1 −1, both of which have an infinite 
number of real solutions, solve  will return two real solutions and two imaginary solutions, 
respectively.

> solve( sin(x^2+1)=1, x );
> solve( sin(x^2+1)=-1, x );
> 

Exercise: The number π to five decimal places is 3.1415. So the two equations

 = ( )sin  +  + x2 1 π −1
and

 = ( )sin  +  + x2 1 3.1415 −1
are almost the same equation. Explain why the following command produces two real solutions

> solve( sin(x^2+1+Pi)=-1, x );
> evalf( % );

but the following command produces two imaginary solutions. (In the following command 4.1415  
is written as 41415/10000  in order to prevent solve  from returning a decimal answer.)

> solve( sin(x^2+41415/10000)=-1, x );
> evalf( % );
> 

Recall that with polynomial equations, solve  sometimes represents solutions with a RootOf  
expression. We can also get RootOf  expressions as a result of solving non polynomial equations. 
Here is a simple example.

> solve( x=cos(x), x );

As with the case of polynomial equations, we can use the allvalues  command to find out what 
values are represented by the RootOf  expression.

> allvalues( % );

So we got a decimal approximation to one solution of the equation (and, strangely enough, that 
decimal solution is given inside the RootOf  expression). We can get that same approximate 
solution by applying evalf , instead of allvalues , to the RootOf  expression returned by 
solve  (or we could apply evalf  to the result from allvalues ).

> evalf( %% );
> evalf( %% ); # which result does this %% refer to?

The following graph shows us that this is the only real solution to the equation.
> plot( [x, cos(x)], x=-3*Pi/2..3*Pi/2, -2..2 );
> 

With non polynomial equations, we can even get results from solve  that contain nested RootOf  
expressions. Here is an example.

> solve( x^2=cos(x^2), x );

Again we use the allvalues  command to find out more about the values that are represented by 



the RootOf  expression.
> allvalues( % );

Notice that allvalues  returned two results. Notice also that each result is partly symbolic (the 
square root symbol), partly numeric, and still uses a RootOf  expression. These results from 
allvalues  are not so easy to use. What if we just apply evalf  to the original RootOf  
expression returned by solve ?

> evalf( %% );

We only get one numeric result. If we instead apply evalf  to the result from allvalues , then we 
get two numeric results.

> evalf( %% );

The following graph shows us that these are the only two real solutions to the equation, so solve  
(with the help of allvalues  and evalf ) found all of the real solutions.

> plot( [x^2, cos(x^2)], x=-3..3, -2..2 );
> 

Let us go back to the nested RootOf  expression returned by the solve  command and try to see 

exactly how the RootOf  expression represents the solutions to the equation  = x2 ( )cos x2 . Here is 
the RootOf  expression again.

> solve( x^2=cos(x^2), x );

To derive this RootOf  expression, let us start with the equation 

 = x2 ( )cos x2

and make a substitution  = _Z x2 in the equation. So then we have the equation 
 = _Z ( )cos _Z . 

Let the expression RootOf(_Z-cos(_Z)) denote a solution of the equation  =  − _Z ( )cos _Z 0. Given 
the solution RootOf(_Z-cos(_Z)) of the equation   =  − _Z ( )cos _Z 0, we plug this solution back in for 

_Z in the substitution  = _Z x2 and we get the equation 

 = ( )RootOf  − _Z ( )cos _Z x2. 
Solving this equation for x gives us a solution to our original equation. Let the expression

( )RootOf −  + ( )RootOf  − _Z ( )cos _Z x2

denote a solution to the equation  =  − x2 ( )RootOf  − _Z ( )cos _Z 0. Then 

( )RootOf −  + ( )RootOf  − _Z ( )cos _Z x2  also represents a solution to our original equation 

 = x2 ( )cos x2 . To get the nested RootOf  expression returned by solve , the only thing left to do is 

replace the variable x in our last nested RootOf expression with the variable _Z. We can do this 
because changing the name of the variable used in an equation does not affect the solution values of 
the equation. Notice that this means that the variable _Z that appears in the outer RootOf expression 
is not the same variable _Z that appears in the inner RootOf expression (the inner _Z is the unknown 

in the equation _Z-cos(_Z)=0, and the outer _Z is the unknown in the equation  =  − r _Z2 0 where r is 
a solution of the former equation). The fact that there can be two distinct variables both called _Z in 
a nested RootOf  expression is one of the things that can make nested RootOf  expressions hard to 
understand.



> 

Exercise: Explain how each of the following three solve  commands derived its RootOf  
expression.

> solve( x-sin(x^2)=0, x );

(Hint: First take the arcsin of both sides of the equation  = x ( )sin x2 , and then let  = x ( )sin _Z . )
> solve( x-sin(x^2)=1, x );

(Hint: First make a substitution  = u  − x 1. Later, let  = u ( )sin _Z .)
> solve( x^2-sin(x^2)=1, x );

(Hint: Let  = w x2.)
> 

Exercise: First, explain how solve  derived the following nested RootOf  expression from the 

equation  = x2 ( )sin  + x2 1 .
> solve( x^2-sin(x^2+1)=0, x );

Now explain how the following nested RootOf  expression can also be derived from the equation 

 = x2 ( )sin  + x2 1 .
> RootOf( -RootOf(_Z-sin(_Z)-1)+1+_Z^2 );

To prove that the last two nested RootOf  expressions both represent the same solutions to the 
equation, let us evaluate both of them using allvalues .

> soln1 := solve( x^2-sin(x^2+1)=0, x );
> soln2 := RootOf( -RootOf(_Z-sin(_Z)-1)+1+_Z^2 );
> allvalues( soln1 );
> allvalues( soln2 );
> evalf( %% );
> evalf( %% );

The following graph shows that these are in fact the only two real solutions to the equation.
> plot( [x^2, sin(x^2+1)], x=-3..3, -1..2 );
> 

Exercise: Each of the following four RootOf expressions represents solutions to the equation 

 =  − x2 ( )sin x4 1.
> RootOf(RootOf(u-sin(u)^2-2*sin(u)-1)-u^4);
> RootOf(sin(RootOf(_Z-sin(_Z)^2-2*sin(_Z)-1))+1-u^2);
> RootOf(RootOf(sqrt(u)-sin(u)-1)-u^4);
> RootOf(RootOf(u-sin(u^2)-1)-u^2);

Part (a): Two of the above RootOf expressions were derived by making the substitution  = u x2 in 
the original equation. The other two RootOf expressions were derived by making the substitution 

 = u x4. Show how these substitutions can be used to derive these RootOf expressions.
Part (b): Two of the above RootOf expressions have a small advantage over the other two. What is 
the advantage?



> 

Exercise: One of the amazing things that Maple can do is algebra with RootOf  expressions. Here 
is an example (from A Guide to Maple, by E. Kamerich, page 174).

> r := solve( x^5-t*x^2+p=0, x );
> simplify( r^7 );
> simplify( r^8 );

Explain why these results are correct. (Hint: Derive the first result from the equation in the solve  
command. Derive the second result from the first one.) Also, explain why the following result is 
correct.

> simplify( r^11 );
> 

The last several examples have shown what kind of results we can get from the solve  command 
with non polynomial equations. In summary, we can get no solution, a list of solutions that may or 
may not be complete, or we can get RootOf  expressions that, when evaluated using allvalues  
and evalf , give us a list of decimal approximations of solutions (which may or may not be a 
complete list of all the solutions). And the solutions that we get can be either real or complex 
numbers.

> 

> 

3.5. Solving a system of equations
We can use the solve  command to solve systems of equations, that is, two or more equations that 
we want solved simultaneously. When we work with systems of equations we put the equations to 
be solved inside of a pair of braces and we put the variables to be solved for inside another pair of 
braces. Here is an example with two (nonlinear) equations in two unknowns.

> solve( {x^2-y^2-y=0, x+y^2=0}, {x, y} );

As with solving a single equation, sometimes we get the answer given implicitly in terms of RootOf 
expressions. As before, we can use the allvalues  command to find out more about the solutions 
represented by the RootOf expressions. Sometimes allvalues  will return symbolic solutions and 
sometimes it will return decimal approximations. In the case of the last example, allvalues  
returns a list of very complicated symbolic solutions.

> allvalues( %[2] );

We can get decimal approximations of these solutions by using evalf . 
> evalf( % );

Notice that the RootOf expressions represented three solutions, one real solution and two complex 
solutions (look carefully at the result from allvalues  and verify this). The following two 
commands check that these really are solutions.

> seq( subs(%%[i], {x^2-y^2-y=0, x+y^2=0}), i=1..3 ):
> simplify( [%] );



> 

Here is an interesting result where solve  mixes a partly symbolic solution with a RootOf 
expression.

> solve( {x^2+y^2=9, x^y=2}, {x,y} );

And allvalues  mixes numeric values with symbolic results.
> allvalues( % );

Let us check that this is a valid solution.
> subs( %, {x^2+y^2=9, x^y=2} );
> evalf( % );
> 

Exercise: How many real solutions does the system of equations  =  + x2 y2 9 and  = xy 2 have? (Hint: 
Graph the equations.)

> 
> 

Here is another example. Let us find the intersection of a circle and a parabola. The system of 

equations  =  + x2 y2 1 and  = y x2 obviously has exactly two real solutions (draw a graph), and they are 
not very hard to find using paper and pencil. Are there any other solutions? Here is a way to find out 
using Maple.

> equations := {x^2+y^2=1, y-x^2=0};
> solve( equations, {x,y} );
> solutions := allvalues( % );

We have four solutions, two of them real and two complex. Here is an easy way to see this.
> evalf( solutions );

The next two commands checks all four of the solutions and show that they are correct.
> seq( subs( solutions[i], equations ), i=1..4 );
> simplify( [%] );

It is interesting to note that earlier versions of Maple returned incorrect answers for this simple 
problem. If you have access to a copy of Maple V Release 5, try this problem with it and see what 
you get.

> 

Exercise: Part (a): Solve the system of equations  =  + x2 y2 1 and  =  − y x2 0 using paper and pencil. 
Pay close attention to your steps. Notice that there are two approaches to solving the problem; either 

substitute for the x2 term in the equation  =  + x2 y2 1 or substitute for the y2 term.
> 

Part (b): Show how the nested RootOf expressions returned by solve  can be derived from the 
system of equations. Which of the two approaches mentioned in Part (a) did the solve  command 
use?

> 



Part (c): Write a RootOf expression that represents solutions of the system  =  + x2 y2 1 and  =  − y x2 0 
but is different than the RootOf expression returned by solve . (Hint: Use the approach mentioned 
in Part (a) that is not used by solve .) Use allvalues  to check that your RootOf expression 
represents the same four solutions found above.

> 

Part (d): Use the next command to read about the keywords dependent  and independent  in 
the online documentation for allvalues . 

> ?allvalues

Try using the independent  keyword when applying allvalues  to your RootOf expressions 
from Part (c). Are the "solutions" returned by allvalues  in this case really solutions? Exactly 
how did allvalues  arrive at them?

> 

Exercise: Use solve  to try and solve the equation  = x2 ( )cos x9 . Convert that equation to the 

equivalent system of equations  = y x2 and  = y ( )cos x9  and use solve  to try solving this system. 

Then convert the equation to the system  = y x2 and  = y ( )cos y
9

 and try to use solve  to solve this 
system. If solve  returns a solution for any one of the systems, test the solution in each of the other 
systems.

> 

> 

3.6. Using fsolve
We have seen that the solve  command does not always produce all of the solutions of an equation 
or system of equations. When that happens, and we need to know the value of some solution that 
solve  did not find, then we need to use the fsolve  command. The fsolve  command is used to 
find decimal approximations of solutions to equations.

For a single polynomial equation, fsolve  will return decimal approximations for all of the real 
roots of the equation. Here is an example.

> fsolve( 1-x-2*x^3-x^4=0, x );

To get decimal approximations for the complex roots of the polynomial equation we need to use the 
keyword complex .

> fsolve( 1-x-2*x^3-x^4=0, x, complex );

As with the solve  command, if we put braces around the unknown that we are solving for, then 
fsolve  returns the results as equations (which can make the results a bit easier to read).

> fsolve( 1-x-2*x^3-x^4=0, {x}, complex );

For a single polynomial equation, using fsolve  does not provide us with anything that we could 
not get using solve  together with allvalues  and evalf . The real use for fsolve  is with non 
polynomial equations and with systems of equations.



For a single, non polynomial equation, fsolve  will try to return a decimal approximation for one 
real root of the equation. Even if the equation should have several real roots, fsolve  only tries to 

approximate one of the roots. We showed earlier that the equation  = 
x5

2
( )cos x9  has three real roots 

and solve  can not find any of them. The fsolve  command will readily return one of the real 
roots.

> fsolve( x^5/2-cos(x^9)=0, x );

To find the other two real roots, we use the option for fsolve  that allows us to give a hint about 
where it should look for a solution. We give fsolve  a hint by giving fsolve  a range that we 
know contains a solution.

> fsolve( x^5/2-cos(x^9)=0, x, -2..-1 );

The range that we just gave fsolve  actually included two solutions. To find the third solution, we 
need to give fsolve  a more specific range to look in. 

> fsolve( x^5/2-cos(x^9)=0, x, -1.12..-1.1 );

Recall that we can get the ranges that we give to fsolve  from appropriate graphs of the equation 
we are trying to solve.

> 

There is another way to give fsolve  a hint about where to find a solution. Instead of giving 
fsolve  a range within which to search for the unknown, we can give fsolve  a "starting value" 
for the unknown in the equation.

> fsolve( x^5/2-cos(x^9)=0, x=-1 );
> fsolve( x^5/2-cos(x^9)=0, x=-1.1 );
> fsolve( x^5/2-cos(x^9)=0, x=-1.2 );

This way of giving a hint to fsolve  is not as good as the previous way. For a given starting value, 
it is often difficult to predict which of the equation's solutions fsolve  will find. It is not 
uncommon for fsolve  to find a solution that is far away from a starting value even when there is 
another solution very near to the starting value. For an example of the unpredictability of fsolve  
when using a starting value, look at the first of the last three commands. Out of the three real roots 
of the equation, fsolve  found the one that is furthest from the starting value.

> 

What about complex solutions for the equation? To get fsolve  to look for a complex solution we 
need to use the keyword complex . But the keyword complex , by itself, need not lead to a 
complex solution.

> fsolve( x^5/2-cos(x^9)=0, x, complex );

Notice that the last result is one of the real solutions that we have already found. In the next 
command we give fsolve  a complex starting value along with the keyword complex , and then it 
finds a complex solution.

> fsolve( x^5/2-cos(x^9)=0, x=1+I, complex );

A different complex starting value leads to a different complex solution.



> fsolve( x^5/2-cos(x^9)=0, x=2+I, complex );

We showed above that fsolve  can be a bit unpredictable when we use starting values. To get more 
control over fsolve  we can use a range with the complex  option. Two complex numbers in a 
range are interpreted as the lower left hand corner and the upper right hand corner of a rectangle in 
the complex plane. For example, the range 1+I..3+2*I  describes a rectangle in the complex 
plane that is two units long horizontally, one unit high vertically, and has its lower left hand corner 
at the point 1+I .

> fsolve( x^5/2-cos(x^9)=0, x=1+I..3+2*I, complex );

Be sure to convince yourself that this solution lies in the rectangle we just described.
> 

Exercise: What happens if you give fsolve  a complex starting value but not the keyword 
complex ?

> 

Exercise: Part (a): How many real solutions does the equation  = x2 7 ( )cos x2  have? Use fsolve  to 
find approximations to all of these solutions. How many solutions does solve , along with 
allvalues  and evalf , find? 

> 

Part (b): Can you find any complex solutions to the equation in part (a)? (Hint: Try many different 
complex starting values.)

> 

Part (c): How many real solutions does the equation  = z 7 ( )cos z  have? Use fsolve  to find 
approximations to all of the solutions. How many solutions does solve  along with allvalues  
find? 

> 

Part (d): How are the solutions from part (c) related to the solutions from parts (a) and (b)?
> 

Part (e): Can you find any complex solutions to the equation in part (c)?
> 

Part (f): How are the solutions from part (e) related to the solutions from part (b)?
> 

It is interesting to see what happens when we give fsolve  a bad hint. In each of the following two 
commands, there is no solution of the equation within the range given to fsolve . In the first 
example, fsolve  does not return any value.

> fsolve( 1-x-2*x^3-x^4=0, x, -2..0 );

But notice what fsolve  does in the next example.
> fsolve( x^3-cos(3*x^2)=0, x, -2..-1 );

In this example, fsolve  returned unevaluated. I am not sure why, when there is no solution within 
the given range, fsolve  sometimes does not return a value and sometimes returns unevaluated. 
(The difference might be that when fsolve  does not return a result, then Maple knows that there is 



no solution in the given range, but when fsolve  returns unevaluated, it means that Maple could 
not find a solution but it does not know how to prove that no solution exits.)

> 

> 

3.7. Using fsolve  with a system of equations
We can use fsolve  to find numerical solutions for systems of equations. For example. the system 

of equations  =  + x2 y2 9 and  = xy 2 has three real solutions, as the following graph shows.
> plots[implicitplot]( {x^2+y^2=9, x^y=2}, x=-4..4, y=-4..4,  

                    scaling=constrained );

But the solve  command can only find one of the solutions.
> solve( {x^2+y^2=9, x^y=2}, {x,y} );
> allvalues( % );
> evalf( % );

To find approximations for the other two solutions, we need to use the fsolve  command. 
> fsolve( {x^2+y^2=9, x^y=2}, {x,y} );

Without any hints, the fsolve  command found the same solution that solve  and allvalues  
found. When solving a system of equations, we can give fsolve  hints about either or both of the 
unknowns that we are solving for. The next command gives fsolve  a hint about the x  value of the 
solution that we wish to find.

> fsolve( {x^2+y^2=9, x^y=2}, {x,y}, x=0..2 );

Within that range for x  there are two solutions of the system and fsolve  found one of them. If we 
want to find the other, we can also give fsolve  a range for y .

> fsolve( {x^2+y^2=9, x^y=2}, {x,y}, x=0..2, y=2..4 );

Or, we could just give fsolve  a range only for y .
> fsolve( {x^2+y^2=9, x^y=2}, {x,y}, y=2..4 );
> fsolve( {x^2+y^2=9, x^y=2}, {x,y}, y=-4..-2 );

As with single equations, we can give fsolve  hints by using starting values instead of ranges.
> fsolve( {x^2+y^2=9, x^y=2}, {x=1,y=-3} );

We can try to find a complex solution to the system by using the keyword complex  and giving 
fsolve  complex starting values.

> fsolve( {x^2+y^2=9, x^y=2}, {x=I,y=I}, complex );

Let us check this last solution.
> subs( %, {x^2+y^2=9, x^y=2} );

Does that seem reasonable?

Exercise: Find another complex solution for the system of equations  =  + x2 y2 9 and  = xy 2. Be sure 
to check any solution that you find.

> 



Exercise: Use fsolve  to solve the equation  = x2 7 ( )cos x2 . Convert that equation to the equivalent 

system of equations  = y x2 and  = y 7 ( )cos x2  and use fsolve  to solve this system. Then convert the 

equation to the equivalent system  = y x2 and  = y 7 ( )cos y  and use fsolve  to solve this system.
> 

> 

3.8. Solving inequalities
Solving inequalities is not as common with Maple as solving equations, but it is interesting to see 
that the solve  command can be used to solve many inequalities and it is also interesting to see in 
what form Maple returns the results of these kinds of problems.

The solution of the following inequality is an open interval. Notice how Maple denotes an open 
interval in the real line.

> solve( x^2-2*x-15<0, x );

The solution of the following inequality is a closed interval.
> solve( x^2-2*x-15<=0, x );

The next solution is the complement of the previous one. Notice that this solution is made up of two 
infinite, open intervals.

> solve( x^2-2*x-15>0, x );

Here are the last three inequalities again, but using a different notation for the results (because of the 
braces around x ).

> solve( x^2-2*x-15<0, {x} );
> solve( x^2-2*x-15<=0, {x} );
> solve( x^2-2*x-15>0, {x} );

Here is a slightly more complicated inequality.
> exp(-x^2)>1/sqrt(2);
> solve( %, x );

Here is the same result in the other notation.
> solve( %%, {x} );

Here is a simple inequality. Notice that the form of the result is not really consistent with the form of 
the previous results (why not?).

> solve( exp(x)>0, x );
> solve( exp(x)>0, {x} );

Even some very simple inequalities cannot be solved by solve .
> solve( sin(x)>0, x );
> 

> 

3.9. Online help for solving equations



The following command calls up the help page for solve .
> ?solve

The following help pages provide more details about how the solve  command works. Each page 
discusses a special case of what the solve  command can do.

> ?solve,scalar
> ?solve,system
> ?solve,linear
> ?solve,radical
> ?solve,float
> ?solve,ineq

The following command brings up a worksheet, from the New User's Tour, called "Algebraic 
Computations". Notice that this worksheet has a section called "Solving Equations and Systems of 
Equations" and another section called "Solving Inequalities".

> ?newuser,topic04

The next command brings up one of the "Examples Worksheets" called "Solving Equations".
> ?examples,solve

It is common for solve  to return a RootOf  expression. Here are two help pages that provide some 
information about these expressions.

> ?RootOf
> ?RootOf,indexed

The allvalues  command is used to find out more information about the values represented by a 
RootOf  expression.

> ?allvalues

When solve  cannot find a symbolic solution for an equation, we need to use the fsolve  
command.

> ?fsolve

The solvefor  command is closely related to solve .
> ?solvefor

The eliminate  command also, in a sense, allows one to "solve" a set of equations.
> ?eliminate

The following two commands are special kinds of solve  commands. The isolve  commands 
solves equations for integer solutions. The msolve  command solves equations for integers 
solutions mod m.

> ?isolve
> ?msolve



> 


