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5. Graphsof functions and equations

=15.1. Introduction

We define many kinds of graphs in mathematics and Maple has a lot of commands for drawing
different kinds of graphs. In the next section we describe nine kinds of graphs commonly used in
calculus courses and seven Maple commands that are used to draw these graphs. Thesgoal of t
worksheet is to help you to understand all of these different kinds of graphs and to be able to work
with them in Maple.

In the following section we review exactly what we mean by the graph of a function agrapheo

an equation. By looking carefully at these definitions of a graph, we see that graphs @aadsunc

can be classified in certain ways. Maple uses these classificationsn@engs graphing

commands, so understanding Maple's graphing commands boils down to understanding how we can
classify graphs and functions. The classification of functions and graphs can alsouhilp y

understand other ideas in mathematics, for example, all the different kinds ofidesivaat you

learned about in calculus (e.g., ordinary, partial, implicit, tangent vector, gradoémt, \Jacobian).
L[>

=15.2. A review of graphs

Maple has a lot of graphing commands. This is because Maple can draw a lot of diffetsmfki
graphs. To understand Maple's graphing abilities it helps to have a way of aigsgigphs so that

we can organize Maple's graphing commands according to what kind of graph they dravar& here
several ways of classifying graphs. For example, there are two dimenseyplad gs. three

dimensional graphs, or graphs of equations vs. graphs of functions. In addition, graphs of functions
can also be classified by how we draw the graph. For example we can graph inputs vs. outputs, or
we can graph just the outputs, or we can graph a vector field. We will explain and uskeseof t

classifications to help us understand graphs in general.
[ >

From Maple's point of view, the main way of classifying graphs is either as tvemsiiomal or thre
dimensional. Here is a list of the principle kinds of two and three dimensional grapkiapat

can draw (this is not a complete list but it is enough to get us started).
[ >




In two dimensions, Maple can draw the following kinds of graphs:
1) The graph of a real valued function of one real variable.
2) The graph of a parametric curve in the plane
(that is, the graph of a 2-dimensional vector valued function of one real variable).
3) The graph of a vector field in the plane
(that is, the graph of a 2-dimensional vector valued function of two real variables).
4) The graph of an equation in two real variables.

In three dimensions, Maple can draw the following kinds of graphs:

5) The graph of a real valued function of two real variables.
6) The graph of a parametric curve in 3-dimensional space

(that is, the graph of a 3-dimensional vector valued function of one real variable).
7) The graph of a parametric surface in 3-dimensional space

(that is, the graph of a 3-dimensional vector valued function of two real variables).
8) The graph of a vector field in 3-dimensional space

(that is, the graph of a 3-dimensional vector valued function of three real variables).
9) The graph of an equation in three real variables.

Notice that the list includes two kinds of equations and seven kinds of functions. Before going int
the details of drawing these kinds of graphs with Maple, we should look at an example of each one
of them. But before doing even that, let us review the idea of the graph of a function and the graph

of an equation.
[ >

Recall that an equation is made up of an equal sign with an expression on either side diohg

ask a question. Does the left hand side have the same value as the right hand side? disgierexpr
have unassigned variables in them, then we can ask which values of the unassigned vakables m
the equation true (that is, what values of the variables solve the equatiogjaphef an

equation is a plot of those values for the unassigned variables that make the equation true. If the
equation is an equation in one variable, then its graph is made up of points in the real lines(which i
not visually interesting, and Maple does not even have a command to "draw" such a graph). If the
equation is an equation in two variables, then its graph is made up of points in the plane and the
graph is usually, but not always, a curve in the plane. If the equation is an equation in three
variables, then its graph is made up of points in 3-dimensional space and the graph is usually, but
not always, a two dimensional surface. If the equation has four (or more) variablets graph is

made up of points in four (or more) dimensional "space". This is something that we caiyot eas
visualize and Maple cannot draw (at least not directly), but it is important ineréaht graphs of

equations do in fact exist even in these higher dimensional cases.
[ >

Recall that a function is made of three things, a set of inputs (the domain), a set of (theputs
codomain), and a rule for associating one output to each of the inputy.apheof a function is a
visualization of the relationship between the inputs and outputs of the function. Since a fgnction i



made of three things, so is its graph. The graph has a visualization of the input setizatitsuaf

the output set, and a visualization of the rule. If a function has@dmensional input and am
-dimensional output, then the graph of the function is a plahina 1f)-dimensional space with time
-dimensional input axes perpendicular tonkdimensional output axes and a point plotted for e
combination of an input with its output. This is a bit cumbersome to describe in words. The most
important thing to remember is that the graph of a function is drawn in a space whoséodisens
the sum of the dimensions of the inputs and the outputs. We sometimes refer to thigas \zn
output kind of graph.

For the purpose of drawing graphs with Maple, we will consider three kinds of sets of mghuts a
outputs. An input or output set will be either the 1-dimensional real line, the 2-dimensioralqo
3-dimensional space. That gives us nine kinds of functions to worry about, i.e., all possible
combinations of the three kinds of input sets with the three kinds of output sets. But for some of
these kinds of functions, trying to draw its graph creates a problemaritin are the dimensions of
the inputs and the outputs amal+ n is more than three, then how do we draw the graph? This
problem comes up for six of the nine possible kinds of functions we have to worry about (which
ones are they?). We solve this problem by considering two other kinds of graphs for a function

besides the graph which plots inputs vs. outputs.
[ >

One of these other kinds of graphgaaametric graph, visualizes a function by plotting only the
outputs of the function. This type of graph will be used for three kinds of functions, functions from
the line to the plane, functions from the line to space, and functions from the plane to spaee. Noti
that for two of these kinds of functions, an input vs. output kind of graph is not possible (why?). But
for functions from the line to the plane, while an input vs. output graph is possible, it turns ol
parametric graph has traditionally been more useful.

The third kind of graph that we will consider is a vector fieldieétor field is kind of an input vs.

output graph, but the input axes are not shown perpendicular to the output axes. Instead the inputs
and the outputs are draw on the same set of axes. This only works when the function has the same
number of inputs as outputs. So we draw vector fields for functions from the plane to the plane
(2-dimensional vector fields) and for functions from space to space (3-dimensionalfids). (It

is possible, and useful, to draw a 1-dimensional vector field, but Maple does not have a command
for this.)

If you have been following along very carefully, you know that there are still two kinds dioiosic
that we have not yet considered. Functions from space to the line (real valued functioses i&fahr
variables) and from space to the plane (2-dimensional vector valued functions of three rea
variables) do not have any practical way of being visualized and Maple does not have any
commands for visualizing them, so we will not consider these two cases any futiieddd@s not
imply that these kinds of functions are not useful or important, just that Maple does not regve a w
of visualizing them.)

[



[ >

So we end up with seven kinds of functions to graph. Two of these kinds of functions will have
input vs. output graphs and will require two different Maple commantdis, andplot3d . Three
kinds of functions will have parametric graphs and will require three differenteMaphmands,

plot ,spacecurve ,andplot3d . And two kinds of functions will be graphed as vector fields

which will require two Maple commandsz|dplot andfieldplot3d . If we add in the two
kinds of graphs of equations, equations in two variables and equations in three variables, which
require two more Maple commandsplicitplot andimplicitplot3d , then we have a

total of nine kinds of graphs and Maple has seven different commands for drawing these nine kinds
of graphs!

Now that we have briefly reviewed the idea of graphing functions and equations, let us look at a
example of each of the nine kinds of graphs that we have mentioned. Each kind of graph will turn
out to have its own Maple syntax. Without the classification we made above, all tiesntif
commands and syntaxes can become pretty confusing. Hopefully, understanding the kind of

we are given and the kind of graph that we want to draw will help us to remember the proper

command to use.
[ >

First the four kinds of two dimensional graphs. For each of these graphs, be sure to click on the
graph and then play with some of the buttons frongthehics context baexamine the menu iter
from thegraphics menu baand also try right clicking on the graph and experimenting with the
graphics context menus

1) The graph of a real valued function of one real variable. These are the functions thatrypostar
familiar with from the first two semesters of calculus. These are alsndeecommon examples
input vs output graphs. The following command graphs the functiorn + 2 sin(x).

[ > plot( x+2*sin(x), x=-10..10 );

[ >

2) The graph of a parametric curve in the plane (that is, the graph of a 2-dimensionalaleetdr
function of one real variable). These come up in second semester calculus and alsosntggic
represent the path of motion of something moving in the plane. This is an example of where a
function's parametric graph (output only graph) is more useful than its input-output ghégin (w
could be drawn; why?). The following command graphs the funttierft sin(t), t coqt)).

[ > plot( [t*sin(t), t*cos(t), t=0..3*Pi] );

Notice that the two formulas (why are there two?) are put in a list along withrdhge. It is the

fact that the range is inside the list that makes this a parametric grapihgiea\sector valued)
function and not a graph of two (real valued) functions. Try moving the range outside of the list a
see what happens (do not forget to put a comma between the list and the range).

[



[ >

3) The graph of a vector field in the plane (that is, the graph of a 2-dimensional vector valued
function of two real variables). These functions come up in differential equationsscandsalso i
vector calculus. In those settings a 2-dimensional vector valued function of two vasables
visualized as a vector field. Maple has a special command for graphing a vedtdidiate that a
vector field is neither an input-output nor a parametric type of graph. The following camma

. y X
raphs the functio(x, y) - , :
grap 0% y) («/x2+y2 4/x2+y2J
> plots[fieldplot]( [y/sqrt(x*2+y”2), x/sqrt(x*2+y"2)], x=-5..5,
y=-5..5);
[ >

4) The graph of an equation in two real variables. The simplest examples of théseeayeations
for the conic sections (i.e., hyperbola, parabola, ellipse). Here is a more cordicaeple of an
equation and it graph. The following command graphs the equtba8y* = 1 + 40x Y.

[ > plots[implicitplot]( 8*x"3+8*y"3=1+40*x*y, x=-3..3, y=-3..3);

(>

In three dimensions, Maple can draw the following five kinds of graphs: For each of theise, dn
sure to click on the graph and try rotating it. Also, play with all the buttons BCthgaphics
context baand examine the menu items in tBB graphics menu bar

5) The graph of a real valued function of two real variables. These are the functioms fhiat a
studied in third semester calculus. These are input vs. output graphs. The following command
graphs the functiofx, y) — x* + Y~

[ > plot3d( x"2+y"2, x=-2..2, y=-2..2);

[ >

6) The graph of a parametric curve in 3-dimensional space (that is, the graph of a 3ethatens
vector valued function of one real variable). These come up in third semester calculige amd a
physics. They represent the path of motion of something moving in space. This is anotipée exam
of a kind of function where a parametric graph is more useful than an input vs. output graph (the
input-output graph would need four dimensions anyway). The following command graphs the
functiont - (tsin(t), t coqt),t).

[ > plots[spacecurve]( [t*sin(t), t*cos(t), t], t=0..9*Pi );

[ >



7) The graph of a parametric surface in 3-dimensional space (that is, the graph ofesnSkahal
vector valued function of two real variables). These come up at the end of third sealestes c
and in vector calculus courses. (How many dimensions would the input-output graph of one of these
functions need?) The following command graphs the function
(u,v) - ((2+sin(v)) coqu), (2+sin(v)) sin(u), u+cogqVv)).
> plot3d( [(2+sin(v))*cos(u), (2+sin(v))*sin(u), u+cos(Vv)],

> u=-2*Pi..2*Pi, v=-2*Pi..2*Pi );
Try changing the brackets @nd] ) to braces{( and} ). Can you explain the resulting graph?
[ >

8) The graph of a vector field in 3-dimensional space (that is, the graph of a 3-dimensttoral ve
valued function of three real variables). These functions come up in differentiabeguetd vectc
calculus courses. In those settings a 3-dimensional vector valued function of thiglevasia
visualized as a vector field. Maple has a special command for graphing vectoinfields
3-dimensional space. Notice again that a vector field is neither an input-output nanatperype
of graph. The following command graphs the functiery, z) - (2%, 2y, 1).

> plots[fieldplot3d]( [2*x,2*y,1], x=-1..1, y=-1..1, z=-1..1,

> grid=[5,5,5] );
[ >

9) The graph of an equation in three real variables. The simplest examples ofehtseqgaiadric
surfaces that are studied in second or third semester calculus. But here iste feomplicated
example. The following command graphs the equationy® + 2 + 1= (x +y + z+ 1)°.

> plots[implicitplot3d]( x*3+y"3+z"3+1 = (x+y+z+1)"3,

> X=-2..2,y=-2..2,2=-2..2);,
[ >

Finally, notice two things. First, th@ot andplot3d command each handle two kinds of graphs
(which are they?). That is why there are seven Maple commands for drawing nine kiragshef g
Second, the other five of these seven Maple commands are containedl@ighepackage. We

could load theolots  package at this time and save ourselves some typing later in this worksheet,
but we will not do that. Instead, we will always use the long name for these commandssTiuve
advantages. First, it helps to remind us that these commands are froliot¢he package and

second, all the commands in this worksheet will always work, regardless of whezenarksheet

you might jump in and start working from.
[ >

Exercise: In all of the examples above, the mathematical functions were represented by Maple

expressions. Try modifying each example to use a Maple function.
\



[ >

Exercise: Part (a) For each of the seven kinds of functions described above, describe what kind of
derivative is appropriate for that type of function. Give your answers in terms offideasalculus
not in terms of Maple.

Part (b) For each of the seven kinds of functions described above, explain how you migheia
function of that type. Again, give your answers in terms of ideas from calculus, nahgaer
Maple.

Part (c) What about the two kinds of equations? Can you differentiate an equation? Can you

integrate an equation?
[ >

L[>

=/ 5.3. Graphsof real valued functions of one variable

Maple's most basic graphing commangli® . This command draws graphs of real valued
functions of one real variable. We graph such functions by gplimig the function and a range for
the independent variable. Here is an example.

[ > plot( sin(x)/x, x=-5*Pi..5*Pi );

Whenplot draws the graph, it gives the horizontal axis the range we specified in the ratige for
independent variable. For the vertical api®t decides for itself what is an appropriate range.
Usually the vertical range is from the minimum to the maximum of the function {as above
graph). This can sometimes cause a graph to be a bit strange. For example, tlaphesdegns to
be showing a function that has the horizontal axis as a horizontal asymptote. But lookefetly ca
at the vertical axis. The vertical range is from 2 to 3. The piece of the vexiEdlan 0 to 2 is
missing!

[ > plot( 2+exp(-x*2), x=-10..10);

If we want to, we can givelot a range for the dependent variable instead of |ettinig

determine the vertical range for itself. The next command fixes the amhotity last graph by
specifying a vertical range. Notice that we now see very clearly that tlr@hiadi axis is not the
horizontal asymptote for this function.

[ > plot( 2+exp(-x"2), x=-10..10, 0..3);

(Notice that the second range did not have a variable associated with it.)

[ >

Using a range for the dependent variable is especially useful when graphing a funatticast
vertical asymptotes. In the next graphgt tries, by default, to accommodate the full range of the
dependent variable within the graph. But this range is infinite because of the \aayitgitote at
x=1. So the graph is not very useful.

[ > plot( 1/(x-1), x=-1..3);




We can fix the graph, and get a useful picture of the function, by providing a range for the de
variable.

[ > plot( 1/(x-1), x=-1..3, -20..20 );

Notice the vertical red line at= 1. This isnot Maple's way of drawing the vertical asymptote. This
vertical line is an artifact of the way thét command works. We will explain in the next
worksheet why this line is there. We can make it go away by usingahe option

discont=true

[ > plot( 1/(x-1), x=-1..3, -20..20, discont=true, color=red );

The optiondiscont  is an abbreviation for discontinuity.

[ >

When using th@lot command, it is important to make a distinction betweemahge and the

scale of an axis. The range of an axis is what we have been discussing in the last fevegxkispl
the part of the number line displayed on the axis. The scale of an axis is how much rrgtias le
assigned to one unit of the axis. Here is an example.

[ > plot( sin(x)/x, x=-3*Pi..3*Pi );

In this last graph, the range of the horizontal axis is frf8ntto 311 (about—9.425 to 9.425). The
range of the vertical axis is from0.2 to 1. So the range of the horizontal axis is much more than
the range of the vertical axis. On the other hand, the scale of the horizontal axik iessuban tt
scale of the vertical axis. Each unit on the horizontal axis (say from 0 to 1 on the hbaxm)tis
much shorter in length than a unit on the vertical axis (say from 0 to 1 on the vertizal b&is

plot command did not use the same scale on the two axes. In general, once the ranges of the two
axes have been determined, ph& command will choose scales for each axis so that the final
graph is "well proportioned”. The scales are usually chosen so that the graph is rauglayealt i
possible to force thplot command to use the same scale on both of the axes by using the
scaling=constrained option toplot . Here is the last graph redrawn with the same scale on
both axes.

[ > plot( sin(x)/x, x=-3*Pi..3*Pi, scaling=constrained );

If you compare the last two graphs, the horizontal scale is about the same in both gregshthdt
vertical scale that was modified in the last graph. Sometimes#ie@g=constrained option
helps the appearance of a graph and often it does not. A quick way to see the difference betwee
constrained and unconstrained scaling is to click on a graph and lookRabtheaphics context bar
at the top of the Maple window. You will see a button in the context bar labélethis button

switches the constrained scaling on and off. Try it on the last graph.
[ >

When graphing real valued functions of one variable, it is important to realize thairigr m

functions, no one graph can tell us everything we may need to know about the function. So the most
important skill to develop when using thit command is modifying the ranges on the horizontal

and vertical axes to show different pieces of information about a function. Let us lookeat som
examples and exercises about manipulating the ranges of a graph.



Consider the following rational function and a few of its graphs. Each graph will shusthing
different about this function.

[ > f:=(1-x"2)/(x-2);

The following graph from minus infinity to infinity tells us that the function has acadrt

asymptote, twa-intercepts, and that the graph goes to minus infinitygees to plus infinity and it
goes to plus infinity ag goes to minus infinity.

[ > plot( f, x=-infinity..infinity );

Now notice that the next graph tells us a bit more and a bit less. This graph is ovelaggeery
domain. It tells us exactly how the graph goes to plus and minus infinity. The graph is skew
asymptotic to the ling = —x. But this graph obscures the fact that the function has two zeros, and
even the vertical asymptote is a bit vague.

[ > plot( f, x=-100..100, -100..100 );

The next graph allows us to see wherextirgercepts are and to approximate the local minimum
between these intercepts.

[ > plot(f, x=-1.1..1.1);

And the next graph gives us a good approximation of the local maximum to the right of tted verti
asymptote.

[ > plot(f, x=2..8, -10..-7);

It would be difficult for any one graph to convey all of the information that the above graphs show.
After some trial and error, the following graph shows quite a bit about the function, @tcept
providing good approximations of tikd@ntercepts and the local maximum and minimum.

[ > plot( f, x=-10..10, -15..15, discont=true, color=red );

[ >

Exercise: Consider the following function.

X {40)
—Ccos —
x+1 X
Part (a) Try to get a sense of what the graph of this function looks like.
[ >

Part (b) Use a graph to find the most negative and the most pasititercepts for this function.
(Hint: The positive answer is quite large.)

[ >

Part (c) How many-intercepts does the graph of this function have between 1/10 and 10?

[ >

Part (d) Use a graph to find the most negative local maximum and minimums for thigrfunc

[ >

Note: The function in this problem comes up in an interesting "real world" calculus problem. See
Calculus with Maple, by Frank Hagan and Jack Cohen, and the chapter called "The Asteroid

Problem".
[ >

Exercise: Find ranges for thplot command so that the graphaafs x (opks like



a) a horizontal line,
[ >

b) a vertical line,

[ >

c) a 45 degree line.
[ >

Then do the same with the graphtarf x .( )
[ >

All'in all, theplot command is not that hard to use. For the most part, one learns to use it by
looking at examples. We gave a lot of examples of its use in the first worksheetrdsttbkthis
section we look at examples of a few more ways of ysinig that were not shown in the first
worksheet.

When we use thplot command to graph several functions at the same time, we cannot give each
function its own range. For example, in the following graph, suppose we only want to graph the part
of the parabola that is contained inside of the semicircle.

[ > plot( [x*2, sgrt(1-x"2)], x=-1..1, scaling=constrained );

To do this, we need to draw graphs for the parabola and semicircle separately, wsiagtadhges

in each graph, and then combine the two graphs together usitigitteey command from the

plots package. First let us draw the semicircle.

[ > plot( sqrt(1-x*2), x=-1..1, color=green );

Now let us give this graph a name for later reference.

[ > graphl := %;

Notice how, when we gave the graph a name, Maple returned a large amount of data. This data i
Maple's internal description of the graph (it's a PLOT data structure). In anathesheet we will

say quite a bit about these PLOT data structures but right now we are not verjeidtersseing

all of this data. So from now, whenever we want to name a graph, we will use a colon at the end of
the assignment command (instead of a semicolon) to suppress the printing of this daiek (#ay

to make all of that output go away is to immediately type Ctrl-Z and then skip down to the nex
command.)

Now let us solve for the two intersection points of the parabola with the semicirstehE
negative intersection point.

[ > a:=fsolve( x"2=sqrt(1-x"2), X, -1..0);

And now solve for the positive intersection point (which, of course, is equal)to

[ > b :=fsolve( x*2=sqrt(1-x"2), X, 0..1);

Now graph the parabola between these two intersection points.

[ > plot( x*2, x=a..b, color=blue );

Give this last graph a name (notice the colon at the end of the command).

[ > graph2 := %:

Now we can combine our two graphs usingdrsplay command.

[



[ > plots[display]( graphl, graph2, scaling=constrained );
There is a way to use a singlet command to graph two (or more) functions with each function
given a different domain. In the next section we will see how to do this as an applicatien of t

parametric form of thelot command.
[ >

Here is an interesting way to usiet together with thedisplay = command. First, we need to
create a special kind of variable, an array.

[ > graphs :=array(1..2,1..2);

Now let us draw four graphs and use the array variable to name them (recall thetusseti
indexed names like these in Worksheet 2).

[ > graphs[1,1] := plot( exp(-x*2)*sin(Pi*x"3), x=-2..2, color=blue
):
> graphs[1,2] := plot( exp(-x"2), x=-2..2, color=red ):
> graphs[2,1] := plot( -exp(-x"2), x=-2..2, color=green ):
> graphs[2,2] := plot( [exp(-x"2)*sin(Pi*x"3), exp(-x"2),
-exp(-x"2)],
> x=-2..2, color=[blue,red,green] ):

Now combine all four graphs into a two by two array of pictures.
[ > plots[display]( graphs );
It is the fact that our four graphs are named by a single array variable thaistghy to draw

them in an array kind of format instead of superimposing all four of them on a singleses.of a
[ >

So far we have drawn all of our graphs of real valued functions of one variable with the independent
variable running along the horizontal axis and the dependent variable along the vasgidaf ax

course, this is a pretty common way to draw graphs but it is not the only way. Theneearevtien

it is more convenient to draw a graph the other way, with the independent variable alongdhle ver

axis. For example, we may want to graph the functigg=y* - 1 orh(y) = sin(y) with the
independent variable along the vertical axis. The followingitw@icitplot commands do th

by graphing thequations x = y* — 1 andx = sin(y).

[ > plots[implicitplot]( x=y"2-1, x=-2..2, y=-2..2);

[ > plots[implicitplot]( x=sin(y), x=-1..1, y=-2*Pi..2*Pi );

Theplot command does not make it easy to graph a real valued function of one variable this way.
In the next section, and also in the next worksheet, we will see several wayshpdet t

command to graph a function with the independent variable along the vertical axis. The miain poi
that we want to make here is that thet command gives one of the directions in the Cartesian
coordinate system a preferred status. The preferred direction is the horizatt&biand its

preferred status is that this is the direction of the axis for the independentevartednl graphing a

real valued function. We commonly label the horizontal axis usaryl the vertical axis using

Using these labels, the default way idwt  to graph a function f using Cartesian coordinates is as
y =1f(x) (andplot will not graphx =f(y) ). We will return to this idea in a later section when we



consider non Cartesian coordinate systems on the plane.

Exercise: Why do the following twomplicitplot commands draw the exact same graphs as
the last twamplicitplot commands.

[ > plots[implicitplot]( 1=y"2-X, x=-2..2, y=-2..2);

[ > plots[implicitplot]( x-sin(y)=0, x=-1..1, y=0..2*Pi );

[ >

Exercise: All of the functions in this section were represented as expressions. Go back through this

section and modify the examples to use Maple functions.
[ >

[ >

=15.4. Graphs of parametric curves

Parametric curves are important and usefull. Since there are so many ideas tomoeing
parametric curves, this section is divided into several subsections. The firaiieactsons go over
the basics of drawing parametric curves in the plane and the last two subsectionstige loasics

of drawing parametric curves in space. Parametric curves in two dimensiorehspacawn using

a special case of thgot command. Parametric curves in three dimensional space have a special
commandspacecurve , from theplots package.

[ >

=] 5.4.1. Parametric curvesin the plane

A parametric curve in two dimensional space is the output-only graph of a 2-dimensidcoal vec
valued function of a real variable. A simple example is a circle, which is the gai@graph o
the following function.
f(t) = (coqt), sin(t))

Notice that this function is defined by two real valued functions of a single variable, the
component functions. If we think of the functiori { &s describing the position of a particle
moving in the plane, then the first component functioh bfdéscribes the particle's horizontal
motion and the second component function describes the particle's vertical motion. rsscalcul
books, this function is often written as a pair of "parametric equations”

x(t) =coqt) and y(t) =sin(t).
Here is how we use th@ot command to draw a circle as a parametric graph. (If the following
graph does not look like a circle, click on the graph and then click dnXhmitton in the
graphics context bar.)
[ > plot( [ cos(t), sin(t), t=0..2*Pi ] );
Notice that it is the placement of the range for the independent variable insidecttetstiaat
distinguishes this command from the command to draw the graph of two real valued functions.
In the next example, we move the range outside the brackets and we get the (input-@ydp
of the two real valued functiom®s t (apdsin { )




[ > plot( [ cos(t), sin(t) ], t=0..2*Pi );
[ >

In the second section of this worksheet, and also in the last paragraph, we said thattiparam
curve in the plane is defined by a single function, a 2-dimensional vector valued function of a
single variable. Here is a way to use a Maple function to emphasize that a pareuneg is
really defined by a@ingle (vector valued) function. The function

f(t) = (tcoqt), tsin(t))
defines a spiral curve. Here is this function defined as a (vector valued) Mapleruncti
[ > f:=t->(t*cos(t), t*sin(t));
Here is how we can use the functionvith theplot command to graph a spiral.
[ > plot([f(t), t=0..4*Pi ]);
This example shows that a parametric curve is really defined by a singlefuMtien we
graph a parametric curve using expressions (instead of a Maple function), the tessiexys
that we use are the component functions of the single (vector valued) function that Hefines t
curve. It is usually more convenient to work with two expressions than with a single vector
valued function, so for the rest of this section we will use expressions to describetpara
curves.

[ >

Exercise: By examining the component functions and by relating them to horizontal and
movement in the plane, explain why each of the following parametric curves has thenahape t
it does.
[ > plot( [ t*cos(t), t*sin(t), t=-2*Pi..2*Pi],

scaling=constrained );
> plot( [ t"2*cos(t), t"2*sin(t), t=-2*Pi..2*Pi],

scaling=constrained );
> plot( [ t*cos(t), sin(t), t=-2*Pi..2*Pi],
| scaling=constrained );
[ > plot([sin(t), cos(t), t=0..2*Pi]);
[ > plot([cos(t), cos(t), t=0..2*Pi]);
[ > plot( [ 3*cos(t), 2*sin(t), t=0..2*Pi]);

plot( [ 3*cos(t), 2*sin(t), t=0..2*Pi |,

{ scaling=constrained );
[ >
[ >
[
[
[
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plot( [ cos(2*t), sin(2*t), t=0..2*Pi]);
plot( [ cos(2*t), sin(t), t=0..2*Pi]);
> plot( [ cos(2*t), sin(3*t), t=0..2*Pi]);
> plot( [ cos(3*t), sin(2*t), t=0..2*Pi]);
>

Exercise: Try to explain why the following graph has the shape that it does. (Hint: Look at the
graphs of the component functions.)
- > plot([sin(t+sin(t)), cos(t+cos(t)), t=0..2*Pi],



~ scaling=constrained);

[ >

Just as a singlelot command can graph more than one function, a spigte command ca
graph more than one parametric curve. For example, here is how we graph two parametric
curves (so we have four real valued functions in two pairs). Notice that each paraoeti

has its own range and the ranges can be different.
> plot( [ [ 3*cos(t), 1/2*sin(t), t=0..2*Pi],

> [ cos(t)*sin(3*t), abs(t), t=-Pi..Pi]],
> color=[blue, red], axes=none );
[ >

Exercise: Try graphing a real valued function and a parametric curve (i.e., a vector valued
function) together in a singl@dot command.

[ >

L[>

=542 Animating parametric curves

When we draw a parametric graph of a function, only the output values of the function get
plotted. We lose a lot of information about the function since we do not plot any information
about the input values associated with the output values. For example, the following two
parametric graphs both draw a circle, but they do not "start” at the same plade~véhemd
they do not trace out the circle in the same directidriraseases.

[ > plot( [ cos(t), sin(t), t=0..2*Pi ] );

[ > plot( [ sin(t), cos(t), t=0..2*Pi ] );

As another example, the following parametric graph actually draws thetbiregetimes, but
this is not apparent just from the graph since information about the parametet explicitly

in the graph.

[ > plot( [ sin(t), cos(t), t=-2*Pi..4*Pi ] );

[ >

Here is a way to put some information about the parameter values into a pararapkric g
Maple has a commandnimatecurve  (from theplots package), which can animate the
graph of a parametric curve. These animations give us a visualization of how the
parameterization traces out the parametric curve. After executing thwifajl

animatecurve  commands, click on the graph, which will initially appear to be empty, and
then click on the VCR style "play" button that appears irethination context baat the top of
the Maple window. Notice how the following two animations show us exactly how these two
parameterizations of the circle differ.

[ > plots[animatecurve]( [ cos(t), sin(t), t=0..2*Pi | );

[ > plots[animatecurve]( [ sin(t), cos(t), t=0..2*Pi ] );

[ >




Exercise: Compare the following two animations. What does the second one tell us about the
second parameterization as compared to the first parameterization? Whaaiitforis still not

so obvious about the second parameterization even in the second animation?

[ > plots[animatecurve]( [ cos(t), sin(t), t=0..2*Pi]);

[ > plots[animatecurve]( [ cos(2*t), sin(2*t), t=0..2*Pi ] );

[ >

Exercise: Use theanimatecurve  command to go back and observe the dynamic behavior of
the parametric curves from the first two exercises in subsection 5.4.1.

[ >

Theanimatecurve ~ command can animate the drawing of more than one parametric curve at
a time. To animate more than one parametrice curve, we put a list of pararieterinaside of
a pair of braces. Here is an example with an animation related to the secondxertase.e
> plots[animatecurve]( { [cos(t), sin(t), t=0..2*PIi],
> [.9*cos(2*t), .9*sin(2*t), t=0..2*Pi]
1)
[ >

Here is another way to animate more than one parameterization at a time. dkimdpgroup
of commands puts three animations into an array variable and then useg the
command to display the contents of the array variable. This draws the three anisidadns
side, as opposed to drawing all three animations on the same pair of axes which is what we
would get if we put all three parameterization inside of a smgl@atecurve  command.
[ > curves :=array( 1..3):
> curves[1] := plots[animatecurve]( [cos(t), sin(t),
t=0..2*Pi],
> scaling=constrained,
frames=50 ):
> curves|2] := plots[animatecurve]( [sin(t), cos(t),
t=0..2*Pi],
> scaling=constrained,
frames=50 ):
> curves[3] := plots[animatecurve]( [cos(2*t), sin(2*t),
t=0..2*Pi ],
> scaling=constrained,
frames=50 ):
| > plots[display]( curves );
[ >

Here is a way to usenimatecurve  to create animations of parametric curves that are even



more informative than the ones we have created so far. The following exampldas tirtiie
previous one but in this example we combine an animation of a parametric curve with
animations of its two component functions.
[ > curves = array( 1..3):
> curves[1] := plots[animatecurve]( cos(t), t=0..2*Pi,
frames=50 ):
> curves|2] := plots[animatecurve]( sin(t), t=0..2*Pi,
frames=50 ):
> curves[3] := plots[animatecurve]( [ cos(t), sin(t), t=0..2*Pi
1,
> scaling=constrained,
frames=50,
> color=blue ):
| > plots[display]( curves );
The two animations on the left are the component functions of the parametric curvedmr
the right. Follow the three animations carefully to see how the two component functions
correlate with the parametric curve. It may be easier to follow the combinedtammif you
slow them down or even "single step” through the frames (using the third button from ithe left
theanimation context barThe animation may look better if you click on the graph and use the
mouse to enlarge the graph as much as possible (using the corners of the graph, much like you
would enlarge any other window). You can also right click on the graph and use the (pop up)
context sensitive plot merto make the animations have unconstrained scaling (by using the
"Projection” item in the pop up menu). That makes the graphs grow in size, but it distorts the
appearance a bit.

[ >

Here is another way to lay out the above animation. In the following layout, the upper left hand
graph describes the horizontal motion (¢mmponent) of the parameterization, the lower |
hand graph describes the vertical motion {tkemponent) of the parameterization, and the
lower left hand graph is the parametric curve. In the upper left hand graph, the tinsetlais
vertical axis, so thg-axis in this graph is parallel to tlkeaxis in the parametric graph (this
animation is drawn using a trick from the next subsection for drawing a function with its
independent variable on the vertical axis). In the lower right hand graph, the timetheis i
horizontal axis, so thg-axis in this graph is parallel to tlyeaxis in the parametric graph.

> X :=t->cos(t); # horizontal component function

> y:=t->sin(t); # vertical component function

> curves :=array(1..2,1..2):

> curves[1,1] := plots[animatecurve]( [ x(t), t, t=0..2*Pi ],
> frames=50 ):

> curves[2,2] := plots[animatecurve]( y(t), t=0..2*Pi,

> frames=50 ):

>

curves|2,1] := plots[animatecurve]( [ x(t), y(t), t=0..2*Pi



1,

> frames=50, color=blue ):
curves[1,2] := plot( [[0,0]], axes=none): # create an empty
graph

plots[display]( curves );

X,y :='X,'y": #unassign x and y

\Y%
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[ >

In the following animation, notice how the horizontal component function makes one sweep
from right to left and back again while the vertical component function makes twabertic
sweeps from top to bottom. Together, these two motions create a "“figure eight” $hape. (
moving the constant 2 from the vertical component function into the horizontal component
function. Try replacing the 2 with a 3.)
[ > x:=t->cos(t); # horizontal component function
y =t ->sin(2*t); # vertical component function
curves ;= array(1..2,1..2):
curves[1,1] := plots[animatecurve]( [ x(t), t, t=0..2*Pi ],

frames=50 ):
curves|2,2] := plots[animatecurve]( y(t), t=0..2*Pi,

frames=50 ):
curves[2,1] := plots[animatecurve]( [ x(t), y(t), t=0..2*Pi
1,

V V.V V V VYV
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frames=50, color=blue ):

> curves[1,2] := plot( [[0,0]], axes=none): # create an empty
graph

> plots[display]( curves );

| > X,y =X,y #unassign x and y

[ >

Here is another example of this kind of animation.
© > x:=t->t*sin(2*Pi*t); # horizontal component function
> y.=t->t*cos(2*Pi*t); # vertical component function
> curves :=array(1..2,1..2):
> curves[1,1] := plots[animatecurve]([ x(t), t, t=0..3 ],
> xtickmarks=[],
ytickmarks=[1,2,3],

> frames=60 ):

> curves|2,2] := plots[animatecurve](y(t), t=0..3,

> xtickmarks=[1,2,3],
ytickmarks=[],

> frames=60 ):

> curves[2,1] := plots[animatecurve]([ x(t), y(t), t=0..3 ],

> xtickmarks=[],



ytickmarks=[],
> frames=60, color=blue ):
> curves[1,2] := plot( [[0,0]], axes=none ): # create an empty
graph
> plots[display]( curves );
> Xy =Xy #unassign x and y

[ >

Here is a more complicated example. In this example, the tickmarks on all otthbaae bee
removed to reduce the clutter in the graphs.
[ > x:=t->sin(t+sin(t)); # horizontal component function
> y:=1->cos(t+cos(t)); # vertical component function
> curves :=array(1..2,1..2):
> curves[1,1] := plots[animatecurve]( [ x(t), t, t=0..2*Pi ],
> xtickmarks=[],
ytickmarks=[],

> frames=60 ):

> curves[2,2] := plots[animatecurve]( y(t), t=0..2*Pi,

> xtickmarks=[],
ytickmarks=[],

> frames=60 ):

> curves[2,1] := plots[animatecurve]( [ x(t), y(t), t=0..2*Pi
1,

> xtickmarks=[],
ytickmarks=[],

> frames=60, color=blue ):

> curves[1,2] := plot( [[0,0]], axes=none ): # create an empty
graph

> plots[display]( curves );

| > X,y =X,y #unassign x and y

Notice that in these execution groups, the first two lines define the horizontal aodlvert
component functions. This makes it easy to "plug in" any other parameterization into this
animation. Try animating some other parameterizations. (You may or may not want to put
tickmarks back into the graphs. Sometimes they make it easier to see what @gainty
sometimes they just clutter the graph up too much.)

[ >

As we mentioned above, the parameterizatidn = coq 2t), y(t) =sin( 2t) fort 0 [0, 2]
parameterizes two complete “trips" around the circle. But this is not appamartiie graph of
the parameterization, which shows just a single circle, and it is not even apphatiat from
theanimatecurve  animation of the parameterization, which shows the circle being traced
out just one time.

[ > plots[animatecurve]( [cos(2*t), sin(2*t), t=0..2*Pi] );



Here is an animation, created using a plot valued function (see Section 10 from Worksheet 4)
which clearly shows that this parameterization goes around the circle tWweseloT

command in the plot valued function graphs a single point with coordimag€<2() sin( 2t))
wheret is the input to the plot valued function. Téex; command creates a sequence of plots
with the input to the plot valued function ranging over the whole domain of our
parameterization (i.e., from O tor@. This gives us a sequence of graphs with the single point
travelling along the paramterized curve.

> frames =t -> plot( [ [cos(2*1), sin(2*t)] ],

> style=point, symbol=diamond):

> seq( frames(i/60*2*Pi), i=0..60 ):

> plots[display]( [%], insequence=true );

>

[

Here is a trick, using thenimate command, that lets us draw an animation similar to the
previous one. In this command, thevariable parameterizes just a short segment of the
parametric curve. The variable, which is the variable that changes across the frames of the
animation, is used to "push” the short segment around the parametric curve. Thirk of the
variable as changing the starting point of the short parameterized segments Astiadle
ranges over the interval of our original parametric curve, the short segmert treaethe
whole curve. Notice that one tricky aspect of this command is that the range ofahable
determines just the length of the short segment while the range<o¥trable determines hc
far around the circle the segment travels.

> plots[animate]( [cos(2*(t+s)), sin(2*(t+s)), t=0..Pi/20],
{ > s$=0..2*Pi, frames=60 );

[ >

The next three animations are variations on the last few examples. Try &atheat
animations that combine techniques from different examples in the section.
> frames := s -> plot( [cos(3*Pi*t), sin(Pi*t), t=s..s+1/10] ):
{ > seq( frames(i/60), i=0..120 ):
> plots[display]( [%], insequence=true );
[ >
[ > background := plot( [cos(3*Pi*t), sin(Pi*t), t=0..2*Pi],
color=blue ):
frames =t -> plot( [ [cos(3*Pi*t), sin(Pi*t)] ],
style=point, symbol=diamond):
seq( frames(i/60), i=0..120 ):
plots[display]( [%], insequence=true ):
plots[display]( %, background );
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plots[animate]( [cos(t+s+cos(t+S)), sin(t+s+sin(t+s)),
t=0..Pi/20],

> s=0..2*Pi, frames=60, thickness=2):

plot( [cos(t+cos(t)), sin(t+sin(t)), t=0..2*Pi], color=blue
):

plots[display]( %, %%, axes=none );

\Y%

\Y

[ >

Exercise: The parameterizatiax(t) = coq 2t), y(t) =sin(3t) witht O [0, 2] traces out the
following curve two times.

[ > plot([cos(2*t), sin(3*t), t=0..2*Pi] );

Create an animation that verifies this. Also, find a subintervad,a? ft such that the
parameterization defined on the subinterval traces out the curve exactly oneréate.ab
animation that verifies this property of your subinterval.

[ >

Exercise: Consider the following two parametric curves. In what ways are they simmilarf?at
ways do they differ? What is it about their component functions that cause theitsasiéard
differences?

[ > plot([cos(t), sin(sqrt(2)*t), t=-5*Pi..5*Pi] );

[ > plot([cos(5*t), sin(7*t), t=-Pi..Pi] );

Hint: Analyze the following two parameterizations first.

[ > plot([cos(t), sin(sqrt(2)*t), t=0..5*Pi] );

[ > plot([cos(5*t), sin(7*t), t=0..Pi] );

[ >

Exercise: Are the following two curves the same?

[ > plot( [cos(7*1), sin(22*1), t=-Pi..Pi], numpoints=400 );

[ > plot( [cos(t), sin(Pi*t), t=-7*Pi..7*Pi], numpoints=400 );

Here is a hint. What about the following two?

{ > plot( [cos(7*t), sin(22*t), t=-70*Pi..70*Pi], numpoints=400
);

{ > plot( [cos(t), sin(Pi*t), t=-70*Pi..70*Pi], numpoints=400
);

[ >

[ >

ﬂ 5.4.3. Parametric graphs of real valued functions

Recall that in Section 5.3 on real valued functions we mentioned thabthecommand, whe
graphing a real valued function, gives the horizontal axis in Cartesian coordingtesféneed
status of being the axis for the independent variable. When graphing parametric egiations
plot command does not give either axis a preferred status. It does however alwdle treat




first expression after the opening bracket as the horizontal component and the sec@stbe
as the vertical component. We can use this to get a graph of a real valued function of one
variable with the vertical axis as the axis for the independent variable. Thamgsthes

common labels andy for the horizontal and vertical axes, we can use a parametric curve to
draw a graph ok =f(y). For example, here is how we can graphsin(y).

[ > plot([sin(y), y, y=0..2*Pi ]);

Here is the analogous way to graph sin(x) using a parametric graph.

[ > plot([ x, sin(x), x=0..2*Pi ] );

Here is a graph of a quadratic function with the independent variable along the veigi¢aua
notice that we are using the labdbr the vertical axis).

[ > plot( [ 3*x"2+5*x-4, x, x=-5..3]);

The last example shows that the labedsdy really do not mean much to theot command.

It is theorder of the expressions inside of the brackets that determines which axis an expression
Is used with.

[ >

Exercise: Here is a simple piecewise defined function and its usual graph.
> f:=x->piecewise( x<1, x, X<2, 1, x<3, cos(2*Pi*x), x<4,
{ 4-x);
[ > plot(f, 0..4, scaling=constrained );
Use parametric curves to draw each of the following three graghs of
Part (a) Draw a graph ofwith the independent variable running along the vertical axis.
Part (b) Draw a graph &f with the positive direction of the independent variable running along
the left half of the horizontal axis.
Part (c) Draw a graph &f with the positive direction of the independent variable running along
the bottom half of the vertical axis.

[ >

Another application of parametric curves is simultaneously graphing two (or reateptued
functions that have different domains. Recall that in Section 5.3 on real valued functions we
mentioned that when th@ot command is used to graph two or more real valued functions,
the functions must all be graphed over the same interval. If we want each function apthe gr
to have a different range, then we graph the functions separately using npldtiple
commands and then combine all of the graphs together into a single graph udieglthye
command. Another way to accomplish the same effect is to use agimiglecommand and
graph each real valued function as a parametric curve, as in the previous paragraph, and give
each parametric curve its own range. Here is how we can redo the example, fiom528cbf
a parabola graphed inside of a semicircle.

> fsolve( x"2=sqrt(1-x"2), X, 0..1): # compute range for the

parabola
> plot( [ [t, sgrt(1-t*2), t=-1..1], # graph the semicircle
> [t, t"2, t=-%..%] # graph the parabola



> ], color=[green, blue], scaling=constrained
> );

[ >

Exercise: Use parametric curves to graph the funciieny® — 5y - 1 and its tangent line at the
pointy = 1. Draw the two curves using a different range for each one.

[ >

After you have a good graph of the function and its tangent line, try zooming in on the point of

tangency.
[ >

Exercise: In the following graph, the four line segments all have their right hand endpoint

x =1 and the line segments have different lengths. Redraw the graph, using paranwvetsic cur
so that the four line segment all have length 1. Try this two ways, the first way sl tfdhe
line segments have their left hand end at0, and another way with all of the right hand
endpoints above = 1.

[ > plot( [2*x, 3*X, 4*X, 5*X], x=0..1, color=red );

5]
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=| 5.4.4. Parametric polygons

The first example of a parametric curve given in almost every calculus book iartbars
parameterization of a circle. But that is not really the easiest exaonhelérstand. In this
subsection we look at several parameterizations that are very similar toahefEization of
circle, but are easier to derive and understand.

[ >

To make things a bit easier as we go along, let us make a small change in thecpaedioet
of the unit circle so that the parameterization goes once around the circle in oneionat of t
instead of the previousT2units of time. The new version of the parameterization is given |
following two component functions.

x=coq 2rmt), y=sin(2mt), t O[O0, 1].
The following command graphs the unit circle using this new version of the paraateiariz
[ > plot( [cos(2*Pi*t), sin(2*Pi*t), t=0..1] );
[ >

There is an interesting equation whose graph is a square, centered at the origidesvith s
length two. The equation is
max(| x| | y[) = 1.

Here is its graph.
{ > plots[implicitplot]( max(abs(x),abs(y))=1, x=-1..1, y=-1..1

);
(Notice that the graph has two “clipped"” corners. We will see in the next workdisetauses
this anomaly.) What we are going to do is parameterize this curve in a mannar rthke
standard parameterization of a crcle.

[ >

The basic idea behind parameterizing the square is that we need two functiong tikat'"ac

cogq 2rtt) andsin (21Tt )but parameterize the square instead of the circle. Recatidbatrtt ( )
provides the horizontal component of the motion in the parameterization of the circle and

sin( 2tt) provides the vertical component of the motion around the circle. Now think about the
kind of motion that a parameterization of the square needs to describe. Start the
parameterization at tinte= 0 at the point (1,0) (just like for the circle) and assume that the
parameterization will take one unit of time to go around the square (just like fordleg ici the
counter clockwise direction and with uniform speed. The horizontal component of the motion
around the square should sit still at 1 for a while (how long?), then sweep linearly froth 1 to
(how long should that take?), then sit stilFatfor a while (again, how long?), then sweep
linearly from—-1 to 1, and finally, sit still at 1 again for a while. Meanwhile, the vertical
component of the motion around the square starts out sweeping linearly up from 0 to 1, then sits
still at 1 for a while, then sweeps linearly down from *1othen holds still at1 for a while,




and finally sweeps linearly up fropi to O.

Read the last paragraph again, and while you are reading it, draw a sketch, on a piecg of pape
of the horizontal component function (as a function of tithehat the paragraph describes.
Similarly, draw a sketch of the vertical component function (as a function oftjithef the
paragraph describes.

[ >

Here is a piecewise defined function that is a first attempt at implemenérgprizontal
component that we need to parameterize the square.

> sqg_h :=t-> piecewise(t<=1/8, 1,

> t <= 3/8, 1-8*(t-1/8),
> t <=5/8, -1,

> t <=7/8, -1+8*(t-5/8),
> t<=1, 1),

Here is a graph afq_ht( gompared to a graph obs 2ftt . )

[ > plot( [ sq_h(t), cos(2*Pi*t) ], t=0..1);

Compare the shape of the graptsgf ht t0 Jhe description given in the last paragraph of the
horizontal component of the square's parameterization. Also notice how the gsaph dfis ()
qualitatively very similar to the graph obs 2ftt . )

[ >

Now let us define a vertical component function.

> sg_V:=t->piecewise(t<=1/8, 8%,
> t<=3/8, 1,

> t <=5/8, 1-8*(t-3/8),
> t<=7/8, -1,

> t<=1, -1+8*(t-7/8));

Izlere is a graph a&fgq_v t( gompared to a graph sin 2¢tt . )
[ > plot( [ sg_v(t), sin(2*Pi*t) ], t=0..1);
[ >

Here is a graph of our two new component functions together.

[ > plot([sqg_h(t), sq_v(t) ], t=0..1);

And here is the parametric curve that they define.

[ > plot( [sg_h(t), sg_v(t), t=0..1] );

Here is an animation of this parameterization.

{ > plots[animatecurve]( [sq_h(t), sq_v(t), t=0..1], frames=100
);

[ >

Here is a graph of a number of "concentric" squares.



> squares = seq( [i*sg_h(t), i*sq_v(t), t=0..1], i=1..10):
{> plot( [squares] );

[ >

Exercise: Show that for alt between 0 and 1, the poisg( {t) sq_\t)) solves the equation
max(|x| | y[) = 1.

[ >

Here is an animation of the circle and square parameterizations together.
> plots[animatecurve]( { [sq_h(t), sq_v(t), t=0..1],
> [cos(2*Pi*t), sin(2*Pi*t), t=0..1] }
)i
(The extra diagonal line at the end of the animation is caused by a dugimecurve )

[ >

The following animation combines an animation of the parameterization with aomsafi the
horizontal and vertical component functions.
[ > curves :=array(1..2,1..2):
> curves[1,1] := plots[animatecurve]([ sq_h(t), t, t=0..1 1],
>
xtickmarks=[-1,1],ytickmarks=[1],
> frames=60 ):
curves[2,2] := plots[animatecurve](sq_v(t), t=0..1,
> xtickmarks=[1],
ytickmarks=[-1,1],
> frames=60 ):
> curves[2,1] := plots[animatecurve]([ sg_h(t), sq_v(t), t=0..1

1,

\Y%

xtickmarks=[-1,1],ytickmarks=[-1,1],
> frames=60, color=blue ):
> curves[1,2] := plot( [[0,0]], axes=none ): # create an empty
graph
| > plots[display]( curves );

[ >

The next animation simultaneously animates the parameterizations of theaui#ite circle
along with animations of their component functions.
- > curves :=array(1..2,1..2):
> plots[animatecurve]([sg_h(t), t, t=0..1], frames=60,
color=blue ):
> plots[animatecurve]([cos(2*Pi*t), t, t=0..1], frames=60,
color=red):



> curves[1,1] := plots[display](%%, %):

> plots[animatecurve](sq_v(t), t=0..1, frames=60, color=blue):
> plots[animatecurve](sin(2*Pi*t), t=0..1, frames=60,
color=red):
> curves[2,2] := plots[display](%%, %):
> plots[animatecurve]([sg_h(t), sq_v(t), t=0..1],
> frames=60, color=blue ):
> plots[animatecurve]([cos(2*Pi*t),sin(2*Pi*t),t=0..1],
> frames=60, color=red ):
> curves[2,1] := plots[display](%%, %):
> curves[1,2] := plot( [[0,0]], axes=none): # create an empty
graph
~ > plots[display]( curves );
[ >

Exercise: Parameterize the equilateral triangle that has its vertices on tieeafiradius one
centered at the origin and one vertex at the point (1,0).

[ >

Exercise: Find a parameterization for each of the following two shapes. Each one is half circle
and half square.



0.5

0.5 ‘0_5‘

-0.59

[ >

Let us do another polygon parameterization. Let us parameterize the following square

1

-1

Parameterize it so that we start at the point (0,0), we travel around the polygon in the
counter-clockwise direction with uniform speed, and we take one unit of time to make one trip
around the polygon.



[ >
First, let's think about what this means for the horizontal component furctiorhg¢ )
horizontal component function should increase from 0 to 1 in 1/4 of a unit of time, and then it
should increase from 1 to 2 in another quarter unit of time (which is the same thing asing
from 0O to 2 in half a unit of time). Then the horizontal component function must decrease
to 0 in the last half unit of time. That describes a piecewise defined function whpkdagies
like this (notice that the horizontal axis is timyeand the vertical axis is theaxis (why?)).

2]
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From this graph we can construct the piecewise definition for the horizontal component
function. Notice how the second piece of this definition is written in the point-slope forsn. Thi
makes it easier to figure out the formula from the given graph.

> horz .=t -> piecewise( t<=1/2, 4%,
{ > t<=1, 2-4*(t-1/2)):
[ > horz(t);
Now let us think about the vertical component function. If We look back at the shape that
we are trying to parameterize, we see that the vertical component saatsteme 0 and
decreases to -1 at tinel/4 (don't get timet, mixed up with the horizontal componexi,
From time 1/4 to time 1/2, the vertical component should increase from -1 to 0, and then from
time 1/2 to time 3/4 the vertical component should increase to 1 (which is the same thing as
increasing from -1 to 1 as time increases from 1/4 to 3/4). From time 3/4 to 1, thd vertica
component should decrease from 1 to 0. All that describes a piecewise defined function whose

graph looks like this (and notice that the horizontal axis in this graph isttieme the vertical



axis is now thg-axis).
1,

-1

From this graph we can construct the piecewise definition for the vertical componetiri.
Notice how the second and third pieces of this definition are written in the point-slope form
This makes it easier to figure out these formulas from the given graph.

> vert :=t-> piecewise( t<=1/4, -4*,

> t<=3/4, -1+4*(t-1/4),
> t<=1, 1-4*(t-3/4)):
[ > vert(t);

Now we can combine the two component functions into a single vector valued function of time.
Here is its parametric graph.

[ > plot( [horz(t), vert(t), t=0..1] );

[ >

Exercise: Parameterize the following polygon starting at (0,0), traveling around the polygon in
the counter-clockwise direction with uniform speed, and taking one unit of time to make one
trip around the polygon.



[ >

What if we come up with trigopnometric functions that mimic our two functiang andvert
? What kind of shape would those trig functions parameterize? Conside the two functions
2 sin(ttt) and-sin( 21tt). Here are their graphs compared witirz andvert .
[ > plot( [2*sin(Pi*t), -sin(2*Pi*t),

> horz(t),  vert(t)], t=0..1,
| color=[blue,blue,red,red] );
Here is the shape parameterized by these two trig functions compared with tlee squar
[ > plot( [ [2*sin(Pi*t), -sin(2*Pi*t), t=0..1],
> [horz(t), wvert(t), t=0..1]],
| color=[blue,red]);
Notice how hard it is to predict details about the shape of a parametric curve using just
qualitative information about the shape of the component functions.

[ >

If we extend the domain for the trig functions, then we see that they in fact paraenate
Lissajous curve in the shape of a figure eight.

> plot( [ [2*sin(Pi*t), -sin(2*Pi*t), t=0..2],

> [horz(t), wvert(t), t=0..1]],



~ color=[blue,red],scaling=constrained);

[ >

Exercise: Parameterize the following polygon, starting at the point (0,0), traveling around the
right half polygon in the counter-clockwise direction with uniform speed, and taking 1/2 unit of

time, and then traveling around the left half polygon in the clockwise direction with uniform

speed, and taking another 1/2 unit of time.
1,

0.59

-0.59

-1
Here is an animation of this parameterization.
1,

0.5

-0.54

[ >

Exercise: Try to come up with another trig function that mimics the shapeiaf . Use this
new function, along witlert , to parameterize the following circle, of radius 1, centered ¢
point (1,0). (Hint: What kind of shape does the new trig function need aéam order to



force the parametric curve to have a vertical tangent line at its origin?)

1,

0.5

[ >

Exercise: Use a variation on your new function from the previous exercise to parameterize the
following figure eight shape made up of two circles. Your parameterization shauldt<0),
go around the right hand circle in the counter-clockwise direction, then go around the left hand

circle in the clockwise direction and end at (0,0).
1,




[ >

Exercise: Parameterize a regular octagon. (Try to parameterize a regular helsampn a
[>

Exercise: In the previous worksheet, in Section 4.10 on plot-valued functions and animations,
we showed how to use "homotopies" to create animations that morph the graph of one function
into the graph of another function. Pick two parameterizations from this subsection aed defi
homotopies between the horizontal and vertical component functions of the two
parameterizations. Use the homotopies to create an animation of one paratioetenaghing

into the other parameterization. For example, here is an animation of a circlengonpbia

triangle.

[ >

In the rest of this section we try out some interesting modifications of our fieshpterization
of the square. Here are the functions that we used to parameterize a square aetitererigin
and with side length 2.

"> sq_h:=t->piecewise(t<=1/8, 1,

> t <= 3/8, 1-8*(t-1/8),
> t <=5/8, -1,
> t <= 7/8, -1+8*(t-5/8),
> t<=1, 1),
> sg_V:=t->piecewise(t<=1/8, 8%,
> t<=3/8, 1,
> t <=5/8, 1-8*(t-3/8),



> t<=7/8, -1,

> t<=1, -1+8*t-7/8));
Notice that these two component functions are “flat topped" (which give the pacagnapt it:
straight sides).
[ > plot([sq_h(t), sq_v(1)], t=0..1);

Here is an interesting modification$g_h . We replace the flat "tops" ef]_h with parabolas.
This makes the newqg_h a bit more cosine like.

> new_sq_h :=t-> piecewise(t<=1/8, 64*(1-c)*t"2+c,
> t<=3/8, 1-8*(t-1/8),

> t<=5/8, -64*(1-c)*(t-1/2)"2-c,

> t<=7/8, -1+8*(t-5/8),

> t<=1, 64*(1-c)*(t-1)"2+c);

fhe following equation was used to help defimsv_sq_h . This equation solves for the

coefficientsa, b, andc in the general quadratic polynomiaak2 + b x + ¢ so that the parabola
goes through the points (-1/8, 1) and (1/8, 1).

[ > a,b,c:="a’,'b, 'c"

> x:=-1/8:

> y:=1/8:

> solve( {a*x"2+b*x+c=1, a*y"2+b*y+c=1}, {a,b,c} );

> X,y =%,y

The parameter determines the maximum height of the parabolic segments in the graph of
new_sq_h . Here is a graph aofew_sq_h with a specific value fot.

[ > c:=5/4

[ > plot( new_sq_h, 0..1);

Here is how this new function compares witis 21t . )

[ > plot( [new_sq_h(t), cos(2*Pi*t)], t=0..1);

Here is the equivalent vertical component function.

> new_sq_V :=t-> piecewise(t<=1/8, 8%,

> t<=3/8, 64*(1-c)*(t-1/4)"2+c,

> t<=5/8, 1-8*(t-3/8),

> t<=7/8, -64*(1-c)*(t-3/4)"2-c,
> t<=1, -1+8*(t-7/8));

Now usenew_sqg_h andnew_sq_v to graph a parametric curve.

{ > plot( [new_sqg_h(t), new_sq_v(t), t=0..1], scaling=constrained
);

Try a few different values for the parameter

[ > ¢c:=3/2;

{ > plot( [new_sq_h(t), new_sq_v(t), t=0..1], scaling=constrained

);



[ > c:=1/2;

[ > plot( [new_sq_h(t), new_sq_v(t)], t=0..1);
> plot( [new_sqg_h(t), new_sq_v(t), t=0..1],

{ scaling=constrained );

You should try other values ofalso.

[ >

Let us see how we can draw families of these "squares". First, redefinesq_h and
new_sq_v so that each is explicitly a function of
[ > new_sq_h := (t,c) -> piecewise(t<=1/8, 64*(1-c)*t"2+c,
> t<=3/8, -8*t+2,
t<=5/8, -64*(1-c)*(t-1/2)"2-c,
t<=7/8, 8*t-6,
t<=1, 64*(1-c)*(t-1)"2+c);
new_sq_vVv := (t,c) -> piecewise(t<=1/8, 8%,
t<=3/8, 64*(1-c)*(t-1/4)"2+c,
t<=5/8, 1-8*(t-3/8),
t<=7/8, -64*(1-c)*(t-3/4)"2-c,
> t<=1, -1+8*(t-7/8));
Now create a sequence of parameters fopkhie command, each parameter with a different
value ofc.
[ > shapes := seq(
> [ new_sq_h(t,1/2+i/6), new_sq_Vv(t,1/2+i/6),
t=0..1],
> i=0..6
> ):
| > plot( [shapes], scaling=constrained );
Whenc is 1,new_sqg_h andnew_sq_v parameterizes a square. Wlters less than 1, the
"squares" bulge inwards toward the center, and whisrgreater than 1 the "squares" bulge

outwards.
[ >
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Here is another family of these shapes. This family of graphs is createdghtly slifferent
way. Here we use thiéisplay command, plus we parameterize the color of the curves.
[ > frames := s -> plot( [ new_sq_h(t,1/4+s), new_sq_Vv(t,1/4+s),
t=0..1],
> color=COLOR(RGB,i/20.0,0,0) ):
> shapes := seq( frames(i/20), i=1..20 ):
| > plots[display]( [shapes], scaling=constrained );
Make this into a movie.
[ > plots[display]( [shapes], insequence=true,
scaling=constrained );




Make the movie periodic.
> shapes := shapes, seq( shapesl[-i], i=1..nops([shapes]) ):
> plots[display]( [shapes], insequence=true,
scaling=constrained );

[ >

Exercise: Replace the flat tops ef)_h (or, to put it another way, the parabolic tops of
new_sq_h) with piecewise linear tops. So instead of being flat toppedstiké , or with a
curved top likenew_sq_h, the new function will have a "slanted roof" top.

[ >

Exercise: Change the definition afew _sq_h so that it has two parameters, one for setting the
peak of each of the two parabolic "tops". (Then the new versioawfsq _h need no longer
be symmetric about 1/2.) Draw some parametric curves using this new versiom i h .

[ >

Exercise: Replace the linear "sides" néw_sqg_h with parabolic segments. Then the graph of
this new function will be piecewise parabolic and there will be two parametéres dretinition

of the function (or as many as 6 parameters if you do not want to make the parabolic "sides"
symmetric). Draw some parametric families with this new function.

[ >

[ >

=| 5.4.5. Parametric polygon spirals
In the previous section, we pointed out how the horizontal and vertical component functions for
our first parameterization of a squasg, ht &ndsq_v{ ) resemble the sine and cosine
functions,cos (21t )andsin (21tt ) that parameterize the unit circle.
[ > sq_h:=t->piecewise(t<=1/8, 1,
> t <= 3/8, 1-8*(t-1/8),
t<=5/8, -1,
t <=7/8, -1+8*(t-5/8),
t<=1, 1),
sq_V =t -> piecewise(t <= 1/8, 8%,
t<=3/8, 1,
t <= 5/8, 1-8*(t-3/8),
t<=7/8, -1,
t<=1, -1+8*(t-7/8));
plot( [sq_h(t), cos(2*Pi*t), sq_v(t), sin(2*Pi*t)], t=0..1);

V V.V VYV VYV VYV
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However, there is an important difference betwsgrht a(dcos(2mt )(and also between
sq_\t) andsin (21tt ). The functiorncos (21tt )s periodic busq_h{ Js not. In particular,




coq 2rt) is a periodic function with period 1.

[ > plot( cos(2*Pi*t), t=0..3);

But the graph o§q_ht( Jloes not repeat itself when we extend its domain beyond 1.

[ > plot( sg_h(t), t=0..3);

The fact thatos @mtt andsin (211t )are periodic lets us do some nice variations on the
standard parameterization of a circle. For example, we can easily paraen@tpiral,

[ > plot( [ t*cos(2*Pi*t), t*sin(2*Pi*t), t=0..3 ] );

or draw a Lissajous curve.

[ > plot( [ cos(3*Pi*t), sin(2*Pi*t), t=0..2 ]);

We would like to be able to get a "square spiral” from our paramterization of a squatre, but
doesn't work yet.

[ > plot( [ t*sq_h(t), t*sq_v(t), t=0..3]);

In order to get a square spiral, we need to nsgként ar(d$q_v( )into periodic functions.

[ >

Here is one way that we can redefstg ht go)that it is periodic with period 1. We can make
sqg_Ht) depend only on the fractional part of its inpbly composingq_h with thefrac
function.

[ > sqg_h:=t->piecewise( frac(t) < 1/8, 1,

> frac(t) < 3/8, -8*frac(t)+2,
> frac(t) < 5/8, -1,
> frac(t) < 7/8, 8*frac(t)-6,
> frac(t) <1, 1);

(Why were all of the<='s changed te's?) We can do the same &y vt .( )
[ > sqg_v:=t->piecewise( frac(t) < 1/8, 8*frac(t),

> frac(t) < 3/8, 1,
> frac(t) < 5/8, -8*frac(t)+4,
> frac(t) < 7/8, -1,
> frac(t) <1, 8*frac(t)-8);

Now sq_h(t) andsqg_v¢ )are periodic functions with period 1.
[ > plot( [ sg_h(t), cos(2*Pi*t) ], t=0..3);
[ > plot( [ sg_v(t), sin(2*Pi*t) ], t=0..3);
And we can draw a "square spiral".
[ > plot( [ t*sq_h(t), t*sq_v(t), t=0..3 ] );
Here is what the two spirals look like together.
> plot( [ [t*sg_h(t), t*sq_v(t), t=0..3],
{ > [t*cos(2*Pi*t), t*sin(2*Pi*t), t=0..3]]);
[ >
Here is an animation of the square spiral along with its two component functions.
- > curves :=array(1..2,1..2):
> curves[1,1] := plots[animatecurve]([ t*sq_h(t), t, t=0..3 ],
> xtickmarks=[],



ytickmarks=[1,2,3],

> frames=60 ):
> curves[2,2] := plots[animatecurve](t*sq_v(t), t=0..3,
> xtickmarks=[1,2,3],
ytickmarks=[],
> frames=60 ):
> curves[2,1] := plots[animatecurve]([ t*sq_h(t), t*sq_v(t),
t=0..3],
> xtickmarks=[],
ytickmarks=[],
> frames=60, color=blue,
> numpoints=200 ):
> curves[1,2] := plot( [[0,0]], axes=none ): # create an empty
graph
_ > plots[display]( curves );
[ >

Exercise: Draw the "square" analogue of the following section of a Lissajous curve.
[ > plot( [ cos(3*Pi*t), sin(2*Pi*t), t=0..1]);
[ >

Exercise: Use your solution to an exercise from the last section to create a paraatietent a
“"triangular spiral”.

[ >

There is another important difference betwsgnht aQdcos(2mt ) The latter is an even
periodic function that is defined for all negative valueg blitsg_h(t )is constantly equal to 1
for all negative.

[ > plot( [ sg_h(t), cos(2*Pi*t) ], t=-2..2);

The fact thatos @rtt )s even periodic (ansin Attt i$ odd periodic) and defined for all
negative values dfallows us to draw another kind of spiral, a logarithmic spiral.

[ > plot( [ exp(t)*cos(2*Pi*t), exp(t)*sin(2*Pi*t), t=-3..2 ] );

With sq_Ht) andsqg_v( )defined as they are now, we cannot draw a "square logarithmic
spiral".

[ > plot( [ exp(t)*sg_h(t), exp(t)*sq_v(t), t=-3..2 ] );

We need to extend the definitions of our two component functions to the negative numb
appropriate way.

Here is one way we can fix the definitionsaf_ht €9 that it too is an even periodic function.
We can compose the definitionsf_ht jth the absolute value function so that

sq_H-t) =sg_HKt). We can accomplish this by using either the following short, but somewhat
obscure, command



[ > sqg_h :=unapply( (sq_h@abs)(t), t);
or we can carefully write out the new definition ay_ht .( )

[ > sq_h:=1t->piecewise( frac(abs(t)) < 1/8, 1,
> frac(abs(t)) < 3/8,
-8*frac(abs(t))+2,
> frac(abs(t)) < 5/8, -1,
> frac(abs(t)) < 7/8,
8*frac(abs(t))-6,
> frac(abs(t)) <1, 1);

Now sq_Hh(t)is an even function of period 1, just likes 2fit . )
[ > plot( [ sg_h(t), cos(2*Pi*t) ], t=-2..2);
So we have a horizontal component funcsgnht tka is defined for all real numbers.

[ >

What about the vertical component function? Rather than define an odd periodic extension of
sg_\t) to the whole real line, let us look at this problem from a different point of view. Notice
that in the parameterization of the circle, the vertical motion is reallyathe as the horizontal
motion, the vertical motion is just 1/4 of a time unit "out of phase" with horizontal motion. To
put it another waysin 271t i justcos(2mt )shifted to the right by 1/4, or

sin( 2mtt) =coq 2m(t-.25)).

[ > cos(2*Pi*(t-1/4));

[ > combine( % );

So let us use this idea to define our vertical component function for the square. We define our
vertical component function by shifting our horizontal component function to the right by 1/4.
Here issq_h¢ — .25 )compared witkin 211t .)

[ > plot( [ sq_h(t-1/4), sin(2*Pi*t) ], t=-2..2);

So we really only need one function and we can use it for both our horizontal and vertical
component functions. Let us use the namédor this function.

[ > sqg:=eval(sqg_h);

Here is a graph afq t( With sq(t — .25).

[ > plot( [sq(t), sq(t-1/4) ], t=-3..2);

Here is the parametric "square logarithmic spiral" definesioply arfdsqt — .25 ).

[ > plot( [ exp(t)*sq(t), exp(t)*sq(t-1/4), t=-3..2 ] );

[ >

Exercise: Parameterize the following square figure. Use your parameterization taldifienent
kinds of "square spirals".



0.5

0.5

[ >

Exercise: Instead of usingq t(-— .25 jor the vertical component function, find explicit
formulas for the piecewise defined function that defines the odd periodic vertical carthpone

function. Call your vertical component functieq2 t @nd use it along withq t( tp draw the
square, the square spiral, and the square logarithmic spiral.

[ >

Exercise: Start with our original version &fg_ht (wWhich is only defined for O [0, 1] .

[ > sq_h:=t->piecewise(t<=1/8, 1,
> t <= 3/8, -8*t+2,
> t<=5/8, -1,
> t<=7/8, 8*-6,
> t<=1, 1),

Use thefloor  function to modify this version &fg_ht( gnd give an alternative definition of

the functionsq ¢ )which is the even periodic extensionsgf ht {o)the whole real line. (Hint:
Usefloor to define an expression very similarftac that will work for both positive and

negative values df)

Then notice that you can uSeor in the same way iaq_v t( tp extendsq_v { Yo the whole
number line as an odd periodic function with period 1.

[ >

Exercise: Parameterize a "triangular logarithmic spiral”. (Hint: You will need #othe ideas
from the previous exercise to get the even and odd extensions of your triangle horizontal and
vertical component functions.)

[ >



Exercise: Starting with the definitions afg_h andsq_v that are periodic, with period 1, but
only for the positive half of the number line, here is another way to extend these two functions
to be even and odd periodic, respectively, on the whole number line. Here are the definitions of
sq_h andsqg_v.
[ > sq_h:=1t->piecewise( frac(t) < 1/8, 1,
> frac(t) < 3/8, -8*frac(t)+2,
> frac(t) < 5/8, -1,
> frac(t) < 7/8, 8*frac(t)-6,
> frac(t) <1, 1);
> sq_v :=t-> piecewise( frac(t) < 1/8, 8*frac(t),
> frac(t) < 3/8, 1,
> frac(t) < 5/8, -8*frac(t)+4,
> frac(t) < 7/8, -1,
> frac(t) <1, 8*frac(t)-8);
[ > plot([sq_h, sq_v], -2..2);
We modify the above two definitions by adding a new line at the beginning of each piecewise
definition. Explain why these new definitions work to give even and odd periodic extensions to
the whole number line (these new definitions are cakbedr sive definitions).
[ > sq_h:=t->piecewise( t<0, sqg_h(-t),
> frac(t) < 1/8, 1,
frac(t) < 3/8, -8*frac(t)+2,
frac(t) < 5/8, -1,
frac(t) < 7/8, 8*frac(t)-6,
frac(t) <1, 1);
Sq_V =t -> piecewise( t<0, -sqg_v(-t),
frac(t) < 1/8, 8*frac(t),
frac(t) < 3/8, 1,
frac(t) < 5/8, -8*frac(t)+4,
frac(t) < 7/8, -1,
frac(t) <1, 8*frac(t)-8);
plot( [sg_h, sq_V], -2..2, scaling=constrained );
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Exercise: Modify the "figure eight" parameterizations from the previous section toecieat
following parametric "spiral like" curves.
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[ >

If we return to our modified square parameterization from the previous section, we&iznaa
even periodic extension of the modified horizontal component function.

[ > new_sq := (t,c) -> piecewise(

> frac(abs(t)) < 1/8, 64*(1-c)*frac(abs(t))"2+c,

> frac(abs(t)) < 3/8, -8*frac(abs(t))+2,

> frac(abs(t)) < 5/8, -64*(1-c)*(frac(abs(t))-1/2)"2-c,
> frac(abs(t)) < 7/8, 8*frac(abs(t))-6,

> frac(abs(t)) <1, 64*(1-c)*(frac(abs(t))-1)"2+c

> )

Now we can draw very elegant spirals usimegv_sq .

[ > plot( [ t*new_sq(t, 1/2), t*new_sq(t-1/4, 1/2), t=0..4 ],

> scaling=constrained );

[ >

[ > plot( [ exp(t/2)*new_sq(t, 1/2), exp(t/2)*new_sq(t-1/4, 1/2),
t=-4..3],

> scaling=constrained );

And also some unusual graphs.

[ > plot( [ exp(/2)*new_sq(t, -1/2), exp(t/2)*new_sq(t-1/4,
1/2), t=-4..3 ],

> scaling=constrained );

[ >

> plot( [ exp(t/2)*new_sq(t, -1/2), exp(t/2)*new_sq(t-1/4,
-1/2), t=-4..3],




> scaling=constrained );

[ >

Exercise: Replace the flat tops efy (or, to put it another way, the parabolic topsiefv_sq)

with piecewise linear tops. So instead of being flat toppedstikeor with a curved top like
new_sq, the new function will have a "slanted roof" top. Use the new function to draw closed
parametric curves and spiral parametric curves.

[ >

L[>

ﬂ 5.4.6. Parametric curvesin space: the spacecurve command

A parametric curve in three dimensional space is the output-only graph of a 3-dimensional
vector valued function of a real variable. An example of a three dimensional curveréddhe t
knot, which is the parametric graph of the following function.

e 2t et ) 2

Notice that this function is defined by three real valued (component) functions. If we think of
the functionf € )as describing the position of a particle moving in space, then each component
function off (t )describes the particle's motion in the direction of one of the three coordinate
axes. In a calculus book, this parameterization might be written as a set optresa&tric
equations".

3t 3t)) . (3t
x(t):(2+co{7D coqt), y(t):(2+co{?jj sin(t), and z(t)zsw(?j.

Here is one way to use tepacecurve command to draw this parametric curve. Be sure to
click on the graph and use the mouse to rotate it.

> plots[spacecurve]( [ (2+cos(3*t/2))*cos(t),
> (2+cos(3*t/2))*sin(t),

> sin(3*t/2) |,

> t=0..4*Pi

> );

With thespacecurve command, the range for the independent variable can be either ir
outside of the brackets that enclose the three component expressions. In the next theample
range is inside the brackets.

> plots[spacecurve]( [ (2+cos(3*t/2))*cos(t),

> (2+cos(3*t/2))*sin(t),
> sin(3*t/2), t=0..4*Pi ]
> );

The range for a curve must be inside the brackets if we want to draw more than one curve at a
time. Notice how each curve in the next example has its own range, which can be difierent
the ranges for the other curves.

> plots[spacecurve]({ [ (2+cos(3*t/2))*cos(t),




> (2+cos(3*t/2))*sin(t),

> sin(3*t/2), t=0..4*Pi ],

> [ 5*cos(t), 5*sin(t), 2*cos(6*t),
t=0..2*Pi |

> }

> );

Notice how, with thespacecurve command, multiple space curves are placed inside of
of braces, not brackets as in tfhlet command (try changing the pair of braces into a pair of
brackets in the last command).

[ >

Exercise: Redraw one of the last space curves using a single (vector valued) Maple function to
define the parameterization.

[ >

Exercise: Suppose we have a 2-dimensional vector valued function of one real variable and
suppose that instead of its parametric graph we want its input-output graph. Therasi an e
way to draw the input-output graph. What is it?

(Hint: You will need to use thegpacecurve command.)

[ >

Let us animate the parameterization of the trefoil knot

(et 3 ) (2o oo, o=l 3
x(t)=|2+co > coqt), y(t)=|2+co > sin(t), z(t) =si 2 )

Theanimatecurve  command does not work with curves in three dimensional space (and the
animate3d command only works with surfaces in three dimensions so it also cannot animate
a curve in space), so we will do the animation using a plot valued function (see Section 4.10).
We will do two animations of the trefoil knot. The first one will have one end of the
parameterization fixed and the other end of the parameterization sweeping owvevéhentil it

gets back to the fixed starting point and closes the curve. The second animation wilehave t
two endpoints of the parameterization moving away from the fixed starting point aepisgve

out the curve until the two moving points meet and close the curve at a point "opposite" to the
fixed starting point.

First, define a plot valued function calleédmes . For any value of this function's input
variable, the function returns the graph of a space curve. Notice that in this example, the
function being graphed does not depend on the parameter to the plot valued function. Only the
range of the graph depends on the parameter @asrimatecurve ).

> frames := s -> plots[spacecurve]( [ (2+cos(3*t/2))*cos(t),

> (2+cos(3*1/2))*sin(t),

> sin(3*t/2), t=0..s ] );
Here is an example of evaluating the funcfiames . This evaluation draws half of the trefoil



knot.

[ > frames(2*Pi);

Now use theseq command and theames function to create a sequence of 50 graphs of
segments of the trefoil knot. Tkeq command will evaluate thfeames function 50 times.
Each evaluation of theames function will increment the input dfames a little bit and
draw a slightly longer piece of the trefoil knot. (Notice the colon at the end of thisammirso
that we do not see the huge amount of data that it creates.)

[ > seq( frames(4*Pi*i/50), i=1..50 ):

Now use thelisplay3d  command with the optiomsequence=true to create an
animation out of the 50 frames that we just computed. (Try rotating the animatios as it i
running to see it from different angles. You can slow it down if you wish, or set it to loop
continually.)

[ > plots[display3d]( [%], insequence=true );

[ >

Exercise: Copy the three commands that create the above animation into a single execution
group at the end of this exercise. Then modify the example so that the new animatiavevill
the two endpoints of the parameterization moving away from a fixed starting point and
sweeping out the curve until the two moving points meet and close the curve at a point
"opposite" to the fixed starting point. (This new animation will emphasize the siygnaf the
curve.)

[ >

[ >

=547 Thetubeplot command

A nice command in thplots  package isubeplot , which takes a parametric curve in three
dimensional space and graphs a tube around the curve. So, in a sense, this command allows us
to convert a one dimensional curve in space into a two dimensional surface. Here is@a exam
of a tube formed around the trefoil knot.
[ > plots[tubeplot]( [(2+cos(3*t/2))*cos(t),

> (2+cos(3*1/2))*sin(t),
> sin(3*t/2), t=0..4*Pi] );
We can change the radius of the tube by usingeties option totubeplot
[ > plots[tubeplot]( [(2+cos(3*t/2))*cos(t),

> (2+cos(3*1/2))*sin(t),
> sin(3*t/2), t=0..4*Pi], radius=0.4);
In the next sequence of commands, we "cut away" part of the tube and combine it with a graph
of the trefoil knot to show how the knot runs through the center of the tube.
- > fi=t->((2+cos(3*t/2))*cos(t), (2+cos(3*t/2))*sin(t),

sin(3*t/2));
> g1l := plots[tubeplot]( [f(t), t=Pi/2..Pi], radius=0.5):
> g2 := plots[tubeplot]( [f(t), t=2*Pi..5*Pi/2], radius=0.5 ):




> g3 := plots[tubeplot]( [f(t), t=3*Pi..7*Pi/2], radius=0.5 ):

> g4 = plots[spacecurve]( [f(t), t=0..4*Pi] ):

> plots[display]( g1, 92, g3, g4 );
Try changing the curve in the last graph into a (very narrow) tube, so that the shape ofethe cur
is more visible. Also, try changing the lengths of the original tubes so that they go araend m
of the curve.

[ >
The radius of the tube can be give by a function, so the radius need not be constant along the
whole tube.
[ > plots[tubeplot]( [(2+cos(3*t/2))*cos(t),
> (2+cos(3*t/2))*sin(t),
> sin(3*t/2), t=0..4*Pi],

| radius=.4+.3*cos(2*) );

Here is another example.

[ > plots[tubeplot]( [t*cos(t), t*sin(t), O, t=0..7*Pi/2],
> radius=t"2/25, scaling=constrained );

An easy way to graph a surface of revolution, say of a funttionwith)x [ [a, b], is to use
tupeplot  with the "curve" being thg-axis betweem andb and then use the functiérx (a$
theradius option. Here are a couple of examples.

> fi=x->x"2;
> a,b:=0,1:
| > plots[tubeplot]( [x,0,0, x=a..b], radius=f(x), axes=normal );
[ >
[ > f:=x->x+ sin(x);
> a, b:=0, 5*Pi:
| > plots[tubeplot]( [x,0,0, x=a..b], radius=f(x), axes=normal );
[ >
L[>

=15.5 Non Cartesian coor dinate systemsin the plane

Theplot command can use non Cartesian coordinate systems when graphing either real valued
functions or parametric curves. The first subsection below reviews the detailat@midinates,

which is the most important and common non Cartesian coordinate system for the plane, @and then i
briefly introduces a few other non Cartesian coordinate systems. The next twdisnbggrinto

graphing real valued and vector valued functions using polar coordinates and a few of the other non

Cartesian coordinate systems.
[ >

5.5.1. Polar coordinates and other non Cartesian coordinate systems



Recall that for Cartesian coordinates, we start with a special point in the thiaieeigin, and

then we draw two perpendicular lines through the origin, the coordinate axes. Then every point
in the plane is given an "address"” made up of two numbers, usually denataddyy wherex

is the distance of the point from one of the coordinate axeg iartie distance of the point

from the other coordinate axis. The coordinate axes are usually, but not always, dsawn as
horizontal and a vertical line with tixecoordinate being a point's distance from the vertical axis
and they coordinate being a point's distance from the horizontal axis.

In polar coordinates, we again start with a special point in the plane, the origin, and then we
draw a single ray (a half line) emanating out of the originptihar axis. Then every point in

the plane is given an "address" made up of two numbers, usually denotadd8; wherer
measures the point's distance from the origin,Gamgasures the point's angle with the polar
axis. The polar axis is usually, but not always, drawn as a horizontal ray going ghtha the
origin (so the usual polar axis coincides with the usual pos#asas) with thed coordinate

being a point's counter clockwise angle with the polar axis.
(>

Here is a simple example. The point in the plane with Cartesian coordirnai¢s (1, 1) has

LIS
polar coordinateér, 0) = («/E Zj The following twoplot commands graph this point, first

using Cartesian coordinates and then using polar coordinates. Comparing the two grapé
that they really do graph the same point.
[ > plot([[1,1] ], style=point, symbol=circle );
> plot( [ [sqrt(2),Pi/4] ], coords=polar, style=point,
{ symbol=circle );
[ >

Notice that in theolot command, a list of two numbers is used to represent the coordinates of
a point in the plane. In the first of the above M@ commands, the ligi,,1] represented

the Cartesian coordinates of a point since, by defaulpltihe command uses Cartesian
coordinates. In the secoptbt command the ligisqrt(2),Pi/4] represented the polar
coordinates of a point since we useddherds=polar  option.

In other situations, Maple uses a different notation to represent the coordinates ofratpeint
plane. The notatiorna,b> represents a point in the plane with Cartesian coordinadeslb.
This notation actually represents the point in the plane as a vector by associgtimgtthe the
vector whose tail is at the origin and whose tip is at the point. One thing that we can dhs
notation is get Maple to convert a point's Cartesian coordinates into polar coordikties a
convert a point's polar coordinates into Cartesian coordinates. For example, here & how w
convert the Cartesian coordinates 1> into polar coordinates.

[ > <1,1>;

[ > VectorCalculus[MapToBasis]( %, polar );



The last result is Maple's way of expressing a point in the plane as a vector icopottnates.
The last two commands tell us that the Cartesian coordifvatel= (1, 1) are equivalent to tl

T
polar coordinateér, 6) = (ﬁ Zj
[ >

Here is how we convert a pair of polar coordinates into Cartesian coordinates. é-msgavto
express a point as a vector in polar coordinates. This is a bit cumbersome sincestbeagkeg
notation,<,> , defaults to Cartesian coordinates, so we need to tell Maple to give the vector
defined with the angle bracket notation the polar coordinate "attribute”.

[ > Vector( <sqrt(2),Pi/4>, attributes=[coords=polar] );

Now we can calculate the vector's Cartesian coordinates.

[ > VectorCalculus[MapToBasis]( %, cartesian );

Notice that Maple choose yet another way to express the point with Cartesian ¢esrdina
(x,¥) =(1, 1). In this notation, the point (1, 1) is written as a linear combination, with
coefficients 1 and 1, of the two standard unit basis vectors for the plane.

[ >

If we know the Cartesian coordinates of a point in the plane, then there are well knownd

for computing the point's polar coordinates from the Cartesian coordinates. $infilad

know the polar coordinates of a point in the plane, then there are formulas for computing the
point's Cartesian coordinates from the polar coordinates. We can ldegheBasis

command to get Maple to tell us these formulas. Here are the formulas for comipejoadatr
coordinates of a point given it Cartesian coordinates.

[ > VectorCalculus[MapToBasis]( <x,y>, polar );

In other words, given the Cartesian coordinateg)( the polar coordinates are given by

r =+/%+y* andd = arcta{%j (look up thearctan function in the online help to find out

whatarctan(y,x) means and how it differs fromcta{%)).

Here are the formulas for computing the Cartesian coordinates from the polar desrdina
[ > Vector( <r,theta>, attributes=[coords=polar] );
[ > VectorCalculus[MapToBasis]( %, cartesian );

In other words, given the polar coordinatedJ, the Cartesian coordinates are given by
x=r coq8) andy =r sin(9).
[ >

Exercise: Explain why the following graph shows only one point plotted instead of three.
> plot( [ [-sqrt(2),5*Pi/4], [sqrt(2),-7*Pi/4],
[sqrt(2),9*Pi/4] ],
> coords=polar, style=point, symbol=circle );



[ >

Maple can draw "graph paper" for the polar coordinate system. Here is a pictur@alathe
coordinate grid on the plane.
[ > plots[coordplot]( polar, scaling=constrained );
Each circle is made of points that have the same, fixegprdinate. Each ray emanating from
the origin is made of points that have the same, fi@@ordinate. This polar graph paper is
analogous to the following Cartesian coordinate grid, in which every vertical linade of
points that have the same fixedoordinate and every horizontal line is made of points that
have the same fixeglcoordinate.
{ > plots[coordplot]( cartesian, scaling=constrained, axes=normal

);
[ >

Polar coordinates are not the only non Cartesian coordinate system that Maple camese on t
plane. In fact, Maple knows how to work with 14 non Cartesian coordinates systems for the
plane. To give you an idea of what these other coordinates systems can look like, hezerare a f
examples of non Cartesian "graph paper".

[ > plots[coordplot]( bipolar, scaling=constrained );

[ > plots[coordplot]( hyperbolic, scaling=constrained );

[ > plots[coordplot]( rose, scaling=constrained );

[ >

Given the Cartesian coordinates of a point in the plane, Maple can compute the point's
coordinates in any one of the other coordinate systems. Here are the bipolar coordthates of
point with Cartesian coordinatés, y) = (1, 1).
[ > VectorCalculus[MapToBasis]( <1,1>, bipolar );
To see that this result is correct, look at the following graph and notice where thegp®int g
plotted.

> plot( [ [arctan(2), In(5)/2] ], coords=bipolar,
{ > style=point, symbol=circle );
Here are the rose coordinates of the pfny) = (1, 1).
[ > VectorCalculus[MapToBasis]( <1,1>, rose );
Look back at the graph paper for the rose coordinate system and see if this lastalessilt m
sense.

[ >

TheMapToBasis command can give us the coordinate transformation formulas for any of of
the non Cartesian coordinate systems. Here are the formulas for computing a jpailat's bi
coordinates given the point's Cartesian coordinates.

[ > VectorCalculus[MapToBasis]( <x,y>, bipolar);

[ > convert( %, In);



[ > radsimp( %, In);
And here are the formulas for computing a point's Cartesian coordinates given its bipola
coordinates.
> Vector( <u,v>, attributes=[coords=bipolar] ):
{ > VectorCalculus[MapToBasis]( %, cartesian );

[ >

In fact, we can find the formulas for converting coordinates from any coordinate sygieamny
other coordinate system. Here are the formulas for computing the hyperbolic cosrdireate
point given the point's rose coordinates.
> Vector( <u,v>, attributes=[coords=rose] ):
{ > VectorCalculus[MapToBasis]( %, hyperbolic );
[ > combine( %, symbolic );
[ > simplify( % ) assuming real;
[ >

The following help page lists all of the two and three dimensional coordinate systgms
Maple knows about. For each coordinate system, the transformation formulas are given for
converting that coordinate system's coordinates into Cartesian coordinates.

[ > 7?coords

Here is the graph paper for each of the 15 two dimensional coordinate systems. Bettause of
following infolevel command, each of theseordplot =~ commands gives us some
information about the graph paper that is not evident just from looking at the graphs. In
particular, the information tells us the range that is graphed for each of the caovdinalbles
in the coordinate system (the output refers to these as the "u range" and "v ranggtagtihe
paper).

[ > infolevel[coordplot] := 2:

[ > plots[coordplot]( cartesian );

[ > plots[coordplot]( polar );

[ > plots[coordplot]( elliptic );

[ > plots[coordplot]( parabolic );

[ > plots[coordplot]( hyperbolic );

[ > plots[coordplot]( cassinian );

[ > plots[coordplot]( invcassinian );

[ > plots[coordplot]( rose );

[ > plots[coordplot]( tangent );

[ > plots[coordplot]( bipolar );

[ > plots[coordplot]( cardioid );

[ > plots[coordplot]( invelliptic );

[ > plots[coordplot]( logarithmic );

[ > plots[coordplot]( logcosh );

[ > plots[coordplot]( maxwell );

[ >



L[>

=] 5.5.2. Real valued functions of asinglevariablein polar coordinates
In polar coordinates, th@ot command will always graph a real valued function of a real

variable ag =f(0). That is, the circular direction is the independent variable and the radial
direction is the dependent variable.

Here is a well known example of a graph in polar coordinates, a cardiodwith coq0).

> plot(1+cos(theta), theta=0..2*Pi, coords=polar,
{ scaling=constrained);
[ >
We want to understand this graph and see exactly why it has the shape that it does. To
understand graphs in polar coordinates, it helps to think of graphing the funsti¢@) on a
kind of "radar screen". An anglesweeps out, in a counter clockwise direction starting fror
horizintal axis, a circle of Zradians. A9 sweeps around the circle, the functio® ( )
determines the length of a ray emanating from the origin. The tip of this gwaeseps around
the circle, traces out the graphrcf f(0). Here is an animation of this. (Do not worry about the
code for this animation. It is more important now to understand the relationship between this
animation and the graphing o&f(0).)

> f:=theta -> 1+cos(theta);

> g1 := plots[animatecurve]( [f(theta), theta, theta=0..2*Pi],

> coords=polar, frames=60 ):

> p:=t->plot([r,t, r=0..f(t)], color=black, coords=polar
):

> seq( p(2*Pi*n/60), n=0..29 ): # need to skip t=Pi since
f(Pi)=0

> seq( p(2*Pi*n/60), n=31..60 ): # and that causes an error in
plot

> g2 := plots[display]( [26%,%], insequence=true ):

> plots[display]( [g1,92], view=[-2..2,-2..2],

| scaling=constrained );

[ >

Here is another well known example of a graph in polar coordinates, a spirakwith
> plot(theta, theta=0..4*Pi, coords=polar,
{ scaling=constrained);
The "radar screen" is swept out two time® goes from O to 4t while the radius = 0 just
grows with@. Here is an animation of this.
- > f:=theta -> theta,
> g1 := plots[animatecurve]( [f(theta), theta, theta=0..4*Pi],
> coords=polar, frames=61):




\Y

p :=t->plot([r, t, r=0..f(t)], color=black, coords=polar

):

plot( [[0,0]], coords=polar ): # empty plot in place of p(0)
seq( p(4*Pi*n/60), n=1..60 ):

g2 := plots[display]( [%%,%)], insequence=true ):
plots[display]( [g1,92], scaling=constrained );

V V. V V V

[
Another aid in understanding the graph of a polar funcatef(0) is to draw the graph of f in

rectangular coordinates alongside of the graph of f in polar coordinates. For exanepie tiner
cardiod functiorl + sin(8) graphed in both polar and rectangular coordinates.

> g:=array(1..2):

> g[1] := plot( 1+sin(theta), theta=0..2*Pi, coords=polar ):
> evalf[2]( [Pi/2="", Pi="Pi", 3*Pi/2="", 2*Pi="2Pi"] ):

> g[2] := plot( 1+sin(theta), theta=0..2*Pi,

> xtickmarks=%, ytickmarks=[0,1,2] ):

> plots[display](g, scaling=constrained);

Notice that we read these two graphs together by reading the right hand graphtftomget
while simultaneously reading the left hand graph counter clockwise startinghfegpogitive
horizontal axis. The best way to study the two graphs together is to do it one quadraneat a ti
from O toTv2 first, thenrv2 to T, thenttto 3172, and finally the last quadrant, fronTi2 to 21t
[ >
Here is an animation of the last graph that combines the "radar screen” aninittian w
corresponding animation of the rectangular graph.
- > f:=theta -> 1+sin(theta);

> g1 := plots[animatecurve]( [f(theta), theta, theta=0..2*Pi],

> coords=polar, frames=60 ):

> p:=t->plot([r,t, r=0..f(t)], color=black, coords=polar

):
> seq( p(2*Pi*n/60), n=0..44 ): # need to skip t=3*Pi/2 since
f(Pi)=0

> seq( p(2*Pi*n/60), n=46..60 ): # and that causes an error in
plot
g2 := plots[display]( [%%,%)], insequence=true ):
g:=array(1.2):
g[1] := plots[display]( [ g1, g2 ], scaling=constrained ):
evalf[2]( [Pi/2="", Pi="Pi", 3*Pi/2="", 2*Pi="2Pi"] ):
g1 := plots[animatecurve]( f, 0..2*Pi, frames=60,
xtickmarks=% ):
p := x -> plot( [X, y, y=0..f(x)], color=black ):
> seq( p(2*Pi*n/60), n=0..44 ): # need to skip t=3*Pi/2 since

f(Pi)=0
> seq( p(2*Pi*n/60), n=46..60 ): # and that causes an error in

V V. V V V

\Y%



plot
> g2 := plots[display]( [%%,%], insequence=true ):
> g[2] := plots[display]( [ g1, 92 ], scaling=constrained ):
_ > plots[display]( g );
Notice one again how moving across the right hand graph from left to right corresponds
around the left hand graph in a counter clockwise direction.

[ >

Here is one way to graph a circle in polar coordinates, as the polar gif@ph ofsin(8) with

0 0[0].

[ > g:=array(1..2):

> g[1] := plot( sin(theta), theta=0..Pi, coords=polar ):

> evalf[2]( [Pi/2="Pi/2", Pi="Pi"] ):

> g[2] := plot( sin, 0..Pi, xtickmarks=%, ytickmarks=[0,1] ):

| > plots[display](g, scaling=constrained);

Notice how the picture on the right, in rectangular coordinates, shows us how the radius grows
from O to 1 a® sweeps from 0 th&/2 (in the first quadrant), and then the radius shrinks from 1

back to 0 a® sweeps fromv2 tomt (in the second quadrant).

[ >

\Y%

When graphing a function=1f(0) in polar coordinates, it is important to understand how
negative values of the radial coordinatre treated. One of the things that makes interpreting
polar graphs ticky is that we do not explicitly notice in the graph how for some &rthles
value of the functioi § inay be negative and so the graph off(8) is drawn in the quadrant
opposite td. Here is a graph in whidh0( i9 negative for some.
[ > plot( 1+2*cos(theta), theta=0..2*Pi, coords=polar );
The best way to tell that the radius sometimes negative is to graph the functién iq )
Cartesian coordinates.
[ > plot( 1+2*cos(theta), theta=0..2*Pi );
Here is how we can ussiimate and animatecurve  to make more explicit the fact that
sometimes the graph 6f0 ( i9in the opposite quadrant fradn This animation looks better if
you click on it and then drag one of its corners in order to enlarge the graphs as much as
possible.

> f:=theta -> 1+2*cos(theta);

> g1 := plots[animatecurve]( [f(theta), theta, theta=0..2*Pi],
> coords=polar, frames=60 ):
> g2 := plots[animate]( [r, theta, r=0..3], theta=0..2*Pi,
> coords=polar, color=black, frames=60 ):
> g:=array(1..2):
> g[1] := plots[display]( [ g1, 92 ], scaling=constrained ):
> evalf[2]( [Pi/2="", Pi="Pi", 3*Pi/2="", 2*Pi="2Pi"] ):
> ¢[2] := plots[animatecurve]( f, 0..2*Pi, frames=60,



xtickmarks=% ):
> plots[display]( g );
The graph on the left is the polar graptf & &nyl the graph on the right is the cartesian graph
of f(0). In the polar graph, the rotating black ray represents the @nigletice how when the
cartesian graph goes negative, the polar graph goes into the quggaste to 6. (It might
help to view this animation by "single stepping" through the frames, or by slowing the
aninmation down.)

[ >

Exercise: Earlier we looked at the example of the circtesin(6) in polar coordinates with
domain@ O [0, 1. Here is the same function with its domain increaséd o [ O, 211].
Explain why the polar coordinate graph on the left does not seem to change.

> g:=array(1..2):

g[1] := plot( sin(theta), theta=0..2*Pi, coords=polar ):

evalf[2]( [Pi/2="", Pi="Pi", 3*Pi/2="", 2*Pi="2Pi"] ):

g[2] := plot( sin, 0..2*Pi, xtickmarks=%, ytickmarks=[0,1] ):

plots[display]( g, scaling=constrained );

V V. V V V

[
Exercise: Here is an animation, created with a plot valued function, that shows how the family
of limaconsf(0) =1 + c sin(0) depends geometrically on the parameter

> p:=c -> plot( 1+c*sin(theta), theta=0..2*Pi, coords=polar

):

> sed( p(n/10), n=-25..25):

> plots[display]( [%], insequence=true, scaling=constrained );
Add to this animation, alongside of the polar graph of €athe corresponding rectangular
graph off.. Explain exactly what is is about the fanmfilyhat causes the inner loop to disappear
and then reappear.
[ >
Note: You can also create the above animation usingrtineate command.

> plots[animate]( 1+c*sin(theta), theta=0..2*Pi, c=-2.5..2.5,
{ > coords=polar, scaling=constrained, frames=51
);

[ >

Exercise: Do the same thing as in the last exercise but for the family of limacons
0.(0) =c+sin(0).
> plots[animate]( c+sin(theta), theta=0..2*Pi, c=-2..2,
> coords=polar, scaling=constrained, frames=51
);
(Notice that the circle =sin(0) is a member of this family of limacons.)

[ >



Here is another "radar screen" animation of a polar graph alongside of its aniecasagular

graph. Why is the range f6rin this graph only from 0 to?

[ > f.=theta -> cos(3*theta);

> g1 := plots[animatecurve]( [ f(theta), theta, theta=0..Pi |,

> coords=polar, numpoints=200, tickmarks=[2,2],

frames=60 ):

g2 := plots[animate]( [ r, theta, r=0..1 ], theta=0..Pi,
coords=polar, color=black, frames=60 ):

g:=array(1.2):

g[1] := plots[display]( [ g1, g2 ], scaling=constrained ):

evalf[2]( [Pi/3="", 2*Pi/3="", Pi="Pi"] ):

g[2] := plots[animatecurve]( f(theta), theta=0..PIi,

frames=60,

> xtickmarks=% ):

L > plots[display]( g );

Try changing the definition df in the above animation.

[ >

vV V.V V V V

Exercise: The function$(0) = coq 20) andg(0) :| cos€ 29)| seem to have the same grap
polar coordinates.

[ > plot( cos(2*theta), theta=0..2*Pi, coords=polar);

[ > plot( abs(cos(2*theta)), theta=0..2*Pi, coords=polar );

However, use animations to show that these two functions trace out their graphs in very
different ways a$ varies from 0O to 2t

[ >

Exercise: Letf(6) =coq 30) andg(0) :| cosd 39)| and consider their graphs in polar
coordinates. How are the two graphs similar? In what ways do they differ? Be taok at

animations of how these two functions trace out their grapBvases from 0 to 2t
[ > plot( cos(3*theta), theta=0..2*Pi, coords=polar);

[ > plot( abs(cos(3*theta)), theta=0..2*Pi, coords=polar );

[ >

Exercise: Consider the functionfg(0) = cogn 8) in polar coordinates whereis a positive
integer an® O [0, 21]. For every positive integer, how many petals does the grapf 08 ( )
trace out a$ varies from 0 to 2?

[ >

Answer the same question for the functigg®) :| cogno) |

[ >

Exercise: Find a functiorr =f(0) such that its graph in polar coordinates is the following curve



and such that the polar graph traces one complete petal at a time in a counter chiioketioe

ashO increases. That is, 8ancreases from 0 the polar function should first trace out the
complete petal in the first quadrant (going counter clockwise and starting atgiing, dnien the
complete petal in the second quadrant, and then the complete petal that intersectgitte/neg
-axis. Use an animation to show that the graph of your polar function has the desired propertie
Your animation should show both the polar and the rectangular graphs of your function f.

0.5

Exercise: Find a function whose polar graph traces the curve from the last exercise one
complete petal at a time in the clockwise direction. That is, the polar function shisutchfie
out the complete petal in the first quadrant (going clockwise and starting at ihg, ¢hnign the
complete petal that intersects the negagregis, and then the complete petal in the second
qguadrant. Use an animation to show that the graph of your polar function has the desired
properties.

[ >

Here are a number of examples of graphs in polar coordinates of real valued functions of a
single variable. These graphs are all examples that are commonly found in dadaksis
When you look at these example graphs, it is important to remember that these avatyout-
graphs of real valued functions in polar coordinates, thegchngarametric graphs, even thot
they look a lot like examples of parametric graphs (in Cartesian coordinatedjaWeach
example using bothlot andanimatecurve . The animations show us how each graph
develops as the independent varidblacreases, that is, as the an@lgoes around the circle. If
you want to see the cartesian graph of these functions, just remove the coords option. (Don't
worry about the form of thessimatecurve  commands. They are written this way to avoid
a bug in Maple. We will say more about this particular bug below.)
[ > plot( 2*cos(2*theta), theta=0..2*Pi, coords=polar );
- > plots[animatecurve]( [2*cos(2*theta), theta, theta=0..2*Pi],

> coords=polar, frames=60, numpoints=100



)

[ > plot( cos(x)+sin(x), x=0..Pi, coords=polar );
{ > plots[animatecurve]( [cos(x)+sin(X), X, x=0..Pi],
> coords=polar, frames=60 );

[ > plot( cos(3*x)+sin(2*x), x=0..Pi, coords=polar);
{ > plots[animatecurve]( [cos(3*x)+sin(2*x), X, x=0..Pi],
> coords=polar, frames=60 );

[ > plot( 1+4*sin(3*u), u=0..2*Pi, coords=polar );
> plots[animatecurve]( [1+4*sin(3*u), u, u=0..2*Pi],
> coords=polar, frames=60, numpoints=200

);

> plot( y*sin(y), y=-5*Pi..5*Pi, coords=polar,

scaling=constrained );

plots[animatecurve]( [y*sin(y), y, y=-5*Pi..5*Pi],
coords=polar, frames=60, numpoints=500,
scaling=constrained, axes=frame );

V V. V V

[
Exercise: The above examples all used expressions to represent the functions being graphed.

Modify the examples to use Maple functions.

[ >

Exercise: Each of the following graphs is drawn as the parametric graph in Cartesian
coordinates of a vector valued function. Redraw each of these graphs, as exactlyobes pessi
the (input-output) graph in polar coordinates of a real valued function.
[ > plot( [ cos(t), sin(t), t=0..2*Pi ] );
[ > plot( [ t*cos(t), t*sin(t), t=0..4*Pi ] );
[ > plot([3,t,t=-5..5]);
{ > plot( [ (2+sin(3*t))*cos(t), (2+sin(3*t))*sin(t), t=0..2*Pi ]
);
[ >

Exercise: The following animation (from the first worksheet) uses parametric equations in
Cartesian coordinates. Convert the animation to use the graph in polar coordinates of a rea
valued function of a single variable.
> plots[animate]( [ (1+sin(t)*.5*cos(5*s))*cos(s),
> (1+sin(t)*.5*cos(5*s))*sin(s), s=0..2*Pi ],
> t=0..2*Pi, scaling=constrained,
numpoints=100,



> color=blue, axes=none, frames=60 );
Recall that this parametric curve defines a "circle" whose radius ( givée bgrtn
1+sin(t)*.5*cos(5*s) ) changes both with angle (tkevariable) and with time (thie

variable).
[>

Exercise: The next animation (also from the first worksheet) is based on the previous one.
Some of the parameters have been changed and two circles are being morphed simyltaneousl
Can you convert this animation into one that uses graphs in polar coordinates of two real valued
functions of a single variable?
[ > plots[animate]( { [ (1+2*sin(t)*cos(6*s))*cos(s),
> (1+2*sin(t)*cos(6*s))*sin(s), s=0..2*Pi

P

\Y

[ (1+2*sin(t)*cos(6*s))*cos(s),

> (1-2*sin(t)*cos(6*s))*sin(s), s=0..2*Pi ]
h
> t=0..2*Pi, scaling=constrained,
numpoints=150,
> color=blue, axes=none, frames=100 );
[ >

Exercise: The following command uses polar coordinates to graph a circle.

[ > plot( sin(t), t=0..Pi, coords=polar, scaling=constrained );

If we change the sin to a cos in the last command, we get the circle rotated 90 degrees
clockwise.

[ > plot( cos(t), t=0..Pi, coords=polar, scaling=constrained );

The following command uses polar coordinates to graph a curve called a cochleoid.

[ > plot( sin(t)/t, t=-6*Pi..6*Pi, coords=polar,

| scaling=constrained );

If we change the sin to a cos in the last command, the graph is not rotated 90 degrees.
[ > plot( cos(t)/t, t=-6*Pi..6*Pi, coords=polar,

| scaling=constrained );

Find a way to rotate the cochleoid 90 degrees clockwise.

[ >

Exercise: The parametric graph in Cartesian coordinates of the vector valued function

f(t) = (3 cogqt), sin(t)) is an ellipse.

[ > plot( [ 3*cos(t), sin(t), t=0..2*Pi ], scaling=constrained );

Let us try to convert this graph into a graph in polar coordinates of a real valued functien. Sinc
x(t) =3 cogt), y(t) = sin(t) and in polar coordinates=+/ x* + y*, we should graph the

functiong(t) :«/9 cos(t)? + sin(t)?.
- > plot( sqrt(9*cos(theta)*2+sin(theta)"2), theta=0..2*Pi,




~coords=polar, scaling=constrained );
Why is the graph not an ellipse?
[ >

L[>

'=| 5.5.3. Real valued functions of asinglevariablein non Cartesian coordinates

Recall that with Cartesian coordinates, if we are given a function, such as sim geph the
function two ways, ag = sin(x) or asx = sin(y). But in Cartesian coordinates, thiet

command will only graph the sin function with the independent variable along the horizontal
axis, i.e., ay = sin(x).

[ > plot(sin);

So in the Cartesian coordinate systemloeé command gives the horizontal axis a preferred
status as the default axis for the independent variable of a function.

With polar coordinates, just as with Cartesian coordinates, we can take a functsin kel

graph it two ways, as either= sin(0) or asd = sin(r). But in polar coordinates, theot

command will only graph the function sinras sin(0).

[ > plot( sin, coords=polar );

In the polar coordinate system, thiet command uses the circular "direction” as the preferred
direction for the independent variable and the radial "direction” is used for the dependent
variable. We commonly label the circular direction wdtthe angle) and we label the radial
direction withr (the radius). Using these labels, the default waylfar to graph a function
using polar coordinates is as f(9).

The labeld andr may be common for polar coordinates but there is nothing that says that we
must use them. In fact thelot command in polar coordinates does not prefer these labels in
any way. Here is a graph of the functmes 2U in polar coordinates. Notice that here the

plot command is using as the label for the circular direction.

[ > plot( cos(2*u), u=0..Pi, coords=polar, scaling=constrained );

[ >

When graphing real valued functions of one variable using polar coordinatpktthe

command will not graph a function with the radial direction as the independent variables,

if we use the common labels for the polar coordinaties, will not graph® =f(r), even

though there is nothing to prevent us from defining such a graph. (Later in this sectioh we wil
use parametric curves in polar coordinates to draw such a graph.)

Here is another example of hg@it will only graph a real valued function one way, as

r =f(8). Consider the graph of a constant function. In Cartesian coordinates, the graph of a
constant function will be a straight line. The line will be horizontal if the independealbheais




along the horizontal coordinate axis. The graph of a constant function will be a veréadtl |

the independent variable is along the vertical coordinate axis. The following comi&nd te
plot to graph several constant functions (in Cartesian coordinates).

[ > plot([1,3,6,-4]);

Sinceplot defaults, in Cartesian coordinates, to having the independent variable along the
horizontal axis, we got horizontal lines. Notice that we canngtlget to graph vertical lines
(unless we havplot draw parametric graphs). In polar coordinates, the graph of a constant
function will be either a circle, if the independent variable is in the "circulegtidn (i.e.0),

or a ray, if the independent variable is in the "radial" direction ().eThe following command
tellsplot to graph several constant functions using polar coordinates.

[ > plot([ 1, 3, 6, -4 ], coords=polar );

Sinceplot defaults, in polar coordinates, to having the independent variable in the circular
direction, we got circles. And we cannot g&it to graph rays emanating from the origin
(unless we use parametric graphs).

[ >

Theplot command can use several different coordinates systems on the plane when it

real valued function of one variable. For example, here is the "graph paper"” for a nomCartes
coordinate system called cassinian coordinates.

[ > plots[coordplot]( cassinian );

For every one of the non Cartesian coordinates systems, there is a preferrédritlifest
(somewhat arbitrarily) is used for the independent variable of the function. Using¢hssion
from the last paragraph, you should be able to figure out, for each coordinate system, which
coordinate directioplot defaults to for the independent variable of a function.

Exercise: One of the non Cartesian coordinates systemslthiat can use on the plane is
called hyperbolic coordinates. Here is a picture of some "graph paper"” in this caosystam.
[ > plots[coordplot]( hyperbolic, scaling=constrained );

Figure out which of the coordinate directions (the blue or the red one) is the prefercaédrdire
that is used as the independent variable wiein graphs a real valued function of one
variable using the hyperbolic coordinate system.

[ >

Exercise: Here are examples of "graph paper" for two more coordinate systems.

[ > infolevel[coordplot] := 2;

[ > plots[coordplot]( bipolar );

[ > plots[coordplot]( logcosh );

The following help page lists 14 non Cartesian coordinate systems for the plane.

[ > ?plot,coords

Draw graph paper for several more of these coordinates systems. Use the onlinedaslp t

about thecoordplot  command and try to modify some of these pieces of graph paper. Pick a
coordinate systems and try to figure out which of its two coordinates is used as thadedépe



variable by theolot command.

[ >

Here is the identuty functioffi(t) =t, graphed in seven different coordinate systems in the
plane. Notice that this is the function whose graph in cartesian coordinates is yhedjrend
in polar coordinates is the spirat 6.

[ > plot( t->t, 0..5, coords=cartesian, scaling=constrained );

[ > plot( t->t, 0..5, coords=polar, scaling=constrained );

[ > plot( t->t, 0..5, coords=cassinian, scaling=constrained );

[ > plot( t->t, 0..5, coords=invcassinian, scaling=constrained );

[ > plot( t->t, 0..5, coords=elliptic, scaling=constrained );

[ > plot( t->t, 0..5, coords=logcosh, scaling=constrained );

[ > plot( t->t, 0..5, coords=logarithmic, scaling=constrained );

[ >

Exercise: Here is one of the above graphs superimposed on its coordinate grid. Determine the
value of the independent and dependent variables at the point where this graph has its sharp
corner. (Hint: Graph a few constant functions.)
[ > infolevel[coordplot] := 1:

> gl:=plots[coordplot]( cassinian, [0..5,0..2*Pi],

view=[0..8,0..8] ):

> g2:=plot( t->t, 0..5, coords=cassinian, color=black ):
| > plots[display](g1,92, axes=framed );
[ >

[ >

ﬂ 5.5.4. Parametric curvesin the plane using non Cartesian coor dinates

Now let us consider using tipgot command to draw parametric curves in non Cartesian
coordinate systems. The form of thet command for parametric graphs in non Cartesian
coordinate systems is the same as it is in Cartesian coordinates. We put thepgoent
functions of the parameterization, along with a range for the independent variableaipaide

of brackets. But there is one tricky issue here that we need to consider. For each rsemCarte
coordinate system, th@ot command has to make an arbitrary choice of which "direction” of
the coordinate system comes first after the opening bracket. In the case of padlsvatesrthe
first expression after the opening bracket is the radial coordinate and the secesdierps

the angle. Here is an example that shows this. We graglog 26) using parametric equatic
(compare this with the graph of the same function in the previous subsection).

[ > plot( [cos(2*), t, t=0..2*Pi], coords=polar );

Notice a subtle difference in hgwot handles the Cartesian and polar coordinate systems. In
the Cartesian coordinate system, the order of the component expressions insiddkéte ibrac
independent-variable then dependent-variable (where, by independent and dependent variable,



we mean with respect to hgviot treats the coordinates when graphing a real valued function
instead of parametric equations). So we grapltoq 2x) using parametric equations this way.

[ > plot( [x, cos(2*x), x=0..2*Pi] );

For the polar coordinate system the, order of the parametric expressions is deparialelet-

then independent-variable, the opposite of what it is for Cartesian coordinates.

[ >

Exercise: In the nexplot command, what graph would you expect to get if you removed the
optioncoords=polar  from the command? Does the graph change frernoq 2t) to
y =coq 2t)?
{ > plot( [cos(2*t), t, t=0..Pi], coords=polar,
scaling=constrained );

[ >

Exercise: Thespacecurve command can graph parametric curves using cylindrical and
spherical coordinates systems (among many others). For each of these two cosyslieats,
figure out what the order of the parametric expressions is inside of the brackets.

[ >

Knowing howplot handles parametric equations in polar coordinates, we can now draw a
graph in polar coordinates of a function of the f@mf(r). Here is a graph & = sin(r).

[ > plot([r, sin(r), r=0..2*Pi ], coords=polar );

[ >

Exercise: Study the last graph carefully. Explain why it has the shape that it does. Explain what
the following graph is demonstrating.
> plot( [ [r,sin(r),r=0..4*Pi], [t,1,t=0..3*PIi],
[t,-1,t=0..4*Pi] ],
> coords=polar, color=[red,blue,green] );

[ >

Exercise: Use polar coordinates to draw a graph of a wedge from a circle.

[ >

Exercise: There is a bug in thenimatecurve ~ command when using polar coordinates. Let
us look at an example that brings out this bug. Here is a graph of a function.

[ > plot( sin(4*x), x=0..2*Pi );

Let us animate this last graph.

[ > plots[animatecurve]( sin(4*x), x=0..2*Pi );

Now let us convert the graph of the function from Cartesian to polar coordinates.

[ > plot( sin(4*x), x=0..2*Pi, coords=polar );

Now let us convert the animation from Cartesian to polar coordinates (which shouldeathie



previous graph).

[ > plots[animatecurve]( sin(4*x), x=0..2*Pi, coords=polar );

What went wrong? What dighimatecurve  do? Find a way to ussnimatecurve  to
animate the correct graph in polar coordinates.

[ >

At this point it is worth emphasizing how versatile parametric curves are eNuatvwe many

kinds of graphs we have been able to draw in the last several examples using garametri
equations. Besides drawing curves that are not the graph of any function, we have also used
parametric curves to draw all four of the kinds of graphs that can be made from aureal val
function using Cartesian and polar coordinates. For example, the following four commands use
parametric equations to draw graphy eff(x), x =f(y), r =1(0), andd =f(r) respectively,

where f is the squaring function.

[ > plot( [ x, x"2, x=-2..2]);

[ > plot([y"2,y,y=-2..2]);

[ > plot( [ theta"2, theta, theta=-2..2 ], coords=polar );

[ > plot([r, r2, r=-2..2 ], coords=polar );

Using parametric equations to graph real valued functions is an important and usefguiec
Make sure you understand exactly how the last four examples work. We will returnitie¢his

of using parametric equations to graph real valued functions in the section on parametric
surfaces. In that section we will see that this technique lets us work around a coupkinf bug
Maple.

[ >

Exercise: Try extending the range of the parameter for each of the last two polar graphs. Study
these two graphs until they make sense to you.

[ >

Exercise: Find a parameterization of the following curve that parameterizes one compédete pe
at a time in a counter clockwise direction. That is, the parameterization sheutchfie out the
complete petal in the first quadrant (going counter clockwise and starting atgding, dnen the
complete petal in the second quadrant, and then the complete petal that intersectdittesyneg
-axis. Use an animation to show that your parameterization has the desired @opertie
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Exercise: Parameterize the curve from the last exercise one complete petal atira i@
clockwise direction. That is, the parameterization should first trace out theaterpptal in the
first quadrant (going clockwise and starting at the origin), then the completéhaettatersects
the negativeg-axis, and then the complete petal in the second quadrant. Use an animation to
show that your parameterization has the desired properties.

[ >

[ >

= 5.6. Graphs of real valued functions of two variables

So far in this worksheet we have worked mostly with 2-dimensional graphs. In this and ttveonext
sections we study 3-dimensional graphs. Maple's basic command for graphing in 3ahalensi
space iplot3d . In this section we see how to uget3d to draw graphs of real valued functi

of two variables. In the next section we look at ugitg3d to draw parametric surfaces (i.e.,
parametric graphs of 3-dimensional vector valued functions of two real variabld® .saction

after that we look at howlot3d can use non Cartesian coordinate systems in 3-dimensional
space.

The following subsection useét3d to draw graphs of real valued functions of two variables.
The next subsection shows how to pke3d to graph functions over regions other than
rectangles. Then we look at a way to draw two dimensional representations of thersiairal
graphs by using theontourplot command. The final subsection shows how to combine

plot3d  with parametric curves in the plane to draw graphs of curves on surfaces.
[ >

5.6.1. Theplot3d command
If we want to graph a real valued function of two real variables, then its (input-outgpit) gr



will need three dimensions, two dimensions to represent the domain and one more dimension to
represent the codomain. We traditionally represent the domain in the graph as a thogizonta
-plane and we represent the codomain as a verteoak rising up out of the origin of thg

-plane. For each ordered patry) from the domain, we plot in 3-dimensional space the point

with Cartesian coordinates {/,2),with z=f(x, y) (i.e., we plot the poinx(y f(X y))). The

resulting graph is a 2-dimensional surface in 3-dimensional space. If you like, yountaof thi

the functionf & y )as a rule that says how to stretch the 2-dimensiyralane into a

2-dimensional surface in space.

[ >

We use theplot3d command to graph a real valued function of two variables by giving
plot3d the function and two ranges, one range for each of the two independent variabl
is an example. Be sure to click on this graph with the mouse and try rotating it.
[ > plot3d( cos(2*x)+y"2, x=-3..3, y=-3..3);
When you rotate the graph with the mouse, look aBtbegraphics context bat the top of the
Maple window. On the left edge of the context bar there are two boxes with numbers in them
that change as you rotate the graph. These numbers desciabetivation of the graph. If you
rotate a graph into a position that you think is especially nice, you can tglbted
command to draw the graph with that position by specifying the orientation numbers to the
plot3d command using therientation option. Here is the function from the last graph
with an orientation specified in thgot3d command.
{ > plot3d( cos(2*x)+y"2, x=-3..3, y=-3..3, orientation=[135,-90]

);
There are many other buttons on the context bar for three dimensional graphs. Try pléwying w
these buttons to see what they do.

[ >

A sometimes useful feature of thet3d command is the ability to graph in "black and wt
by using theshading=zgreyscale option. Graphs that are drawn this way will often print
better on a black and white laser printer than graphs that are drawn in full color.
{ > plot3d( sin(x)+sin(y/2), x=-6..6, y=-6..6, shading=zgreyscale

);
[ >

Recall that theolot command allowed the specification of two ranges, one range for the
independent variable and one range for the dependent variable. The range for the dependent
variable was especially useful for graphing functions that had vertical asgs\pfée might
therefore expect thelot3d command to allow a third range for its dependent variable. But it
does not. Thelot3d command always chooses the range for the dependent variable and it
automatically takes care of the fact that a function might "blow up" somewheag. &sample,

we graph the function M{). Compare graphing this function with graphing dsging theplot
command.



[ > plot3d( 1/(x*y), x=-3..3, y=-3..3);

Maple's ability to choose a scale for the vertical axis when there arealasgyenptotes in
3-dimensions is not infallible. The next graph has the same function as the last one, but a
slightly different pair of ranges.

[ > plot3d( 1/(x*y), x=-2..2, y=-2..2);

[ >

Theplot3d command can draw graphs of several functions at the same time. Here is a graph
of two functions. Notice that the two functiomsist be put inside of a pair of braces (brackets
would mean something else here).

[ > plot3d( {x*y-1, x"2+y"2}, x=-10..10, y=-10..10);

[ >

Exercise: Do the two surfaces in the last graph touch each other?

[ >

Here is an example of graphing a function and one of its tangent planes. We do this example
using Maple functions instead of expressions. First define the function.
[ > f:=(xy) ->-x"2-y"2;
Now define the point where we want to compute the tangent plane.
[ > (x0,y0) :=(2,2);
Now define the function that defines the tangent plane (we use thetpfanier "t angentp
lane off ).
{ > tpf = (x,y) -> f(x0,y0) + D[1](f)(x0,y0)*(x-x0)

> + D[2](F)(x0,y0)*(y-y0);
The next command returns the expression for the tangent plane function, just so thatege can s
what it looks like.
[ > tpf(x,y);
Now graph the original function and its tangent plane function.
[ > plot3d( {f, tpf}, -5..5, -5..5);
The last graph used a singl®t3d command to draw two surfaces. Using a simpdé¢3d
command to draw multiple surfaces can be convenient, but often we can improve a graph by
using separatglot3d commands for each surface and then combining the graphs using
display . Using separatplot3d commands lets us, for example, give each surface its own
domain. The next execution group improves the last graph by giving the tangent plane small
domain.

> graphl := plot3d( f, -5..5, -5..5):

> graph2 := plot3d( tpf, -2..5, -2..5):

> plots[display]( graphl, graph2);
[ >

Exercise: Here is the graph of the function and its tangent plane as expressions. For one thing,



notice how much more quickly this graph is drawn.

[ > plot3d( {-x"2-y"2, -8-4*(x-2)-4*(y-2)}, x=-5..5, y=-5..5);

The tangency in this graph is at the point (2,2,-8). Modifypthe88d command to "zoom in"
on the point of tangency until the function and its tangent plane are just barely distinlguisha
from each other.

[ >

Exercise: Choose some other function and some other point and draw a graph of the function
and its tangent plane at the point. Try graphing a function and several tangent planes at once
using Maple functions.

[ >

Recall from our discussion of tipgot command thaplot must, for each coordinate system
on the plane, (arbitrarily) choose one coordinate direction for the independent variable of the
function. Similarly, theplot3d command must, for each coordinate system on three
dimensional space, (arbitrarily) choose two coordinate directions for the indepentdriesa

of the function. In addition, thelot3d command must choose an ordering for the two
independent variables, that is, a way to match up each of the two rangegl@iitie

command with one of the two preferred coordinate directions.

For example, for the Cartesian coordinate system in space, let us use the comlmanabe
andz for the coordinate axes. Th&t3d command of course chooseandy as the
independent variables. The first range ingh®3d command is associatedx@and the

second range tp In addition, thex andy coordinates are drawn on a graph so as to form a right
hand coordinate system. So given a function f of two variableg)dizzl command will by
default draw the graph af=f(x, y) (in a right hand coordinate system). There are times when
some other graph may be desirable, for exampl& x, z), and we will see in the section on
parametric surfaces how this can be done. We will also return to this idea in thie segton
Cartesian coordinates in space.

[ >

Exercise: The following five commands graph two different functions. Which commands are
graphing the same function? Explain why.
[ > plot3d( cos(2*x)+y"2, x=-Pi..Pi, y=-3..3);
[ > plot3d( cos(2*x)+y"2, y=-3..3, x=-Pi..Pi);
[ > plot3d( cos(2*y)+x"2, y=-3..3, x=-Pi..Pi);
[ > plot3d( cos(2*v)+u”2, u=-Pi..Pi, v=-3..3);
> plot3d( cos(2*u)+v"2, v=-3..3, u=-Pi..Pi,
{ orientation=[135,45] );
[ >

Exercise: Two students are arguing over whether or not, given a function f of two variables,



plot3d can always graph bott f(x, y) andz =f(y, x) (why would these two graphs be
different?). The first student claims it can and gives this examplé(w,et) = u sin(Vv).

[ > f:=(u,v)->u*sin(v);

The next two commands seem to graphf(x, y) andz =f(y, x) respectively.

[ > plot3d( f(x,y), x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, axes=framed );

[ > plot3d( f(y,x), x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, axes=framed );

On the other hand, the second student points out that the next command griphy), and
there is no way, using the Maple function form of plotting, to geapi(y, x) without
redefining f.

[ > plot3d( f, -2*Pi..2*Pi, -2*Pi..2*Pi, axes=framed );

Who do you think is more correct? Should we saypph@Bd can always graph both
z=1(x y) andz=1(y, x), or should we say thatot3d graphs onlyg =1f(x, y)?

[ >

Exercise: If you have read the section on function valued functions from Worksheet 4, then
modify the tangent plane example from this subsection so that the fuipgtiois a function
valued function of two variables such that the inputgto are the coordinates of the point
where the tangent plane function foshould be computed, and the valued returneighbyis

the tangent plane function at that point. So, for exanpig,,2) would return the function
that defines the tangent planeftat the point{1,2) . And the expressiopf(1,2)(2,3)

would evaluate that tangent plane function at the gai) , which would give the tangent
plane approxiamtion df2,3)

Exercise: Further generalize your solution to the last exercise and define a function valued
functiontp with three input variables. The three input$toshould be a Maple functidn anc
two coordinate variableg0) andyO, where the tangent plane function foshould be

computed. The function returned tpy should be the function that defines the tangent plane to

f at the poin{x0,y0) . So then the expressigm(f,x0,y0)(x,y) would be the tangent
plane approximation dfx,y)  based afx0,y0)
[ >

Compare your solution to the following built in Maple command.
[ > ?VectorCalculus,TangentPlane

[ >

[ >

=] 5.6.2.Non rectangular regions

Theplot3d command can draw graphs over regions that are not rectangular. This can have
guite an effect on the appearance of the graph of a function. For example, the following

f(x y) =x* +y* has a rectangular domain.
[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, axes=boxed );
Notice how the graph has a very scalloped top edge. If you look at the graph of this function in




most calculus books, the graph will look much more bowl like than the above graph. The
following command redraws the graph with a circular, instead of rectangular, domain.

> plot3d( x"2+y"2, x=-4..4, y=-sqrt(16-x"2)..sqrt(16-x"2),
{ axes=boxed );
To see the shape of the region that the function is being graphed over, use the mouse to rotate
the graph so that you are looking straight dowrethgis onto thexy-plane (try this with the la:
two graphs). Here is the same function graphed over a region that is bounded by a piece of a
parabola on one edge and a straight line on another edge.

> plot3d( x"2+y"2, x=-4..4, y=-1/2*(x+4)..-(x/2)"2+4,
{ axes=boxed );
Here is a two dimensional graph of the region that the above graph is drawn over. Ty rotati
the previous graph so that it looks similar to this next graph.

> plot( [-1/2*(x+4), -(x/2)"2+4], x=-4..4,
{ > scaling=constrained, color=black );
Notice that the region is defined by two functionx.oDne function defines the "top edge" of
the region and the other function defines the "bottom edge". It is also possible to use two
functions ofy to define a region over which a surface is graphed. In this case, one function will
define the "left hand edge" and the other function will define the "right hand edge"stere i
example using the same surface as above. The "right hand edge" of the graphing eegjioa is
curve and the "left hand edge" is a vertical line.
[ > plot3d( x"2+y"2, x=-4..sin(Pi*y)+3, y=-4..4, axes=boxed );
Here is the region drawn by itself in two dimensions (notice that this time weaasd t
parametric curves to outline the region). Again, line up the previous graph so that it looks
similar to the next graph.

> plot( [ [-4,y, y=-4..4], [sin(Pi*y)+3, y, y=-4..4],
{ > [x, 4, x=-4..3], [X, -4, x=-4..3] ],

> scaling=constrained, color=black );
[ >

Exercise: The following command draws both a surface in 3-dimensional space and its region
in thexy-plane. Explain what trick is being used to graph the region irytbéane.
{ > plot3d( {0,x"2+y"2}, x=-4..sin(Pi*y)+3, y=-4..4, axes=boxed
)i
[ >

Let us go into more detail about graphing function over non-rectangualr regiongoidue
command can graph functions over two kinds of non rectangular regions. We call these two
kinds of regions Type | and Type Il regions. Here is a general picture of what a &gpenl r
looks like.
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A Type | regionR is defined by two numbeesandb and two functiong, X @ndg, & )defined
on the interval §, b ] The Type I regiomR is defined as all of the points in thgplane that
have theix value in the intervald, b &nd have they value betweeq, X andg, X ) That is,
the regiorR is defined as

R={(x y) |asxandx<b, andg,(x) <yandy<g,(x) }.
Given a functiorf X, y and a Type | regioR, we graph the function over the region by using a
plot3d command of the following form.

plot3d( f(x,y), x=a..b, y= g,(x)..  9,(x))
Notice how they range depends on Every choice ok betweera andb determines a different

range fory. That is, the endpoints for tlyjgange move up and downasaries fromatob
(look again at the above figure).

Here is a general picture of what a Type Il region looks like.
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A Type Il regionRis defined by two numbersandd and two functions, andh, defined on
the interval c, d ] The Type Il regiorR is defined as all of the points in tkgplane that have
theiry value in the interval¢, d &nd have theix value betweeh, Y andh, §/ ) That s, the
regionRis defined as

R={(x y)|csyandy<d, andh/(y)<xandx<g,y) }.
Given a functiorf X, y jand a Type Il regioR, we graph the function over the region by usi
plot3d command of the following form.

plot3d( f(x,y), x= h,(y).. h,(y),y=c..d)
Notice how thex range depends on Every choice of betweerc andd determines a different
range forx. That is, the endpoints for tke@ange move left and right gsvaries fromc tod
(look at the above figure). Notice that in fhlet3d command we still put therange before
they range, even though tixeange depends logically gn

In a Type | region, the left and right hand "sides" of the region do not have to be vertical lines
They can each reduce to just a point. For example, in the following Type | region, thd o

thex-axis is[a, b] =[-1, 1], the top edge is defined by the functipfx) =2 - ¢, and the
bottom edge is defined lgy(x) = x. The right hand "edge" of this region is just a single point.



Exercise: Make up an example of a Type Il region in which the top and bottom "edges" are just
points.

[ >

It is important to realize that the upper and/or lower functions for a Type | region can be
piecewise defined functions. For example, in the Type | region shown below, the interval on the
x-axis is[a, b] =[-1, 1], the top edge is defined by the functip(x) = 1 - X%, and the bottom
edge is defined by the piecewise function
_ 2 (x+1) x<0

9,(x) ={ 2(x-1) 0<x
The left "edge" of this Type | region is the single point (-1,0) and the right "edtfed' point
(1,0).



Exercise: The above region is also a Type Il region where the interval opakis is

[c,d] =[-2, 1], and the left and right hand side functibps/ gndih, §/ )are both piecewise
defined functions (and the top "edge" is the single point (0,1) and the bottom "edge" is the point
(0,-2) ). Find the piecewise fomulas for bathy @ndh, § )and use your formulas to redraw

the region.

[ >

Exercise: The following graph of the functidifx, y) = x* — y* has a very curved bottom.
[ > plot3d( x"2-y"2, x=-4..4, y=-4..4, axes=framed );
Find a shape for the domain of the graph so that the graph of this function has a flat bottom.

[ >

In a previous exercise, we drew a graph of a function and one of its tangent planes.hdere is t
graph once again.
[ > plot3d( {-x"2-y"2, -8-4*(x-2)-4*(y-2)}, x=-5..5, y=-5..5);
Let us modify the region that this graph is drawn over so that the graph of the functiorahbas a fl
bottom. We will draw the graph over a circular domain.

> plot3d( {-x"2-y"2, -8-4*(x-2)-4*(y-2)},
{ > x=-5..5, y=-sqrt(25-x"2)..sqrt(25-x"2) );
This graph is a bit strange looking. The tangent plane is now a very large disk, and it does not
look very good. We really should graph the function over a circular domain and graph the
tangent plane over a rectangular domain. We can do this if we use two spjuaBate
commands and then combine their graphs usingitigay  command.
- > graphl := plot3d( -x"2-y"2, x=-5..5,



y=-sqrt(25-x"2)..sqrt(25-x"2) ):
> graph2 := plot3d( -8-4*(x-2)-4*(y-2), x=0..4, y=0..4):
> plots[display]( graphl, graph2 );
[ >

Exercise: We used expressions in the last example. Modify the example to use Maple functions
throughout, including using functions to define the shape of the region taydeaivl over.

[ >

Exercise: What we have shown in this subsection is closely related to studying double integrals
over non rectangular regions of real valued functions of two variables, something thadlis us
covered in the third semester of calculus. Look up this topic in a calculus book. Use Maple to
duplicate as best you can some of the example pictures given in the book of functions defined
over non rectangular regions.

[ >

[ >

ﬂ 5.6.3. Level curves, level sets, and the contourplot command

An important way to study a function of two variables is to look at its level curves. The
plot3d command has th&yle=patchcontour option for drawing the graph of a
function along with several of the function's level curves. Here is a graph of a bowl shaped
surface along with several level curves.

> plot3d( 3*x"2+5*y"2, x=-5..5, y=-5..5, style=patchcontour,
{ axes=framed );

[ >
If you rotate this graph so that the vertical axis is straight up and so that yowarsiree

edge of they-plane, then you will see that the level curves are all parallel &xytpkane. That
is, each level curve is made of points on the surface that are all the same heightralbeosy]

thexy-plane.

Aleve curve for the graph of a functioh x(y i3 the set of all points on the graph that have the
same elevation.

Given a specific numberfor the elevation, here is another way to define the level curve.

Alevel curvewith elevation c for f(x, y) isthe intersection of the graph of z=1f(x, y) with the
horizontal planez=c.

Notice that the level curves are part of ¢haph of a function. There is also the very closely
related idea of a function's level sets, which are part of the funafimmen.
Aleve set for a functionf & y )is the solution set of all points in tRg-plane that solve the
equationf(x, y) = ¢ for some constartt




[ >
Level curves (and level sets) are an alternative way to provide visual informadiotitiae
shape of a function's graph. For example, here are two graphs, one of a bowl shaped surface and

one of a "saddle surface". If you rotate each of these two graphs, so that you are loaiging str

down thez-axis, then you will see two common and distinct patterns, one for the level curves
around a local maximum (or minimum) and one for the level curves around a "saddle point".




[>
Once you are used to thinking about and using level curves, you can look at a 2-dimensional
graph of a function's level curves and "see" the shape of the graph by recognizing timese dis
patterns. In the following graph we see an alternating pattern of saddle points and local
maximums and minimums. Rotate this graph to see its 3-dimensional shape.

2sin(x—y)sin(x+y)



[ >
Here is another common pattern that you will see with level curves. In the folloveipiy, gvha
do you think the closely spaced level curves mean, relative to the more spaced apart level

curves? Rotate the graph to see its 3-dimensional shape.
[ sin(x) cogy)|
Xy




Using a 2-dimensional picture to provide information about a 3-dimensional shape isligspecia
useful in mapping, where topographic maps are the best way to describe complicatetbter

for example, a hiker.
[ >

Closely related to the idea of a function's level curves and level sets is the notmmoda
diagram for a function. &ontour diagram for a functionf & y )is made by drawing in the
-plane a number of level sets for the function (or, what is nearly the same thing, by plushing t
function's level curves down into the plare 0). So a contour diagram is very much like the
two dimensional representations shown above for surfaces in three dimensions. Mdpe has t
contourplot command from thelots  package for drawing two dimensional contour

diagrams for functions of two variables.
> Xryrexp(-(x"2+y"2));



_ > plots[contourplot]( %, x=-2..2, y=-2..2);
Notice that the last graph is strictly two dimensional. You cannot rotate it.

We just mentioned that a contour diagram can be made by pushing a surface's level cur
into the plane = 0. Here is a nice way to see this. The next command draws a three dime¢
graph of the level curves for the same function as in the last command. But the next command
sets the orientation of the graph so that we are looking straight dowsatiseonto thexy-plane
(the plane where=0). So the next graph appears at first to be a two dimensional contour
diagram (i.e., like the last graph). But you can rotate the next graph to see thatahesdont
this diagram are really floating in space. Looking straight dowa-thés has the visual affect
of pushing the level curves down into the plare0.
> plot3d( x*y*exp(-(x"2+y"2)), x=-2..2, y=-2..2, style=contour,
{ > axes=normal, orientation=[-90,0] );

[ >

Here is another example of a contour plot and its 3-dimensional companion.
[ > -3*y/(x"2+y"2+1);
> plots[contourplot]( %, x=-10..10, y=-10..10, contours=17,
axes=boxed );
>
> plot3d( -3*y/(x"2+y"2+1), x=-10..10, y=-10..10,
style=contour, contours=17,
> axes=boxed, orientation=[-90,0] );

[ >

The contourplot command has several options. For example, the following command
specifies more contour lines, it specifies that the area between the contours slhshaddakin,
and the shading should shift from green to blue. (The default shading is from red, for low
contour values, to yellow, for high contour values.) The shading helps to distinguish between
valleys (local minimums) and peaks (local maximums) in the graph of the surface.
[ > plots[contourplot]( x*y*exp(-(x"2+y"2)), x=-2..2, y=-2..2,

> contours=15, filled=true,

coloring=[green,blue] );

[ >
[ > plots[contourplot]( -3*y/(x"2+y"2+1), x=-10..10, y=-10..10,
> contours=35, filled=true,

| coloring=[blue,red], grid=[100,100] );
[ >
Drawing contour diagrams for real valued functions of two variables is closalgdd¢b

graphing equations in two variables. To see the connection, consider a single levéh Saty wi
elevationc, for the functiorf & y )Then the points from theg-plane that are on that contour



are the points in they-plane that solve the equatif(x, y) = c. Here is an example. We will

work with the following function.

[ > f:=(Xy) -> x"2+y"2+sin(3*x)+sin(3*y);

Here is what its graph and some of its level curves look like.

[ > plot3d( f(x,y), x=-2..2, y=-2..2, style=patchcontour,

| axes=boxed);

Here is the same graph with a single level curve at elevation 2.

[ > plot3d( f(x,y), x=-2..2, y=-2..2, style=patchcontour,
contours=[2], axes=boxed );

Here is the single level set (contour) with elevation 2.

[ > plots[contourplot]( f(x,y), x=-2..2, y=-2..2, contours=[2] );

Now look at the graph of the equatitirx, y) = 2.

[ > plots[implicitplot]( f(x,y)=2, x=-2..2, y=-2..2);

The last two graphs are exactly the same.

We can use the above idea to mimic some of the functionality ebtiteurplot command
and get a bit of an idea how this command might be implemented. The following command
creates a sequence of equations of the féxry) = c, wherec, takes on several different
values.
[ > seq( f(x,y)=n, n=0..3);
We can now use thenplicitplot command to graph these four equations and get a ¢
diagram forf .
[ > plots[implicitplot]( {%}, x=-2..2, y=-2..2);
Here is the same graph draw wittntourplot

> plots[contourplot]( f(x,y), x=-2..2, y=-2..2,
{ contours=[0,1,2,3] );
So a contour diagram is exactly the same thing as drawing solutions to a sequena sét'l
equations”.

[ >

Exercise: Use theseq andimplicitplot commands to duplicate the following contour
diagram.

[ > plots[contourplot]( x*y*exp(-(x"2+y"2)), Xx=-2..2, y=-2..2);

[ >

Maple has many different ways to draw the level curves and/or contours of a threeahalens
surface. Theplot3d command has @ntours option for specifying the number of level
curves to draw or for specifying the specific elevations to use for the level cusresstan
example that requests three level curves.

> plot3d( 3*x"2+5*y"2, x=-10..10, y=-10..10,
{ style=patchcontour, contours=3);



Here is an example that specifies exactly which three level curves to draw.

> plot3d( 3*x"2+5*y"2, x=-5..5, y=-5..5, style=patchcontour,
{ contours=[10,20,65] );
There is another option twot3d that graph®nly the surface's level curves. But from just the
level curves it can be difficult to visualize the shape of a surface (unless you adérips
number of level curves; try it).
[ > plot3d( 3*x"2+5*y"2, x=-5..5, y=-5..5, style=contour );
Here is an example of a more interesting surface and some of its level cuickesnGhis
graph with the mouse and look at th® graphics context barhere is a group of seven
buttons near the middle of the context bar. These buttons let you switch between sea differ
style options. The third and fifth buttons (from the left) are for the styde¢shcontour
andcontour . Try them.

> plot3d( 10*x*y*exp(-(x"2+y"2)), x=-2..2, y=-2..2,
{ style=patchcontour );

Here are four Maple commands that draw four different visualizations of a funéioel's
curves.

[ > f:=(Xy) ->5*%/(x"2 + y*2 + 1),

[ > plot3d( f(x,y), x=-3..3, y=-3..3, style=patchcontour,

| shading=z);

[ > plot3d( f(x,y), x=-3..3, y=-3..3, style=patchcontour,
shading=z,

> filled=true );

> plots[contourplot3d]( f(x,y), x=-3..3, y=-3..3,
coloring=[blue,red],

> filled=true);

> plots[contourplot]( f(x,y), x=-3..3, y=-3..3,
coloring=[blue,red],

> filled=true );

The next command uses a non rectangular domain so that the graph's level curves do not break
up into pieces.

> plot3d( 3*x"2+5*y"2, x=-5..5,

y=-sqrt(15-3/5*x"2)..sqrt(15-3/5*x"2 ),

> style=patchcontour);
Notice that the idea of drawing a graph so that its top (or bottom) edge is "fled"darme as
drawing the graph so that its top (or bottom) edge is a level curve. We will say moréhadout
in the next subsection.
[ >

L[>
=



=1 5.6.4. Using level curveswhen drawing surfaces

In a calculus textbook, you almost never see an elliptic paraboloid and a hyperbolic parabolioi
graphed the following way.







[ >

The second two graphs are drawn so that the top and bottom edges (respectively) of the two
graphs are level curves. You can verify this by clicking on the graphs and then using thie contex
bar to change the style of each graphatchcontour . If you click on all four graphs and

rotate them so that you are looking straight dowretais, you can see what was changed to

make the last two graphs look better. The first two graphs are drawn over recteemjolas

and the second two graphs are drawn over non-rectangular regions. In this section we want to
see how to choose non-rectangular regions so that the top and/or bottom edges of our graphs are
level curves. This is a trick that is almost always used by textbooks to makedipéis of

surfaces look better.

The first graph above was drawn by the following command.
[ > plot3d( x*2+y"2, x=-1..1, y=-1..1, axes=framed );
Let us draw this graph so that its top edge is the level curve with elevation 1. To do this, we

want the graph's non-rectangular region to be determined by the lexelsét= 1. We know

that this is a circle of radius 1 centered at the origin. In order to make the intehir lefel se

into a non-rectangular region, we first need to decide if we shall use a Type | or lhrégpen.

We can use either, so let us use a Type | region. We need to find the two functions thz¢ descri
the top and bottom edges of the Type | region. Let us have Maple solve the exfuatjdr 1

for the two implicit functions that are these top and bottom edges.

[ > solve( x"2+y"2=1,y);

Let us name these two functions.



>yl :=9%[1];
{ > y2 = %%[2];
Now draw the graph of our surface over the Type | region determined by these two functions.
[ > plot3d( x"2+y"2, x=-1..1, y=y1..y2, axes=framed );
[>

Let's do the same for the hyperbolic paraboloid. The original graph was drawn by thisncbmma
[ > plot3d( x"2-y"2, x=-1..1, y=-1..1, axes=framed );

By looking carefully at the numbers on thaxis, we see that a good choice for the bottom

level curve isc = -1. So we need to use the leveléet y* = -1 to determine our

non-rectangular region. If we imagine the horizontal plane-1 slicing the above graph, we

can see that we will need to have our non-retangular region be a Type | region (we do ni
choice this time). We need to find the two functions that describe the top and bottom edges of
this Type | region (these two functions are, essentially, where the horizontak plaiieslices

through the two sides of the saddle surface). Let us have Maple solve the exfuatjor -1
for the two implicit functions that are these top and bottom edges.
[ > solve( x"2-y"2=-1,vy);
Let us name these two functions.
>yl :=9%[1];
{ > y2 = %%[2];
Now draw the graph of our surface over the Type | region determined by these two functions.
[ > plot3d( x"2-y"2, x=-1..1, y=y1..y2, axes=framed );
[ >

Exercise: Find the non-rectangular regions that reproduce the following two graphs.
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[ >

Exercise: Reproduce the following surface.
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[ >

Here is the graph of a plane over a rectangular region.
[ > plot3d( 3*x+5*y, x=-4..4, y=-2..6, axes=normal );
Let us redraw this plane with a bottom edge that is even witkytplne and a top edge that is
parallel to the bottom edge. We need a Type | non-rectangular region that has thet level s
3x+5y=0 as the lower boundary of the region and the leved get5y = 20 as the top
boundary of the region. Let us have Maple compute these level sets for us.

> solve( 3*x+5*y=0,Vy);
{ > solve( 3*x+5*y=20, vy );
Here is the plane drawn over this region. Rotate both this graph and the above graph and see
how the two graphs differ. In particular, rotate the graphs to look straight dowaxtieeand
see the shapes of the regions that the graphs are drawn over.
[ > plot3d( 3*x+5*y, x=-4..4, y=-3*x/5..-3*x/5+4, axes=normal );
For the sake of comparison, here is the first graph drawn with the two level curvesrthetd
bottom and top edges of the second graph.

> plot3d( 3*x+5*y, x=-4..4, y=-2..6, style=patchcontour,
{ contours=[0,20], axes=framed );

[ >

Exercise: Create the following graph. The plane has equdfirry) =x+ 2.



[ >

Let us work on a more complicated example. Consider the following graph.
> fi=(Xy) ->-5*x/(1 + X2 + y"2);
{ > plot3d( f(x,y), x=-5..5, y=-5..5, axes=framed );
Let us find a non-rectangular region that lets us isolate a region around the localimanx
the graph. In particular, let us find the non-rectangular region defined by the level dirve w
elevation 1, as shown in this graph (the elevation 1 level curve is the inner most of the three
level curves).
> plot3d( f(x,y), x=-10..5, y=-5..5, style=patchcontour,
{ contours=[1/2,3/4,1], axes=framed );
Let us have Maple solve for the two implicit functions defined by the levéset) = 1.
[ > gl :=solve( f(x,y)=1,Y);



If we graph these two function, we get a sense of what our non-rectangular Type laegson |
like.
[ > plot([ g1[1], 91[2] ], x=-5..0);
We need to know the left and right hand edges of our Type | region. So we need to solve for the
zeros of our top and bottom boundary functions.
[ > a:=solve(gl[1]=0, x);
Now we can graph our function over the non-rectangular Type | region.
[ > plot3d( f(x,y), x=a[1]..a[2], y=-g1[1]..g1[1], axes=framed );
There is a problem with the above graph. The upper and lower boundary functions of our Type |
region have vertical tangent lines at the left and right edges of the region. ldapiave
difficulties drawing graphs near vertical tangent lines. Here is a sms&lthat works in
situations like this. We move one of our endpoints by a tiny, but to us imperceptible, amount.
> plot3d( f(x,y), x=a[1]..a[2]-0.001, y=-g1[1]..91[1],
{ axes=framed );

We have isolated the local maximum and "cut” it out of the rest of the surface. ghielsthis
surface, with the isolated local maximum, back in to the original surface, buhi@tige its
color at the same time. The next command redraws this local maximum in andi$teading.
The next two commands draw the original surface but without this local maximum (whg/ do w
need two commands?). The fourth command puts everything back together again.
[ > pl:=plot3d( f(x,y), x=a[1]..a[2]-0.001, y=-g1[1]..g1[1],
| shading=z):
[ > p2:=plot3d( f(x,y), x=-6..6,
> y=piecewise(x<=a[l], 0, x<=a[2], g1[1],
x>=a[2], 0)..5,
> grid=[100,100] ):
> p3:=plot3d( f(x,y), x=-6..6,
> y=-5..piecewise(x<=a[1], 0, x<=a[2],
-91[1], x>=a[2], 0),
> grid=[100,100] ):
[ > plots[display](pl,p2,p3, style=patchcontour, axes=framed);
[ >

Exercise: What do you see if yodisplay  plotsp2 andp3 only? Why? How are plots2
andp3 related to each other? Why do they needhtheewise expressions in them?

[ >

1
Here is the previous example again, but using a levdi(sey;) :E, that encloses a larger

region to isolate the local maximum.
{ > plot3d( f(x,y), x=-10..5, y=-5..5, style=patchcontour,
contours=[1/2], axes=framed);

[



[ > g2 :=solve( f(x,y)=1/2,y);
[ > b :=solve(g2[1]=0, x);
[ > evalf(b);
> plot3d( f(x,y), x=b[1]..b[2], y=-g2[1]..92[1],
{ style=patchcontour, axes=framed);

[ >

[ >

=| 5.6.5. Drawing curves on surfaces

In Sections 5.4 and 5.5 of this worksheet we worked with parametric curves. Let us see how we
can combine parametric curves with graphs of functions in two variables. Let us draw som
curves that lie on surfaces. The easiest way to draw a graph of a curve on a stofase ke
surface's function to "lift" a curve off of the plane and into the surface. Here isuaipkex We

lift a spiral up to the graph of a paraboloid. This first plot draws the surface.

[ > gl :=plot3d( x"2+y"2, x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),

| style=hidden, shading=xy ):
The next plot draws the spiral lifted up into the surface.
[ > g2 := plots[spacecurve](
[t*cos(20*t), t*sin(20*t),

(t*cos(20*t)) 2+ (t*sin(20*t))"2],
i t=0..2, color=black, numpoints=200 ):
Now combine the two graphs.
[ > plots[display]( 91, g2 );
Try removinggl from thedisplay = command so that you see only the (lifted) spiral curve.

[ >

Here is the same example redone using Maple functions. Notice how in the defingioit cf
now more apparent what we mean by using the funétitmnlift the spiral curve up to the graph
of the surface.
[ > f:=(Xy) -> xX"2+y"2;
> X :=t->t*cos(20*t); # x coordinate of the spiral curve
> y.=t->t*sin(20*t); # y coordinate of the spiral curve
> g1 := plot3d( f(x,y), x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),
style=hidden, shading=xy ):

> g2 := plots[spacecurve](

[x(®), y(®), f(x(),y(®) ],

t=0..2, color=black, numpoints=200 ):
> plots[display]( g1, g2 );
> unassign(f,x,y);




Exercise: The above example uses Maple functions but the two plot commands actually use the
Maple functions to create expressions, so the plot comands are written using théosynta
expressions. Convert the two plot commands to use the syntax for Maple functions (in the
plot3d command you will need to express the non rectangular domain using Maple functions
and in thespacecurve command you will need to use t@perator).

[ >

Here is the same example redone again using Maple functions in a slightlgrdiftery. In this
example, the parameterization of the spiral curve is written as a vector wahg&drih. Notice

how the notation used in the definitiongif has become much more compact.

> fi=(X,y) -> xX"2+y"2;
> h:=t-> (t*cos(20*t), t*sin(20*t)); # the spiral curve
> gl := plot3d( f(x,y), x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),
style=hidden, shading=xy ):
> g2 := plots[spacecurve](
[ h(®), f(h()) 1,
t=0..2, color=black, numpoints=200 ):
> plots[display]( g1, g2 );
| > unassign(f,h,x,y);
[ >

Exercise: Redraw the last graph but with the spiral curve inkghplane added as a kind of
"shadow" of its lifted version on the paraboloid. Draw the graph with both the surface in the
graph and with the surface removed.

[ >

Exercise: Take one of the above examples of a curve drawn on a surface and convert the curve
into a (pretty narrow) tube plot. Try this both with and without the surface itself imapb.g

[ >

Now let us look at an example from calculus of a curve on a surface. Recall thatidle part
derivative with respect o of a functionf & y )at a pointX, y,) is computed by holding fixed
aty, and then computing the ordinary derivative of \, (which is a function of only one
variable) atx,. Geometrically, this means that we slice the gragh»oly (through the point (

X0 Yor f(Xy ¥p)) With a vertical plane parallel to tlya-plane, which gives us a curve in the
slicing plane, and then compute the slope of the line tangent to this curve. Here is apicture

this for the functiorf(x, y) = -x* - y* and the poinfx,, y,) = (2, 2) . Make sure you understand
each step of this execution group and how it relates to the definition of the partialideriva
f:=(xy) -> -x"2-y"2;

(x0,y0) := (2, 2);

tl .= x -> f(x0,y0)+D[1](f)(x0,y0)*(x-x0);

gl := plot3d( f, -5..5, -5..5):

V

vV V V



> g2 := plots[implicitplot3d]( y = y0, x=-5..5, y=-5..5,
z=-50..0):

> g3 := plots[spacecurve]( [t, yO, f(t,y0)], t=-5..5,
color=black ):

> g4 .= plots[spacecurve]( [t, yO, tl(t)], t=-2..5, color=black
):

> plots[display]( g1, g2, g3, g4, style=patchnogrid,
axes=framed );

[ >

Exercise: Part (a) Modify the last example so that it demonstrates the partial teriwéh
respect toy at the pointX; y,).

[ >

Part (b) Now combine the last two graphs and demonstrate both partial derivatinepant (
Xor Yo)-

[>

Part (c) Add the tangent plane at the paigty(,) fo your graph from part (b).

[ >

Exercise: Duplicate this graph. (Hint: The curve that is drawn on the surface is an example in
Section 5.4.1.)

[ >

L[>



=|5.7. Graphs of parametric surfaces

Just as thelot command can graph both functions of one variable and also parametric curves in
the plane, thelot3d command can graph both functions of two variables and parametric surfaces
in three dimensional space. The following subsection goes over the syntax faulasiadg to

graph parametric surfaces. The next two subsections go into quite a bit of detamaboariimon

and important parameterizations, the sphere and the torus. The goal of these twamashsédoti

help you learn how to think about parametric surfaces and how to relate the propertiekretthe t
component functions with the geometric shape of the surface that they paraméheritzest

subsection contains a number of exercises that make you think carefully about pasanfatres.

It also contains exercises that combine parametric curves in the plane witlejparaurfaces to

come up with unusual parameterizations of some interesting surfaces.
[ >

\=| 5.7.1. Parametric surfaces and the plot3d command

Before going over the details of parametric surfaces anoldk&d command, let us quickly
review the case of th@dot command.

Here is a graph of one function of a single variable.

[ > plot( cos(t), t=0..2*Pi );

Here is a graph of two functions, each of a single variable.

[ > plot( [ cos(t), sin(t) ], t=0..2*Pi );

Now if we move the range inside the brackets, the graph becomes a parametric tigve int
plane (that is, the output only graph of a 2-dimensional vector valued function of a single
variable), and the two functions are the horizontal and vertical component functions of the
curve.

[ > plot( [ cos(t), sin(t), t=0..2*Pi ] );

[ >

Exercise: Here is a graph of three functions, each of a single variable.

[ > plot( [ cos(t), sin(t), 2*t ], t=0..2*Pi );

What if we now move the range inside the brackets?

[ > plot( [ cos(t), sin(t), 2*t, t=0..2*Pi ] );

How do we fix the last command so that it draws an appropriate curve?

[ >

Now let us look at the analogous use ofgfl@3d command. Here is a graph of a single
function of two variables.

[ > plot3d( u*cos(v), u=-1..1, v=-Pi..Pi);

Here is a graph of two functions of two variables.

[ > plot3d( { u*cos(v), u*sin(v) }, u=-1..1, v=-Pi..Pi);

And here is a graph of three functions of two variables.

[ > plot3d( { u*cos(v), u*sin(v), v }, u=-1..1, v=-Pi..Pi);




Now replace the braces with brackets, and the graph becomes a parametridthatfas;ehe
output only graph of a 3-dimensional vector valued function of two variables), and the three
functions become the y, andz components of the parameterization.

[ > plot3d( [ u*cos(v), u*sin(v), v ], u=-1..1, v=-Pi..Pi);

Notice a key difference in the syntax of fhlet andplot3d commands. If we want to graph
several functions of a single variable, fiiet command allows us to place the list of functi
inside either a pair of braces or a pair of brackets, but if we want to graph a paraomeé, we
need the (two) functions along with their range inside of a pair of brackets. On the othef hand, i
we want to graph several functions of two variablesptb88d command requires that we |
the functions inside of a pair of braces, and if we want to graph a parametric swgfaeedith
three functions inside of a pair of brackets and the two ranges outside of the brackets.

[ >

Exercise: Notice the error message that the following command produces.

[ > plot3d( [ u*cos(v), u*sin(v) ], u=-1..1, v=-Pi..Pi);

What do you think the error message means by "standard form" and "parametric fahm" for
“first argument"?

[ >

In the first section of this worksheet we said that a parametric surfacenisddiey a single
function, a 3-dimensional vector valued function of two real variables. Here is a wayao use
Maple function to emphasize that a parametric surface is really definedrgfea(sector
valued) function. The functioffu, v) = (ucogVv), usin(v), v) defines the surface in the
previous example. Here is this function defined as a Maple function.

[ > f:=(u,v)->[u*cos(v), u*sin(v), v ];

Here is how we use this function to graph the parametric surface.

[ > plot3d( f(u,v), u=-1..1, v=-Pi..Pi);

This example emphasizes that a parametric surface is defined by a singtenfuBut it is
usually more convenient to work with three expressions than with a single Maple funztion, s
for the rest of this section we will express parametric surfaces by usaegetkpressions for the
three component functions of the parameterization.

[ >

Most third semester calculus books have several nice examples of interestmgtpar
surfaces. Here are a few examples that are typical of what you find in aisdook.

[ > [ sin(u), u*sin(v), u*cos(v) J;

| > plot3d( %, u=-Pi..Pi, v=0..3*Pi/2);

[ > [ (u-sin(u))*cos(v), (1-cos(u))*sin(v), u |;
| > plot3d( %, u=0..2*Pi, v=0..3*Pi/2 );

[ > [ (2+sin(v))*cos(u), (2+sin(v))*sin(u), u+cos(v) |;




\Y

plot3d( %, u=0..4*Pi, v=0..2*Pi );

[ > [ (1-u)*(3+cos(v))*cos(4*Pi*u),
(1-u)*(3+cos(v))*sin(4*Pi*u),
3*u+(1-u)*sin(v) |;

plot3d( %, u=0..1, v=0..2*Pi, orientation=[-14,76] );

V V. V V

[ 2+cos(theta)+r*cos(theta/2),
2+sin(theta)+r*cos(theta/2),
r*sin(theta/2) |;
plot3d( %, theta=0..2*Pi, r=-1/2..1/2, title="Mobius strip"
L)
[ >

V V. V V

Exercise: Redraw one of the last parametric surfaces using a single (vector valued) Maple
function to define the parameterization.

[ >

Recall that in the previous section we mentioned thatititi8d command, when graphing a
function of two variables, gives thxeandy coordinates the preferred status of being the
independent variables aptht3d always draws a graph pE f(x y). When graphing a
parametric surfaceylot3d does not give any coordinate direction a preferred status. It does
however always treat the first expression after the opening bracketasaimponent, the
second expression as treomponent, and the third expression asztbemponent. We can u
this to get other kinds of graphs from a function of two variables. That is, given a salgle re
valued function f of two independent variables we can use parametric equations to draw any of
the six graphg =1f(x, y), z=1(y, xX), y=1(x, z),y =1(z x), x=1(y, z), orx=1(z y). For

example, here is how we can graphy? + Z (as a parametric surface).

[ > plot3d( [y"2+z"2, Y, z], y=-2..2, z=-2..2);

Here is the analogous way to graphx® + y* as a parametric surface.

[ > plot3d( [, y, xX"2+y"2], x=-2..2, y=-2..2);

[ >

Exercise: Use the scroll bar on the Maple window so that you can see both of the last two
graphs at the same time. Use the mouse to rotate the two graphs into the same puesition. T
notice how similar mouse motions on each graph can cause different rotations of the graphs
Also, notice that each graph can be rotated around an axis that the other graph cannodl be rotate
about.

[ >

Here are all six possible graphs of the funcfioyv) — u? + sin(Ttv).
[ > f:=(u,v) -> ur2+sin(Pi*v);



[ > plot3d( [X, Yy, f(X,y)], x=
[ > plot3d( [X, Y, f(y,x)], x=
[ > plot3d( [x, f(x,z), z], x=
[ > plot3d( [x, f(z,x), z], x=
[ > plot3d( [f(y.2),y, Z],y
[ > plot3d( [f(z.y), y. z], y=-

Exercise: Explain why the first, third, and fifth graphs above look similar. In what way do they
differ from the second, fourth, and sixth graphs?

[ >

Exercise: Explain the relationships between the following four graphs. Notice that in each of
the second, third, and fourth commands, a pair, f variables is switched relative to the first
command.

[ > f:=(u,v) -> ur2+sin(Pi*v);

[ > plot3d( [x, Y, f(x,y)], x=-2..2, y=-3..3);
[ > plot3d( [x, Yy, f(x,y)], y=-2..2, x=-3..3)
[ > plot3d( [, Yy, f(y,x)], x=-2..2, y=-3..3)
[ > plot3d( [y, x, f(x,y)], x=-2..2, y=-3..3);

[ >

Exercise: How would you graph two (or more) parametric surfaces at the same time, but with
different parameter ranges for each surface? (Compare this withplisingor spacecurve
to draw several parametric curves.)

[ >

L[>

=572 Parameterizing a sphere
In the previous subsection we covered just the syntax of usimggti3el command to graph
parametric surfaces. Let us try to understand something about how parametessudek. A
good starting place is to look at the standard parameterization of the sphere of radius one
centered at the origin.
(6, @) - [sin(@) coqB), sin(®) sin(B), cog®)] with® O [0, 21] ande O [0, 1.

> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
{ > plot3d( %, theta=0..2*Pi, phi=0..Pi, titte="Sphere" );
[ >
One way to understand this parameterization is to semmth@ an@s)n @ )terms as
parameterizing a horizontal circle with a radius (which issthep térm) that changes with the
circle's height above (or below) theplane. In other words, the parameterization defines the
sphere as a stack of horizontal circles g&ges from 0 tar, the radius of these circles (i.e.,




sin( ) ) starts out at O whepis O (at the "north pole"), the radius then grows to 1 vghisiv2
(at the equator), and then shrinks back to O vgheachegst (at the "south pole™”). The height
above thexy-plane of the circle that is being drawn is given bydb& @ térm, which starts at
and decreases to -1 @goes from 0 tat

Here is a way that helps us to visualize the roles played in the parametermeatine
parameter® and@. The following parameterization changes the range for the vagpdiden

3m
0..mto0 T Since@is supposed to determine the height of the horizontal circles and we

restrict the range @, we should expect that some of the horizontal circles are missing. Rotate
the surface drawn by the following commands and notice that the bottom of the sphere is
missing.

> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
{ > plot3d( %, theta=0..2*Pi, phi=0..3*Pi/4, title="Sphere" );

111
In the next parameterization, we restrict the rang8 tf 0 T Sinced is supposed to

parameterize the horizontal circles and we restrict the rarfjenef should expect that every
horizontal circle is missing some of its circumference, i.e, the sphere should\extiea slice
(or wedge) removed from it.

> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
{ > plot3d( %, theta=0..11*Pi/6, phi=0..3*Pi/4, title="Sphere" );
By further experimenting with the ranges @and6, you should be able to build a sense of
these parameters are used to define the parametric surface.

[ >

Exercise: Draw a sphere with a band around the equator removed from the graph. (Hint: Use
two parametric surfaces and tiieplay command.)

[ >

Exercise: Draw a sphere with only four out of its eight octants so that no two of the drawn
octants have an edge in common. (Hint: You need to uselfoisid commands and the
display command.)

[ >

The standard parameterization of the sphere parameterizes the spherekasfasta&zontal
circles whose radii depended on their height aboveytiptane. If we modify the
parameterization so that the radii are constant (say constantly equal to 1), tetravetack of
constant radii horizontal circles, i.e., a cylinder.

> [ 1*cos(theta), 1*sin(theta), cos(phi) ];

> plot3d( %, theta=0..2*Pi, phi=0..Pi, title="Parametric

Cylinder");

Notice that with the parameterization the way it is now, the cylinder is drawnthe top



downward as the parametgvaries from O tatand that the height of the cylinder is restricted
between 1 and -1 (why?). If we change the third component of the parameterizaticodrom ()
to justq, then the height of the cylinder can be defined arbitrarily.

> [ cos(theta), sin(theta), phi |;

> plot3d( %, theta=0..2*Pi, phi=-10..10, title="Parametric

Cylinder");

Use thel:1 button on the graphics context bar to change the last two graphs and see that the
second graph really is taller thatn the first.

[ >

Exercise: Convert the last parameterization into a parameterization of a cone. So the ttae
stacked circles will vary linearly with the height of the circles.

[ >

In the section on parametric curves, we saw that animations of the paramefengwata
curve were helpful in visualizing how the parameterization works. We can do somethiiag
in the case of parametric surfaces. An animation of a parametric surfacenfidddone
parameter at a time. Such an animation can help us to understand the role played in the
parameterization by that parameter.

But before doing that, let us review how we animate parametric curves. Recalhé&aection
on animating parametric curves that the easiest way to "unfold" a paraateiaraf a curve is
to useanimatecurve . For example, the standard parameterization of a circle,
0 - [cog0), sin(B)], can be animated like this.
{ > plots[animatecurve]( [cos(theta), sin(theta), theta=0..2*Pi]
);

We can also do this "unfolding” of the parameterization by using a trick witmtheate
command.

> plots[animate]( [cos(s*theta), sin(s*theta), theta=0..2*Pi],
{ s=0..1);
The animation parameterrescales the parametéeta in the component functions of the
parameterization.

[ >

Maple does not have an "animatesurface” command that would be analogous to
animatecurve . But Maple does have amimate3d command that is analogous to
animate . To unfold the parameterization of a surface we usertheate3d command in a
manner similar to the above usesoimate .

Let us return to the standard parameterization of the sphere,

) o (6, @) - [sin(¢) cogB), sin(¢) sin(8), co )]
> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];



~ > plot3d( %, theta=0..2*Pi, phi=0..Pi, title="Sphere" );
and let us animate this parameterization by unfolding the parameterizatioh iof ¢aed andg
"directions”.

The next animation unfolds the parameterization irbtbgection and shows the rotation
caused by th8 parameter as it sweeps out horizontal circles. Here is the animatiorcreate
usinganimate3d .

> (theta,phi) -> [sin(phi)*cos(theta), sin(phi)*sin(theta),

cos(phi)];
> plots[animate3d]( %(s*theta, phi), theta=0..2*Pi, phi=0..Pi,
> s=0..1, frames=60, orientation=[-60,60],
> tittle="Animated Sphere");
[ >

The next animation unfolds the parameterization ingttieection and shows how tlge
parameter determines both the height and the radius of the circles swept ol pgrtmeter.
[ > (theta,phi) -> [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)];
> plots[animate3d]( %(theta, s*phi), theta=0..2*Pi, phi=0..PIi,
> s=0..1, frames=60, orientation=[30,100],
> scaling=constrained, title="Animated
Sphere");

[ >

The next animation shows how we can unfold both parameters at once. The resulting animation
Is interesting to watch, but it probably does not help one to understand the parameteszation a
much as the previous two animations.
[ > (theta,phi) -> [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)];
> plots[animate3d]( %(s*theta, s*phi), theta=0..2*Pi,
phi=0..Pi,
> s=0..1, frames=60, orientation=[-60,90],
> scaling=constrained, title="Animated
Sphere");

[ >

Exercise: Here are two parameterizations of a sphere. The standard parameterization.
[ > [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];

| > plot3d( %, theta=0..2*Pi, phi=0..Pi);

And an alternative parameterization.

[ > [ cos(phi)*sin(theta), cos(phi)*cos(theta), sin(phi) ];

| > plot3d( %, theta=0..Pi, phi=0..2*Pi);




The standard parameterization can be described as creating the sphere asrelélsiforth o
horizontal circles" while the alternative parameterization can be deseasbereating the sphere
as a "circle's worth of horizontal half circles".

Part (a): Use animations to discover how these parameterizations diffemiaythieat they
unfold each parametric direction. Explain the idea behind each parameterizasorifstida.

[ >

Part (b): Change the standard parameterization into a parameterizatioedhed a "circle's
worth of horizontal half circles". Change the alternative parameterizatma int
parameterization that creates a "half circle's worth of horizontaésfrqHint: For both of the:
changes, you only need to change the ranges used in each parameterization.)

[ >

Exercise: In the standard parameterization of the sphere, the third component of the
parameterizatior;os ¢ , Yetermines the height of a horizontal circle.gAsnges from O tar,
the height goes from 1 to -1. In the following parameterization, the height function has been

2
replaced with the linear functidn- 7([) which also goes from 1 to -1 @sanges from O taot

Explain why the parametric surface has the shape that it does.
> [ sin(phi)*cos(theta), sin(phi)*sin(theta), 1-2*phi/Pi |;
> plot3d( %, theta=0..2*Pi, phi=0..Pi, title="Christmas
Ornament");

[ >

Exercise: Use the standard parameterization of a sphere to draw the following surface. The hole
at the top of the sphere has radius 1/4 and the hole at the bottom of the sphere has radius 1/2.



Exercise: Find a parameterization of the sphere that will let you draw the following surface
Note that the holes in the suface must be centered on the y-axis. The radius of the ¢ és

1/4 and the radius of the hole in the back is 1/2.




e

Exercise: Explain why the following parameterization produces the shape that it does.
{ > [ (1-abs(phi))*cos(theta), (1-abs(phi))*sin(theta), phi ];

> plot3d( %, theta=0..2*Pi, phi=-1..1);
[ >

Exercise: Explain why the following parameterization produces the shape that it does.
> [ cos(phi)*cos(theta), cos(phi)*sin(theta), cos(phi) ];

{ > plot3d( %, theta=0..2*Pi, phi=0..Pi,
> title="Modified sphere parameterization" );

[ >

Exercise: The following surface has a circular profile when you look straight down one

coordinate axis, it has a cone shaped profile when you look straight down another coordinate
axis, and it has a square profile when you look straight down the third coordinate axis. Use the

parameterization to explain these profiles.

> [ cos(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
{ > plot3d( %, theta=0..2*Pi, phi=0..Pi,

> titte="Modified sphere parameterization" );

[ >



L[>

H 5.7.3. Parameterizing atorus

Let us look at another important example of a parametric surface and try to understdnd how
parameterization works. The following is a parameterization of a torus (thadasut, or inner
tube, shape).
(6, 9) - ((2+coq@)) cogB), (2+cog)) sin(8), sin(¢))

[ (2+cos(phi))*cos(theta),

(2+cos(phi))*sin(theta),

sin(phi) |;
plot3d( %, theta=0..2*Pi, phi=0..2*Pi,
> scaling=constrained, title="Torus" );
[ >
There are several ways to understand this parameterization. First, let usitoolaavay
similar to how we analyzed the parameterization of the sphere. The first two cangpone
parameterize horizontal circles with radius given by the expre&staoy ). Notice that the
maximum radius is 3 and the minimum radius is 1. The third component determines the height
of a horizontal circle. Notice that the height will start at 0 (wherD) and then the height will
rise up to 1, drop back down to 0, keep dropping down to -1, and then rise back up to 0. So any
particular height will be attained at two different values for the parampeBert the two
different values ofpthat determine the same height will determine different radii for the
horizontal circles. If we think ap as determining horizontal circles of different heights and
different radii, the image that we should get is that as the height starts ouidati€es, the
radius of the horizontal circle starts with value 3 and decreases as thesex|&\then the
height gets to its maximum of 1, the radius is 2 and it continues to decrease. As thdrbpght
back down towards 0, the horizontal circles are smaller that the circles drawnhenenght
was increasing to 1. When the height gets back to zero, the radius is 1 and the top half of the
torus is complete. As the height continues to decrease, the radius begins to indneasieN
height is at its minimum of -1, the radius is 2. As the height begins to increase lagaaditis
continues to increase. When the height reach 0 again, the radius is back to 3 and the bottom of
the torus is complete.

>
>
>
>

Let us confirm this analysis by making some changes in the ranges of the paraseterdid
with the sphere parameterization. According to the above analysis, if wet tbstniange ofp to

0 .., we should get just the upper half of the torus.
> [ (2+cos(phi))*cos(theta), (2+cos(phi))*sin(theta), sin(phi)

I
> plot3d( %, theta=0..2*Pi, phi=0..Pi,
> title="Torus", scaling=constrained );
] mm 3T )
If we restrict the range afto beE 7 then we should get the "inner" half of the torus.

- > [ (2+cos(phi))*cos(theta), (2+cos(phi))*sin(theta), sin(phi)




I;
> plot3d( %, theta=0..2*Pi, phi=Pi/2..3*Pi/2,
> title="Torus", scaling=constrained );

Sinceb is supposed to be parameterizing the horizontal circles, restricting the rahgjeonfd

L1
remove a sector from the torus. If we restrict the ran@tfoez .2 11, we should remove the

first eight of the circumference of the torus.
> [ (2+cos(phi))*cos(theta), (2+cos(phi))*sin(theta), sin(phi)
I;
> plot3d( %, theta=Pi/4..2*Pi, phi=0..2*Pi,
> title="Torus", scaling=constrained );

[ >

Exercise: Draw the torus with a band around it two "equators” removed, so the torus will be cut
into an upper and a lower half.

[ >

Exercise: Draw the torus with only four out of its eight octants so that no two of the drawn
octants have an edge in common. (Hint: You need to uselfoisid commands and the
display command.)

[ >

Here is another way to understand the parameterization of the torus. First ajral$ is &
“circle's worth of circles". We can define a torus by starting with a diofleadius 2) lying in
thexy-plane and centered at the origin, and then for each poimthis circle, we draw a
vertical circle with its center gtand lying in the vertical plane determineddognd the origin.
In other words, a circle's worth of circles. We can use this way of describing &otgiiue a
different analysis of our parameterization of the torus. The "circle of cemtehe xy-plane is
parameterized by

p(0)=[2cogB), 2sin(8),0].
For each choice & we get a different poirg 6 9n this circle. The curvecpq @), 0, sin(@) ]
parameterizes a vertical circle centered at the origin irztpéane. If we apply a rotation mat
to the points on this vertical circle

cogB) -sin(8) 0|l cogy)

sin(@) cogB) O 0

0 0 1L sin()
we get
[cog6) cog @), sin(8) cog @), sin(¢)]

which parameterizes a vertical circle centered at the origin in thealgidne determined by
the direction op @ )notice that we have also re-derived the parameterization of a sphere;
why?). If we take this parameterization of a vertical circle and add it to tamptarization of
the circle of centerq €(,)



[2co90),2sin(B),0] + [cog0O) coq @), sin(B) cog @), sin(®) ]

then we take each vertical circle and move its center to a point on the circle of.d@ate¢he
last sum is another way of writing our parameterization of the torus.

> [2*cos(theta), 2*sin(theta), 0]
{ >+ [cos(theta)*cos(phi), sin(theta)*cos(phi), sin(phi)];
[ > factor(%);
In summary, choosing a value foin the parameterization chooses a point on the circle of
centers and then the paramegéraces out one of the vertical circles in the "circle's worth of

circles".
[ >

The following graph illustrates this way of thinking about a torus. The graph drawsrthe 6t
centers" in thexy-plane, then it draws three vertical circles centered at three differend point
around the "circle of centers"”, and then the graph draws part of the torus as it goes around the
rest of the "circle of centers"”.

> g1 := plots[spacecurve]([ 2*cos(theta), 2*sin(theta), 0 ],
> theta=0..2*Pi, color=black):
> g2 := plots[spacecurve]([ 2*cos(0)+cos(0)*cos(phi),
> 2*sin(0)+sin(0)*cos(phi),
> sin(phi) ], phi=0..2*Pi,
color=black ):
> g3 := plots[spacecurve]([ 2*cos(Pi/4)+cos(Pi/4)*cos(phi),
> 2*sin(Pi/4)+sin(Pi/4)*cos(phi),
> sin(phi) ], phi=0..2*Pi, color=blue
):
> g4 := plots[spacecurve]([ 2*cos(-Pi/4)+cos(-Pi/4)*cos(phi),
> 2*sin(-Pi/4)+sin(-Pi/4)*cos(phi),
> sin(phi) ], phi=0..2*Pi, color=red
):
> torus := [(2+cos(phi))*cos(theta), (2+cos(phi))*sin(theta),
sin(phi)]:
> g5 := plot3d( torus, theta=Pi/2..3*Pi/2, phi=0..2*Pi ):
> plots[display]( g1, 92, g3, g4, g5, scaling=constrained,
> axes=normal, style=patchnogrid );
[ >

Here is still another way to derive the parameterization of the torus. This gyrs wimilar to
the second way. Start by noticing that the torus is a surface of revolution. We getty torus
starting with a unit circle in thez-plane with center (2,0,0) and then revolving this circle ar
thez-axis. The unit circle in thez-plane with center at (2,0,0) has the following
parameterization.

[2+ coq o), 0, sin(@)]



If we apply a rotation matrix to the points on this vertical circle
cog0) -sin(B) 0|2+ coqo)
sin(@) cogB) O 0
0 0 1L sin()
then we get our parameterization of the torus. Let us do this matrix multiplicaitngnMiaple.
Here is the rotation matrix.
> Matrix( [ [cos(theta), -sin(theta), 0],

> [sin(theta), cos(theta), 0],

> [ 0, 0,1]1);
Here is the vector that represents the points on the unit circlexaphane with center at
(2,0,0).

[ > Vector( [2+cos(phi), O, sin(phi)] );

Here is how we compute their product.

[ > %% . %;

The next command rewrites the last result in the form that we usually use &mesurf
parameterization, as a "row vector".

[ > LinearAlgebra[Transpose](%);

[ >

Let us create animations that unfold the standard parameterization of the torus.

(6, 9) - ((2+coq9)) cog6), (2+ cog@)) sin(B), sin(®))
The next animation can be thought of in two ways. If we think of the parameterization of the
torus as a stack of horizontal circles, then this animation shows how the circeschesl as a

function of their height. The animation starts with a horizontal circle at heightd@ (s

T
sin(¢@) = 0 wheng=0), then it draws the circles with increasing height upmlz then it draw

31
circles with decreasing height ungiE 7 and then draws circles with height increasing back

to 0 whenp=2 1t On the other hand, if we think of the parameterization as a circle's worth of
circles, then this animation animates the parameterization of all theaVentates
simultaneously.

> (theta,phi) -> [(2+cos(phi))*cos(theta),
> (2+cos(phi))*sin(theta),
> sin(phi)];
> plots[animate3d]( %(theta, s*phi), theta=0..2*Pi,
phi=0..2*Pi,
> s=0..1, frames=60, orientation=[90,130],
> scaling=constrained, title="Animated
| Torus");
[ >

Here is another view of this parameterization. In this version, only half of the t@hais to



make it easier to see how the animation is unfolding the parameterizatiorpiditbetion
around the vertical circles.

> (theta,phi) -> [(2+cos(phi))*cos(theta),
> (2+cos(phi))*sin(theta),
> sin(phi)];
> plots[animate3d]( %(theta, s*phi), theta=0..Pi, phi=0..2*PIi,
> s=0..1, frames=60, orientation=[-120,70],
> scaling=constrained, title="Animated Half
| Torus");

[ >

The next toral animation animates going around the circle of centers. That isjitrasi@n
unfolds the parameterization in tAalirection around the circle of centers.

> (theta,phi) -> [(2+cos(phi))*cos(theta),
> (2+cos(phi))*sin(theta),
> sin(phi)];
> plots[animate3d]( %(s*theta, phi), theta=0..2*Pi,
phi=0..2*Pi,
> s=0..1, frames=60, orientation=[-90,60],
> scaling=constrained, title="Animated
| Torus");
[ >

The third toral animation combines the previous two and it unfolds both parametric dirat
the same time.

> (theta,phi) -> [(2+cos(phi))*cos(theta),

> (2+cos(phi))*sin(theta),

> sin(phi)];

> plots[animate3d]( %(s*theta, s*phi), theta=0..2*Pi,
phi=0..2*Pi,

> s=0..1, frames=60, orientation=[-110,-160],

> scaling=constrained, title="Animated
Torus");

[ >

Exercise: Modify the parameterization of the torus to create a parameterization ofltverigl
surface.



Here is another illustration of this surface, with part of the wall of the suctd@avay so that
you can see how the surface wraps inside of itself.
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Hint: Go back to the analysis of the torus as a "circle's worth of vertica<irth this way of

looking at the parameterization, you want to make the radii of the vertical ahaage with
their location around the horizontal circle.

[ >
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=] 5.7.4. Parameterizations as patterns

In this section we consider the parameterization of the sphere and the torus as theatteve

can use to generate new parameterizations for a variety of surfaces. Fplegtiam the

standard parameterization for the sphere we can genertate parameteriaita cube, pyrami
tetrahedron, cone, and prism. We do this by analyzing the role played by each function in the
parameterization of the sphere and then using that information to tell us how we cem repla
those functions with component functions from parameteric curves.

[ >

Let us look once again at the parameterization of a sphere. Horizontal cross séetiepkere
are circles. So we can think of a sphere as a stack of circles whose radii iiaheiwiheight
above they-plane. Now look again at the component functions of the parameterization.
x=sin(@) cog0), y=sin(@)sin(B), z=coqe).
Notice that for a fixed value af, thex andy coordinates parameterize a horizontal circle of
radiussin (@ )that has heightos ¢¢ above thexy-plane. So we see right away that this
parameterization does describe the sphere as a stack of horizontal circlesghthadoze the
xy-plane of a circle is given by tlwes @ (term which starts at 1 and decreases to {igmes
from O tort The radius termsin ¢§ gtarts out at 0 whepis 0 (at the "north pole") and the rac
then grows to 1 and then shrinks back to @ geses from O tat The way the radii of these
circles change with their height is described by the profile of the sphere when tresismue
by a vertical plane. If we fi® = 0, theny =0 and we see that the profile of the sphere in the
verticalxz-plane is parameterized Ry= sin( @) andz = coq @) with ¢ [0 [0, 1], which is

L1
clearly a half circle profile (similarly for fixef = E and theyz-plane).

[ >

In summary, we can say that tt@s 6 (@ndsin @ )terms in the paramterization of the sphere
parameterize a curve (i.e., a circle) which is the horizontal cross sectionsoffihee, and the
sin( @) andcos (@ )terms parameterize a curve (i.e., a half circle) which is the verticalepobfi
the surface. Now let us see how we can use this interpretation of the parat@terizhe
sphere to create parameterizations of some new surfaces.

In Section 5.4.4 we created parameteriztions for a few simple polygons like the augi#ne
triangle. We showed in that section how the components of those parameteriztiong are ver
much like the cosine and sine functions in the parameterization of the circle. WMz s<
take the component functions from the polygon parameterizations and use them to replace
appropriate cosine and sine functions in the sphere parameterization, thereby changing t
curves that are the horizontal and/or vertical cross sections of the paraatieterBy choosing
different horizontal and vertical cross sections, we can modify the pararatteriaf the

sphere into parameterizations of many different surfaces.




[ >

For our first example, let us change the vertical profile in the sphere panaatairrfrom a
half circle into a half triangle. Here are horizontal and vertical componentdaadbr the
parameterization of an equilateral triangle.
[ > tri_horz :=t-> piecewise(t < 1/3, -4.5*t+1,
> t<2/3,-0.5,

t<=1, 4.5*%-35),
tri_vert :=t -> piecewise(t < 1/3, 2.598*t,

t < 2/3, -5.196*t+2.598,
> t<=1, 2.598*-2.598);
Here is the curve that these functions parameterize.
[ > plot( [tri_horz(t), tri_vert(t), t=0..1] );
These component functions parameterize the triangle in a manner similar ty tth@the
cosine and sine functions parameterize a circle (withert being analogous to cosine and
tri_vert being analogous to sine). In particular, the parameterization startd widest the
point (1,0), the parameterization goes around the triangle counter clockwise, and the range
from O to 1/2 parameterizes the upper half of the triangle.

> plots[animatecurve]( [tri_horz(t), tri_vert(t), t=0..1/2],

{ > view=[-1..1,-1..1]);
Let us "plug in" these two component functions in place ottisep afdsin (@ )terms from th
paramterization of the sphere. Recall that these two terms gave the sphéril@grofile.
The new parameterized surface will have circular horizontal cross sectobastid@angular

profile. (Notice that the range fgris changed to 0 to 1/2, instead of Ggo
{ > '[tri_vert(phi)*cos(theta), tri_vert(phi)*sin(theta),

vV V. V

tri_horz(phi)];
> plot3d( %, theta=0..2*Pi, phi=0..1/2);
[ >

Exercise: How would you remove the bottom from the previous surface to create an open cone?

[ >

Exercise: Consider the following two piecewise defined functions.
> f:=x-> piecewise( x<1/4, 4*x, x<3/4, 1, x<=1, -4*x+4);
{ > g :=X->piecewise( x<1/4, 1, x<3/4, 2-4*x, x<=1, -1);
Notice that they parameterize three out of four sides of a square in the plane.
[ > plot([f(t), g(t), t=0..1]);
The following parameterization draws a "can". Explain how this parametenzadrks by
comparing it to the standard parameterization of a sphere. Also, how would you makeghis can'
height twice what its diameter is? How would you turn this into a parametenizdta can witl
no lid?
{ > [ f(phi)*cos(theta), f(phi)*sin(theta), g(phi) ];



~ > plot3d( %, theta=0..2*Pi, phi=0..1, title="Can" );
[ >

Exercise: Here is a parameterization of a closed frustum of a cone that has radius 1 at the top
and radius 2 at the bottom and height 1 (the height is the vertical distance from the tagpte
the bottom surface). This parameterization is based on the previous exercise and its
parameterization of a can. Modify this parameterization so that it uses thmegeparsa, b,
andc, such that andb determine the radius of the top and bottom of the frustum respectively
andc is the height of the frustrum.
[ > f:=x->piecewise( x<1/4, 4*x, x<3/4, 2*x+1/2, x<=1, -8*x+8
)i
> g :=X-> piecewise( x<1/4, 1, x<3/4, 3/2-2*x, x<=1, 0);

> [ f(phi)*cos(theta), f(phi)*sin(theta), g(phi) ];
> plot3d( %, theta=0..2*Pi, phi=0..1, title="Frustum of a Cone"
)i
[ >

Now let us take our cone parameteriztion and replace the circular cross setttigtare

cross sections. We need to replacectte0 andsin @ )terms with the components of a
parameterization of a square.

> sqg_horz :=t-> piecewise(t<=1/8, 1,
> t <= 3/8, -8*t+2,

> t <=5/8, -1,

> t<=7/8, 8*-6,

> t<=1, 1)

> sq_vert :=t-> piecewise(t <= 1/8, 8%,
> t<=3/8, 1,

> t <= 5/8, -8*t+4,

> t<=7/8, -1,

> t<=1, 8*%8);

Here is a parameterization of the surface with square horizontal crossisectd a triangular
profile. (Notice that the range féris changed to 0 to 1 from 0 ta®

> [ tri_vert(phi)*sq_horz(theta),

> tri_vert(phi)*sq_vert(theta),

> tri_horz(phi) ]}

> plot3d( %, theta=0..1, phi=0..1/2);
[ >

Here is the surface with a square profile and circular cross sections .(again)
> '[sq_vert(phi)*cos(theta), sq_vert(phi)*sin(theta),
sq_horz(phi)];
> plot3d( %, theta=0..2*Pi, phi=0..1/2 );
[



[ >

The surface with a square profile and square cross sections.
> '[ sq_vert(phi)*sq_horz(theta),
> sg_vert(phi)*sg_vert(theta),
> sq_horz(phi) ]}
> plot3d( %, theta=0..1, phi=0..1/2);
[ >

Exercise: Draw the cube with its top and bottom faces removed. Can you remove any other
face?

[ >

In the section on the parameterization of the sphere we used animations to visualize how t
parameterization could be "unfolded" in the direction of each parameter. Herepasdereis
the animation of the sphere parameterization being unfolded éhdinection, around the
horizontal circles. This animation is followed by the analogous animation for the cube
parameterization. Look carefully at the two parameterizations (given just abolv@nimation)
and see how they are structured in the same way. Be sure that you understand how each
animation works and why they look so similar.
[ > (theta,phi) -> [ sin(phi)*cos(theta),
> sin(phi)*sin(theta),

cos(phi) I;
plots[animate3d]( %(s*theta, phi), theta=0..2*Pi, phi=0..Pi,

s=0..1, frames=60, orientation=[-60,60],

tittle="Animated Sphere");

(theta,phi) -> [ sq_vert(phi)*sq_horz(theta),
sq_vert(phi)*sqg_vert(theta),
sqg_horz(phi) |;
plots[animate3d]( %(s*theta, phi), theta=0..1, phi=0..1/2,
s=0..1, frames=60, orientation=[-60,60],
> titte="Animated Cube");
[ >
Here are the animations of the sphere and cube parameterizations being unfolded im the othe
direction.

vV VVVVVVYVYVYV

> (theta,phi) -> [ sin(phi)*cos(theta),
> sin(phi)*sin(theta),
> cos(phi) I;
> plots[animate3d]( %(theta, s*phi), theta=0..2*Pi, phi=0..Pi,
> s=0..1, frames=60, orientation=[30,120],
> tittle="Animated Sphere");
[ >



[

>
>
>
>
>
>
>

(theta,phi) -> [ sq_vert(phi)*sq_horz(theta),
sqg_vert(phi)*sq_vert(theta),
sq_horz(phi) ];

plots[animate3d]( %(theta, s*phi), theta=0..1, phi=0..1/2,
s=0..1, frames=60, orientation=[30,120],
tittle="Animated Cube");

Exercise: The following two animations make use of a slight variation on the cube
parameterization. Each animation unfolds this parameterization in a differecttai. Explain

what has been changed from the previous cube parameterization and why the changes have the
effect that they do on the parameterization's unfoldings. (Be sure to rotatertinesegons as

they are playing and watch them from various angles.)

T

>
>

V VVVVYVYVVYVYVYVYV

(theta,phi) -> [ sq_horz(phi)*sq_horz(theta),
sq_horz(phi)*sq_vert(theta),
sq_vert(phi) ];

plots[animate3d]( %(theta, s*phi), theta=0..1/2, phi=0..1,
s=0..1, frames=60, orientation=[30,60],
axes=boxed, title="Animated Cube");

(theta,phi) -> [ sq_horz(phi)*sq_horz(theta),
sq_horz(phi)*sqg_vert(theta),
sq_vert(phi) ];

plots[animate3d]( %(s*theta, phi), theta=0..1/2, phi=0..1,
s=0..1, frames=60, orientation=[120,60],
axes=framed, title="Animated Cube");

Here is a parameterization of a tetrahedron, a surface with a triangulée anofitriangular
Cross sections.

[

>
>
>
>
>

[ tri_vert(phi)*tri_horz(theta),
tri_vert(phi)*tri_vert(theta),
tri_horz(phi) |;

plot3d( %, theta=0..1, phi=0..1/2);

There is a lot of experimenting and playing around that can be done with these ideas. For
example, here is a surface created from an odd mix of component functions from tereatdiff
parametric curves (circle, square, and triangle).

>

VvV V V

[sin(2*Pi*phi)*cos(2*Pi*theta),
sin(2*Pi*phi)*sq_vert(theta),
tri_horz(phi)];

plot3d( %, theta=0..1, phi=0..1/2);



[ >

Exercise: Find a parameterization for the following surface. (Note: Do note just glue togethe
half of a sphere with half of a cylinder using theplay = command. Find component
functions that completely parameterize this surface.)

g,
AT

[ >

In all of the surfaces that we have parameterized so far, the vertical prefbedrma closed
curve. But it need not be. For example, here is a surface with triangular cromsssact a
parabolic profile.

> '[(A+phi*2)*tri_horz(theta), (1+phi”2)*tri_vert(theta),

phil’;

> plot3d(%, theta=0..1, phi=-1..1, scaling=constrained );
Notice in this parameterization that the curve that creates the vertiaéd golie graph of a
function with the independent variable on #axis. This vertical profile function (
glu)=1+ u?in this case) is parameterized by ghalong thez-axis and thd + cp2 term in the
other two component functions (compare this to the way in which we parametricptedra
x=f(y) in Section 5.4.2).
[ >

Here is a similar example with square cross sections and a sinusoidal profile.
> '[(2+cos(phi))*sg_horz(theta), (2+cos(phi))*sq_vert(theta),
phi]’;
> plot3d(%, theta=0..1, phi=-2*Pi..2*Pi, scaling=constrained );
[ >



Exercise: Explain how the last two examples are related to the idea, from calculus, ofaaé
of revolution".
[ >

Now let us do some examples with the standard parameterization of the torus. ditere thg
parameterization.

> [ (2+cos(phi))*cos(theta),

> (2+cos(phi))*sin(theta),

> sin(phi) ];

> plot3d( %, theta=0..2*Pi, phi=0..2*Pi, scaling=constrained );
Recall that a torus can be thought of as a "circle's worth of vertical cir€lestos(p )and
sin( @) terms parameterize the vertical circles, ancctied ahdpin @ )terms parameterize the
circle of centers for the vertical circles. We can replace these functittnthev component
functions from other parametric curves and get other kinds of "tori".

[ >

Here is the parameterization of the surface that can be described ases owodh of vertical
trinagles".
> [ (2+tri_horz(theta))*cos(phi),

> (2+tri_horz(theta))*sin(phi),

> tri_vert(theta) |:

> plot3d( %, theta=0..1, phi=0..11*Pi/6, scaling=constrained );
[ >

Here is the parameterization of the surface that can be described as as'seprénedf vertical
circles".
[ > [ (2+cos(theta))*sq_horz(phi),
(2+cos(theta))*sq_vert(phi),
sin(theta) ]:
plot3d( %, theta=0..2*Pi, phi=0..11/12, scaling=constrained
);

\Y

V V. V

[ >
Here is the surface that can be described as a "triangle's worth of veptimss'.
[ > [ (2+sq_horz(theta))*tri_horz(phi),

> (2+sq_horz(theta))*tri_vert(phi),

> sq_vert(theta) ]:

> plot3d( %, theta=0..1, phi=0..11/12, scaling=constrained );

>

[
Exercise: Each of the following three surfaces is a torus that can be thought of as a "square's
worth of vertical triangles”. Find a parameterization for each of these tinfeees.
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[ >

Exercise: The following three parametric surfaces are all based on the paramiete i at
torus. Analyze them to determine which part of the parameterization lifts tfseeupiin thez
-direction. Which part of the parameterization makes the vertical crossrssietink as it wind
around? Which part of the parameterization makes the torus spiral in towazesctbe

[ > [ (1-theta/2.5)*(5+sqg_horz(phi))*cos(2*Pi*theta),

> (1-theta/2.5)*(5+sq_horz(phi))*sin(2*Pi*theta),

> 2*theta+(1-theta/2.5)*sq_vert(phi) ]:

> plot3d( %, theta=0..2.5, phi=0..1,

> orientation=[-30,75], numpoints=1000 );

>

>

>

\Y%

[ (2+(1-theta/5)*sq_horz(phi))*cos(2*Pi*theta),
(2+(1-theta/5)*sq_horz(phi))*sin(2*Pi*theta),



2*theta+(1-theta/5)*sq_vert(phi) ]:
plot3d( %, theta=0..2.5, phi=1/2..1,
orientation=[-30,75], numpoints=1000 );

V VVVVVVYV VYV

[ (2+(1-theta/2)*sq_horz(phi))*cos(2*Pi*theta),
(2+(1-theta/2)*sq_horz(phi))*sin(2*Pi*theta),
(1-theta/2)*sq_vert(phi) ]:

plot3d( %, theta=0..1.5, phi=1/2..1,

orientation=[-60,45], numpoints=1000 );

r

Exercise: Use homotopies to recreate the following animation of a cube morphing into a
(See Section 4.10 and also Section 5.4.4.)

[ >

L[>
=| 5.7.5. Exercises with parametric surfaces

Exercise: Explain in detail how each of the following three parameterizations defines its
parametric surface.

[ > plot3d( [ u*cos(v), u*sin(v), 1 ], u=0..1, v=0..2*Pi );

[ > plot3d( [ u*cos(v), u*sin(v), u ], u=0..1, v=0..2*Pi );

[ > plot3d( [ u*cos(v), u*sin(v), v ], u=0..1, v=0..2*Pi );




[ >

Exercise: Study the following parameterization. How would you get more spirals to show
graph? What if you wanted this to be a spiral water trough with no top?
> plot3d( [(2+sin(Vv))*cos(u),

> (2+sin(v))*sin(u),
> u+cos(v)], u=0..4*Pi, v=0..2*Pi );
[ >

Exercise: Can you make this one into an open topped water trough? How can you get more
spirals? (Hint: Experiment with the various constants in the formulas and triydsgese of
what they determine.)
> [ (1-u)*(3+cos(v))*cos(4*Pi*u),
(2-u)*(3+cos(v))*sin(4*Pi*u),
> 3*u+(l-u)*sin(v) ]
> plot3d( %, u=0..1, v=0..2*Pi, orientation=[-14,76] );
>

\Y%

[

Exercise: Part (a): Let x e a real valued function of one variable. Find a way to parame
the surface of revolution generated by revolving the graphxofaround thec-axis. Graph a
few surfaces of revolution for different functions f.

[ >

Part (b): Find a way to parameterize the surface of revolution generated byngvbé/igraph
of f around thegy-axis. Around the-axis.

[ >

Exercise: Part (a) Here are four different parameterizations of the sphere of radius one ¢

at the origin. For each parameterization try to change just one number from one révagehs
parameterization draws only the upper hemisphere. If you cannot do this by changing just one
number, explain why.

[ > [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];

> plot3d( %, theta=0..2*Pi, phi=0..Pi, title="Sphere" );

> [ cos(phi)*cos(theta), cos(phi)*sin(theta), sin(phi) ];
> plot3d( %, theta=0..Pi, phi=0..2*Pi, title="Sphere" );

> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
> plot3d( %, theta=0..Pi, phi=0..2*Pi, title="Sphere" );

> [ sqrt(1-z"2)*cos(theta), sqrt(1-z*2)*sin(theta), z ];

| > plot3d( %, theta=0..2*Pi, z=-1..1, title="Sphere" );

Part (b) Repeat part (a) but this time try to draw only the right hemisphere.
[




[ >

Part (c) Repeat part (a) but this time try to draw 3/4 of the sphere (say, the upper hemisphere
and the left or right half of the lower hemisphere).

(>

Exercise: This exercise compares the second of the four sphere parameterizations above with a
parameterization of a torus. Explain how the following minor change in the sphere
parameterization manages to become half of a torus. First, the sphere paatiogiegain.
[ > [ cos(phi)*cos(theta), cos(phi)*sin(theta), sin(phi) ];
| > plot3d( %, theta=0..Pi, phi=0..2*Pi, title="Sphere" );
Now a minor change that makes it into a parameterization of a torus.
[ > [ (2+cos(phi))*cos(theta), (2+cos(phi))*sin(theta), sin(phi)
I;
| > plot3d( %, theta=0..Pi, phi=0..2*Pi, title="1/2 Torus" );
[ >

Exercise: Compare the following two parameterizations of a sphere of radius one centered at
the origin. In what way do they differ? In what way are they similar?

[ > [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];

| > plot3d( %, theta=0..2*Pi, phi=0..Pi, title="Sphere" );

[ >

[ > [ sin(phi)*cos(theta), cos(phi), sin(phi)*sin(theta) ];

| > plot3d( %, theta=0..2*Pi, phi=0..Pi, title="Sphere" );

[ >

Exercise: Part (a): Recall that in the previous section of this worksheet we gave examples
drawing curves on surfaces. Let us draw some curves on parametric surfacestltere i
standard parameterization of the sphere written as a Maple function and with the dbthai
parameterization being the unit square.
[ > h:=(u,v) -> [ sin(Pi*v)*cos(2*Pi*u), sin(Pi*v)*sin(2*Pi*u),
cos(Pi*v) ];

The next command graphs the sphere and then gives the graph a name for later use.
[ > plot3d( h(u,v), u=0..1, v=0..1, style=patchnogrid );
| > graphl = %:
The next function parameterizes a half circle contained in the unit square.
[ > g:=t->((cos(2*Pi*t)+1)/2, sin(2*Pi*t)/2+1 );
[ > plot([g(t), t=1/2..1], view=[0..1,0..1] );
The next graph uses the parameterization of the sphere to "push” this parametrantmuthe
graph of the parametric surface.

> plots[spacecurve]( h(g(t)), t=1/2..1, color=black );
{ > graph2 := %:
Now draw the curve on the surface with the surface.
[ > plots[display](graphl, graph?2);




Try to explain the shape of the resulting curve on the surface. For example, whgsedit’cl
(Hint: Think carefully about what the andv coordinates from the unit square do in the
parametric surface.)

Part (b): Here is a similar example. The next function parameterizder@iifhalf circle
contained in the unit square.
[ > g:=t->(cos(2*Pi*t)/2+1, (sin(2*Pi*t)+1)/2 );

> plot( [ g(t), t=1/4..3/4 ], scaling=constrained,
{ view=[0..1,0..1] );
The next graph uses the parameterization of the sphere to "push” this parametrantuthe
graph of the parametric surface.
{ > graph2 := plots[spacecurve]( h(g(t)), t=1/4..3/4, color=black

):

Now draw the curve on the surface with the surface.
[ > plots[display](graphl, graph2);
Try to explain the shape of the resulting curve on the surface. For example, whyusvibisa
closed?

Part (c): One more example. The next function parameterizes a whole airtdened in the
unit square.
[ > g:=t->((cos(2*Pi*t)+1)/2, (sin(2*Pi*t)+1)/2 );
{ > plot( [ g(t), t=0..1 ], scaling=constrained, view=[0..1,0..1]
);
The next graph uses the parameterization of the sphere to "push” this parametrantuthe
graph of the parametric surface.
[ > graph2 := plots[spacecurve]( h(g(t)), t=0..1, color=black ):
Now draw the curve on the surface with the surface.
[ > plots[display](graphl, graph2);
Try to explain the shape of the resulting curve on the surface. For example, whyusvhis c
closed with a figure eight like shape?

[ >

Exercise: Given a non vertical plane in three dimensional space and a point on the plane
square centered at the point and lying in the plane. Also draw the projection of the square onto

thexy-plane.
[ >

Exercise: Part (a) Given a plane through the origin, draw a disk centered at the origin and lying
in the plane.

[ >

Part (b) Given a non vertical plane and a point on the plane, draw a disk centered at the point
and lying in the plane and draw the projection of the disk ontgytpéane.

[ >



e

=15.8. Non Cartesian coor dinate systemsin space

Just as thelot command can use non Cartesian coordinates on the plane when it graphs real
valued functions and parametric curves,fle3d command can use non Cartesian coordinates
on three dimensional space when it graphs real valued functions of two variables andrigarame
surfaces. Here is an example of the same function being graphed using threst difi@rdinate
systems in space, Cartesian, cylindrical, and spherical.

[ > plot3d( x"2+y"2, x=-2..2, y=-2..2);

[ > plot3d( x"2+y"2, x=-2..2, y=-2..2, coords=cylindrical );

[ > plot3d( x"2+y”"2, x=-2..2, y=-2..2, coords=spherical );

[ >

The following two subsections give the details of ugilig3d to graph real valued functions of

two variables using first the cylindrical coordinate system and then the spbheaddinate system.
The next subsection returns to the idea of graphing curves on surfaces. The subsadiiat afte
shows how to usglot3d to graph parametric surfaces using non Cartesian coordinates. The last
subsection explains how parametric surfaces can be used to get around a bug in how peple gra

functions over "non rectangular domains" when using non Cartesian coordinates.
[ >

=] 5.8.1. Real valued functions and cylindrical coordinates

Just as thelot command must, for each coordinate system on the plane, (arbitrarily) choose
one coordinate direction for the independent variable of the functiopldfsel command

must, for each coordinate system on three dimensional space, (arbitrarily) ehmosetdinat:
directions for the independent variables of the function. In additiop|éh®&d command

must choose an ordering for the two independent variables, that is, a way to match up each of
the two ranges in thelot3d command with one of the two preferred coordinate directions.

We have already seen h@wt3d does this for Cartesian coordinates in space. Now we want
to look at howplot3d makes choices for the cylindrical coordinate system.

Let us use the common lab®ls, andz for the coordinates in the cylindrical coordinate sys
When graphing a function in cylindrical coordinates,fl#3d command chooses the
angular and vertical directions (i.8.andz) as the independent variables and the radial dire
(i.e.,r) as the dependent variable. In addition, the first range iplth&d command will be
associated to the radial direction and the second range will be associated tadhle vert
direction. In other words, given a function f of two variablespib&3d command with
cylindrical coordinates will draw the graph o= (6, z). So for example, we graph a cylinder
by graphing a constant function.

> plot3d( 3, theta=0..2*Pi, z=-6..6, coords=cylindrical,
{ axes=boxed );




The equatiom =sin( 30) in polar coordinates graphs a three petal rose in the plane. Here is a
"cylinder" over this three petal rose.

> plot3d( sin(3*t), t=0..2*Pi, z=0..1/2, coords=cylindrical,
{ axes=boxed );
The above graph does not look very good. We can improve it by using another option. (We will
see in the next worksheet what this option does and why it is needed.)

> r:=sin(3*theta);

> plot3d( r, theta=0..2*Pi, z=0..1/2, coords=cylindrical,

axes=boxed,
grid=[40,40] ),

Recall that the equatiar=a (1 + 2cos(8)) in polar coordinates defines a limacon in the plane
with a "diameter" determined lay Here is an example witn= 5.
> plot( 5*(1+2*cos(t)), t=0..2*Pi, coords=polar,
{ scaling=constrained );
If we graph the functiof(6, z) =5 (1 + 2cos(0)) as a function of two variables with
cylindrical coordinates, the graph will be a "cylinder” over the above limacon.
> r .= 5*%(1+2*cos(theta));
{ > plot3d( r, theta=0..2*Pi, z=-1..1, coords=cylindrical,
> axes=boxed, grid=[40,40] );
Now let the "diameter"” of the limacon vary within the next graph, every horizontal cross
section is a limacon, but the "diameters" depends on
> r:= (1+z"2)*(1+2*cos(theta));
{ > plot3d( r, theta=0..2*Pi, z=-1..1, coords=cylindrical,
> axes=boxed, grid=[40,40] );
[ >

Given a function of one variable, it is easy to use cylindrical coordinates to graptiatse of
revolution around the-axis. Here is a simple example.
[ > sqrt(z2);
[ > plot3d( %, theta=0..2*Pi, z=0..4, coords=cylindrical );
Here is an animation of the one dimensional graph being revolved aroundxiseo create tt
surface of revolution.
[ > p:=t->plot3d( sqrt(z), theta=0..t, z=0..4,
coords=cylindrical ):

> seq( p(2*Pi*i/50), i=1..50 ):
| > plots[display]( [%], insequence=true );
Here are a few other surfaces of revolution.
[ > exp(-z"2);
| > plot3d( %, theta=0..15*Pi/8, z=-2..2, coords=cylindrical );
[ > z+sin(z);
| > plot3d( %, theta=0..2*Pi, z=0..8*Pi, coords=cylindrical );




> plot3d( %, theta=0..2*Pi, z=-3*Pi..3*Pi, coords=cylindrical
);
Here is the last function again, but with a different range. This example showsdhsionally
theplot3d command can draw misleading graphs. The following surface should not be

into two pieces.
{> 1+sin(z)/z;

{ > 1+sin(z2)/z;

> plot3d( %, theta=0..2*Pi, z=-4*Pi..4*Pi, coords=cylindrical
);

Here is a torus (a donut shaped surface) drawn as a surface of revolution for two fuatjons. (
graphing each of the two surfaces by themselves.)

[ > 2+sqrt(1-z"2), 2-sqrt(1-z"2);

[ > plot3d( {%}, theta=0..2*Pi, z=-1..1, coords=cylindrical );

[ >

Exercise: Part (a) Uselot3d  with cylindrical coordinates to graph a sphere of radius 4
centered at the origin.

[ >

Part (b) Now drill a cylindrical hole of radius three through the sphere alomzepttis. Draw th
remaining part of the sphere along with the wall of the cylindrical hole.

[ >

Part (c) Cut away part of the graph from part (b) so that you can see the spaca tetwes!
of the sphere and the wall of the hole. Make both a horizontal and a vertical cutaway.

[ >

Exercise: In Section 5.7.5 there is an exercise asking you to figure out how to use parametric
surfaces in rectangular coordinates to parameterize a surface of revolotiod any one of th
three axes. Compare your solution for trexis with the cylindrical coordinate technique given
here.

[ >

Given a function f of two variables, there are a total of six ways that we could graph f i
cylindrical coordinates. We could choose to graptf(6, z), r =1(z 0),z=1(6, r), z=1(r, 8),

0 =1(r, z), or6 =1(z r). By default, theolot3d command will only draw the first of these six
possible graphs. In the next section of this worksheet we will see how we can diawfall s
these graphs by using parametric equations. And in the next worksheet we will see ¢emw we
draw all of these graphs by defining new versions of cylindrical coordinates.

Why is it thatplot3d  defaults tar = (6, z)? Recall that in polar coordinates we usually graph
functions of the forrm =f(0). And since cylindrical coordinates is just polar coordinates with
the variablez added, it seems reasonable to just considez ¢berdinate as another indepenc



variable and, by analogy to polar coordinates, graph functions of the fof(®, z).

Of the six possible graphs that we could make in cylindrical coordinates, there ifi@ne ot
graph that would seem to be a very reasonable choice as the default grapt3ibr . Since

the default graph in rectangular coordinates is of the forrf( %, y), and sinceX, y) and ¢, 6)

both coordinatize the plane, then by analogy to rectangular coordinate it would seenbieasona
for plot3d  to graphz =f(r, 8). Such graphs can in fact be very useful. For example, suppose
that in a calculus class we want to find the volume under the graph of a fungtipnagd oye

the cardioid defined biy=1 + coq0), and we want to visualize this volume before computing
it. So we need to draw a graphfok ¥ over the cardioid =1 + coq0). We might try to do

this usingplot3d s ability to graph over non rectangular domains in rectangular coordinates,
but that would be difficult. What we would like to do is convert the function to cylindrical
coordinates using(r,0) =f(r cog0), r sin(0)) and then draw a graph o¥ g(r, 8) using
cylindrical coordinates with the varial®eranging between 0 andrand the variable ranging
between 0 and + coq6). Butplot3d cannot graph a function of the foaw g(r, 0), so we

will come back to this example in Section 5.8.4.

[ >

In Section 5.6.4 we looked at graphing curves on surfaces. Let us try graphing a curve on the
surface of a sphere. Since a sphere is a surface of revolution, we can use cytiodriiabtes
to draw a sphere as the graph of a function of two variables. Here is the function of two
variables.
[ > f:=(theta, z) -> sqrt(1-z"2);
The domain for the graph of a spher@ lsetween 0 and  andz between -1 and 1.

> plot3d( f(theta, z), theta=0..2*Pi, z=-1..1,

coords=cylindrical,

> style=patchnogrid );
Let us give this graph a name for later use.
[ > 0gl:=%:

Here is a simple curve in the domain of our function, a half circle.

[ > h:=t->(cos(t)+Pi, sin(t)+1);

[ > plot( [h(t), t=Pi..2*Pi], view=[0..2*Pi,-1..1],

| scaling=constrained );

Now use the functioh to "lift" the curveh onto the graph of the sphere.

[ > g2 := plots[spacecurve](

> [ f(h(t)), h(®) ],

> t=Pi..2*Pi, coords=cylindrical, color=black,

| numpoints=100 ):

(If you compare the lastpacecurve command to the equivalent one from Section 5.6.4, you
will notice a subtle difference. We will explain the reason for this differen&ection 5.8.4.)
Now combine the sphere with the curve on the sphere.

[ > plots[display](gl, g2);




Can you explain the shape of this curve? For example, why is it closed?

[ >

Here is a slightly different half circle in the domain of our funcfion
[ > h:=1t->(2*cos(t)+Pi, 2*sin(t)+1);

[ > plot( [h(t), t=Pi..2*Pi], view=[0..2*Pi,-1..1],

| scaling=constrained );

Usef to "lift" the curveg onto the graph of the sphere.
[ > g2 := plots[spacecurve](

> [ f(h(t)), h(t) ],

> t=Pi..2*Pi, coords=cylindrical, color=black,

| numpoints=300 ):

[ > plots[display](gl, g2);

[ >

Exercise: Notice that the main difference between the last two examples is the radias of t
circle in the domain of . The first example has radius 1 and the second example has radius 2.
Create an animation that shows the first example morphing into the second example.

[ >

Exercise: Here is a different half circle in the domain of our funcfion
[ > h:=t->(cos(t)+2*Pi, sin(t));

[ > plot( [h(t), t=Pi/2..3*Pi/2], view=[0..2*Pi,-1..1],

| scaling=constrained );

Usef to "lift" the curveg onto the graph of the sphere.

[ > g2 := plots[spacecurve]( [f(h(t)), h(t)], t=Pi/2..3*Pi/2,

| coords=cylindrical, color=black ):

[ > plots[display](gl, g2);

Why is this curve not closed?

[ >

L[>

'=| 5.8.2. Real valued functions and spherical coordinates

Now let us turn to spherical coordinates. Let us use the common gaBeBsndg to represent

the coordinates. When graphing a function of two variables in spherical coordinates, the
plot3d command use® and as the independent variables. The first range iplthiéd
command will be associated@and the second range will be associateg o given a

function f of two variables, thelot3d command with spherical coordinates will draw the
graph of p = (6, @). For example, we can graph a sphere using spherical coordinates by
graphing a constant function. The following command graphs a sphere but with a bit of its top
removed and with a vertical slice taken out. Try closing each of these holes (omeejt a ti




[ > plot3d( 1, t=0..7*Pi/4, p=Pi/8..Pi, coords=spherical );
[ >

Exercise: Here is a graph of a function of two variables in spherical coordinates. This is a
"bumpy sphere” with a hole in the bottom.

> r .= 1+.2*cos(5*theta)*cos(5*phi);
{ > plot3d( r, theta=0..2*Pi, phi=0..3*Pi/4, coords=spherical );
How would you change the size of the hole? How would you cut away the front half of the
graph? How would you make the bumps bigger or smaller? More or less numerous? Make a 3D
animation of the hole growing and shrinking. Make another animation of a "pulsating sphere"
with the bumps growing and shrinking.

[ >

[ >

=] 5.8.3. More curves on surfaces

In previous sections we saw how we can combine parametric curves with graphs essud
us do some examples using non Cartesian coordinate systems. Here is an examyplesof a ¢
drawn in cylindrical coordinates on a surface drawn in rectangular coordinates.
[ > f:=(Xy)->x"2-y"2;
> graphl := plot3d( f(x,y), x=-1..1,
y=-sqrt(x"2+1)..sqrt(x"2+1),
> style=patchnogrid ):
r:=t->sin(4*);
> graph2 := plots[spacecurve]( [r(t), t,
f(r(t)*cos(t),r(t)*sin(t))],
> t=0..2*Pi, coords=cylindrical, color=Dblack,
numpoints=200 ):
> plots[display](graphl, graph2);
> ="

\Y%

Exercise: Change the curve drawn on the surface from a rose to the cardiaidét 2 cos(6 ).
[ >

Here is an example of a curve drawn in rectangular coordinates on a surface dhawn wit
cylindrical coordinates (a sine curve running up and down the side of a cylinder).
- > g1 :=plot3d( 1, theta=0..2*Pi, z=0..3*Pi,
coords=cylindrical,
> style=hidden, shading=xy ):
> g2 := plots[spacecurve]( [2/3*sin(2*t),
sqrt(1-(2/3*sin(2*t))"2), ],
> t=0..3*Pi, color=black,




numpoints=100 ):
> plots[display]( g1, g2 );
[ >

Exercise: Modify the last example so that the sine curve lies iryzk@ane inside the cylinder
and then make the cylinder "see through" so that you can see the sine curve inside thre cylinde

[ >

Exercise: Part (a): Modify the sine curve on a cylinder example so that the cylinder has a
diameter that depends afftry 2 + z as the expression for the diameter). Make sure that the
graph of the sine curve stays on the graph of the new surface.

[ >

Part (b): Now modify the graph from part (a) so that the amplitude of the sine curve als
increases as it moves up the graph inztgection (and again, keep the graph of the new sine
curve on the graph of the surface).

[ >

Exercise: Take any one of the above examples of a curve drawn on a surface and convert the
curve into a (pretty narrow) tube plot. Try this both with and without the surfacertsled i

graph.

[ >

[ >

ﬂ 5.8.4. Parametric surfacesin non Cartesian coordinates

Theplot3d command can draw parametric surfaces using other spatial coordinates systems
besides rectangular coordinates. Here is an example that uses cylindridalatesr This is a
ribbon winding its way up the side of a paraboloid.
> plot3d( [sqrt(theta+t), theta, theta+t], theta=0..7*Pi,
t=0..3,
> coords=cylindrical, style=patchnogrid, grid=[50,50]
);
Here is a similar example on the surface of a sphere and done with spherical cemritinat
looks like an apple being peeled.

[ > plot3d( [1, 8*t+s, t], t=0..Pi, s=-2..2,
> coords=spherical, style=patchnogrid, grid=[50,50] );
Here is a sphere with its surface being peeled off of it.
[ > gl:=plot3d( [1+.2*(Pi-t), 8*t+s, t], t=0..Pi, s=-2.4..2.4,
> coords=spherical, style=patchnogrid, grid=[50,50]
):
> g2:=plot3d( 1, theta=0..2*Pi, phi=0..Pi,
> coords=spherical, style=hidden, grid=[50,50] ):
| > plots[display]( g1, g2, scaling=constrained );




[ >

In Section 5.8.1 we mentioned that thiet3d command, when using cylindrical coordinates
to graph a real valued function of two variables, give®thrdz coordinates the preferred
status of being the independent variables@ot8d always draws a graph of (6, z).
When graphing a parametric surface in cylindrical coordinpies3d does not give any
coordinate direction a preferred status. It does however always treat teggnesssion after the
opening bracket as thiecomponent, the second expression a®tbemponent, and the third
expression as tlecomponent. As you might expect by now, given any function of two
variables, we can use parametric equations to draw any of the six geaf(its z), r =f(z 0),
0="1(r,z),0=1(zr),z=1(6,r), orz=1(r, 8). For example, here are the six different graphs
of a constant function (over a non rectangular domain) in cylindrical coordinates.
[ > plot3d([1, theta, z], theta=0..2*Pi, z=0..theta,

coords=cylindrical);
> plot3d([1, theta, z], theta=0..z, z=0..2*Pi,

coords=cylindrical);
[ > plot3d([r, 1, z], r=0..2*Pi, z=0..r,

coords=cylindrical);
> plot3d([r, 1, z], r=0..z, z=0..2*Pi,

coords=cylindrical);
[ > plot3d([r, theta, 1], theta=0..2*Pi, r=0..theta,

coords=cylindrical);
> plot3d([r, theta, 1], theta=0..r, r=0..2*Pi,

coords=cylindrical);

Exercise: Draw the six different graphs in cylindrical coordinates of the function

f(u, v) = u? - V2, with the domairu between -1 and 1 arwbetween 2 and 3. For each graph,
make sure that the graph makes sense for you.

[ >

In Section 5.8.1 we mentioned the problem of visualizing the graph of a fumetit{i, y) ovel
the cardioid =1 + cog0). One way to do this is to ugér, 0) =f(r cog0), r sin(0)) to
convert the function to cylindrical coordinates and then use cylindrical coordinateplo gr
z=9(r, 8) with the variablé® ranging between 0 andrfand the variable ranging between 0
andl + cog0). The problem with this idea is that the®t3d command with cylindrical
coordinates will only graph functions of the form g(8, z). We get around this limitation of
plot3d , and get the graph that we want, by using parametric equations in cylindrical
coordinates to graph=g(r, 8). Here is an example wifiix, y) =x* +y?, sog(r, 0) =r?.

> plot3d( [r,t,r*2], r=0..1+cos(t), t=0..2*Pi,
{ coords=cylindrical );



The next graph shows that the previous graph is correct. The next graph redraws the previous
graph and combines it with a graph of the paraboloid. From the next graph we see that the
previous graph really is part of the paraboloid.
[ > gl:=plot3d( [r,t,r*2], r=0..1+cos(t), t=0..2*Pi,
coords=cylindrical ):
> g2:=plot3d( x"2+y"2, x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),
> style=wireframe ):
| > plots[display]( g1, g2 );
Here is a way to add the "walls" to the volume under the grafiix,of) = X* + y* and over the
cardioidr =1 + coqt), so that we can see the exact shape of this volume.
[ > gl:=plot3d( [r,t,r*2], r=0..1+cos(t), t=0..2*Pi,
coords=cylindrical ):
> g2:=plot3d( [1+cos(t), t, (1+cos(t))2*z], t=0..2*Pi, z=0..1,

> coords=cylindrical ):
| > plots[display]( g1, g2 );
[ >

Exercise: The graph namegl in the last example draws the walls of the volume. The wal
drawn as a parametric surface in cylindrical coordinates. Redraw the widlés\aflume as the
graph of a functiom = h(8, z) in cylindrical coordinates.

[ >

Exercise: Draw a graph of the volume under the funcfign y) = x +y and over petal in the
first quadrant of the three leaf rase sin( 30). Be sure to draw both the top of the volume and
its side walls.

[ >

In Section 5.8.2 we mentioned that thiet3d command, when using spherical coordinates to
graph a function of two variables, gives thandg coordinates the preferred status of being the
independent variables aptht3d always draws a graph pf=1(6, ¢). When graphing a
parametric surface in spherical coordinaggst3d does not give any coordinate direction a
preferred status. It does however always treat the first expressiorhaftgrening bracket as
p-component, the second expression a®¥tbemponent, and the third expression agghe
-component. And of course, given any function of two variables, we can use parametric
equations to draw any of the six graphsf(6, @), p=1(@ 0),8 =1f(p, @), 6 =f(@ p),
@o=1(6, p), ore=1(p, B). For example, here are the six different graphs of a constant function
(over a non rectangular domain) in spherical coordinates.

> plot3d([1, theta, phi], theta=0..2*Pi, phi=0..theta,
{ coords=spherical);

> plot3d([1, theta, phi], theta=0..phi, phi=0..2*Pi,
{ coords=spherical);

> plot3d([rho, 1, phi], rho=0..2*Pi, phi=0..rho,



coords=spherical);

[ > plot3d([rho, 1, phi], rho=0..phi, phi=0..2*Pi,
coords=spherical);

> plot3d([rho, theta, 1], theta=0..2*Pi, rho=0..theta,
coords=spherical);

[ > plot3d([rho, theta, 1], theta=0..rho, rho=0..2*Pi,

coords=spherical);

Exercise: Draw the six different graphs in spherical coordinates of the funi¢tipn) = u® - V#,
with the domairu between 0 ant/2 andv betweenv2 andrt

[ >

Exercise: Draw a curve on the surface of a sphere by parameterizing the sphere using spherical
coordinates and then using the parameterization to "push” a curve in the domain of the
parameterization onto the sphere.

[ >

L[>

ﬂ 5.8.5. Non rectangular regions: fixing abug in Maple

Here is an example of how we can make use of parametric graphs of functions. Tloerg i
Maple in the way that thelot3d command handles "non rectangular domains" in either
cylindrical or spherical coordinates and we can get around this bug by graphing functions in
their parametric form.

First an example of a non rectangular domain in cylindrical coordinates. The following
command is supposed to graph (6, z) in cylindrical coordinates where f is the constant
function 1. Notice that in this command, the range of the second vardpbkpends on first
variable ). The following graph is not correct.

[ > plot3d( 1, theta=0..2*Pi, z=0..theta, coords=cylindrical );

Here is what the graph should have looked like. Notice that all we are doing here is mgnverti
the above graph of a function into its equivalent graph as a parametric surface, iasexpla
the last subsection. We can tell that the following graph is correct for a coupésonse First,

in cylindrical coordinates the graphrof (6, z), where f is a constant function, should be a
cylinder. Second, notice how in the next graph, the range fanitieable gets larger as we go
around thed direction. This is as it should be, since the "non rectangular® domain has the range

for z depending 0.
> plot3d( [1, theta, z], theta=0..2*Pi, z=0..theta,
{ coords=cylindrical );
Here is how we can reproduce the buggy graph above as a parametric surface. The next
command is drawing a graph of the fazmf(r, 6) but the radial variable is callédeta in




the next command, the angular variable is calleand the function f is the constant function
> plot3d( [theta, z, 1], theta=0..2*Pi, z=0..theta,
{ coords=cylindrical );
So now we see that tipot3d command somehow gets coordinate directions mixed up when
we try to use non rectangular domains with the graph of a function in cylindrical cosdinate

[ >

Now here is an example using a "non rectangular" domain in spherical coordinatesaftnis g
IS not correct.

> plot3d( 1, t=0..2*Pi, p=Pi/4+.2*sin(5*t)..Pi,
{ coords=spherical );
Here is what the graph should have looked like. Notice that all we are doing here is mgnverti
the above graph of a function into its equivalent graph as a parametric surface.

> plot3d( [1, t, p], t=0..2*Pi, p=Pi/4+.2*sin(5*t)..PIi,
{ coords=spherical );

Exercise: Explain how we can tell that the above graph is correct.

[ >

Here is how we can reproduce the buggy graph as a parametric surface. The nextccemma
drawing a graph of the forp=f(p, 6) but the radial variable is callédand the angular
variable is callegh and the function is the constant functibfso@is constantly equal to 1 in
the graph, which explains the cone like slope of the surface).

> plot3d( [t, p, 1], t=0..2*Pi, p=Pi/4+.2*sin(5*t)..PIi,
{ coords=spherical );
As in the case of cylindrical coordinates)t3d somehow gets coordinate directions mixed
up when we try to use non rectangular domains with the graph of a function in spherical
coordinates.

[ >

Exercise: There is a similar bug in trimatecurve  command. Let us look at an example
that brings out this bug. Here is a graph of a function.

[ > plot( sin(4*x), x=0..2*Pi );

Let us animate this last graph.

[ > plots[animatecurve]( sin(4*x), x=0..2*Pi );

Now let us convert the graph of the function from Cartesian to polar coordinates.

[ > plot( sin(4*x), x=0..2*Pi, coords=polar );

Now let us convert the animation from Cartesian to polar coordinates (which shouldeanimat
this last graph).

[ > plots[animatecurve]( sin(4*x), x=0..2*Pi, coords=polar );

What went wrong? What di@himatecurve  do? Find a way to uselimatecurve  to
animate the correct graph in polar coordinates.



[ >

Exercise: The name that Maple gives to Cartesian coordinates in three dimensional space is
rectangular . This is the default coordinate system forph&3d command. So why do

the following twoplot3d commands produce different graphs? Explain what goes wrong in
the second graph. Use parametric surfaces to justify your explanation.

[ > f:=(Xy) -> x"2+y"2;

[ > plot3d(f, -2..2, -2..2, axes=boxed );

[ > plot3d(f, -2..2, -2..2, axes=boxed, coords=rectangular );

[ >

[ >

=/ 5.9. Graphs of equations

Maple can draw graphs of equations in two or three variables, it can graph equationsain sever
coordinate systems, and it can graph more than one equation at a time. For examplapheneis
can draw "graph paper" for Cartesian coordinates.
[ > plots[implicitplot]( {x=-2, x=-1, x=0, x=1, x=2,
y:'21 y:'l’ y:0’ y:l1 y:2}a
| x=-3..3, y=-3..3, axes=framed );
And here is some "graph paper" for polar coordinates.
[ > plots[implicitplot]( {r=0, r=1, r=2, r=3, r=4, theta=0,
theta=Pi/4,
theta=Pi/2, theta=3*Pi/4, theta=Pi,
theta=5*Pi/4,
theta=3*Pi/2, theta=7*Pi/4},
r=0..4, theta=0..2*Pi, axes=framed,
| coords=polar);
It does not do much good to draw "graph paper" in three dimensions (why?). Instead, here ¢
of three "coordinate planes"” for each of the rectangular, cylindrical, and splencdinate
systems.
[ > plots[implicitplot3d]( {x=0, y=0, z=0}, x=-1..1, y=-1..1,
| z=-1..1);
[ > plots[implicitplot3d]( {r=1, theta=0, z=0},
r=0..2, theta=0..2*Pi, z=-2..2,
coords=cylindrical );
> plots[implicitplot3d]( {rho=1, theta=Pi, phi=Pi/4},
rho=0..1.5, theta=Pi/8..15*Pi/8,

phi=0..Pj,

numpoints=800, coords=spherical );
[ >



Exercise: Explain why the following graph is not a circle
> plots[implicitplot]( r=1, theta=0..2*Pi, r=0..2,
{ > coords=polar, scaling=constrained );
Explain why the following graph is not a sphere and explain in detail exactly whythdakape
that it does.
> plots[implicitplot3d]( rho=1, theta=0..2*Pi, phi=0..Pi,
rho=0..1,
> coords=spherical, scaling=constrained );
[ >

Exercise: Explain in detail why the following graph has the shape that it does.
> plots[implicitplot3d]( 1-u=sin(w)/2, u=0..2, v=0..7, w=0..2*Pi,

{ > coords=cylindrical);

[ >

Exercise: In third semester calculus you learn that the element of volume in cylindrical rcatesdi
is given bydV =r dr d 8 dz Draw a picture of an element of volume in cylindrical coordinates.
(Hint: The element of volume has six faces. Draw three graphs, each with a pair atfedjages,

and then combine the three graphs together.)
[ >

Exercise: In third semester calculus you learn that the element of volume in spherical casr@nat

given bydV = p2 sin(@) d p d 8 d @. Draw a picture of an element of volume in spherical

coordinates.
[ >

Exercise: Here are eight different ways to graph a sphere. Explain how each one works.
[ > plots[implicitplot3d]( x"2+y"2+z"2=16, x=-4..4, y=-4..4,

z=-4..4);
> plots[implicitplot3d]( rho=4, rho=0..4, theta=0..2*Pi,

phi=0..Pi,

coords=spherical );
> plots[implicitplot3d]( r2+z"2=16, r=0..4, theta=0..2*Pi,
z=-4.4,
coords=cylindrical );
> plot3d( [4*sin(v)*cos(u),4*sin(v)*sin(u),4*cos(v)], u=0..2*Pi,
v=0..Pi);
> plot3d( [x, sqrt(16-x"2)*cos(theta), sqrt(16-x"2)*sin(theta)],
x=-4..4, theta=0..2*P i);
[ > plot3d( 4, theta=0..2*Pi, phi=0..Pi, coords=spherical );
> plot3d( sqrt(16-z"2), theta=0..2*Pi, z=-4..4,
coords=cylindrical );




> plot3d( {sqrt(16-x"2-y"2), -sqrt(16-x"2-y"2)}, x=-4..4,
y=-sqrt(16-x"2)..sqrt(16-x"2) );
[ >

When usingmplicitplot orimplicitplot3d , the order of the ranges is very important.
some of the above exercises demonstrate, these commands use the order of the rdagasmt de
exactly which coordinate a variable represents. A variable nameéd not represent radius in

polar coordinates. A variable namedn animplicitplot equation will represent the radial
coordinate in polar coordinates only if the first range given is f@nd of course the

coords=polar  option is used). On the other hand, there is nothing wrong with using the variable
X to represent the radial coordinate in polar coordinates, we just have to list theoranfjest (anc

use thecoords=polar  option).
[ >

Exercise: Explain why the following two graphs look the way they do.
[ > plots[implicitplot]( y=x"2-1, y=-1..3, x=-2..2);

[ > plots[implicitplot]( x*2-1=y, x=-2..2, y=-1..3);

Predict what the following graph will look like before drawing it.

[ > plots[implicitplot]( y*2-1=X, y=-1..3, Xx=-2..2 ):

[ >

We can use the ordering of rangesmplicitplot commands to find another way to draw
nonstandard graphs of functions. Recall th&tgf i§ g real valued function of a single variable,
we can draw graphs of eithgr f(x) orx =f(y) in Cartesian coordinates or we could draw graphs
of eitherr =f(0) or® =f(r) in polar coordinates. By default, thiot command will draw only
y =f(x) in Cartesian coordinates anet f(0) in polar coordinates. Earlier we saw how to use the
plot command with parametric equations to draw the grapkséfy) and6 =f(r). We can also
draw these graphs usingplicitplot . Here are the graphs »& sin(y) and® = sin(r) drawn
usingimplicitplot
[ > plots[implicitplot]( x=sin(y), x=-1..1, y=0..2*Pi );

> plots[implicitplot]( theta=sin(r), r=0..4*Pi, theta=0..2*Pi,

coords=polar );

[ >

Exercise: Useimplicitplot to draw the graph of = sin(x) in Cartesian coordinates and the
graph ofr =sin(6) in polar coordinates.

[ >

Given a real valued functidnu(v of two real variables we can use thelicitplot3d
command to draw any one of the six possible graphs of f in each of rectangular, cyliaddcal
spherical coordinates.

[



[ >

Exercise: Useimplicitplot3d to graph the functiorm = sin(x* + y?) using cylindrical
coordinates. Also graph this function usjpigt3d and both rectangular and cylindrical
coordinates. Try to make the graphs as nearly equivalent as you can. Which graph turns out the

"best", which the "worst"?
[ >

Exercise: For the functiorf(u, v) = v sin(u) useimplicitplot3d with spherical coordinates to
draw graphs op =f(@ 0), 6 =f(@ p), andp=1(6, p). For each graph, find ranges for the variables
that produce an interesting graph. Also, redraw each of these graphplosidg and parametric

equations.
[ >

Earlier in this worksheet we drew contour diagrams for functions of two variablese Tbetour
diagrams are closely related to graphs of equations. Suppose we have a furctioof fwvo )
variables. If we let be any number, then we can make an equation of thefeyy) = c. The

graph of an equation of this form is a level curve for the function f. A level curve for theofuh
a curve in the plane such that the graph of f has constant elevation over this curve. If we use
implicitplot to graph several level curves, then we get a contour diagram for f. Here is an

example with the functiof(x, y) = - y*.
[ > f:=(Xy) -> x"2-y"2;
[ > plots[implicitplot]( {f(x,y)=0, f(x,y)=2, f(x,y)=4,
> f(X,y):-Z,f(X,y):-4},
> x=-5..5,y=-5..5);
Here is the equivalembntourplot command.
[ > plots[contourplot]( f(x,y), Xx=-5..5, y=-5..5,
| contours=[-4,-2,0,2,4] );
Notice that the equatidifx, y) = c does not define a level set for the graph of f. We defined level
sets as curves of constant elevation in three dimensional space and the éguatjonc has its
graph in two dimensional space. Here g@@3d command that draws the level sets that are
equivalent to the above level curves. Notice how you can rotate the next graph and seethat thes

curves are really curves in three dimensional space and that they lie on the graph of f.
> plot3d( f(x,y), x=-5..5, y=-5..5,

> style=contour, contours=[-4,-2,0,2,4],
> orientation=[-90,0], axes=normal, view=[-5..5, -5..5,
-5..5]);
[ >
L[>

5.10. Graphs of vector fields



Maple has two commands for drawing vector fields. fléleplot command draws vector fiel
in the plane andeldplot3d draws vector fields in space. Recall that a vector field in the plane
is defined by a 2-dimensional vector valued function of two real variables. A vectonfegdde is
defined by a 3-dimensional vector valued function of three real variables. Here gaexample
of a function that defines a vector field in the plei(r,y) = (2 x, 2y). If we letp, represent a poil
in the plane and we lex( y,) be the coordinates of, then the value df X, y, gives us the
horizontal and vertical coordinates of a vector to be drawn at thegoB atp, we would draw a
vector with horizontal component@ and vertical componenty?. If we do this at every poimtin
the plane, then we will draw a vector field that always points away from the ongitha length o
every vector in the field is twice the distance of the base of the vector from time Hege is a
graph of this vector field.

[ > plots[fieldplot]( [2*X, 2*y], Xx=-3..3, y=-3..3);

[ >

Notice one thing right away about this graph. While the directions of the vectors iapheage
accurate, the lengths of the vectorsrateaccurate. For example, at the point (1,1) there is sup

to be a 45 degree vector with Iengtk/a, which would put the tip of the vector past the point (3,3).

But at (1,1) in the above graph there is a very short 45 degree vector. The vectors in the graph do ge
longer as they get further from the origin, but the lengths are nowhere near whabthdybge (wh'

do you think that is?). A vector field drawn fogidplot IS not meant to be a literal

representation of the true vector field. The graphs drawieliplot are meant to give an

impression of how a vector field looks. These graphs usually give us good qualitatived(ofste
quantitative) information about a vector field. In the above example, the graph shows usrihat e
vector in the field points away from the origin and that the length of each vector is pmogtdi it

distance from the origin, and this gives us a good idea of what the true vector field looks like
[ >

Exercise: How would you expect the graphs of the vector fié{asy) = (2%, 2y) and
a(x,y) =(3x, 3y) to differ? How would the graph &f x, y) = (-%, =y) compare with the graphs

fand g?
[ >

A vector field in the plane is defined by a single function but that function has two components,
each of which is a real valued function of two variables. In the al@uelot command we
used two expressions in a list to describe the vector field, one expression for each abmpone
function. By making use of Maple functions, we can emphasize that a vector fieldyisledéaled
by a single function. Here is a Maple function that defines the vector field used above

[ > fi=(xy)->[2*x, 2*];

Here is dieldplot command that uses the Maple functian

[ > plots[fieldplot]( f(x,y), x=-3..3, y=-3..3);

Recall from the section on vector valued functions in the last worksheet that the@tsnatély
no standard way to work with vector valued functions. So for example, the following obvious
version of the last command does not work.



[ > plots[fieldplot]( f, -3..3, -3..3);

And if we definef in the following common way (with parentheses instead of brackets)

[ > f:=(xy) -> (2%, 2%y);

then we have to modify slightly the way we tism fieldplot

[ > plots[fieldplot]( [f(x,y)], x=-3..3, y=-3..3);

The most common way to ugeldplot is to use expressions for each of the component
functions of the vector field and for the most part that is the way we will work witrothenand
(just as we did with parametric curves and parametric surfaces, both of whicheal®zias valued

functions).
[ >

Here are some examples of the kinds of vector fields that come up in a course on vadies cal
differential equations.
[ > plots[fieldplot]( [-y, X], Xx=-5..5, y=-5..5);
[ > plots[fieldplot]( [In(1+y"2), In(1+x"2)], x=-5..5, y=-5..5);
[ > plots[fieldplot]( [x/2, -y/3], x=-2..2, y=-2..2);
Here are a few 3-dimensional vector fields. It is not easy to get much informatiohtbese kinds
of graphs.
[ > plots[fieldplot3d]( [y, z, X], x=-2..2, y=-2..2, z=-2..2);

> plots[fieldplot3d]( [y/z, -x/z, z/4], x=-2..2, y=-2..2, z=1..3

)i

[ > plots[fieldplot3d]( [-X, -y, -z], x=-2..2, y=-2..2, z=-2..2 );
(>

There is an important special class of vector fields that comes up very ofterhenmatits, gradie
vector fields. This kind of vector field is used often enough that Maple has two speciahsdsnm
for drawing themgradplot  for 2-dimensional gradient fields agdadplot3d  for
3-dimensional gradient fields.

Recall from third semester calculus that if we have a real valued function cfalwariables, then
its derivative at a point is a vector whose two components are the two partial desiwdtihe
function at the point. If we compute the derivative of the function at every point in its domain, the
we get a vector field of gradient vectors. This vector field is callg@ddient field and the original
function is called gradient fieldfsotential function. Let us look at an example. Consider the
functionf(x, y) = sin(x +y). Here are two ways to draw its gradient field, usialgiplot and
usinggradplot . First, let us define the function to Maple.

[ > f:=(xy)->sin(x)+sin(y);

Here is how we can compute its two partial derivative functions.

[ > DI1](f); DI2](f);

Here is how we can useldplot to draw the gradient vector field for We givefieldplot

the two partial derivatives d¢f as the components of the vector field.

[ > plots][fieldplot]( [ D[1](f), D[2](f) ], -6..6, -6..6 );



Here is how we usgradplot  to draw the same gradient vector field ffoMWe only need to give
gradplot  the potential function.

[ > plots[gradplot]( f(x,y), Xx=-6..6, y=-6..6 );

[ >

Recall from calculus that g is any point in the domain of the potential functiox \( , thgn the
gradient vector gb is perpendicular to the level curve passing thrqudtet us demonstrate this by
drawing both the gradient field and the contour diagram fiorthe same graph. (The paramétes
there to make it easier to change the domain of the graph.)

> bi=4:

> plots[contourplot]( f(x,y), x=-b..b, y=-b..b):

> plots[gradplot](  f(x,y), x=-b..b, y=-b..b):

> plots[display]( %, %% );
If you look closely at the above graph, you can see that all of the gradient vectors ardipaliqre
to the level curves. (This is a bit easier to see if you zoom in on the graph a bit.) A bdam e
said about the directions of the gradient vectors. Recall that the color coding on leegslgnes
from red for low values to yellow for high values. The gradient vectors are pointingdtourves
toward yellow curves. This shows, as you learned in calculus, that the gradient vecioirs {hei
direction of steepest increase in the potential function. To help you see that thet yectiars are
pointing "uphill", compare the above graph with the following three dimensional gréparaf its
level sets.

> b:=4:

> plot3d( f(x,y), x=-b..b, y=-b..b, style=contour,

orientation=[-90,0] );

[ >

Exercise: Draw a combined graph of the level curves and gradient field for the potential function

f(xy)=

[ >

3y
Ayl

So far in this section, we have always considered a function of thg tprih=f(x, y) as
representing a vector field in the plane, that @dv are the horizontal and vertical components of
a vector that we draw at the point with coordinaxeg)( But there are other ways of interpreting
this kind of function. Let us look briefly at one of these other interpretations. We can use a
2-dimensional vector valued function of two variables esamge of variables. Here is an examp
Consider the functiofu, v) =f(r, 0) defined byf(r, 8) =(r cog0), r sin(8)). If we letp represent

a point in the plane, and suppose thhgas polar coordinates @), then

(u,v) =(rcog0),rsin(8)) will be the Cartesian coordinates forin other words, given a point in
the plane, the function f takes as input the polar coordinates of the point and returns tihenCartes
coordinates for the same point. The function f changes the polar coordinates of a point @siar
coordinates, and so we call it a change of variables. Of course, the function f can alem lae gi



vector field interpretation. Let us demonstrate using both of these interpretatibnisett us define
f to Maple.
[ > f:=(rtheta) -> [r*cos(theta), r*sin(theta)];
Here is a list of four points in the plane given in polar coordinates. These point areoat the f
corners of a square.

> points ;= [ [sqrt(2), Pi/4], [sqrt(2), 3*Pi/4],

[sqrt(2), 5*Pi/4], [sqrt(2), 7*Pi/4] |;

Let us graph these points using polar coordinates.
[ > plot( points, style=point, coords=polar );
Now let us apply the change of variables funcficim these points and get a list of the Cartesian
coordinates for the points. In the following commandepresents an ordered pair from the list
points , p[l] is the first number ip (i.e., the radial coordinate) ap{?] is the second number
in p (i.e., the angular coordinate).
[ > seq(f(p[1].p[2]), p=points );
Now graph the points using Cartesian coordinates.
[ > plot( [%], style=point );
We just used to change the coordinates of four points in the plane from polar to Cartesian.
us interpref as a vector field and graph the vector field.
[ > plots[fieldplot]( f(x,y), x=-6..6, y=-6..6 );
So we have given the same functiotwo very different interpretations, as a change of variables
and as a vector field. Neither interpretation is more correct than the other. Somen3idnal
vector valued functions of two variables are more useful as a vector field and sonueeavseful

as a change of variables.
[ >

Exercise: The functionT(p, 6, @) = (p sin(®) cog8), p sin() sin(B), p cog ®)) can be interpreted
as a change of variables or as a vector field. Create a short list of spheridalatesrfor some
points in space, plot the list using spherical coordinates, then use T to change the cedadinate
rectangular coordinates and plot the points using rectangular coordinates, and then graph T a
vector field. (Note: To plot points in space, you need to uspdimeplot3d command from the

plots package. Thelot3d command does not plot points.)
[ >

[ >

=15.11. Online help for graphing and visualization

Maple has extensive graphing abilities. Besides the two main graphing complahdsand

plot3d , and the main package of graphing commapldss , Maple has a lot of other graphing
facilities scattered throughout a number of packages. There is a lot of online doc¢iomemiz
examples for these facilities. Below we try to outline this documentationhwersention the
documentation for thelot andplot3d commands and their most important options, and the
outline the documentation for the most important commands withiploke package. (Notice, as




you go along, that a help page likelot,coords is about aroption to theplot command, and
a help page liképlots,coordplot is about a&ommand in theplots package.) Finally, at the
end of this section we try to outline most of the documentation for Maple's other graphing
commands and packages.

When you click on any two-dimensional or three-dimensional graph, the menus availabket the
of the Maple window and the context bar just below the menus change appropriately. ke&ce are
help pages that describe the items in the graphics menus.

[ > ?worksheet,reference,plotzdmenu

[ > ?worksheet,reference,plot3dmenu

And here are two help pages that describe the items in the graphics context bars.

[ > ?worksheet,reference,context2dplot

[ > ?worksheet,reference,context3dplot

Here are two more help pages that give information about modifying graphs using menus.

[ > 7?style2

[ > ?style3

At this point we should mention that on a few platforms Maple has defined a special kind of plot, a
"smart plot," that is supposed to make it easier to draw basic graphs. The followipgdelgives

an overview of the two kinds of Maple plots, "standard plots” and "smart plots".

[ > ?worksheet,plotinterface,plottypes

There are several ways to create smatrt plots. They can be created byckgig oh the output

from some Maple commands.

[ > ?worksheet,plotinterface,interactive

[ > ?worksheet,plotinterface,contextmenu

And smart plots can be created directly by using several different commands.

[ > ?plots,interactive

[ > ?smartplot

[ > ?smartplot3d

An interactive graph drawn by these commands can be manipulated by right clicking @pthto

bring up a context menu. These context menus have more items in them than the context menus for
"standard plots".

Maple's most basic graphing command is of coplse .

[ > ?plot

Theplot help page has almost no information about the optiop®to . These are all described
in the following important help page.

[ > ?plot,options

Many of the special features of themt command, like parametric graphs, polar graphs, using
infinity in a range, etc., have their own help pages.

[ > ?plot,multiple

[ > ?plot,parametric

[ > ?plot,function



[ > ?plot,ranges

[ > ?plot,infinity

[ > ?plot,color

[ > ?plot,style

[ > ?plot,polar

[ > ?plot,coords

Most of the options to thelot (andplot3d ) command translate directly into pieces of a PLOT
data structure. In a later worksheet we will say more about PLOT data stsudtuegollowing
command brings up a description of the PLOT data structure and all of its piecesn&smeti
looking up the PLOT data structure analogue pliod option will provide some clue about the
option that is not in the option's documentation.

[ > 7?plot,structure

Another description of various plot options, or "plot attributes," is given in the following hgép pa
and its hyperlinks.
[ > ?worksheet,plotinterface,plotattributes

We mentioned thdiscont=true option of theplot command. This option does not have its
own help page. But théiscont=true option toplot makes use of a Maple function called
discont . The following help page is about tiscont  function and therefore it also sheds
some light on théliscont  option ofplot

[ > ?discont

Thefdiscont  function, which is also used Ipjyot  with thediscont=true option, does the
same thing adiscont  but it works numerically instead of symbolically.

[ > ?fdiscont

Maple's basic three dimensional graphing commaptbisd

[ > ?plot3d

Theplot3d help page says very little about the options tgoth88d  command. All of these
options are explained in the next help page.

[ > ?plot3d,options

Theplot3d command has two other help pages about some of its special features.

[ > ?plot3d,coords

[ > ?plot3d,colorfunc

Theplot3d command has th&tyle=contour option for drawing the level curves of a surface.
Two closely related commands from thiets package areontourplot and

contourplot3d . Thecontourplot command draws all of the level curves of a surface as
level sets in the plane. Tlkentourplot3d command draws the level curves as curves in space.
At first glance thecontourplot3d command may seem to be equivalent toothé3d

command with thetyle=contour option but in fact they are a bit different. In particular, the
filled option works differently irplot3d andcontourplot3d , andcontourplot3d has



thecoloring  option. The following help page describes bathtourplot and
contourplot3d
[ > ?plots,contourplot

If you are drawing a lot of graphs and they are all using the exact same optionki ibenig
convenient to redefine the defaplbt andplot3d options using theetoptions  and
setoption3d ~ commands from thelots package.

[ > ?plots,setoptions

[ > ?plots,setoptions3d

Maple can draw graphs in 15 two-dimensional coordinate systems and 31 three-dimensional
coordinate systems. The next help page lists all of these coordinate systendditiodatly, gives
the formulas for the coordinate transformation of each coordinate system toaDartesdinates.
[ > ?coords

The next two help pages briefly summarize the two and three dimensional coorditextessy
respectively.

[ > ?plot,coords

[ > 7?plot3d,coords

The next two help pages describe the commands for drawing pictures of the two and three
dimensional coordinate systems. For the two-dimensional coordinate systeousrth@ot
command draws a picture of "graph paper" for each coordinate system. For the tleresatial
coordinate systems tliwordplot3d ~ command draws a surface of constant value for each of the
three coordinate variables.

[ > ?plots,coordplot

[ > ?plots,coordplot3d

The command for defining your own coordinate systemaslisoords

[ > ?addcoords

It is worth mentioning that thelots  package contains three functions for graphing in non
Cartesian coordinate systems that seem to be redundant with optionsgiot thendplot3d
commands. Theolarplot command seems to be equivalent totleé¢ command with the
coords=polar  option, thecylinderplot command seems to be equivalent togtlué3d
command with theoords=cylinder option, and thephereplot  command seems to be
equivalent to the@lot3d command with theoords=spherical option.

[ > ?plots,polarplot

[ > ?plots,cylinderplot

[ > ?plots,sphereplot

Closely related to the idea of using different coordinate systems in the plang@acensthe idea
using a different coordinate system on the real line when graphing a real valueshfohcine
variable. As the following three help pages describe, Maple can draw graphs ofuedlfuaction:
of a single variable with a logarithmic scale on either or both of the axes.

[ > ?plots,logplot

.



[ > ?plots,semilogplot
[ > ?plots,loglogplot

Theplot3d command only draws graphs of surfaces, that is, graphs of real valued function
variables and parametric surfaces. To plot points in three dimensions, Maple neeiksl a spe
commandpointplot3d  , from theplots package.

[ > ?plots,pointplot3d

To draw curves in three dimensions Maple needs a special comgpacdcurve , from the
plots package

[ > ?plots,spacecurve

Thetubeplot command lets us convert a one dimensional curve in three dimensional spau
two dimensional "tube”.

[ > ?plots,tubeplot

There are two commands for graphing equations, one that draws two dimensional graphs of
equations in two variables, and one that draws three dimensional graphs of equations in three
variables.

[ > ?plots,implicitplot

[ > ?plots,implicitplot3d

There are two commands for graphing vector fields, one for two dimensional vectoirfiglds
plane and one for three dimensional vector fields in space.

[ > ?plots,fieldplot

[ > ?plots,fieldplot3d

In addition, there are two commands for the special case of drawing gradient \etdsor fi

[ > ?plots,gradplot

[ > ?plots,gradplot3d

One very important command from thiets package is thdisplay = command, which can be

used to combine several (usually simple) graphs into a more complicated graph.

[ > ?plots,display

One way thatlisplay =~ can combine several graphs together is as the frames of an animation. This
is done by using thesequence=true option todisplay . There is no separate help page for
theinsequence option. The previous help page includes a description of this option and several
examples of its use. Another way to create animations is by usiagitheate andanimate3d
commands. These commands provide an easy way to make simple animations, but they are not as
versatile as thensequence=true option todisplay

[ > ?animate

[ > ?animate3d

There is a special animate command specifically for animating curves irattee [l particular, thi
command makes nice animations of parametric curves.

[ > ?animatecurve



Maple animations can be used to create animated GIF files for use in web pagestanibe A
brief explanation of this, along with an explanation of some other graphics formd#atiatcan
produce, is in the next help page.

[ > ?plot,device

The plot devices described in the last help page are used as options in ejthes#tep or
interface commands.

[ > ?plotsetup

[ > ?interface

An interesting command from thgots  package isnatrixplot  , which lets you draw a three

dimensional visualization of the contents of a matrix.
[ > ?plots,matrixplot

In theNew User's Touthere is a worksheet containing examples of using some basic graphics
commands.
[ > ?newuser,topic05

Besides th@lot andplot3d commands and the commands mentioned above fropidtse
package, Maple has many other commands for drawing graphs. In the rest of thesplmavegra
show where to get additional information about some of these commands.

There are many graphing commands inglieés  package that we have not yet mentioned. The
next page is a summary of the enfitets  package and it contains hyperlinks to the help pages of

all the commands in the package.
[ > ?plots

Theplottools package has a number of special functions for drawing "graphical objects"”,
arrow. The next page is an overview of this package and it contains hyperlinks to the helpf page
the all the commands in the package.

[ > ?plottools

Maple also has geometry package that can be used to create illustrations of ideas and theorems
from two dimensional Euclidean geometry. Here is a help page giving an overviewpdkege.

[ > ?geometry

Within this package you can work with the following kinds of geometric objects.

[ > ?geometry,objects

You can apply the following types of transformations to the geometric objects.

[ > ?geometry,transformation

Thedraw command in thgeometry package is used to actually draw the geometric objects that
you define using the package's commands.

[ > ?geometry,draw

Here is a help page that contains several examples of usiggdhestry package. You can cut



each example out of the help page and paste it into a worksheet and then execute the example
[ > ?geometry,examples

And here is a worksheet that has more examples afatheetry package. You can execute these
examples directly in this worksheet.

[ > ?examples,geometry

For doing Euclidean geometry in three dimensions Maple hagthe3d package. Here is an
overview of this package.

[ > ?geom3d

Within this package you can work with the following kinds of geometric objects.

[ > ?geom3d,objects

You can apply the following types of transformations to the geometric objects.

[ > ?geom3d,transformation

[ > ?geom3d,transform

Thedraw command in thgeom3d package is used to actually draw the geometric objects th
define using the package's commands.

[ > ?geom3d,draw

Here is a worksheet that has some examples of the transformations availabbgimt3d
package. You can execute these examples directly in this worksheet.

[ > ?examples,transform

Maple has many commands for working with polyhedra. These commands are contained in three
packagesplots , plottools  , andgeom3d. | do not really understand the division of labor
involved here. I'll try to give some pointers to the documentation. Iplthe package there is the
polyhedraplot command.

[ > ?plots,polyhedraplot

There is a command that will list the polyhedra supported bydhéedraplot command.

[ > ?polyhedra_supported

Here is the list of the polyhedra supportedbiyhedraplot . It is interesting to see the names
of so many kinds of polyhedra. (Can you say parabidiminishedrhombicosidodecahedron?)

[ > polyhedra_supported();

In theplottools package there are five commands that act as an interface to the
polyhedraplot command.

[ > ?plottools,dodecahedron

[ > ?plottools,hexahedron

[ > ?plottools,icosahedron

[ > 7?plottools,octahedron

[ > 7?plottools,tetrahedron

Theplottools package has a few commands for modifying polyhedra, for example the
stellate command.

[ > ?plottools,stellate

Thegeom3d package has a number of commands that can be used to define polyhedra. The



polyhedra defined with these commands can be drawn usinigathvecommand from the same
package. The commands for creating polyhedra are organized into three groups.

[ > ?geom3d,RegularPolyhedron

[ > ?geom3d,QuasiRegularPolyhedron

[ > ?geom3d,Archimedean

Thegeom3d package has a command for creating the dual of a given polyhedron.

[ > ?geom3d,duality

Like theplottools package, thgeom3d package has a command to stellate a polyhedron.
[ > ?geom3d,stellate

In addition, thegeom3d package has a command for faceting a polyhedron.

[ > ?geom3d,facet

There are six worksheets that give examples of how to usgtine3d package to work with
polyhedra. You can execute the examples directly in these worksheets. Some afpleseka
these worksheets create very striking polyhedra.

[ > ?examples,regular

[ > ?examples,archi

[ > ?examples,dual

[ > ?examples,stellate

[ > ?examples,facet

[ > ?examples,transform

Here are several other packages with some specialized plotting and viguatipatmands in them.
[ > ?student

[ > ?Student,Calculusl

[ > ?Student,Calculusl,VisualizationOverview

[ > ?DEtools

[ > ?PDEtools

[ > 7?stats,statplots

Here are two worksheets that contain examples of usingihaols package to graph solutions
differential equations. You can execute the examples directly in these wosksheet

[ > ?examples,deplot

[ > ?examples,deplot3d

Here is a worksheet with some examples fromsth&lots (sub) package.

[ > ?examples,statplots

[ >



