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6. How Maple drawsgraphs

=] 6.1. Introduction

By now you should have a good sense of how to create most of the kinds of graphs that you need |
a math or science course. But one of the goals of these worksheets is to give you a sense of how
Maple does what it does, a sense of what is going on inside Maple as it producesstsSesult

this worksheet we look at how Maple's basic graphing commands work. We examine some, but no
all, of the details of what these commands go through to create a graph. In the seciwngebel

look at how theol ot command draws graphs of real and vector valued functions of a single
variable, how the npl i ci t pl ot command draws graphs of equations in two variables, how the

pl ot 3d command draws surfaces defined by real valued functions of two variables, and how the
animation commands create movies. The material in these sections is immporsavefal reasons.
Besides giving you an idea of how Maple works, this material helps you understand some of the
anomalies and problems that can come up when using Maple's graphing commands. Thigsnateri
also a good way to practice using and thinking about Maple's graphing commands. And thas
should also help you to better understand the mathematical nature of functions, equations, and
graphs.

What we go over is these sections is not the whole story of how Maple draws graphsl. §ue wil
into some more of the details after we have discused the basics of Maple'sudateestin a later

worksheet.
L[>

=16.2. Thepl ot command

What does Maple do to draw a graph? The answer is surprisingly simple. Maple doestvhat |
about anyone would do if asked to draw a graph. Maple plots a bunch of points and then connects
them together with straight lines. To help see that this is the case, there imanihtep! ot
command that tells Maple to turn off the straight lines that connect the plotted p@irgss tdn
example.

> plot( sin(x), x=-Pi/2..Pi/2, style=point, synbol =point,

axes=none );

Thest yl e=poi nt option turned off the lines. (Argk y| e=l i ne turns them back on. Try it.)
Thesynbol =poi nt option tells Maple to actually plot points and not some other symbol. The
axes=none option turns off the drawing of the two axes, so that it is easier to see the points. But




the points are still pretty faint and hard to see, so let us use a different symbkéetthemposition
of the points more clear.

> plot( sin(x), x=-Pi/2..Pi/l2, style=point, synbol =circle,
{ axes=none );
Here are a few more examples of Maple plots without the line segments that sirmddt¢he
dots.
[ > plot( x*2 , x=-2..2 , style=point, synbol=circle );

> plot( 1/x, x=-10..10, -10..10, style=point, synbol =circle,
{ axes=none );
Note: You can put the axes back in by clicking on the graph and then clicking on one of the axes
buttons in the context bar.
{ > plot( sin(1l/x), x=.05..1, style=point, synbol=circle, axes=none

);

Play with these examples a bit. Use $lie/| e option to turn on and off the line segments. (Yol
change thet yI e option four ways. By modifying the Maple command. By clicking on the graph
and using the Style menu or the style buttons on the context bar. And by right clicking on the graph
and choosing Style from the popup context menu.) Change the ranges of the graphs to see how th

affects the positions of the plotted points. Try other functions.
[ >

We can even do this with 3-dimensional graphs. Be sure to rotate each of the followipieexam

Try changing thest y| e option. In the 3-D case there are mete/l e options to choose from. Try

| i ne,cont our, andpat ch (if you try pat ch, then you will need to get rid of tle!| or

option).

[ > plot3d( x"2+y"2, x=-4..4,

[ > plot3d( x"2-y"2, x=-4..4
> plot3d( sin(x*y), x=-Pi..Pi,

col or =bl ack );

In another section we will look at how Maple draws surfaces in more detail.
[ >

, style=point, color=black );
, Style=point, color=black );

=-Pi..Pi, style=point,

y=-4..4
, y=-4..4

Let us look at an example of why it is useful to understand how Maple draws graphs. Consider the
following graph of the function 11(- x).

[> plot( 1/(x-1), x=-4..6, -20..20, color=red );

Notice the vertical red line. That line is not supposed to be part of the graph. Why ig“ttltbeus
look at the points that Maple is plotting.

[> plot( 1/(x-1), x=-5..5, -20..20, style=point, color=red );

This should answer our question. Maple plots points and then connects all successive pdiet
with straight lines. This includes the two extreme points on either side of treal/agymptote at
x = 1. They get connected together in an almost vertical straight line that siebblelthere. Maple
has a way to avoid this problem. The plot optiorscont =t r ue tells Maple to avoid drawing
these extra lines at vertical asymptotes.

[



[ > plot( 1/(x-1), x=-5..5, -20..20, discont=true, color=red );
Now the vertical red line is gone. Maple does not have this option on by default because it is an
"expensive" option. It forces Maple do quite a bit of extra calculating to find the diadities of

the function. So we must turn this option on ourselves whenever we need it.
[ >

Now let us look further into how Maple draws 2-dimensional graphs. It seems that Maple has
pretty simplistic way of drawing these graphs. But it turns out that Maple is nioagle sninded.
Here is what Maple is concerned about. The more dots that are used, the better lookayghthe gr
will be, but the more dots that are used the more work (calculations) Maple will need tndo. H
many dots might a graph need to look good? Maple tries to use only 49 points for a 2-dimensional
graph and Maple tries to be very clever about how it uses those points. To decide where best to pu
those dots Maple uses what is callecdaptive plotting algorithm. This means that Maple does
not space out its points uniformly along the horizontal axis. Maple tries to adapt tlentadriz
spacing of the points so that the points are closer together in some places andoiartieother
places. Where would Maple need fewer dots spaced farther apart? Since the adwiseted by
straight lines, wherever the graph of a function is nearly straight Maple does diéd nse many
points to get a good looking graph (think of the extreme of graphing a straight line). \Wiudde w
Maple need more points spaced close together? Wherever the graph is changingslieedy
quickly. Let us go back to our first example.

> plot( sin(x), x=-Pi/2..Pi/l2, style=point, synbol =circle,

axes=none );

If you look closely you will notice that the points in the middle of the graph, where the sitierfiunc
is almost linear, are more spaced out than the points near the ends of the graph whnere the si
function has turning points. But the difference is quite subtle in this case. Let usng aonfiore
extreme example. We want a function that is very linear-like over a largeaindmd then suddenly
changes to a sharply turning graph. To try to get such an example, let us see if wageeatex
these properties of the sine function. What gives the sine function its overall shate regyin?
The first few terms of its Taylor series about the origin.
[ > taylor( sin(x), x=0);
Let us see what happens if we use just the first two terms of this series.

> plot( x-(1/6)*x"3, x=-Pi/2..Pi/2, style=point, synbol=circle,
{ axes=none );
Almost exactly the same graph. How can we exagerate the linearity vs. theeaatyiin this
example? After some experimenting with the power and the coefficient of thedsteem, here is a
pretty good example to look at.

> plot( x-(1/1000)*x"21, x=-1.35..1.35, -2..2, style=point,
{ synbol =circl e, axes=none );
Notice the long stretch of near linearity and then the very sharp turn where points &edaync
So we can see how Maple is adaptively plotting points. Maple allows us to yseoth@ption
adapt i ve=f al se to turn off the adaptive point plotting. In the next example, the points are
spaced uniformly along the horizontal axis. Compare this graph to the previous one.
{ > plot( x-(1/1000)*x721, x=-1.35..1.35, -2..2, adaptive=fal se,



| style=point, synbol=circle, axes=none );
[ >

Let us look at another example of adaptive vs. non adaptive point plotting. We canpisetthe
optionnunpoi nt s to control how many points we want plotted. In the case of non adaptive
plotting, nunpoi nt s determines exactly how many points we want Maple to plot. In the case of
adaptive plottinghunpoi nt s is only a lower bound on the number of points plotted, but in most
cases the exact number plotted is nearuopoi nt s. The next example is a slight modification of
the previous example.
> plot( x+.0001*x"21, x=0..1.6, 0..4, nunpoints=20, style=point,
synbol =circle );
Here we can see equally spaced points along the linear portion of the graph and bunched up point:
near the truning part of the graph. We madepoi nt s 20 but there are 29 points in the graph
(this example is convenient because we can distinctly see all the point and count Heenext
example setadapt i ve=f al se and setsiunpoi nt s=29 so the next graph has exactly the s
number of points as the previous graph.
> plot( x+.0001*x721, x=0..1.6, 0..4, adaptive=fal se,
nunpoi nt s=29, styl e=point, synbol=circle );
To really see the difference between the last two graphs, let us combine thérartoge one
graph.
> pl := plot( x+.0001*x"21, x=0..1.6, 0..4, nunpoints=20,
styl e=poi nt, synbol =circle, color=black ):
> p2 := plot( x+.0001*x"21, x=0..1.6, 0..4, adaptive=false,
nunpoi nt s=29, styl e=point, synbol=circle, color=blue ):
| > plots[display]( pl, p2);
The black circles are the adaptively plotted points and the blue circles are thelyrsfosced
points. Here is another way to compare these two graphs. The next graph once again teenbines
adaptive and non adaptive graphs, but this time we shift one of the graphs up a bit to make it easie
to see how points line up between the two graphs.
[ > pl := plot( x+.0001*x721+.1, x=0..1.6, O0..4, nunpoints=20,
styl e=point, synbol =circle, color=black ):
> p2 := plot( x+.0001*x"21, x=0..1.6, O0..4, adaptive=false,
nunpoi nt s=29, styl e=point, synbol=circle, col or=blue ):
| > plots[display]( pl, p2);
Now we can really see that the non adaptive graph (blue circles) has too many poinliséathe
portion of the graph and not enough points in the nonlinear portion of the graph.
[ >

Here is another example of adaptive vs. non adaptive plots that is interesting talplay wi
> plot( x-.0001*x"21, x=0..1.6, 0..4, nunpoints=20, style=point,

{ synbol =circle );

{ > plot( x-.0001*x"21, x=0..1.6, O0..4, adaptive=false,



| nunpoi nts=37, styl e=point, synbol=circle );
In this last example, try incrementing the valu@ofpoi nt s in the adaptive plot to see how the

extra points get used.
[ >

Here is one last example. When we graph the sine function over a whole period the adapiig:
becomes very evident at the critical points. Try several periods of sine.
{ > plot( sin(x), x=-Pi..Pi, style=point, synbol=circle, axes=none
)
> plot( sin(x), x=-Pi..Pi, adaptive=fal se, style=point,
synbol =circl e, axes=none );
[ >

We have been using theinpoi nt s option to help us see the affects of adaptive plotting. But
nunpoi nt s is usually used to help Maple draw better graphs. With some unusual functions, even
Maple's adpative plotting algorithm will fail to plot enough points and the graph of thefugets
distorted. In these cases, settingrpoi nt s to some high number fixes the graph. Here are some
examples.

Here is a typical example of a need for setting a valuelfapoi nt s.
(> plot( x/(1-cos(5*x)), x=-5..5, -5..5);
Notice that the critical points of the graph have a lot of sharp corners near them. ©he use
nunpoi nt s fixes this.
[ > plot( x/(1-cos(5*x)), x=-5..5, -5..5, nunpoints=200 );
Notice that the functior/ ( 1- cos(5*x) ) has a lot of vertical asymptotes. It turns out that we
could have fixed our original graph of this function by usingdhecont option instead of
numnpoi nt s.

> plot( x/(1l-cos(5*x)), x=-5..5, -5..5, discont=true, color=red

);

Go back and convert each of the last three grapbisytbe=poi nt and see where the adaptive

plotting algorithm was putting its ponts.
[ >

Here is a typical 3-dimensional example of a neediforpoi nt s. Letf represent a parametric
curve in space.
>f :=[cos(t), sin(t),
cos(t)"3*sin(4*sin(t))+sin(t)”*2*cos(3*cos(t))];
[ > plots[spacecurve]( f, t=0..2*Pi );
Look at the graph carefully. You should notice several sharp corners near the turning potcds. We
improve this graph by using numpoints.
[ > plots[spacecurve] ( f, t=0..2*Pi, nunpoints=100 );
Now the graph is nice and smooth. Experiment with this last example a bit. Try é@mthegn



nunpoi nt s by 10's starting at 50 and find out when the graph no longer has any sharp corners at

the turning points.
[ >

Here is an even more dramatic example of a needuopoi nt s. Using the same parametric

curvef , let us try increasing the range of the parantet@ihis should not have any affect on the
graph, since the functidnis periodic, but watch what happens.

[ > plots[spacecurve]( f, t=0..4*Pi );

What do you think happened? What caused the curve in the graph to get "doubled up"? Try fixing
this last graph usingunpoi nt s. The next graph is even stranger.

[ > plots[spacecurve]( f, t=0..7*Pi );

What do you think happened in this graph? What caused the graph to loose so much if its shape?
How does this example differ from the last one? Try an even longer range for thetgaram

[ >

The number of points that Maple needs to use for graphing equations can be surprising. The next
graph is a bit rough, so it needs to have a higher valueufgpoi nt s. Start with

nunpoi nt s=200. How high do you need to go?

[ > plots[inplicitplot]( x"3+y"3=5*x*y+1-5/4, x=-3..3, y=-3..3);

[ >

Here is an unusual example of a needhionpoi nt s (this is fromintroduction to Maple, 3rd Ed.,
by A. Heck, page 439).

[ > plot( (1/10)*(x-25)"2+cos(2*Pi *x), x=0..49 );

The graph looks just like a parabola. But it should not. Use a high value of numpoints.

[ > plot( (1/10)*(x-25)"2+cos(2*Pi *x), x=0..49, nunpoi nts=200 );

This is the correct graph. The cosine term in the function adds a waviness to the ptaaholic
the original graph, all of the sample points being plotted were on the parabola part apthelge

cosine term was nearly zero at every one of them!
[ >

Here is a very extreme example of a usewfpoi nt s. The following graph tries to plot 95
periods of the sine function. This is far more periods than can be realistically dralmencomtpute
screen but the graph is much more bizarre than it should be.

[ > plot( sin(x), x=-90*Pi..100*Pi );

The next example tries to fix the previous graph by settingpoi nt s very high. The graph looks
much more regular now, though it still has an unusual appearance. Try changing the number of
periods of sine in both the previous graph and this next graph and try changing the value of
nunpoi nt s in the next example. The graphs you get are not very meaningful as far as the sine
function is concerned, but they can be interesting to look at and to try and figure out where the
patterns come from. (To get another sense of how strange this example is, clickotioviegf

graph and then click on each of the axes buttons on the context bar and see what happens.)

|



[ > plot( sin(x), x=-90*Pi..100*Pi, nunpoints=1000 );
[ >

Exercise: The following command turns off adaptive plotting and dranvs<  w(ith just a few

points so that you can see the straight lines that make up the graph.

[ > plot( sin(x), x=0..Pi, adaptive=false, nunpoints=5);

Increase the value ofunpoi nt s in small increments until you can no longer see any change
graph. Then turn the line drawing off using #ieyl e=poi nt option, so that you can see just how
far apart the individual points are. Try the same experiment agian, startmguwipoi nt s very

low, but with a larger range for the varialle

[ >

Exercise: Here is a tricky Maple puzzle. The real valued functidn- x is not defined wher is
greater than one. Maple can graph this function from 0 to 1 with no problem.

[ > plot( sqgrt(1-x), x=0..1);

Suppose we ask Maple to graph the function a little bit past 1, just to see what happens.
[> plot( sgrt(1l-x), x=0..1.01);

Notice that we lost the last little bit of the gradmdfore 1 (and the vertical asymptotexat 1 is not
as evident). Why do you think that happened? Notice that a high vatuerpbi nt s "fixes" this
problem, though the original graph, which did not even megtboi nt s, is still better.

[> plot( sgrt(1l-x), x=0..1.01, nunpoints=200 );

[ >

Exercise: Consider the following graph.
> plot( sin(100*x), x=-10*Pi .. 10*Pi, nunpoi nts=500,
adapti ve=fal se );
Now incrementiunpoi nt s from 500 to 510 in steps of one. Can you give any kind of an

explanation for these graphs?
[ >

[ >

=16.3. Theinplicitpl ot command

Of all the basic graphing commands in Maple,ithel i ci t pl ot command has the most
difficult job to do. In fact it is not uncommon for thepl i ci t pl ot command to draw an
incorrect graph, or even no graph, for an equation. Here is a fairly simple exampletrizebus
graph the equation

1 (2412
(x2+y2)e( (X Y)):1
which has the following simpler equation in polar coordinates

2
1_
etz




Before graphing this equation, let us loadh@t s package, sincenpl i ci t pl ot is in this

package.

[ > with(plots);

Here is the npl i ci t pl ot command that tries to graph our equation.

[>inplicitplot( (x"2+y"2)*exp(1l-(x"2+y"2))=1, x=-1..1, y=-1..1);

The command produced an empty graph. But what does the graph of this equation look like? Let u

solve the equation using its polar coordinate form=D, then the equation is not true, so we can
2

assume the # 0. If r # 0, we can simplify the equation da%l_r - 1, which is only solved by

1-r*=0, which is solved by the curve given in polar coordinates=¥. In other words, the gra

of the equation we gave to thepl i ci t pl ot command is a circle of radius one centered at the

origin. That is not a very complicated graph, so it is a bit surprising thati ci t pl ot could not

graph it. To make things even more surprising, let us show that Maple can solve the equation

symbolically.

[ > solve( (x"2+y"2)*exp(1l-(x"2+y"2))=1, {x,¥y} );

Maple found two symbolic solutions, the upper and lower halves of the circle of radius oneccenter

at the origin. So this equation is not by any means very complicated, and its graphnly certa

very complicated, so why does thepl i ci t pl ot command have trouble with it? To answer this

guestion we need to look into how thepl i ci t pl ot command works. After we have explained

howi npl i ci t pl ot works, we will return to this example and a few other examples that give

I mplicitplot problems.

[ >

Exercise: Draw a graph for the expressipr”2+y”2) *exp( 1- (x"2+y”2)) as a function of

two variables. Where is the solution to the equation in the graph of this expression’h&giraph

of the expression, can you see anything unusual about the solution to the equation that might be
causing npl i ci t pl ot problems?

[ >

Recall that we have defined an equation as an equal sign with an expression on eithér Side of
I mplicitpl ot command can only graph equations in two variables, so as far as the

I mplicitpl ot command is concerned, an equation is always of theffogm) = g(x, y), where
we are using the notatidnx,(y apdg (, y )to represent expression®{ functions) inx andy (any
two variables can be used; we settlexamdy just for convimience). The very first thing that the

i mplicitplot command does is rewrite the equatitw y) = g(x,y) asf(x, y) —g(x,y) =0.

These two equations are equivalent in the sense that they have the same graph. Buht#te way
I mplicitpl ot writes the equation is essential for hiowpl i ci t pl ot works. So as far as

I nplicitplot is concerned, we can say that all equations are of theFptw) = 0, where we
are using- X,y }o represent any expressiorxiandy.

We have to give thenpl i ci t pl ot command two ranges, one for theariable and one for the



variable. Let us denote these rangeg bya .. b andy =c .. d, wherea, b, c, d are any four real
numbers witha<b andc < d. Thei npl i ci t pl ot command only tries to graph the equation
F(x,y) =0 within the rectangle determined by the four poiat€), (b, ¢), (b, d) and & ,d). Let us

recall exactly what it is thatnpl i ci t pl ot is trying to graph. Within the rectangle determine(

(a c), (b,c), (b,d)and & .,d),i npl i ci t pl ot is looking for every ordered paix () that solves

the equatior(x, y) = 0. Since the solution of the equatiefx, y) =0 is in general a curve, there

will usually be an infinite number of points in the rectangle that solve the equation. $othefa

i nmplicitplot command does not look for every point that solves the equation, just enought of
them so that it can connect the points with straight line segments and get a good apgra{rttz
solution curve. But notice right away that there is something very different bereninat thep! ot
command does. Therpl i ci t pl ot command has tsearch through the rectangle to find points
that it should plot. Thel ot commandcomputes the points that it should plot. Given any value for
the independent variable, theot command has a very specific way to generate a point to plot; it
plugs the indepdent variable into the function to get the value of the dependent variable. The

i mplicitplot command does not have a way to automatically generate the points that it should
plot. Thei npl i ci t pl ot command needs a way to search through the rectangle and find points
on the solution curve.

Here is how theé npl i ci t pl ot command finds points that it should plot. The first step is to
compute a grid of sample points within the rectangle determined by the poi)tdl§, ¢), (b, d)

and @ ,d). To get the grid points, the intervals framo b andc tod are each divided into 25
subintervals of siz& x = (b — a)/25 andA y = (d — ¢)/25, respectively, and then the grid points have
coordinatesx, yj) =(@+ilAx,c+jAy)forifromO0 to 25 angfrom O to 25 (so the grid has a total
of 676 points). The second step is to evaluate the exprdSsipn &t all 576 grid pointsq y,).

The third step is to look for pairs of adjacent grid points that have opposite sigajaBsnt grid
points we mean the following, for anybetween 1 and 25 and gnlyetween 0 and 24, the grid
points adjacent to( y;) are & ;. 1), (-1, ¥) and & _; ¥, 1), thatis, the three grid points just
north, west, and northwest of (y). If a pair of adjacent grid points with opposite signs is found,
that means that there is a point from the curve somewhere on the line segment joitviragottie
points. (Why is the last statement true? What important assumption are we niakihtha
expressiork X,y ). The fourth step is to compute approximate points on the curve by using linear
interpolation between the adjacent grid points that have opposite signs. For examhe, if a
adjacent grid points«( yj) and ; Y, +1) the expressiof Xy has valuesg andzj +1 (Where the
numbersz andz , ; have opposite signs), then thepl i ci pl ot command will plot the point

with coordinates

5Yj+17 Y441
(" )
57441

These approximation points are the points that are connected by line segments the@at/e
F(x,y) =0.



Exercise: What point is ploted if one af orz , , is zero? What should be done if botrgcdndz, , |

are zero?
[ >

Exercise: Derive the linear interpolation formula used just above.
[ >

j y +1° y i +
Exercise: Assuming thag andz , ; have opposite signs, prove thit REN/GLE lies betweery,

2.,

andy, , ;. (Hint: Think in terms of weighted averages.)
[ >

Let us notice several things about the four step algorithm given above. First, the gsdipgint

are not the points thatpl i ci t pl ot ends up plotting. The plotted points will usually lie betv
the grid points, unless one of the grid points lies right on the &{rye) = 0. In that case,

I mpl i citplot will not use the interpolation formula and it will plot the grid point. Second, the
number of points used in the grid can be changedi Wpéi ci t pl ot command hasari d

option andyr i d=[ m n] tellsi npl i cit pl ot to use a grid witmpoints in thex direction anch
points in they direction. Third, notice that the third step in the algorithm is the step where the
searching needs to be done. All of the other steps are computed using specific formailas. Thi
searching step can take quite a bit a time, as the next exercise demonstrates.

Exercise: With the defaulgr i d=[ 26, 26] , so that there are 676 grid points, how many pairs of
adjacent grid points need to be compared? If the grid is changed ti>=[ 100, 100] , how many

pairs of adjacent grid points need to be compared?
[ >

Exercise: The following command graphs the equatisrD over a rectangle. What should the
graph look like? Explain why the graph looks as it does. (Hint: Recall the definition oéatja
points that we gave above.)

[>inplicitplot( 0=0, x=0..10, y=0..10, axes=none );

[ >

Let us look at a simple example of usingpl i ci t pl ot . We graph the equatioﬁ + y2 =1 with
styl e=poi nt, so that we can see the points thapl i ci t pl ot computes.
> inmplicitplot( x"2+yn2=1, x=-1..1, y=-1..1,
styl e=poi nt, synbol =circle, scaling=constrained
);

Here is a trick that lets us graph the grid pointsitiatl i ci t pl ot used along with the points
from the equation thatnpl i ci t pl ot plotted. In the next command we graph both the equation
0=0 (which will produce the grid points for us) and the equatioa+y”~2=1 using the options



styl e=poi nt andgri d=[ 11, 11] so that we can see the distinct points more clearly.
> inmplicitplot( {0=0, x"2+y”2=1}, x=-1..1, y=-1..1,
grid=[11, 11],
styl e=point, synbol =circle, scaling=constrained
);
It would be nice to use different colors and symbols for the points from the grid and the equation.
We cannot do that with a singlerpl i ci t pl ot command. So the next example uses
I nmplicitplot twice and ali spl ay command to combine the two graphs.
> inmplicitplot( 0=0, x=-1..1, y=-1..1, color=black,
grid=[11, 11],
styl e=poi nt, synbol =di anond, scal i ng=constrai ned
) :
> inmplicitplot( x*2+y~2=1, x=-1..1, y=-1..1, color=red,
grid=[11, 11],
styl e=poi nt, synbol =circle, scaling=constrained
) :
| > display( [ %4 );
[ >

Exercise: For each red point in the last graph, identify which pair of adjacent (black) grid pos

used to generate that point on the graph of the equation.
[ >

Exercise: The circlex’ + y2 =1 is very symmetric, the square determined by the ranges$. . 1,
y=-1.. 1 is also very symmetric, and the grid determined in this square region by the option
grid=[11, 11] is also symmetric. But the computed points on the graph of the equation
x"2+y”~2=1 are not as symmetric as we might expect. Use the algorithm defined above ito expla

the loss of symmetry in the computed points.
[ >

Exercise: Repeat the last two exercises for the following graph of the equélti'oryf3 =1.
> implicitplot( 0=0, x=-1..1, y=-1..1, color=black,
grid=[11, 11],
styl e=poi nt, synbol =di anond, scal i ng=constrai ned
):
> jinmplicitplot( x"6+y"6=1, x=-1..1, y=-1..1, color-=red,
grid=[11, 11],
styl e=point, synbol =circle, scaling=constrained
) :
| > display( {%6 % );
[ >




Exercise: Explain in detail the anomalies in the following two graphs (which are from the last
worksheet) of the equaticma><(| x| | y|) =1.
> inplicitplot( max(abs(x),abs(y))=1, x=-2..2, y=-2..2,
{ scal i ng=constrai ned );
> inplicitplot( max(abs(x),abs(y))=1, x=-1..1, y=-1..1,
{ scal i ng=constrai ned );
[ >

Exercise: Repeat the last exercise for the following grap|h<b+| y| =1. Can you explain the
broken (dashed) lines on two of the edges?
> inplicitplot( abs(x)+abs(y)=1, x=-1..1, y=-1..1,
{ scal i ng=constrai ned );
[ >

Now let us return to our firstnpl i ci t pl ot example. Why is the following graph empty, even
though we know that the graph of the equation is a circle of radius one centered at the origin?
[>inplicitplot( (x"2+y"2)*exp(1l-(x"2+y"2))=1, x=-1..1, y=-1..1);
To help answer this question, let us graph the expreggioA+y~2) *exp( 1- (x*2+y”~2))-1
thati npl i ci t pl ot is working with.

> plot3d( (x"2+y"2)*exp(1l-(x"2+y"2))-1, x=-2..2, y=-2..2,

axes=boxed );

From thez-axis in the graph we notice that the expres§ioh2+y”~2) *exp( 1- (x"2+y"2))-1
is always negative except for where it is 0. In order for thel i ci t pl ot algorithm to plot a
point, it needs to find adjacent grid points with opposite signs. But with an expressiorathatys
negative, there can never be adjacent grid points with opposite signs. So unless onedf the gri
points happens to land right on the graph of the equation (which in not very likely, even with

grid points), the npl i ci t pl ot algorithm will not plot any points and we get an empty graph.
[ >

Exercise: Explain the results of the following commands. How are they different than the last

I mplicitplot command?

> inmplicitplot( (x"2+y"2)*exp(l-(x"2+y"2))=.99, x=-1.5..1.5,
y=-1.5..1.5,

scal i ng=constrai ned);

> inmplicitplot( (x*"2+y"2)*exp(1l-(x"2+y”2))=.999, x=-1.5..1.5,
y=-1.5..1.5,

> scal i ng=constrai ned);

> inmplicitplot( (x"2+y"2)*exp(1l-(x"2+y"2))=.999, x=-1.5..1.5,
y=-1.5..1.5,

> grid=[ 100, 100], scaling=constrai ned);

[ >




Exercise: Use the expressiari - 18 r?+ 81 to derive an expressiénx,y in)x andy such that the
graph ofF(x,y) =0 is a circle but npl i ci t pl ot cannot draw the graph. Use thel ve
command to see if it can find analytic expressions for the solutib(xoy) = 0 (it should be able
to). Give the equatioR(x, y) = 0 a suitable "pertubation” so thatpl i ci t pl ot can approximal

the correct graph of the equation.
[ >

In general, the algorithm formpl i ci t pl ot has problems when the curve it is trying to graph
happens to be near critical points for the expredsiany (If the graph of the expressiénx, { is)
locally flat near the curvE(x,y) =0, then it is difficult for the npl i ci t pl ot algorithm to find
the adjacent grid points with opposite signs that are essential for the algarittorkt The next

three exercises show other problems thsil i ci t pl ot can have because of critical points.
[ >

Exercise: What should the graph of the equatiér- y* = 0 look like? Explain the little square box
at the center of the following graph.

(> implicitplot( x"2-y*"2=0, x=-1..1, y=-1..1, axes=none );

[ >

Exercise: Explain in detail the cause of the difference between the following two graphse kat
the commands differ only in theg i d option.
> inplicitplot( cos(x)=1, x=-6*Pi..6*Pi, y=-6*Pi..6*Pi,
{ grid=[25, 25] );
> inplicitplot( cos(x)=1, x=-6*Pi..6*Pi, y=-6*Pi..6*Pi,
{ grid=[ 26, 26] );
[ >

Here is an interesting caseiafpl i ci t pl ot having trouble drawing a graph. The following
graph is not very accurate.
{ > inmplicitplot( 2*xM4+yN4-3*x"2*y-2*y"3+y"2=0, x=-2..2, y=0..2.1
)

We can increase the grid size and get a better graph (the following graph keghtctzuple of
minutes to draw).
> inmplicitplot( 2*xM4+yN4-3*x"2*y-2*y"3+y"2=0, x=-2..2,

y=0..2.1,

grid=[ 200, 200], axes=none );

The last graph is still not complete. There is a hole in the graph at the bottom nemjirthéeatrus
look at a graph of the expressidhx”4+y"4- 3* x"2*y- 2*y~A3+y”2 to see why the

i mplicitplot command is having problems. The following command graphs this expression
along with thexy-plane. Where they-plane cuts this surface is the curvepl i ci t pl ot was

trying to graphing.

[



[ > plot3d( {2*x"N4+y"4-3*xN2*y-2*y"3+y"2, 0}, x=-2..2, y=0..2.1);
Notice how the surface just barely passes throygilane. The next command stretches the sce
the z-axis so that we can "blow up" the detail of the shallow part of the graph. The grapihlig init
drawn looking staight down tleaxis, so that we can see a crude trace of the curve
I nplicitplot was trying to graph. Rotate the graph to see the detail of the shallow part. Notice
just how shallow the "inner" bump of the graph is. Can you figure out what the real shape of this
graph is?

> plot3d( {2*xM4+y"N4-3*xN2*y-2*y"3+y"2, 0}, x=-2..2, y=-0.2..2.1,

view=-0.1..0.1, grid=[50,50], orientation=[-90,0] );
It is possible to get a very good graph of the curve defined by the equation

2x'+y* -3 G y—-2 y3 + y2 =0. This is done by parameterizing the curve. For the details see

Introduction to Maple, 3rd Edition, by A. Heck, page 428.
[ >

Exercise: Let us define the following function.

[>f 1= exp(-(x-3)"2-y"2) - exp(-(x+3)"2-y"2);

Here is a graph of this function. Notice that it has one spike going up and one going down.

[ > plot3d( f, x=-4..4, y=-9..9);

Here is a (two dimensional) contour diagram for this function. Why do you think that thiardiagr
appears the way that it does?

[ > plots[contourplot]( f, x=-4..4, y=-9..9 );

[ >

Here are some examplesiofpl i ci t pl ot using polar coordinates. The first two graphs show us
what the default 26 by 26 point grid looks like in polar coordinates.

> inmplicitplot( 0=0, r=0..1, t=0..2*Pi, coords=pol ar,
styl e=poi nt,
> scal i ng=constrai ned );
> implicitplot( 0=0, r=0..1, t=0..Pi, coords=polar, style=point,
> scal i ng=constrained );

[ >

Exercise: Explain why the following grid looks the way that it does.
>inmplicitplot( 0=0, r=-1/2..1, t=-Pi/2..Pi/2, coords=polar,
styl e=poi nt,
>
scal i ng=constrai ned);

[ >

(> inplicitplot( 0=0, r=0..1, t=0..2*Pi, color=black,



coor ds=pol ar, styl e=poi nt, synbol =di anond,
scal i ng=constrained ):

inplicitplot( r=cos(t), r=0..1, t=0..2*Pi, color=red,
coor ds=pol ar, styl e=poi nt, synbol =circle,
scal i ng=constrai ned ):

display( {% % );

implicitplot( 0=0, r=0..1, t=0..Pi/2, color=black

coor ds=pol ar, styl e=poi nt, synbol =di anond,
grid=[26,8], scaling=constrained ):

inplicitplot( r=cos(t), r=0..1, t=0..Pi/2, color=red,
coor ds=pol ar, styl e=poi nt, synbol =circl e,
grid=[ 26, 8], scaling=constrained ):

display( {% % );

inplicitplot( 0=0, r=0..1, t=0..Pi/2, color=black,

styl e=poi nt, synbol =di anond, grid=[26, 8], scaling=constrained

):
implicitplot( r=cos(t), r=10..1, t=0..Pi/2, color=red,

styl e=point, synbol=circle, grid=[26,8], scaling=constrained ):

display( {%6 % );

implicitplot( 0=0, r=0..1, t=0..2*Pi, col or=bl ack,

coor ds=pol ar, styl e=poi nt, synbol =di anond,
scal i ng=constrai ned ):

inplicitplot( r”2=cos(2*t), r=0..1, t=0..2*Pi, color=red,
coor ds=pol ar, styl e=poi nt, synbol =circle,
scal i ng=constrained ):

display( {% % );

inplicitplot( 0=0, r=0..1, t=0..Pi/2, color=black,

coor ds=pol ar, styl e=poi nt, synbol =di anond,
grid=[ 26, 8], scaling=constrained ):

implicitplot( r~2=cos(2*t), r=0..1, t=0..Pi/2, color-=red,
coor ds=pol ar, styl e=poi nt, synbol =circl e,
grid=[26,8], scaling=constrained ):

display( {9 % );



L[>
=16.4. Thepl ot 3d command

Let us now look more carefully at how Maple draws three dimensional graphs for functiams of
variables. The basic idea here is still pretty much the same as with two dinamggaphs. To draw
a graph of a function of two variables Maple simply plots points. But for functions of twblesria
Maple does not do any adaptive spacing of points. Given a furickon ¢f twp variables and a
rectangular domain witk betweera andb andy betweerc andd, Maple will, by default, chose a
25 point by 25 point grid of evenly spaced sample points within the rectangle formed by the four
points & ,c), (b, c), (b, d), and & ,d). Maple will then evaluate f at the 625 sample points and plot
these values. Here is a simple example. The following command plots a paraboloid ugsgrmbi
then views the plot looking straight down thaxis. So the graph shows us the grid that Maple used
for evaluating the function. If you look carefully you can see that the grid is evenlylspatdas
25 points on each edge. If you click on this grid and then use the mouse to rotate it, you can see th
three dimensional aspect of the graph.
[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, style=point,
orientation=[0, 0],
| col or=bl ack );
Here is another example, this time using a saddle surface.
> plot3d( x"2-y"2, x=-4..4, y=-4..4, style=point,
orientation=[0,0],
| axes=franme, col or=black );
As we mentioned just before, Maple does not attempt to do any adaptive spacing of points in the
rectangular grid. A default grid of 25 points by 25 points (for a total of 625 sample points) is good
enough for a rough graph of most functions, but as we will soon see, it often does not give very
smooth graphs. We can control the number of points in the sample grid using theption to
pl ot 3d. The next example plots the saddle surface with a grid of 10 points by 15 points.
> plot3d( x"2-y"2, x=-4..4, y=-4..4, style=point, grid=[10, 15],
orientation=[0,0], color=black );
Of course, most of the time we will want to choose grid values that are largehéhdefault

values, not smaller.
[ >

Once Maple has plotted all of the sample points for the graph, the points should somehow be
connected together. There are two basic choices for connecting the points, usingeitegnhent

or "patches". First let us try line segments. The next two commands draw the gadrabdlthe

saddle using line segments to connect the sample points.

[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, style=line, color=black );

[ > plot3d( x"2-y"2, x=-4..4, y=-4..4, style=line, color=black );

These kinds of graphs are also calledeframe graphs. The graph is, in a sense, made up of wires
bent into the correct shape. Notice how in these two graphs you can "see through” thergraphs si
the spaces between the wires are considered empty. For some surfacesthitosige@spect of a




wireframe graph can be confusing. So there is a way to draw a wireframe grapmdtiat
transparent. The next command graphs the saddle surface udingithen option. Think of this a
making the spaces between the wire frames opaque, so some of the wireframéidileberom
view.
[ > plot3d( x"2-y"2, x=-4..4, y=-4..4, style=hidden, color=black );
Maple has two styles of wireframes that it can draw for a sunfaae, angul ar and
tri angul ar . These styles are for an option that is confusingly caliedist y| e. The name
gri dstyl e is confusing because thect angul ar andt ri angul ar styles do not in any way
affect the rectangular grid of sample points used to graph the surface. Thesdesvjoist
determine the way the sample points are connected by lines to make the wireframex{ltwo
commands draw the saddle surface with the rectangular and triangular wersfyées (the
rectangular wireframe is in fact the default). The surfaces arelindiawn looking straight down
the z-axis, so that you can see how the two styles of wireframes get their namaee Berstate
both graphs and compare the appearance of each style.
> plot3d( x"2-y"2, x=-4..4, y=-4..4, styl e=hidden,

gridstyl e=rectangul ar,
| orientation=[0,0], color=black );
> plot3d( x"2-y"2, x=-4..4, y=-4..4, styl e=hidden,

gridstyl e=triangul ar,
| orientation=[0,0], color=black );
If you want to convince yourself that the optipni dst yl e=t ri angul ar has no affect on the
rectangular grid of sample points for the graph, just changet thiee option fromhi dden to
poi nt in the last command.
[ >

Now let us connect the points with "patches" of surface usingaheh option.

[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, style=patch );

Thepat ch option is in fact the default option, so we do not really need to include it. Here is the
saddle surface graphed with patches connecting the sample points.

[ > plot3d( x"2-y"2, x=-4..4, y=-4..4);

Thepat ch option actually draws both the wireframe and the patches between all the sampl
This seems to give the most all around useful graph. It is also possible to graph justhtbe pa
without the wireframe. (Notice that the option name is confusingly calléd hnogr i d, but of
course there still is a grid. There is no wireframe.)

[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, style=patchnogrid );

[ > plot3d( x"2-yn2, x=-4..4, y=-4..4, style=patchnogrid );

We have graphed the paraboloid and the saddle using five differentstyles,, | i ne (or

wi ref rane), hi dden, pat ch, andpat chnogri d. Each of these five styles (plus two others)
can be choosen in thg ot 3d command, or they can be choosen by clicking on a 3D graph and
using buttons from the context bar at the top of the Maple window, or by right clicking on the 3D

graph and using the pop-up context menu.
[ >



Now let us look at an example where the default grid of 25 by 25 samples points is not really

enough. The function
f(x) = sin(4/ X2 + y?)

has a maximum value of 1 and a minimum value of -1. The function attains its maximume circl
of radiustv2 + 2 tn centered at the origin. So the following graph should have a nice flat circular
top to it, but in fact the top edge is quite lumpy.

[>f = sin(sqrt(x"2+y"2));

[> plot3d( f, x=-4*Pi..4*Pi, y=-4*Pi..4*Pi );

To really see the lumpiness, use the context bar for the 3D graph to switch between the

pat hnogri d andhi dden plot styles. Notice how the lumpiness exactly follows the grid lines
from the wireframe. These grid lines are all the information thatitlie 3d command has about

the function. To improve the graph we need the gridlines to be closer together. Let ugligra hi
value for the number of sample points.

[> plot3d( f, x=-4*Pi..4*Pi, y=-4*Pi..4*Pi, grid=[75,75] );

Now the lumpiness along the top edge is almost gone, but the graph does not really look good with
the wire frame showing since the wireframe is now so dense. Try looking at the grapthnes

pat hchnogri d style.

[ >

In the last example, if you try smaller grid sizes you will see that the lusgpisstill pretty eviden

It took a 9 fold increase in the number of sample points (from 625 to 5625) to really improve the
graph. This is also a 9 fold increase in the amount of time and memory that Maple needs to use
draw the graph. This is typical of drawing surfaces. It takes quite a bit of work t@dcavate
images of surfaces. The default grid size of 25 by 25 points is a good compromise between the
accuracy of the image and the time and memory needed to draw the image.

[ >

Exercise: Maple can draw surfaces over nonrectangular regions, but it will still useiakgant
rectangular grid of sample points. Use the next two commands to try and explain ipove i3l
command determines its grid of sample points when it is graphing over a nonrectaeggatariry
switching between theoi nt , hi dden andpat ch styles to help you figure out how the sample
points were choosen (use the context bar). The first command draws the saddle surface ove
nonrectangular region. The graph is initially drawn looking straight dowrakkes so that you can
see the shape of the region and the grid used in the region.

> plot3d( x"2-yn2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{ style=point, orientation=[0,0], axes=frane );
The next command draws the paraboloid over a circular region, which helps the graph look more
paraboloid like.

> plot3d( x"2+yn2, x=-4..4, y=-sqrt(16-x"2)..sqrt(16-x"2),
{ styl e=hi dden, orientation=[0,0], axes=franme );
[ >



There are many ways to control the appearance of the image that Maple drawsfire b the
next several examples we will discuss ¢the ent at i on, shadi ng, col or, andl i ght options

to thepl ot 3d command. None of these options can change the accuracy of a graph. A graph's
accuracy is determined by the ranges used for the threee axes and the number qicsats pised

to draw the graph. The options that we will go over now are mainly used to control the @estheti
appearance of a graph, though they can also be used to highlight, or draw attention to, soofi

a graph.

Theori ent at i on option determines the point, caled thewpoint, in three dimensional space
from which the surface is viewed. The viewpoint is determined by two angles, @alhetp, that
are measured in degrees. These two angles are essentially the sphedoztesoof the viewpoint
on a sphere centered at the origin and sufficiently large to enclose the whole banfecdrawn.
Like spherical coordinate®,measures an angle in tkgeplane from the positive-axis andp
measures an angle from the positvaxis. For example, here is the saddle surface with orientation (
0, @ = (45,90), which is looking straight into the "edge" of tix@lane, "halfway" between the
positivex andy axes.

> plot3d( x"2-y"2, x=-4..4, y=-4..4, orientation=[45,90],

axes=franed );

If you click on the last graph, you will see th@ndg coordinates in little boxes on the left side of
the 3D context bar at the top of the Maple window. There are little up and down arrows nesg
angles that you can click on to change their values. You can also click directly on eitieeboxe:
that hold the angles, which puts the cursor in one of the boxes, and then you can change the angle
any value and the image will chage orientation immediately. And if you click on thle grén the
mouse and rotate it, you can see the orientation angles continuously changing as yderotate t
graph. By playing around with these three different ways of setting the orientatoshguld be

able to give yourself a good sense of what it means.
[ >

Exercise: The orientation anglésandg are not quite exactly the same thing as spherical
coordinates for the viewpoint. For example, for a given fixed ragitlee anglesf ¢) = (0,0) and (
0, @ = (45,0) in spherical coordinates describe the same point on the sphere (why?). But the
orientation anglesB( ¢) = (0,0) and@ ¢) = (45,0) do not describe the same orientation. Use the
following two commands to help you explain exactly how and why these two orientatioms diffe
How would you describe these two orientations in words? For what other valiasa will the
orientation angles differ from the angles in spherical coordinates?

> plot3d( x"2-yn2, x=-4..4, y=-4..4, orientation=[0,0],
{ axes=nornmal );

> plot3d( x"2-yn2, x=-4..4, y=-4..4, orientation=[45,0],
{ axes=normal );
[ >



Exercise: The orientation angle® (¢) = (0,0) look straight down theaxis at thexy-plane. But the

x andy axes are not in their usual position for graphs okyhglane. What orientation angles would
look straight down the-axis and have they-plane in the usual position (i.e., positk:axis to the
right and positivey-axis pointing vertically)?

[ >

Here is a simple demonstration of orientation angles that uses an animatiee.git@mmand
creates 21 3D graphs. Each graph created bydhecommand has a slightly different orientation.
Thedi spl ay command combines the 21 graphs into an animation. Click on the first frame of the
animation, when it is displayed, to get the "VCR" buttons in the context bar.

> 1 -> plot3d( x"2+y"2, x=-4..4, y=-4..4,

orientation=[45, 45+ *18] ):

> seq( %i), 1=0..20):

> plots[display]( [“4, insequence=true );
Notice that in this animation it appears as if the surface is rotating. But,ithsurface is really

fixed and it is the viewpoint that is moving.
[ >

Now let us turn to the use of color when graphing surfaces. The use of color with the graphs of
curves is very straight forward. A curve is given a solid color that is used along tleecuhat. Bu
for surfaces, the use of color is much more subtle. First of all, if you look back at any cdus gr
of surfaces, you see that they do not have a solid, uniform color to them. The color varies all about
surface in a manner that helps make the surface easier to view. In general,sddristh
surfaces as a way to help make the shape and detail of a surface easier to smealSolosed as
an aesthetic tool, to make the surfaces more pleasing and interesting to look ankme eiere is
the saddle surface drawn in the solid color blue. This graph is not all that appealing.

> plot3d( x"2-yn2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{ styl e=patch, col or=blue );
If we redraw the graph in solid blue and without the grid lines, then the surface dotaliges
very difficult to visualize. In the following graph, with many choices of orientatibeé¢bmes
almost impossible to even see that the graph is a surface.

> plot3d( x"2-yn2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{ styl e=pat chnogri d, col or=blue );
On the other hand, with the default coloring of a surface, even without the grid lines thesgraph i
obviously a surface from almost any orientation.

> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{ styl e=patchnogrid );
These last few examples show that it really does matter how color is choossuffiaica so that
the surface is easy to visualize and pleasing to look at.
[ >

Thepl ot 3d command has two options that control the use of color for surfaces)ltlie option



and theshadi ng option. First we will discuss thehadi ng option, which is the easiest way to
a good coloring scheme for a surface. Thedi ng option provides five predefined coloring
schemes for surfaces. They are callgd, xy, z, zhue, andzgr ayscal e. The default coloring
scheme ishadi ng=xyz, and this is the coloring scheme that we have been seeing in all of the
surfaces we have drawn so far. In this scheme, the color assigned to a piece oé @spgiads on
all three of the coordinates of the piece. Witradi ng=xy, the color assigned to a piece of a
surface depends on the two horizontal coordinates of the pieces With ng=z, the color
assigned to a piece of a surface depends only on the vertical coordinate of the piece. With
shadi ng=zhue andshadi ng=zgr ayscal e, the color assigned to a piece of a surface also
depends only on the vertical coordinate of the piece. Wjthayscal e only shades of gray are
used so the graph is drawn in "black and white". Witkie all the colors of the spectrum are used,
from violet to red, with violet at the bottom (minimum) of the surface and red at the tRjpn({na)
of the surface. The following two commands draw the paraboloid and the saddle surface with
shadi ng=xy. Try changing this option to see what the other shading styles look like. You can
change this option by editing the commands, or by right clicking on the graphs and using the
menu item from the pop-up context menu, or by clicking on a graph and using the Color mel
main Maple menu bar at the very top of the Maple window. Also try different combinations of
shadi ng andst y| e options

> plot3d( x"2+yn2, x=-4..4, y=-sqrt(16-x"2)..sqrt(16-x"2),
{ shadi ng=xy, style=patch );

> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
{ shadi ng=xy, style=patch );
There is one otherhadi ng option, and that ishadi ng=none. This option turns off the color
shading of the surface and draws the surface all in white. We will see what tbrsisptsed for
when we discuss th& ot 3d command's lighting options below.
[ >

The othempl ot 3d option for coloring a surface is th@! or option. We have already seen how
this option can be used to give a graph a solid, uniform color, like m the command. But we
have also seen that this is not a very useful way to color a surface. There is anptbausgahe
col or option and that is to use it withcalor function. The simplest kind of color function is an
expression, in the same variables as the function being graphed, that replaces tierekiter
thecol or option. The expression is used by thedt 3d command to compute a color for each
piece of the surface that depends on the horizontal coordinates of the piece (sitmdar to t
shadi ng=xy option). The full spectrum of colors is used with the minimum value of the
expression mapped to the color red and the maximum value of the expression mapped to the colol
violet (similar to theshadi ng=zhue option). Here are a few simple examples. The next com
graphs the constant functidn so the graph is a flat plane. The color function is the expressipn
The initial orientation is looking straight down on the surface so that you can see how pelutsle
on thex andy coordinates. Notice that in this graph the bands of color are shaped like hyperbolas.
With the expressior*y as the color function, curves of constant color are hyperbolas (why?).

> plot3d( 1, x=0..10, y=0..10, color=x*y, style=patchnogrid,



| orientation=[0,0] );
The next example uses-y as the color function. Now the curves of constant color are sloping
lines.

> plot3d( 1, x=0..10, y=0..10, col or=x+y, style=patchnogrid,
{ orientation=[0,0] );
The next example uses n( x) *si n(y) as the color function. Now the coloring is periodic in
both directions.
> plot3d( 1, x=0..10, y=0..10, color=sin(x)*sin(y),

styl e=pat chnogri d,

orientation=[0,0] );

[ >

Exercise: The following command uses the color functiory on the flat plane =1, as in the first
example above, but now the graph is over the domairl0. . 10, y=-10.. 10. The shading
seems to be quite a bit different in this example compared to the first exangibnkix detail hov
this shading was determined. (Hint: Where are the minimum and maximuhy oh this domain?
What is the order of colors from red (at the min) to violet (at the max)? What cakedshalf way
between the min and max and where is that color in this shading?)

> plot3d( 1, x=-10..10, y=-10..10, color=x*y, style=patchnogrid,

orientation=[0,0] );
[ >

Here is a possible interpretation and use for a color function. Imagine that the planea sheet
of metal that has nonuniform temperature and that the funt{iary) = xy represents the
temperature of the metal at the point with coordinateg.(Then the graph of the plane 1 with
color functionx*y will not only graph the surface but it will also graph the temperature information
by translating temperatures into colors. The next two commands graph the paraboloidsadd|t
surface with the color functiox* y. In each example, the function being graphe€a2¢y” 2 and
x"2-y”"2 repectively) determines the shape of the surface, and the color functioncan be
interpreted as giving the temperature at a point on the surface. So each of the fallmgngphs
can be thought of as graphing two functions simultaneously. (Try modifying the color fun@dn us
in these graphs to see how that affects the appearance of the surface.)
[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, col or=x*y,

orientation=[0, 0],
| styl e=patchnogrid );
[ > plot3d( x"2-y"2, x=-4..4, y=-4..4, col or=x*y,

orientation=[0,0],
| styl e=patchnogrid );
So a color function can be used to add more information to the graph of a surface. There are many
guantities that a color function could represent besides temperature (for exansjtlg téckness,

slope, curvature, etc.).
\




[ >

Now let us look at a more complex kind of color function. Instead of having a single expression for
the color at a point on the surface, we can have three expressions, one each for the amount of red
green, and blue color that will be mixed together to form the composite color of the airéac

point. Here are two examples, one using the paraboloid and one using the saddle surface.

[ > plot3d( x"2+y"2, x=-4..4, y=-4..4, color=[x,y, x*y],

| orientation=[0,0], style=patchnogrid );

[ > plot3d( x"2-y"2, x=-4..4, y=-4..4,

color=[sin(x),sin(y),cos(x*y)],

| orientation=[0,0], style=patchnogrid );

Notice that, in a certain sense, the last two graphs are simultaneously graphiiogétion worth

of information. But these kinds of color functions are pretty difficult to interpret agydatkeemostly

used in specialized situtations.
[ >

Now let us turn to the lighting options of theot 3d command. There are three option related to
lighting, | i ght , anbi ent | i ght, andl i ght nodel . These options simulate having lights
shining on a surface. These lighting options are closely related $t&ftte ng andcol or options
Theshadi ng andcol or option provides a way to give a surface a color scheme. The lighting
options provides a way to have ambient or direct light shine on a surface. What makéditige lig
options related to the coloring options is that the light that can shine on a surfatseifitiave a
color, and so a surface can be colored by the light that shines on it.

Here is a simple example. The following command draws the saddle surface aviiphtts shining
on it, one above the surface and one below the surface. Each of the two lights is determined by on
of the twol i ght options. Each light option has five parameters, two anglasd6, that are the
spherical coordinates of the location of the light source (but notice the change in thef trder
angles!) and three numbers between 0 and 1 that give the proportion of red, gren, and blue light in
the light source. The light source above the saddle is green light, and the light sawcthéel
saddle is yellow light. Notice that we also use the optioadi ng=none, so that the saddle
surface itself is uncolored, that is, it is white.
> plot3d( x"2-yn2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
light=[0,0,0,1,0], light=[180,0,1,1,0],
shadi ng=none, styl e=patchnogrid, grid=[50,50] );
[ >
Notice several things in this example. First, as you rotate the surfacentisediignot seem to move.
The green light shines from above and the yellow light shines from below. Second, notige that
using color from lights we can have a surface with different colors on differentdfitiee surface.
When we used thehadi ng andcol or options, the color at any point of the surface was always
the same on both "sides" of the surface. Third, notice that the intensity, or brightnlesdigbitton
the surface is related to the angle that the light makes with the surface. féke ®iat its brightest



wherever the surface is perpendicular to a light source (that is, wherever théveantmaof the
surface points to a light source). The surface becomes darker as the angle ¢eensakés with the
light beams decreases (that is, as the normal vector becomes more perpendicelbght rays, th
surface becomes darker). Having the surface become so dark in some spots may not be very
desirable. Maple allows us to shine "ambient" light on a surface. This is liglcbtihas from all
directions. The next commands adds a bit of ambient white light. White light is madequabf e
amounts or red, green, and blue light. So the optidn ent | i ght =[ . 5, . 5, . 5] gives us a n
too bright ambient white light that eliminates much of the dark shading that is irstlesdanple.

> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),

light=[0,0,0,1,0],light=[180,0,1,1,0],anbientlight=[.5,.5,.5],
shadi ng=none, styl e=patchnogrid, grid=[50,50] );
[ >

To see that the surface itself does not have any color in these examples, let usgthindibe
light from both the top and the bottom.
> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
light=[0,0,1,1,1], light=[180,0,1,1, 1],
shadi ng=none, styl e=patchnogrid, grid=[50,50] );
We can mix surface color with color from lighting, but the results can be confusings vales
understand color and light. For example, the next command shines yellow light on a magenta
surface, and we end up seeing red. This is because the definition of a surface being isHgsrn!
absorbs green light and reflects red and blue light. And yellow light is made of edsakpaand
green light. So when the yellow light shines on the magenta surface, the green compitreent of
yellow light is absorbed by the surface and only the red component of the yellow ligletatedeby
the surface into our eyes. (To see the true color of the surface, change the lights lightbhi
> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
light=[0,0,1,1,0], light=[180,0,1,1,0],
col or =magent a, styl e=patchnogrid, grid=[50,50] );
Here is another example. This is a red surface with green and blue lights shinifgubwé see
only black. Why?
> plot3d( x"2-yn2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
light=[0,0,0,1,0], light=[180,0,0,0,1],
col or=red, style=patchnogrid, grid=[50,50] );

[ >

Choosing lighting options can be quite difficult. Maple provides four predefined lighting snodel
each of which has an interesting combination of direct and ambient lighting. We can chooke one
these lighting models by using theght nodel option. The models are calledght 1,11 ght 2,

| i ght 3 andl i ght 4. The following command uses theght 1 lighting model with no surface

color, so the only color comes from the lighting scheme. Try the other light models ang then t
different light models combined with different shading schemes. You can make allcbbtinges
directly in the following command or you can right click on the graph and choose the "Color" menu



item from the pop-up context menu and change both the lighting model and the shading style from
this menu.
> plot3d( x"2-y"2, x=-4..4, y=-sqrt(16+x"2)..sqrt(16+x"2),
| i ght nodel =i ght 1, shadi ng=none, styl e=patchnogrid );
[ >

The use of lighting and color in the graphing of surfaces is really a part of the siflgectputer
graphics. Maple's abilities with light and color are not as sophisticated acatdddD computer
graphics program. For example, the light sources in Maple do not cause shadows to e cast. B
Maple's color and lighting options are easier to use than most 3D computer graphisgrogr

Using Maple's lighting and color options is a good way to experiment with these ndilasan

about basic 3D graphics. If you want to learn more about what Maple can do (for example, how to
get Maple surfaces to cast shadows) then look at theDisodvering Curves and Surfaces with

Maple, by G. Klimek and M. Klimek, Springer-Verlag, 1997.
[ >

L[>

=1 6.5. Animations

A fun way to practice working with graphics is to work with animations. It is failyy to create
interesting animations out of curves and surfaces. The following subsections explaasics of
using theani mat e, ani mat ecur ve, andani mat e3d commands, and also how to create

animations using plot valued functions with #eeq anddi spl ay commands.
[ >

ﬂ 6.5.1. Animating curves

Recall that an animation is made by creating a sequence of graphsfreaties] and then
displaying the frames very quickly in the order that they were created in. Thevevaral
commands in Maple that can be used to create animations of parametric curves. The two
simplest commands ageni nat e andani nmat ecur ve. Each command produces a slightly
different kind of animation.

[ >

In theani mat ecur ve command, each frame of the animation will graph the exact same

function, but the range of the function will change from frame to frame. Here is &simpl

example. The followingni mat ecur ve command will draw 16 graphs of the function

si n(x) (16 is the default number of frames) and the graph aftthzame will have the range
i 2T )

0 ..1—5where| goes from 0O to 15.

[ > plots[ani matecurve] ( sin(x), x=0..2*Pi );

You can view the individual frames of the animation by "single stepping" through thesframe

using the appropriate button on th@mation context bar




In general, a command of the form

ani matecurve( f(x), x=a..b, franes=n)
i(b—a
will createn graphs of the functioh x( with thei'th graph having the range a.:l-%

fori from O ton — 1. Then graphs are used as the frames of the animation.

You can also animate more than one function at a time by putting the functions inside of a pair
of braces.
{ > pl ot s[ ani mat ecurve] ( {sin(x), cos(x)}, x=0..2*Pi, franmes=50
)
[>

In theani mat e command, each frame of the animation draws a function over the same range
as in every other frame. But each frame has a parameter value associated fictiteafunctior
being graphed depends on the parameter, then each frame will contain a different geajgh. He
a simple example. Notice that in the following command, the function being grapsiadk),

has a parameter in #&,(for amplitude). The followingini mat e command will draw 16 grapl

[
(the default number of frames), tti graph will be of the functioEll +E] sin(x) fori from

0 to 15, and each graph will have the ra@ge2 1t.
[ > plots[animate] ( a*sin(x), x=0..2*Pi, a=1..2 );

In general, a command of the form
animate( f(x,t), x=a..b, t=c..d, frames=n )

i(d-c
will createn graphs with thé'th graph being the graph of the functl‘én, c +(—1)] fori

from O ton -1, and each graph will have the raxgea .. b. Then graphs are used as the
frames of the animation.

You can also animate more than one function at a time by putting the functions inside of a pair
of braces.

> plots[animate] ( {a*sin(x), (2-a)*cos(x)}, x=0..2*Pi, a=1..2,
{ frames=50 );

[ >

In theani nmat e command, you cannot change the range used in each frame. In the

ani mat ecur ve command you cannot change the function being graphed in each frame. Of
the two,ani mat e is the more versatile command. There is much more that you can do with a
family of functions that depend on a parameter than you can do with a single function with a

varying domain. In fact, there is a way to ase nmat e to duplicate the functionality of

ani nmat ecur ve. Let us redo thani nat ecur ve example above usirgni nat e. There



are two aspects to this trick. First, we need to draw the graph as a parame#iSeoond, we
use the frame parameter to scale the independent variable in the parametric curve

[ > plots[animate] ( [t*x, sin(t*x), x=0..2*Pi], t=0..1);

Notice that the following, rather obvious trick, does not work.

[ > plots[animate] ( sin(x), x=0..t*2*Pi, t=0..1);

[ >

If you want to create an animation that, from frame to frame, changes both the functgn bei
graphed and the domain of the graph, then you need to use a more sophisticated technique for
creating the animation. The more sophisticated technique makes use of "plot valueadtncti
seq, anddi spl ay. This technique was described briefly in Section 4.11 from the previous
worksheet.

Here is an example that contrasts nat e andani nmat ecur ve and then shows how to use
the more sophisticated technique for creating animations. The following animatisjriaals
that grow in "radius”, but each spiral always does exactly two revolutions.
{> plots[animate] ( [ r*t*cos(t), r*t*sin(t), t=0..4*Pi ], r=1..2
)

The following animation draws a spiral spiraling out from the origin, but the "radiuk&of
spiral is fixed.
[ > plots[ani matecurve] ( [ 2*t*cos(t), 2*t*sin(t), t=0..4*Pi ] );
The next animation manages to ase nat e to combine the last two animations, so the
animation has both the spirals spiraling out (i.e., the animation changes the domain of each
spiral) and the "radius" of the spirals is growing (i.e., each frame drawstystidferent
spiral). But this way of usingni mat e results in an overly cryptic command.

> plots[animate] ( [ (1+s)*(s*t)*cos(s*t), (1+s)*(s*t)*sin(s*t),
{> t=0..4*Pi ], s=0..1);
The following animation, using a combination of a plot valued functien, anddi spl ay
(see Section 10 from Worksheet 4), duplicates the last animation, but with a sthetiset
bit easier to understand and work with.

> frames = s -> plot([ (1l+s)*t*cos(t), (1+s)*t*sin(t),

t=0..s*4*Pi ]);

> seq( frames(i/20), i=1..20 ):

> plots[display]( [4, insequence=true );
And with a plot valued function we can do even more. In the next example, the graph of our
spiral goes through the colors of the rainbow as it spirals out (this cannot be done with the
ani mat e command since theni mat e cannot change any options to tileot command like

col or).

> frames := s -> plot([ (1+s)*t*cos(t), (1+s)*t*sin(t),
t=0..s*4*Pi ],

> col or =COLOR( HUE, s) ):

> seq( franmes(i/60), i=1..60 ):



> plots[display]( [%4, insequence=true );

[ >

Here is an example of a simple animation that we can use to make another compavisen bet
using theani mat e command vs. using a plot valued function. This is an animation of the
parameterization of a circle where the two endpoints of the parameterized cwyaway
from a fixed starting point and meet at the point opposite to the starting point. Hexe is t
animation using a plot valued function.
> frames := s -> plot( [cos(t), sin(t), t=-s..s] ):
> seq( franmes(i/60*Pi), i=1..60 ):
> plots[display]( [%4, 1Insequence=true );
And here is the animation using thei mat e command. Decide for yourself which method
you think is easier to understand and work with.

> plots[animate] ( [cos(s*t), sin(s*t), t=-Pi..Pi], s=0..1,
{ frames=60 );

[ >

Exercise: Create an animation of one circle moving around the the circumference of another
circle.

[ >

Exercise: Create an animation of a line segment of lengtit@ling itself up into a circle of
radius one.

[ >
[ >

=l65.2. Animating surfaces

In theani mat e3d command, each frame of the animation draws a function over the same
region as in every other frame. But each frame has a parameter value assodated if the
function being graphed depends on the parameter, then each frame will contain a different
graph. Here is a simple example where the function being graphed has an "amplitachetq
a.

> plots[ani mate3d] ( a*sin(sqrt(x"2+y"2)), x=-2*Pi..2*Pi,
{ y=-2*Pi .. 2*Pi ,

> a=0..1);
In the next example, the function has a translation paraméiet makes the function move
across the plane.

> plots|[ani mate3d] ( exp(-sqrt((x-c)”2+y"2)), x=-5..5, y=-5..5,
{ > c=-3..3);
The next animation shows two traveling bumps crossing paths in the plane.

> plots[ani mate3d] ( exp(-sqgrt((x-c)"2+y"2)) +

exp(-sqrt(x"2+(y-c)"2)),



> x=-10. .10, y=-10.. 10,

> c=-10..10, franes=60, grid=[30,30] );
Here is a more elaborate animation of a bump travelling around the plane over a parametr
path.
> gl := plots[ani mat e3d] (
>
exp(-sqgrt((x-10*cos(2*c))"2+(y-10*sin(3*c))"2)),
> x=-15..15, y=-15..15,
> c=Pi/2..3*Pi /2, frames=60, grid=[40,40] ):
> g2 .= plots|[spacecurve]( [ 10*cos(2*t), 10*sin(3*t), O],
> t=Pi/2..3*Pi/2, color=black ):
| > plots[display] (g1, 92);
[ >

Exercise: Make sure that you understand every part of the last example. Rewrite the example s
that the component functions in the parametric path are ¢abedlg and so that they can be
easily changed. Try a few other paths.

[ >

Maple does not have an "animate3dsurface" command that would be analogous to
ani mat ecur ve. But just as we were able to usel nat e to duplicate what
ani mat ecur ve does, we can useni nmat e3d to do what we might have expected from
"animate3dsurface”, that is, change the domain of the graph in each frame. Hargls a s
example using a paraboloid. Notice that we must graph the function using a pararapkric g
and we have the frame parameter scale one of the independent variables of the function.
> plots[animate3d] ( [a*x, y, (a*x)”"2+y"2], x=-5..5, y=-5..5
| a=0..1);
Here is a similar example.
> plots[ani mate3d] ( [a*x, y, 1/(1+(a*x)"2+y"2)],

> x=-3..3, y=-3..3, a=0..1, frames=60,
| axes=box );
Notice that in the last two examples, the domain was "unfolded" alomggtkie starting from
the origin and moving out from the origin in both the positive and negative directions. The next
example unfolds along theaxis but starting at = -3 and moving towards= 3. This ends up
looking a bit more natural, but it is harder to do using nat e3d.

> plots[ani mte3d] ( [-3+a*t, y, 1/(1+(-3+a*t)"2+y"2)],

> t=0..6, y=-3..3, a=0..1, frames=60,

axes=box );

The next example unfolds the domain in bothxtlaedy directions starting from the corner y ,
)=(-3,-3) towards the cornex (y)=(3,3). In this example we have defined the function that we
are graphing as a (anonymous) Maple function in order to makentheat e3d command
easier to read.




> (X,y) -> 1/ (1+x"2+y"2):
> plots[animate3d] ( [ -3+a*t, -3+a*s, %-3+a*t, -3+a*s) ],
> t=0..6, s=0..6, a=0..1, frames=60, axes=box
);
[ >

The last two examples were a bit awkward to write usingtherat e3d command. This
command is not very good at unfolding a graph along its domain. Here is a better way to do the
last two examples, using a plot valued function (actually a "plot3d valued function") aktbhng w
seq anddi spal y and the nsequence=t r ue option. Notice that in these examples it is
much more obvious that we are unfolding the domain of the graph.
(>t -> plot3d( 1/(1+x"2+y"2), x=-3..t, y=-3..3):
> seq( %-3+i/10), i=1..60 ):
| > plots[display]( [%4, insequence=true, axes=box );
And notice how this next example needs only a slight change from the previous one.
>t -> plot3d( 1/(1+x"2+y"2), x=-3..t, y=-3..t ):

> seq( %-3+i/10), i=1..60 ):
| > plots[display]( [%4, iInsequence=true, axes=box );

[ >

Now let us turn to parametric surfaces and use animations to unfold one parameiee & a t
parameterization. For an example, let us return to the standard parametedk#ie sphere.
(6, ) - [sin(¢) cog8), sin(@) sin(8), cog )]

> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
{> plot3d( % theta=0..2*Pi, phi=0..Pi, title="Sphere" );
As we mentioned earlier, one way to understand this parameterization is to ce€ahand
sin(0) terms as parameterizing a horizontal circle with a radius (which grthe terfn) that
changes with the circle's height abovetmplane. The radius starts out at O wigaa O (at the
"north pole"), and the radius then grows to 1 (at the equator) and then shrinks back to O (at the
"south pole") ag goes from 0 tat The height above thg-plane of the circle that is being
drawn is given by theos ¢ term, which starts at 1 and decreases to -1.

[ >

Let us animate this parameterization by unfolding the parameterization in dhel® @ind@

"directions". We can use either thai nat e3d command for these animations or we can use

the plot valued function technique. We will give the examples both ways. This firsttemmma

shows the rotation caused by thparameter. Here is the animation created usirigrat e3d.

> (theta, phi) -> [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)];

> plots[ani mate3d] ( % s*theta, phi), theta=0..2*Pi, phi=0..Pi,

> s=0..1, franes=100, orientation=[-60,60],

> title="Ani mated Sphere");




Here is the same animation using a plot valued function. Notice that the inpuptaothéd
valued function is the range of one of the parameters of the parameterization.
>t -> plot3d( [ sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi) ],
> theta=0..t, phi=0..Pi );
> seq( % 2*Pi*i/100), i=1..100 ):
| > plots[display]( [%4, insequence=true, orientation=[-60,60] );
The next animation shows how tp@arameter determines the radius swept out bg the
parameter.
> (theta, phi) -> [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)];
> plots[animate3d] ( % theta, s*phi), theta=0..2*Pi, phi=0..Pi,
> s=0..1, frames=100, orientation=[30,100] );
The same animation done using a plot valued function.
[ > s ->plot3d( [ sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi) ],
> t heta=0..2*Pi, phi=0..s ):
> seq( %4 Pi*i/100), i=1..100 ):
| > plots[display]( [%4, insequence=true, orientation=[30,100] );
[ >
The next animation shows how we can unfold both parameters at once.
> (theta, phi) -> [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)];
> plots[ani mate3d] ( % s*theta, s*phi), theta=0..2*Pi,
phi =0. . Pi ,
> s=0..1, frames=100, orientation=[-60,90] );
The same animation done using a plot valued function. Notice how in this example, the plot
valued function is a function of two variables.
> (t,s) -> plot3d( [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)],

theta=0..t, phi=0..s );
seq( % 2*Pi*i/ 100, Pi*i/100), i=1..100 ):
plots[display]( [%4, insequence=true, orientation=[-60,90] );

vV V. V V

[
Exercise: In the last example, add a third input parameter to the plot valued function and use

that parameter to change the radius of the horizontal circles (from, say, 1 to 3). edify
command appropriately. (The surface should become more and more elliptical as &.gvolve

[ >

Let us create three similar animations for the standard parameterizatientofus. First, here
is how we parameterize a torus.



(6,9) - ((2+coq@)) cogB), (2+cog9)) sin(8), sin(¢))
> [ (2+cos(phi))*cos(theta),

> (2+cos(phi))*sin(theta),
> sin(phi) 1];

> plot3d( % theta=0..2*Pi, phi=0..2*Pi,
| > scal i ng=constrained, title="Torus" );
[ >

Recall that we have two ways of understanding this parameterization. Theafjrkioks at this
parameterization in a way similar to the parameterization of the sphers, et stack of
horizontal circles whose radii are determined by2hecoq @) term and whose heights are
determined by the third componem ¢ ( The second way looks at the torus as a "circle's
worth of circles”. In this characterization, the ter2sd¢g6) 2 sin(6) 0) determine a "circle «

centers" in thexy-plane, thedog 0) cog @) sin(0) cog @) sin(@)) terms parameterize a verti
circle centered at the origin and parallel to a radial line from the "cirderdérs”, and then the
torus parameterization is the suBcpq6) 2sin(0) 0) ;+ (

cog 8) coq @), sin(0) coq @), sin(®)). In this sum, choosing a value fdchooses a point on t
“circle of centers" and then the paramei@arameterizes the circle from the "circle's worth of
circles” with the center determined 6y

The first animation unfolds the parameterization inglorection around the vertical circles.

>p:=t ->plot3d( [(2+cos(phi))*cos(theta),

> (2+cos(phi))*sin(theta),

> sin(phi)],

> theta=0..2*Pi, phi=0..t );

> seq( p(2*Pi*i/100), i=1..100 ):

> plots[display]( [A4, insequence=true,

> ori entation=[90, 130],

> scal i ng=constrai ned, title="Ani mated
| Torus" );
[ >

The next animation unfolds the parameterization irBtd&ection around the circle of centers.

>p :=s ->plot3d( [(2+cos(phi))*cos(theta),

> (2+cos(phi))*sin(theta),

> sin(phi)],

> theta=0..s, phi=0..2*Pi );

> seq( p(2*Pi*i/100), i=1..100 ):

> plots[display]( [A4, insequence=true,

> ori entation=[-90, 60],

> scal i ng=constrai ned, title="Ani mated
| Torus" );
[ >

The third toral animation combines the previous two and it unfolds both of the parameters at th:



same time.

>p = (t,s) -> plot3d( [(2+cos(phi))*cos(theta),
> (2+cos(phi))*sin(theta),
> sin(phi)],
> theta=0..s, phi=0..t );
> seq( p(2*Pi*i/ 100, 2*Pi*i/100), i=1..100 ):
> plots[display]( [, insequence=true,
> orientation=[-110, -160],
> scal i ng=constrai ned, title="Ani mated
| Torus" );
[ >
[ >

=16.6. Defining coor dinate systems

As we have seen many times, drawing graphs boils down to plotting points. Graphing commands ¢
their job by plotting points and then possibly connecting those points together by line segments
pieces of planes, in order to form curves or surfaces. But when we look more careftly at w
graphing commands do, we see that what they really do is build certain data strédiOreslata
structures for 2-dimensional graphs and PLOT3D data structure for 3-dimensiqel. @ae of

the many data items contained in a PLOT (or PLOT3D) data structure is a lissaffpaumbers

that represent the coordinates of the points that are to be plotted.

PLOT and PLOT3D data structures always contain a list of points in cartesractgorgular)
coordinates (and the coordinates are computed using hardware floating point numberaphing
command wants to work in some other coordinate system, after it computes the points tbwa
graph in the other coordinate system and before it can build the PLOT or PLOT3D dataestali
of the points need their coordinates converted into cartesian coordinates.

Here is a simple example. The following command graphs a single point in polar casdinat
[>plot( [[1,Pi/4]], coords=polar, style=point, synbol =di anond );
Let us look at the PLOT data structure created by the last command.

[>temp = %

Tt
We see that the single point with polar coordinateaz]had its coordinates converted to cartesian

coordinates with values [.7071067811865476, .7071067811865475] in the PLOT data structure. O

T
the other hand, let us graph the single point with cartesian coordinaﬁe}s [1,

>plot( [[1, Pi/4]], coords=cartesian, style=point,
synbol =di anond ) ;
Let us look at the PLOT data structure for this last graph.
[> tenp := %




Since the point we were plotting already was given by cartesian coordinates, noathange
coordinates was needed.

Here is another example. Let us create a list of pairs of floating point numbers.

> point list :=[ seq( [eval hf(i/20*4*Pi),

eval hf (sin(i/20*4*Pi))], i=0..20) ];

Now askpl ot to graph the list.
[> plot( point_list );
By default,pl ot uses cartesian coordinates, so it did not apply any change of coordinates
transformation to the list of pairs, as we can see from the next command which shiosvaaigdl
PLOT data stucture used.
[>temp = %
Now askpl ot to once again graph the list, but this time it should interpret the pairs of numbers as
pairs of polar coordinates.
[ > plot( point_Ilist, coords=polar );
If we look at the PLOT data structure used in the last graph, we see that the pairbersnoom
the original list were all transformed (from polar coordinates to rectangubadinates).
[>temp = %
If we plot the same list of numbers again, using a still another coordinate systaee ¥hat the
original pairs of numbers are transformed in still a different way.
[ > plot( point_l|ist, coords=cassinian );
[>temp = %

Here is a slight variation on the previous example. Let us start with the saofghss of
numbers.
> point_list :=[ seq( [eval hf(i/20*4*Pi),
{ eval hf (sin(i/20*4*Pi))], i=0..20) ];
Now let us perform our own transformation on the list of numbers to create a new list ofsilumbe
Notice that the transformation uses the usual formuals for converting polar coatiinate
rectangular coordinates.
> transformed_point _list := [seq( [p[1l]*cos(p[2]),

pl[1]*sin(p[2])],

p=point _list)];
Now pl ot the transformed list using rectangular coordinates. We get the same grapim aghemh

we plot the original list using polar coordinates.
[ > plot( transformed_point |ist );
[ >

Whenever we specify a coordinate systemj at (orpl ot 3d) command, what we are really
doing is telling Maple what formulas it should apply to transform pairs of numbers intowlHze
interpreted as pairs of rectangular coordinates. For the predefined coordinates sysviaple

those transformations are built into Maple. But what is nice is that we can defineroanoominat



systems for thel ot (andpl ot 3d) command by telling Maple what formulas to use in the
transformation step of building the PLOT (or PLOT3D) data structure.

Here is a general idea of how we define a new coordinate system in Maple. Még@taa iplotting
mechanism only knows how to plot points using cartesian coordinates. If we want to plot a

we know its coordinates in some noncartesian coordinate system, we have to be alMaeell

how to convert the noncartesian coordinates into cartesian coordinates so that Magleeauf
where to plot the point. For example, if we want Maple to plot the point with polar coordinates
(r,0) =(1, ), then Maple needs to know how to compute this point's cartesian coordinates, which
are ¢1,0). Knowledge of how to convert polar coordinates into cartesian coordinates has already
been built into Maple (and soon we will see how). But in general, when we want to define a new
coordinate system, one of the things we need to tell Maple is how to compute thercartesia
coordinates of a point from the values of its new coordinates (and the other thing that veetek
Maple is which of the two new coordinates will take on the preferred role of the independent
variable when graphing functions).

We add coordinate systems to Maple, i.e., we specify a new coordinate transformasemhen
building a PLOT (or PLOT3D) data structure, by usingatidcoor ds command. To define a
new coordinate system theldcoor ds command needs three parameters. The first parameter is
the name we wish to give to our new coordinate system. (Be sure to choose a name that is not
already in use.) The second parameter is a list of two variable names (thsgmetire variables in
the new coordinates system). The second of these two names represents the cdmtimdtbe

the independent variable when graphing a function. The third parameter is a list of tbemwiad
that convert our new coordinates into cartesian coordinates. Here is a descriptiosyofdhef
addcoor ds.

addcoor ds( name-of-new-coordinate-system, [ dependent-varaible, independent-variable
],
[

expr essi on-for-horizontal -component-i n-ter ms-of-i ndependent-and-dependent-variabl es,
expr essi on-for-verti cal-component-in-ter ms-of-i ndependent-and-dependent-variables| )

Let us look at some simple examples of using this command. First, let us define asiewafer
cartesian coordinates that stretches the vertical axis by a factor of two.

[ > addcoords( my_cartesian, [Y,X],[Xx,2*y] );

To make it easier to figure out what is going on, we use the well known xaandg for the new
coordinates. Notice thatis specified as the default independent variable (it is the second coo
in the first list) andk is used directly as the horizontal coordinate in the final graph (thasithe
first component in the second list). Also notice that, whatever value the new cooyciaatéwo
times that value is what is plotted in the vertical direction on the graph. So, for examtpis new
coordinate system, the functism x (has a maximum of 2.



[ > plot( sin(x), x=0..2*Pi, coords=ny_cartesian );
[ >

Now let us see how to define polar coordinates. We define our own version of polar coordinates th:
is exactly the same as the built in version.

[ > addcoords( my_polar, [r,theta], [r*cos(theta),r*sin(theta)] );

Notice that the variabl@ is defined to be the default independent variable since it appears second in
the first list. Here is a graph using this new coordinate system.

[ > plot( sin(2*x), x=0..2*Pi, coords=ny_polar );

Notice that the graph is exactly the same if we use the built in polar coordinates.

[ > plot( sin(2*x), x=0..2*Pi, coords=polar );

Let us now create a polar coordinate system that has the radial coordinate asulheatmtinate

for the independent variable in a graph. All that we need do is modify the previdusor ds

command so that the variabll@ppears second in the first list.

[ > addcoords( ny_polar, [theta,r], [r*cos(theta),r*sin(theta)] );

Let us regraph the functi®in 2k (Wwhere now the variabbein this function represents the radial
coordinate in the polar plane).

[ > plot( sin(2*x), x=0..2*Pi, coords=ny_polar );

Recall that this is the same graph that we got in the last worksheet when we assgtnpar

equations to draw a graph®#% f(r) in polar coordinates. Here is what the graph looks like if we

also plot this function over a negative range for the independent variable.

[> plot( sin(2*x), x=-2*Pi..2*Pi, coords=ny_polar );

[ >

Exercise: Explain why the following command draws the same graph as the second to last
command.
> plots[inplicitplot]( arctan(y/x)=sin(2*sqgrt(x"2+y"2)),
x=0..6.4, y=-4.7..4, grid=[60,60] );
[ >

Exercise: Explain carefully why the following piece of graph is in the second quadrant.
[ > plot( sin(2*r), r=-Pi/2..0, coords=mny_polar );
[ >

Exercise: Use theaddcoor ds command to create several new cartesian coordinate systems that
give the vertical axis the preferred role of the independent variable. Creatsat®gyistems with

the positive coordinate direction going both up and down the vertical axis. Use your new coordinate
systems to graph functions of the foxm f(y) (where we will continue to label the horzontal axis

as thex-axis and the vertical axis tlyeaxis). Also, create a cartesian coordinate system with the
horizontal axis (the-axis) as the independent variable, but with posiigeordinates going to the

left.
[ >



Of the six possible graphs that we could make in cylindrical coordinates, there i pnéhat
would seem to be a very reasonable choice as the default graplotoBd. Since the default gray
in rectangular coordinates is of the form f(x, y), and sinceX, y) and (, 8) both coordinatize the
plane, then by analogy to rectangular coordinates it would seem reasonabletf8d to graph
z=1(r, 8) when using cylindrical coordinates. Such graphs can in fact be very useful. For example,
suppose we wanted to draw a graph of a fundtirny (ovej the cardiod defined loy= 1 + cog0).
We might try to do this usingl ot 3d's ability to graph over nonrectangular domains in rectangular
coordinates, but that would be difficult. What we would like to do is convert the function to
cylindrical coordinates using(r,8) =f(r cog0), r sin(0)) and then draw a graph bf g(r, 0)
using cylindrical coordinates with the variaBleanging between 0 andréand the variable
ranging between 0 arfid+ cog0). Butpl ot 3d with cylindrical coordinates cannot graph functi
of the formz=g(r, 0). So we create a new version of cylindrical coordinates in wawcty(r, 0) is
the default graph.
[ > addcoords( my_cylindrical, [r,t,z], [r*cos(t),r*sin(t),z] );
Let us graph the piece of a paraboloid that is above a cardiod in the plane.
[ > plot3d( r”2, r=0..1+cos(t), t=0..2*Pi, coords=ny_cylindrical );
Here is a verification that the above graph is correct.

>0l =%

> g2 := plot3d( x"2+y"2, x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),

style=wirefrane )

> plots[display]( g1, g2 );
[>

L[>



