Maple for Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

11. Maple's Evaluation Rules

=]11.1. Introduction

This worksheet begins our discussions of some of the details of Maple's inner worknegseHe
look at Maple's evaluation rules for variables, expressions and functions.
L[>

=111.2. Full evaluation

When Maple is presented with an expression of some kind, Maple has to decide what tiseoe:
means or, to put it another way, what its value is. For examplegfresents the expression
x"2+2*x+1 andx represented the numberit is not obvious how Maple should evaluate the
namep. If asked the meaning of Maple could reasonably returned anyk®2+2*x+1 , or
3"2+2*3+1 , or16. How Maple decides what to return is calleceaaluation rule. Maple has
several different evaluation rules that it uses in different situations. Irettisrs we will examine
the most common and important of Maple's evaluation rules.

Normally Maple uses an evaluation rule callell evaluation. This means that when Maple comes
across a variable name, it looks up the name's value, if any. If the value of the variable nam
contains another variable, its value is also looked up. Maple continues this until it comés up wi
only numbers and/or unassigned variable names.

Here is an example. First, makainassigned.

[> X=X

Makey an expression ir.

[> y:i=1+x;

Givex a numerical value.

[> x:=5;

Now let us see how Maple evaluates the expredsian2+y .
[> 1+x"2+y;

How did Maple arrive at this value? The fixsin the expression represents 518&"2+y become
1+572+y . They representd+x, sol+5"2+y becomed +5"2+1+x , but thex can again be
evaluated to 5 so finally Maple has 1+572+1+5=32 as the value-fo2+y .

[>

Here is another example. First, make bo#indz unassigned.

[> x =X

> z:='Z,

Now givey a value in terms of andz and then giver a numeric value.

[> Yy = 1+x+z;

[> x:=5;

Now let us see what the expressiork”"2+y evaluates to.

[> 1+x"2+y;

Sincez does not have a value, Maple cannot evaluate the expression any further.
[>

One more simple example. First, unassigg, andz.
[> x=X"1y=Yy z:='2"
Now makex a name fow/, y a name for, and givez a numeric value, in that order.

> Xi=Y;
> yi=27;
> 7:=3;
What does evaluate to now?
[> X
Change the value df.
[> z:=5
Check the value of.
[> X

In this examplex points toy, y points toz, and at firsz pointed to 3, s@ (andy) evaluated to 3
Thenz was pointed at 5, so (andy) evaluated to 5. This is full evaluation. Maple keeps following

the trail of assignments until it gets to a "dead end", either a numeric value or signghsame.
[>

So far we have looked at pretty easy examples of full evaluation. The results stgmlgwious.
Now we will look at some examples that are less obvious.

Let us modify our last example a little bit. First unassign, andz.

[> xi=X y=Y, 2=

We will reverse the order of the first three assignments from the laspkxam
> 7:.=3;

> yi=27;

> Xi=Y;
What does evaluate to?
[> X

Now change the value af
[> z:=05;

Check the value of again.

[> X

In this example, first was assigned the value 3. Then, whesas assigned, z was evaluated
first to its value 3 and sp was assigned Bt z (this is the full evaluation rule). Similarly, was
assigned 3ot y (why?). So in this example, when the value e changed, the values ofandy

do not change.
[>

From these last two examples we see, for one thing, that the meaning of threesmpbnds lik

x:=y ,y:=z andz:=3 has a lot to do with the order in which they are executed. Or, to put it
another way, the meaning of a Maple command often cannot be determined by just looking at the
command. We might need to look at all the commands that were executed before it tegtest
what the command means.

Here is another example of full evaluation. Suppose we defagea function.

[> f:=x->x"2-1;

Now letz have a value.

| > z:=3

Now when we entel{z) Maple needs to evaluate both thand thez. First Maple evaluates the
f to a function (the function that squares its input and then subtracts 1), then it evatoates
number3, then it applies the function to the number and calculates the result.

[> 1(2);

In general (but not always), Maple uses full evaluation for all the inputs to both funcicbiMaple

commands.
[>

Maple's use of full evaluation can explain some of Maple's more mysterious egsagas.

[> solve(x*2=4, x);

Maple first evaluates all of the inputs to #fw@ve command sa”2=4 evaluates t@=4 (which is
not a problem, it is just an equation that does not have any solutions) and theVakiates t@
and this is what theolve command complains about (tkelve command can only solve for

variables, not for numbers).
[>

Here is another common error message.

[> plot(x*2, x=0..4);

Maple evaluates all of the inputs to thlet command first, so it evaluates the expressitgh to
be9 (which is not a problem) and it evaluates the rage.4 to be3=0..4 , which makes no

sense and leads to the error message.
[>

Maple does not always use full evaluation. The next command is not much different from the

previous example, but this command does not lead to an error message.

[> seq(x"2,x=0..4);

Notice thatx still has a value.

[> X

So Maple did not use full evaluation for the inputs tosthe command. There is no easy way to

find out which Maple commands use full evaluation of their inputs and which ones do not. So we
can only reiterate a rule of thumb that we stated much earlier in these workslyeetget a

strange error message, first check that the variable names that you are wsikgaavns really are

unassigned variables and do not have values.
[>

There are several more evaluation rules in Maple and, not surprisingly, sevemiansto these
rules. In the rest of the sections of this worksheet we will go over the most impeghattiens
rules and some of their important exceptions. In other worksheets we will occashavallneed to

look at still other evaluation rules or some other exceptions to these rules.
[>

L[>

=111.3 Levels of evaluation

Let us go back to our first example of full evaluation.
> xi=XUyi=Ey' zi="z"
> X:=y;
> yi=z;
> 7:=3;
Now if we ask Maple to evaluaie Maple uses full evaluation and returns 3.
[> X
But for Maple to get fronx to 3 it had to go through the intermediate valueg ahdz. There is a
name for these intermediate values and there is a way to access them also.€elfue thease
intermediate values Isvels of evaluationand we can control the level of evaluation using a sf
form of theeval command. For example, here is how we get one level of evaluatigmbiich
returns the name.
[> eval(x,1);
Here is how we get two levels of evaluatiorkxgiwhich returns the nanme
[> eval(x, 2);
Here is how we get three levels of evaluation oivhich returns the value 3.
[> eval(Xx, 3);
We can ask for four or higher levels of evaluation, but 3 always evaluates to 3.
[> eval(x,4);
[>

Here is another example using levels of evaluation.
\

[> f:=a*u+b*v;
> ui=v;
> vVi=w;
> wi=2,;
> b:=c;
> ci=a;
> a:=d;

Now evaluaté to several different levels. Mentally check each level of evaluation yoursetike m
sure that you understand what thel command is doing.

[> eval(f, 1),

[> eval(f, 2);

[> eval(f, 3);

[> eval(f,4);

[>

Exercise Redo the last example. Can you explain why the results of the example aratdiffere
second time that you go through it? How can you get the example to work again like it disk the fi
time?

[>

Levels of evaluation do not work when functions are involved. Consider this example.
[> uyv,w,z:="u,v,w,'z"

[> g :=u*sin(u+v);

u:=w;

Vi=2Z;

W= z;

| > z:=Pil4;

Now try using levels of evaluation.

[> eval(g, 1);

[> eval(g, 2);

[> eval(g, 3);

[> eval(g, 4);

[> eval(g,5);

Notice that nothing is being evaluated insidedine function. However, if we use theval
command without any level parameter, then everything is fully evaluated.

[> eval(g);

[>

vV V V

Exercise Let us solve an equation.

[> x:='X"

[> solve(x*2-x-2=0, {x});

The next command assigns the first of the two solutiors to
[> assign(%[1]);

[> X

The next command tries to assign the second of the two solutigns to
[> assign(%%l[2]);

Now try this with a similar equation.

[> ab,z:="a,'b','z"

[> solve(z*2-(a+b)*z+a*b=0, {z});

The next command assigns the first of the two solutioas to

[> assign(%[1]);

>z

The next command tries to assign the second of the two solutians to
[> assign(%%l2]);

>z

Of the fourassign commands, why did the second one fail? Also, show that the fassttin

commandlid not do what we though it did, it did not assigmo z.
[>

L[>

=111.4. Delayed evaluation

Let us restart Maple so that we do not get confused by any previously assigned names.
[> restart;

Sometimes it is necessary to prevent Maple from evaluating a name or anierphedsbecause
of the rule of full evaluation, would otherwise be evaluated. In this section we wiliates pair of
right-quote characters is used in Maple to prevent, or delay, evaluation. Here jdeaestample of
preventing the evaluation of a name. Let us givevalue.

[> X:=3

In the next command Maple will evaluatebecause of the rule of full evaluation, and so the value
of y becomes 6.

[> y:i=X+3;

But suppose we had really wanted the valug taf be literallyx+3 . We can do this in the next
command by putting a pair of right-quotes arowunahich prevent Maple from evaluating the

[> y:='%X'+3;

Notice from the command's output tlyais now a name for+3 because was not evaluated in the

last command.
[>

But the right quotes only prevented Maple from evaluatimgthat one command. Look carefully
the last command's output. There are no right-quotes there. And so the next commang will full
evaluatey to get 6, since the evaluationofvas only prevented in the command that defined
L[>

Using one level of evaluation we can verify thas a name for+3.

-

[> eval(y, 1);

Another way to put this is that the definitionyofs not an unevaluated plus 3, the definition of

is simplyx plus 3. For this reason, the right-quotes used in the definitipracd more properly
referred to aglelayed evaluationof x, and not as preventing the evaluatiorx oHere is another
simple example. The next command is an equation and the fiest its evaluation delayed and the
secondx is evaluated right away.

[> X' =X;

If we re-evaluate the last output, thén the output will get evaluated.
[> %;

[>

Now for a more subtle example. In the next command we have a doubly delayed evaluation of the
first x and a singly delayed evaluation of the second

[> "X'=X,

If we re-evaluate the last output, the secons evaluated but the firgt still has its evaluation

delayed.

[> %;

And if we re-evaluate this last output, then the remairimgfinally evaluated.

[> %;

[>

Here is another example that uses several levels of delayed evaluation.

[>y:=3
[> x="y"Y
Notice that the value of is"y" and not"y" . Maple used up one level of evaluation w

it evaluated the right hand side of the assignment operator.
[> eval(x,1);

[> eval(Xx, 2);

[> eval(Xx, 3);

[> eval(x,4);

[>

The last few commands lead us to make the following rule for evaluating expressitaising
right-quotesWhenever Maple comes across an expression with right-quotes around it, Maple just
removes one pair of right-quotes and it does not evaluate whatever was inside the quotes. This has

the effect of "delaying" until later the evaluation of the whatever the quotes sumounde
[>

Here is an interesting question. What should Maple return if now we ask it to evétuate
(>

Notice that this is the same answer that we got above when we used two levels tibevalliat
if we try to force full evaluation of by usingeval(x) ?

|

[> eval(x);

This is the same answer that we got above when we used three levels of evaluatiosnotifudli
evaluation, which above took four levels of evaluation. Let us analyze carefully thehstigpad tc
these results for evaluating the expressioasdeval(x) . When Maple is asked to evaluateit

first gets"y" . The above rule for evaluating right-quoted expressions tells Maple to remove one
pair of quotes and then quit evaluating, and so the final resylt isWhen Maple is asked to

evaluate the expressienval(x) , first Maple needs to evaluate the argument tetiae

command (see Section 11.7 Evaluating function calls, below), so Maple evaluatgs . After

Maple has the value of the argumenetal , Maple callseval with this argument, so Maple calls

eval('y") . Buteval applies the above evaluation rule for right-quoted expressions and s
removes one pair of quotes froyh to gety and that is the final result.
[>

A common misunderstanding with delayed evaluation is that it can prevent automatic
simplifications. In the next example, the right quotes do not prevent the automatificabnoh of
u+u.
[> 'u+u;
Another way to think about this last example is that it shows that automatic gatj@i is not the
same thing as evaluatiomu does not evaluate &¥u , it simplifies to2*u . Here is a slightly
different version of this example.

> u:=5;

> 'u+uh
The right quotes prevented the evaluation &t not the simplification afi+u. In the next
commandy+u is both simplified and evaluated, and we know now that the simplification is done
before the evaluation.
[> u+u;
[>

Exercise Therand function, which is built into Maple, is a function that takes no arguments and

returns a random integer. Explain why the following command does not return a randam.fracti
[> rand()/rand();
[>

Here is one last example of how right-quotes might be used. The following is a Vetyagpto

definey to be the general quadratic equation.

[> y:="a"x"2+'b™*'x'+'c'=0;

In this definition ofy, we did not have to worry about any preassigned valuesingfc, andx, and

we did not need to unassign those variables either, which may, for some reason, be an undesirable

thing to do. There are times when it is necessary to be this safe about a definition.
[>

Exercise Is there a simpler, yet just as "safe", way to define the gamsdrom the last example?
-

[>

Exercise You should be aware by now that the following two commands will produce an error
message and you should be able to explain why.
> X:=5;
> plot(x"2, x=-5..5);
Explain the results of the following three commands.
[> plot(x*2, 'x'=-5..5);
[> plot('x'"2, 'x'=-5..5);
[> plot('x'""2, x=-5..5);
[>

One level of delayed evaluation is an often used trick in Maple. We will see sewsr&bug in this
and later worksheets. Even two or three levels of delayed evaluation is needed in some odd

circumstances, as we will see.
[>

L[>

=]11.5. A no evaluation rule

We have made the claim that Maple uses full evaluation most of the time. You may heeé noti
already one place where Maple does not use full evaluation. Supposexwepgetsent 5.

[> x:=5;

Now letx represent 6.

[> X:=6;

Maple did not use full evaluation here. If it had, Maple would have tried to assign the value 6 to 5.
Maple did not evaluate theon the left hand side of the assignment operator.

[>

So we can state another of Maple's evaluation rules. The name on the left hand sidegriraer
operator is not evaluated. Here is another example. Let us unasangihthen lex be a name foy.

[> Y=Y,
[> X:=Y,;
Now consider the following assignment.
[> x:=5;

If Maple had evaluated the left hand side of the assignment operator, it would havedadssmne
But it did not. The variablg is still unassigned.

L[>y,
[>

Consider this example.
[> xi=X1y=y zi='z"
|

[> x:=y,

> yi=1z;
[> z:=-1;
What should the next command do?
[> X=X

Maple used full evaluation on the right hand side of the assignment operator and no evaluation on
the left hand side. Compare the last Maple command with the next one.

[> x:=X]

Now we can explain how "unassigning a variable" works. In the Maple commahd the first

X is not evaluated, since it is on the left hand side of the assignment operator. Thecgscond
evaluated either since the right-quotes delay evaluatiorn.dg&ts assigned to it an unevaluated

l.e.,X is given itself as its value.
[>

In an earlier worksheet we pointed out thatdheign command can be used to make the equal
sign in Maple act like an assignment operator. So for example the following commekets 2rthe
value ofx.

[> assign(x=2);

[> X
Here is an example of a typical useastign
> x='X"

> solve(3*x+17*a=1, {x});
[> assign(%);
(> X
But it turns out that thessign command does not make an equals sign act exactly like an
assignment operator. There is one important differencea3dign command uses full evaluation
on both sides of the equal sign. Consider the following example.

> X=X,
> c:="'ch
> X =

[> assign(x =23);

Now let us investigate what tlessign command did. First check the valuexof

[> X

It appears thadssign did what we wanted. But #ssign used full evaluation on both sides of
the equals sign, then tlein x=23 should have evaluated ¢oand so thessign command
should have assigned 23d@ndnot x. Let us check the value of

[> ¢

Let us evaluate to only one level.

[> eval(x,1);

Now we see that thessign command did not assign anythingxtolt did assign 23 ta. (So why
doesx evaluate to 237?) So tlesign command was not equivalent to the assignment statement
X:=23 .

-

[>

Here is one way to think about this last example. The assignment operatas purposely chosen

to be a non symmetric symbol to remind us thay is not the same as=x (andy=:x is
syntactically incorrect) and also to remind us that the assignment operator doss th& same
evaluation rules on its left and right hand sides. On the other hand, the equalsssagsymmetric
symbol and, when interpreted as an equatioy, is the same as=x . Now assign(x=y) is not

the same asssign(y=x) , but theassign command does use the same evaluation rule on both
sides of the equals sign (i.e., full evaluation) so in that senseithanassign command is more

symmetric than the= in an assignment statement.
[>

Let us look at one last example of evaluation and the assignment operator.tevealue 5.

[> X:=05;

What should the next statement mean?

[> X:i=X+2;

If Maple had evaluated all of thés, it would have ended up trying to assign 7 to 5. But Maple only
evaluated the on the right of the assignment operator, so it assignea .7 to

[> X

[>

Let us stop for a moment and compare the two Maple statemebhtsandx:=x+2 with standard
mathematical notation. The Maple commareb translated into standard mathematical notation
would becomex=5. What abouk:=x+2 ? Should we translate it inio= x + 2? Butx =X + 2

would be interpreted in standard mathematical notation as an equation that sitg@if'e® which

is not at all what we mean. Notice how the dual nature of the equal sign in standard itneghema
popping up again. The equal sigrxia 5 is naturally taken as an assignment, but the equal sign in
X=X+ 2 is naturally taken as part of an equation. So how should we exprgs8 in

mathematical notation? In fact, there is no standard mathematical notatiotténvean lek

have the value that is 2 more than whatirrently has (notice that just sayxg 7 is not the same

thing). Without an explicit and unambiguous assignment statement, it is hard to éisrek=a.
[>

But Maple can have its own problems witkx+2 . Even to Maple there is something a bit strange
about this command. For example, suppose we unassign

[> X=X

Now tell Maple that:=x+2 . What should this mean? Stop and think about it before executing the
command.

[> X = X+2;

Maple gave us an error message. Maple did not like that assignment statementaetndiapile
ignored it.

[> assigned(x);

[> X

Here is an explanation of what Maple finds objectionable witk+2 (there is actually no

problem with the assignment, but if Maple had made the assignment, then there would bera proble
with trying to evaluate). Let us suppose that Maple executed the assignment in question. If Maple
were to execute the commaxdx+2 , Maple would need to evaluate the right hand side (but not
the left hand side). If Maple evaluated? , it would sees that does not have a value, so it would
stop evaluating+2 and then it would assign+2 to x. Now suppose that in a separate command

we asked Maple to evaluate This is where there would be a problem. If Maple were to evatuate
(after executing:=x+2) Maple would see that the valueofs x+2 so it would replace with

x+2 . But then, because of the rule of full evaluation, Maple would need to evalagtn. When
Maple would evaluate again, it would get+2 for x, so it would plug this inta+2 to get

(x+2)+2 . But now full evaluation would require thatbe evaluated once again. A little bit of
thought shows that this would go on for ever. But asking Maple to do something that goes on
forever is not a good idea. So in order to avoid the possibility of Maple getting stuck exptuati

infinite number of times, Maple refuses to do the assignmert-2 whenx is unassigned.
[>

It is possible to trick Maple into making the assignmenk+2 .

[> X=X+2;

[> assign(%);

Maple made the assignment without complaining. But according to what we wrote istthe la
paragraph, the following command, asking Maple to evaluasbould cause a problem (and in 1

in some earlier versions of Maple, the following command would crash Maple).

[> X

Well, if you are still here, what happened is that, in the wink of an eye, Maple evaiuatedjot

x+2 thousands (maybe millions) of times until Maple ran out of memory and did not have any more
room left to keep on evaluating When Maple ran out of room it (hopefully) just stopped, printed

an error message, and presented another prompt. Let us use levels of evaluation to check on this
explanation.

[> eval(x,1);

[> eval(Xx, 2);

[> eval(Xx, 3);

Each level of evaluation allows one more level of depth i&ferring to itself. Let us try quite a fe
levels.

[> eval(x, 1000);

You can try higher values of evaluation, but when | tried it, Maple crashed.

[>

At this point, we cannot use the variaklén any expressions (unless we control the level of
evaluation). To get rid of this problem we just unassign

[> X=X

[> X

[>

So ifx has a value, then=x+2 is OK. But ifx does not have a value, therx+2 is a recursiv
assignment, which is not good. There are actually many ways to get a recuigivmess Here is

another.
[> yi=X
[> Xi=y+2;

Notice that it was not obvious from the commaury+2 by itself that this was a recursive

assignment. If you should ever get the recursive assignment error, think catesuliyvhat it is
that you are trying to do.
[>

Maple cannot always detect a recursive assignment. Here is an exampbertbsiup later in this
worksheet.

[> x0 :="x||0'+2;

It may not be clear yet, but this was a recursive assignment. Here is what happengary to
have Maple evaluate) .

[> Xx0;

If you should ever accidentally get a recursively defined name, just unassign thgouawere
using and then choose a different name.

[> x0 :="x0,

Now x0 is no longer a recursively defined name.
[> Xx0;

[>

Exercise Consider the following assignment.

[> x:=[apple, pear, x[3]];

Let us trick Maple.

[> x =[apple, pear, x[3]];

[> assign(%);

Let us ignore the warning about a recursive assignment and execute the followingnctsmm
[> X

[> x[3];

Was the above error message a false alarm?

[>

We will return to the idea of "recursion” when we get to the worksheets on Maple pragariiVe
will see that the idea of something referring to itself (i.e., recursion) maoriant part of how
Maple works, and it is important to computer science in general.

L[>

=] 11.6. Last name evaluation

Maple uses the full evaluation rule most of the time, but as we have already seedrethere
exceptions to this rule. Three exceptions that we have seen so far are delay¢me\atiaising
right-quotes), forcing certain levels of evaluation witheliel command, and not evaluating
names on the left hand side of an assignment operator. Another exception to the fulloevalleati
is thelast name evaluation rulethat is used for the names of tables, arrays, procedures, and Maple
functions. We have not discussed tables, arrays, and procedures yet, so for now we will only use
Maple functions as examples for the last name evaluation rule. Here are sompéesxhat
demonstrate this rule. Let us define a Maple function ndmed
[> f:=x->x"2-1;
If we ask Maple to evaluate the namgt just returng .
[> f
To find out the definition of we have to use theeval command to force full evaluation of the
namef .
[> eval(f);
Now leth be a name fog and lety be a name for .

> h:=g;

> g:=f
Now ask Maple to evaluate the nangeandh.
[> 0
[> b
Notice that the evaluation of bothandh stopped with the nanfe On the other hand, if we force
full evaluation of eitheg or h then we get the definition 6f.

> eval(g);

> eval(h);
Now we can state the last name evaluation rule. If the full evaluation of a name wouidire
definition of a Maple function (i.e., an expression that uses the arrow operator), thermillagitgp
the evaluation at the last name it reaches just before the function definition and\Wlaleirn
that name. Hence the term "last name evaluation” for the evaluation rule of nainpesrin® a

function definition.
[>

But Maple does not always use last name evaluation for names that evaluate fédlydiooa
definition. Here is a counter example.

[> =1 9:='g" h:='h": w:="'w"

> fi=
(>
> h:
[> K:=X->Xx"2;

If we now ask Maple to evaluate just the ndméhen it will use last name evaluation.

[>f

But if we ask Maple to evaluate the functional notaf{er) , then Maple will not use last name
evaluation.

|

g
h;
K;

[> f(w);
If Maple had used last name evaluation in this last command, then the result would hay@peen
Maple instead used full evaluation on the ndanvehich returned the definition &f which Maple

then applied to the input of the functian,and returnea/.
[>

Maple uses last name evaluation when it evaluates a name of a function in isolatibthd3ut i
function name is part of a functional notation, then Maple uses full evaluation of the functien nam
so that it can get to the definition of the function (if there is one). We will say rbou #ais in the
next section.

[>

We end this section with an example whereethe® command uses last name evaluation whetr
supposed to be using full evaluation. Make the following two assignments.

[> f:='g'+4; g = x->x"2;

Now notice that theval command, which is supposed to do full evaluation, uses last name
evaluation.

[> eval(f);

In this example, last name evaluation is the same as one level of evaluation.

[> eval(f, 1);

We can geeval to do full evaluation by forcing two levels of evaluation.

[> eval(f,2);

[>

L[>

=/ 11.7. Evaluating function calls

If f is the name of a Maple function (savas defined using the arrow operator), then an expression
of the form
f(any-maple-expression)
is called dgunction call. Here is an example of a function and several function calls.
[> f:=x->x"2-1;
[> 1(2);
[> f(x);
[> 1(2);
[> f(w+u);
[> f((1+cos(Pi/4))/12);
[> f((x));
In this section we see how Maple evaluates a function call. To get a sense of swvatwant to
know, consider the following example of a function call.
[> z2:=4,
[> f(2);

What did Maple do exactly? Did it plugintof and getz*2-1 and then evaluate theto get 4 so
it had 4°2-1=15. Or did Maple evaluadirst to get 4, then plug 4 intoto get 4"2-1=15? As we
will see shortly, the difference between these two orders of evaluation is int@orthwe should

know which one Maple uses. (In short, Maple uses the later of the two orders.)
[>

There are two parts to a function célly) . There is the name of the function, in this dasand

there are the operands of the function, in this ca3édnere are three steps to evaluating a function

call. First Maples evaluates the operand (or operands if it is a multivariatefjyn¢hen Maple
evaluates the name of the function to get the function's definition. Then Maple plugsilisefres
evaluating the operands into the function's definition and computes the value of the functian. (Note
When Maple evaluates the operands it can use either full evaluation or last nam@oayalua

depending on the operands.)
[>

Here are some more examples.

[>f=0

[> g =X->X"G;
[> z:=2

[> f(2);

In the last function call, first the was evaluated to 2, then thavas evaluated tg andg was

evaluated to the cubing function, then the cubing function was applied to 2 to get 8.
[>

Now let us wipe out the definition gf and try the function caf(z) again.

[>0:=70]

[> f(2);

Once agairz was evaluated to 2 aidwas evaluated tg, butg does not evaluate to anything now.
So the result fof(z) wasg(2) . We callg(2) anunevaluated function call We get

unevaluated function calls whenever an unassigned variable is used as a function nameiama func
call. One of the most common ways to get un unevaluated function call as a result sp&il e
name of a Maple command.

[> factir('x"2+2*x+1");

[>

Here is a quirk in Maple's function call evaluation. If we call a function with morewgsithan its
definition specifies, then Maple just ignores the extra operands. (In a later vedrk&heill see
why Maple does this.)

[> fi=(Xy) ->x+y;

[> 1(2,3,4);

But if we call a function with fewer operands than its definition specifies, therewangrror
message.

[

[> 1(2);
[>

Here is an example where we can really see that Maple evaluates a fungigoateds before
evaluating the function. Here is a multivariate funcfion

[> f:=(xY) ->xy;

Now we shall define a function that is a bit unusual. fEmel function, which is built into Maple,

is a function that takes no arguments and returns a random integer. Let us define aduthetion
makes use afand like this.

[> g:=x->rand();

Sog is a function that takes in one number and outputs a randomly chosen integer (that does not
depend in any way on the input number!). Now consider the functiofig@l),g(0)) f

Maple took the arguments and plugged them directly into the definitionMéple would get

g(0)-g(0) , which is zero (see the next command), so the value of the function call would be zerc
[> 9(0)-9(0);

But if Maple evaluates the operands térst, then Maple will evaluate with two randomly chose
integers, so the value of the function call will be non zero (with probatgtijyclose to 1).

[> 1(9(0),9(0));

Every time you execute this function call you will get a different value. (Tryhtis example shov

that the order that Maple uses for evaluating a function call is important since,@n som

circumstances, the order of evaluation can determine the value of the function call.
[>

You may at this point have a question about wit))-g(0) should be zero. Algebraically that
seems reasonable. But if Maple used full evaluation and evaluated botly(#)théerms before
doing the subtraction, they{0)-g(0) would not be zero. What Maple did wilii0)-g(0) was
apply one of itautomatic simplification rules. Whenever Maple has the same expression on
side of a minus sign, it automatically simplifies this to zero (without evaly#te expressions).
Maple has many other automatic simplification rules. These are not the savatiatian rules but
as we have just seen, an automatic simplification rule can influence how Mapldé&nddue of an
expression. Here is another example.

[> h:=x->x"2;

[> h(g(0)/g(0));

If it were not for an automatic simplification rule (anything divided by itself) jdMaple would hav
evaluated this last expression differently (the automatic simplificatienm this case was applied
before Maple evaluated the operand in the function call). Most of Maple's automaificaton
rules are pretty obvious, but unfortunately there does not seem to be any documentation about the

in Maple's online help system.
[>

Here is another way to see that Maple evaluates the operands of a function calyafong the
function. We can use delayed evaluation to prevent Maple from making the function call.
|

[> 'f(9(0),9(0));

The right-quotes arourid prevent Maple from evaluating the nam#o the functionx,y)->x-y

so Maple is not able to actually complete the function call. But nothing prevented Maple fr
evaluating the operands of the function call, and so we see that Maple evaluates the bpéyends
it tries to apply the function.

This last example is actually a very useful trick for figuring out what is Som@g going on with
Maple. When we get an error message from Maple or a command does not do what we texpect it
do, it can sometimes be useful to delay the evaluation of a Maple command to see wihiat were
exact operands that the command was working with. This may help explain the causerof the e
message or why the command did what it did. Here is an examplex Givalue.

[> X:=05;

We know that the following command causes an error message.

[> plot(x"2, x=-2..2);

By delaying evaluation of the namp®t , we can get more information about what went wrong in
the above command.

[> 'plot'(x"2, x=-2..2);

And of course we see that 5 running from -2 to 2 is what does not make sense.

[>

Exercise Explain the following sequence of commands.
[> fi=x->x"2;

[> z:=05;

[> f(Z);

[> T(2);

[> 1(2);

[>

L[>

=/ 11.8. Evaluating function definitions

In the last section we emphasized how Maple evaluates function calls. Here weHookMéaple
evaluates a function's definition. We will see that this will also give us soneinformation on
the evaluation of function calls.

[>

Let us givex a value.

[> X:=-2;

If we definef as an expression i then full evaluation will evaluate right away and s& will not
really be part of the value 6f

[> f:=x"2-1,

If we now change, this does not affedt.

\

[> x:=-5;

[>

Now defineg as a Maple function and useas the independent variable in the definitiony of

[> g:=Xx->x"2-1;

Maple did not use full evaluation here. None ofxtteeon the right hand side of the assignment
operator were evaluated. If we evaluate a function call ugitizgen thex in the definition ofy will
get the operand of the function call, not the current value of

[> 9(6);

Notice that the current value »f(which is—5) has nothing to do with the evaluationggf) .

[>

Here is another example. Suppose we give the maaealue and then use it in the definitiorgof
along withx.

[> Cc:=-2;

[> g:=X->Cc*"2-1,

Notice that neithec norx was evaluated in the definition of

[> eval(g);

If we evaluate a function call using then Maple will use the current valuecoin evaluating the
function call but not the current valuexaf This is because is a parameter in the definition @f
butx is the independent variable (and independent variables get their values from the fulletion ca
operands).

[> 9(3);

If we now change the value of then the definition off is unchanged, but the evaluationgoh a
function call will change.

[> c:=2

[> eval(g);

[> 9(3);

We can even leave unassigned.

> c:i='ch

[> 9(3);

[>

So when Maple evaluates a function definition using the arrow operator, it does not evaludte a
the names in the definition, neither the independent variables nor the parameters. Wieen Mapl
evaluates a function call, then the independent variables get their values from the®péthe
function call, and the parameters in the function definition are fully evaluated tovehesdues

they may currently have at the time of the function call.
[>

So far we have looked at how Maple evaluates a function definition that uses the arrcan .nBtd
we can also define Maple functions usingthepply command. Let us see how Maple evaluates

a function definition that uses th@apply command.
-

[> g:=unapply(c*x*2-1, x);

We got an error message. What happened is that Maple used full evaluatioruforhly
command. So this last command looked to Maple like the following

[> g :=unapply(25*c-1, -5);

because has a value (and does not).

[> X, C;

Here is a way to verify this.

[> ‘'unapply'(c*x"2-1, X);

So theunapply command uses full evaluation. Let us see how that affects the function we are
defining. First of all, we must have the independent variable (in this<¢gasean unassigned
variable.

[> X=X

Now we can usenapply .

[> g :=unapply(c*x*2-1, x);

Notice that since is currently unassigned,is a parameter in the definition @f

[> a(3);

We can givec different values and get different evaluations of function calis to

[> c:=-1;
[> a(3); g(w);
[> c:=2

[> 9(3); g(w);

What happens if we now us@apply again to redefing using the same expression?

[> g:=unapply(c*x*2-1, x);

Now, sincec is an assigned variable and Maple uses full evaluation itheply command, we
no longer have as a parameter in the definitiongfThe value 2 is now a permanent part of the
definition ofg.

[> eval(g);

[> c:=05;

[> eval(g);

What if we want to usenapply and forcec to be a parameter in the definitiongs? Then we
would need to delay the evaluationooin theunapply command.

[> g:=unapply('c*x"2-1, x);

[> eval(g);

[> 9(x);

Why is there a 5 in the last expression?

[> Cc:=-2;

[> 9(x);

[>

In summary, the arrow operator and tmapply command use very different evaluation rules
when used to define a Maple function. The arrow operator does not evaluate any of the names use
in the definition of the function, and th@apply command uses full evaluation (except in cases

where last name evaluation should be used).
[>

Exercise Explain each the following three sequences of commands.
[> h:i=x->x"2;

[> g:=x->c*h(x) -1;

[> 9(3);

[> h:i=x->x"3;

[> 9(3);

[>

[> h:=x->x"2;
[> g :=unapply(c*h(x)-1, x);
[> a(3);

[> h:=x->x"3;
[> g@3);

[>

[> h:=x->x"2;
[> g :=unapply(c*h'(x)-1, x);
[> g@3);

[> h:=x->x"3;
[> g@3);

[> eval(g);
[>

Exercise Explain the following sequence of commands.
[> h:=x->x"3;
[> g:=h->h(5);
[> g(h);
[> h:=x->x"2;
[> g(h);
[> g:=unapply(h(5), h);
[> g:=unapply('h'(5), h);
Sinceh has a value, why was there no error message from the last two commands?
[> eval(h);
For example, here we get an error message.

> x:=5;

unapply(h(x), x);

Which we get rid of this way.

[> unapply(h(x), X");
[>

Exercise Explain the following sequence of commands.
[> h:i=x->x"3;

[> g:=h->h(x);

[> g(h);

[> X:=Y;

[> g(h)

[> h:=x->x"2;

[> g(h);

[> g :=unapply(h'(x), h);
[> X:=2z

[> g(h)

[> g :=unapply('h'('x), h);
[> g(h)

[>

Exercise Explain with as much detail as you can how Maple evaluates the following commands.
What rules of evaluation are used at each step.

[> x:=0;

[> h:i=x->x"2;

[> g:=(h %) ->h(x);

[> g(h,y);

[> g:=(h, x)->"h'(x);

[> g(h,y)

[> g(sin, Pi);

[> g(eval(h), y);

[> %;

[> eval(g(h, y));

[> g(eval(sin), Pi);

How would we usemnapply to define the exact same functigrihat we have right now?

[> eval(g);

The following is not correct. Try to fix it.

[> g:=unapply('h'(x), h, X);

Explain what happens if you remove any one of the pairs of right-quotes framahply
command. And why does the léstn theunapply command not even need right-quotes?
[>

L[>

=111.9. Evaluating concatenated names (optional)

In a previous section we looked at what Maple does with the left hand side of an assignment
operator and we said that Maple does not evaluate any names it finds there. But thistieehot e

true. If there is a concatenated or indexed name on the left hand side of an assignnient theera
Maple must do some kind of evaluation. In this section and the next one we look at Maple's
evaluating concatenated and indexed names (see Worksheet 2 for an introduction to cedcatenat

and indexed names).
[>

In the following command, Maple evaluates i@ on the left hand side of the assignment
operator to the name) . Notice thatx|/|0 is not a name, it evaluates to a name.

[> x]|0:=1;

In the next command, Maple once again evaludt{és to the nameO, but it doesiot evaluate th
namex0, which has a value now.

[> x||0:=2;

If Maple had evaluated the nam@, the last command would have becahwe? , which does not

make sense.
[>

Now consider the next two commands.

[> 1:=0;

[> X|li:=x|]i+1;

In the last command Maple had to evaluate both the naim¢he value 0 and then evaluate the
concatenation notatior|0 to the nameO. In this example Maple did two kinds of evaluations
on the left hand side of the assignment operator. But once Maple got to thethatstopped
evaluating (on the left hand side of the assignment operator, but not on the right hand sidea
special kind of evaluation, callevaluate to a nameand Maple has a special command for
performing this kind of evaluatioeyaln (which is an obvious abbreviation afVal uate to an
ame").

[> evaln(x||i);

Evaluation to a name is not the same as full evaluation which is what Maple did with then
the right hand side of the last assignment statement and which is what Maple Hdbs wéxt
expression.

[> x][i;

The steps involved with fully evaluatingji are first evaluate to O to get||0O , then evaluate
X|[0 to the nameO, then evaluate the namé to the value 3.

It is important to realize that evaluation to a name is not the same as lastvadulaéan. Here is a
example that distinguishes between these two evaluation rules. First makéothiadol
assignments.

[> a,b,c:="a,'b,'c:

[> a, b, c:=b,c, x->x"2;

Here is last name evaluationaf{which is the default way for Maple to evaluabe

[> &

And here isa evaluated to a name.

-

[> evaln(a);

Sincea is a namegvaln evaluates to itself. So last name evaluation and evaluation to a name
are two different ways to evaluate Here is a slightly more elaborate example that distinguishes
between last name evaluation and evaluation to a name.

[> 1:=0;x0:="'W;w:=2z->2z2"2;
Herex||i evaluated using last name evaluation (why?).
[> xIIi;

And here i(||i evaluated to a name.

[> evaln(x||i);

For the sake of completeness, here is full evaluatioafiiof .
[> eval(x]|i);

[>

Exercise With i , x0, andw assigned as in the last example,

[> 1:=0;x0:='W;w:=2z->2z"2;

explain in detail the evaluation rules used to evaluate each part of the follownassi
statement.

[> x|li:=x][i + x][i(4);
What can you say about the valuex6fafter the last assignment?
[>

When Maple evaluates a concatenation notation to a name, it uses full evaluation on tandght
side of the concatenation operator (unless it should use last name evaluation). Heraiale.
First make the following assignments.

> 0, k=1, K

> 1,), k=), Kk, 0;
Here isw||i evaluated to a name, using full evaluation ofithe
[> wlfi;

The next few commands control the level of evaluation of tmew||i
[> wl|(evaln(i));

[> wl|(eval(i,1));

[> wl|(eval(i,2));

[> wl|(eval(i,3));

[>

Here is an example that uses last name evaluation on the right hand side of the d¢mcatena
operator.

(>0,), k=7, 'K, x->x"2;

Here isw||i evaluated to a name, using last name evaluation of (tiee last name that
evaluates to ig).

[> wlli;

If we change the value &ffrom a function to an expression, théh will be evaluated using fu

evaluation on the right hand side of the vertical lines (but Maple will not be able to evakiat
vertical lines, since the right hand side of the vertical lines will not evalnateame).

[> k:=x"2;

[> wlli;

[>

Exercise First make the following two assignments.

(> 0i:="]=0;

Explain why the following two expressions are different. Explain in detail tips shat Maple uses
to evaluate each of the two expressions. (Hint: You need to know abquetieelencef
operations.)

[> wlleval(i,1);

[> wl|(eval(i,1));

[>

Here is an example of a typical and important use foethér command. Suppose we
automatically create a bunch of new variables and assign them values.
[> seq(random|ji=rand(), i=1..10);
[> assign(%);
Now suppose that we want to do a simple calculation with each of the variables and kiesplay t
results in equations of the following form.
[> 'random3'-random2' = random3-random?2;
We could list nine commands in a row just like the last one, but it would be better if we could
automate this. Here is an attempt to do this.

> seq('random]|(i+1)-'random||i' = random||(i+1)-randoml|i,
{ i=1..9);
That did not work. The right-quotes delayed evaluation of the whole concatenated name. What we
want on the left hand side of every equal sign is to evaluate the expressiodis 1 and then
evaluate the concatenation operators, but do not evaluate the resulting names. Andaby is ex
what we mean by "evaluate to a name" so let us usevtlie command.

> seq(evaln(random||(i+1))-evaln(randoml|i)
{ > = random||(i+1)-random||i, i=1..9);
[>

The concatenation operator has two sides to it. So far we have only looked at what Maple does on
the right hand side of the concatenation operator. What about the left hand side? Fireemake t
following assignments.

> [:=0;

> X:=2;
Now evaluate||i
[> X[i;

In the last command Maple evaluated ithieut not thex in the concatenated name. Maple will not
evaluate the name that is on the left side of the vertical lines. But here is griee@mhseems to

contradict this rule.

> =1

L > xI[illi;

Maple evaluated thie and thg but not the<. Thei is on the left side of a concatenation operator,
so did Maple evaluate a name on the left side of a concatenation operator? The answer is no,
because of the order that Maple did the evaluations inofilhee helpstates that the concatenation
operator is left associative. So in the express|pH , the operator between theand the is
evaluated first. This puts to the right of the vertical lines, so it is evaluated to get the m@me
Then the operator on the right side of the nathés evaluated, sp is evaluated to 1 and the
operator returns the name1l .

We just mentioned that the concatenation operator is left associative. Howeveltpthiad

example shows that Maple does not allow the use of parentheses for grouping around thefeft pa
vertical lines.

[> (Il

The next exercise shows that Maple does allow the use of parentheses for groupingharaght t

pair of vertical lines.
[>

Exercise First make the following assignments.

[>1,]:=0,1;

Explain in detail how Maple evaluates each of the following expressions.
[> x[liI(7);

[> xICOIN;

[> x|COICT:;

[> x]|(ll);

L= x[(lCT)):;

[> x[[(CO)):;

[>

Let us look at an example of unassigning a concatenated name.

> X=X
> | :=235;
> X||i :=0;

Now suppose we wish to unassigh but we do not happen to know the value {knowing the
value ofi would make the problem too easy). Situations like this occur often while programming
Maple. The following does not work.

[> X][i:="X]|I";
This last command did change the valug|pf but it did not unassign it.
[> xIIi;

In fact it created a recursive variable name. Here is how we can ungsésigriwithout having to
know the value of .

[> x||i :=evaln(x||i);

Now x||i is unassigned (but noj).
> x][i;

[>

Maple will not evaluate concatenated names as the independent variables in a funcitoondef
[> f:=x]2 -> (x]|2)"2;
And there can be problems from using the independent variables of a function in concatenated

names.

[> f:=(xy) ->X|ly;
[> f(i,3);

[> 1(i,3);

[>

[>

=111.10. Evaluating indexed names (optional)

Now let us consider the evaluation of indexed names. Before going into the details ofuhtava
rules, let us look at an example. Consider the following two commands.
[> X||1:=0;
[> x[1]:=0;
In the first command, Maplevaluates x||1 to the namel . In the second command,l] isa
name. Maple does not need to evaluate it. (The subscripted versidn oin the output is just a
"prettyprinted"” version of this name. This is analogous to the variable thatae and the way
Maple prettyprints it as a Greek letter.) There is even a way to ask Mapléydhisrdistinction
for us.
[> type('x||1', name); # Is x||1 a name?
[> type('X[1], name); # Is x[1] a name?
Similarly, in the next two command§] isa name and Maple does not need to evaluate anything
on the left hand side of the second assignment operator.

> =1

> X[i] ==-1,
We can even check with Maple.
[> type('x[i', name);
Now, to make things interesting, in the next two commands, Mimekeevaluate[i] on the left
hand side of the assignment operator to get the méihe.
> i:=2;
| > X[i] :=-2;
Look at the difference in the following two evaluations.
> X[if;
> x[0T;
Recall that we have said that assigning values to an indexed name created+etalfewhat is in

the table namesd.

[> op(x);

Notice that the table contains entries for both the naines andx[2] . The followingevaln
command can reasonably return two different names. It is not clear which oneetuvill r

[> evaln(x[i]);

(The help page foevaln does not explain why Maple choose this name over the other one.) Now

let us turn to the explicit rules that Maple uses for evaluating indexed names.
[>

An indexed name has two parts to it, the part in front of the brackets and the part insidekits.
We will call the part in front of the brackets theader, and the part inside the brackets ithaex.
Let us look at how Maple evaluates each of these two parts.

The index of an indexed name is always fully evaluated (unless the situatiocklt hame
evaluation). We saw this in the examples just above. Here are a few more examples
[> a:="b+tc " b:=3:c:="'u:u:="u"

[> x[a];

[> X[ul|(1..3)] := xi;

Here is an example of last name evaluation of an index.

(> 9=

[> f:=x->x"2;

[> X[g] :=eval(g);

If we change the definition df to be an expression, then thén x[g] will be fully evaluated.
[> f:=x"2;

[> X[9]:=g;

At this point, it is interesting to look at the table nametiat we have been building up.

[> op(x);

[>

Now let us turn to the evaluation rules for the header part of an indexed name. The header of an
indexed name need not be evaluated the same way on both sides of an assignment operator.
Consider this example.

> a:='a"b:="b"

> w:=a a:=Db;

> wiw] = wlw];
Notice that the firstvin wjw] was fully evaluated on the right hand side of the assignment operator
but it was not evaluated on the left hand side of the assignment operator. By contrast, the
concatenation operator acts the same on both sides of the assignment operator.

> a:='a"b:="b"

> w:=a a:=Db;

> wl|w = wi|w;
[>

Exercise: Suppose that we combine the last two examples together in one execution group. Explait
why the assignment statemevjtw := w||w has a result that is different below from what it
just above.

> a:='"a"b:="b"

> w:=a,a:=b;

> wlw] = wlw];

> wi|w = wl|w;
[>

The previous examples may leave the impression that the header of an indexed name is not
evaluated when it is on the left hand side of an assignment operator. But that is not gage.the c
Here are two counter examples.

[> w:="aa:=2;

[> w|ww] = wiw]

[> wiw[w]] = wiw]

Notice the following observation. In the last two assignments, the indexedwjameon the left
side of the assignment is not the name being assigned to (it is just part of the adheeheader
namew is fully evaluated in each case.

Here is a rule for evaluating the header of an indexed name. If a name is the headsde{exh i
namethat is being assigned to, then the name is not evaluated, otherwise, the name is fully
evaluated (unless last name evaluation is appropriate).

This rule for the header of an indexed names is actually a special case of the tiabaVaiule

that we stated in a previous section, that is, when a name is being assigned to, thenaime is
evaluated. When an indexed name is being assigned to, the header of the indexed name is not
evaluated.

[>

Here are some more examples of evaluating indexed names. This first exaesgiethidast name
and full evaluation.

[> a:="a;f:='g;9:="n"; h:=x->a*x"2;

Here is last name evaluation in an indexed name.

[> flf];

Here is full evaluation.

[> fWIfY)I;

Here is last name, full, and no evaluation all at the same time.
[> f[f3)] = f[f];

This last assignment created a table naméddere is the table.

[> op(f);

Exercise Explain in detail how Maple arrived at the output for the second of the following two

commands.

[> g[Xx] :=x"2+1;
[> 9[g(O)];

[>

Here are two examples that will cause us to re-evaluate our evaluation ruhetef@d names.

[> unassign('a’, 'b', 'c):

[> w:=atb+c;

[> wiw];

[> w[w]:=0;

In the second to last command, both parts of the indexed name were fully evaluated since the
indexed name was not being assigned to. In the last command, the same indexed name was
evaluated differently since it was being assigned to. And the assignmend eré¢aitde named.

[> op(w);

Now here is a bit more complicated example which shows that our rule for evaluativigaed
name is not quite correct.. Letbe a name for a list.

[> w:=[a,b,c];

[> ww];

[> ww] :=0;

To understand what happened in the last command, consider this next assignment statement.
[> w[2] :=0;

In each of the last two commands, the header of the indexed name was evaluated so that Maple
could know that the indexed name referred to a list. In the second to last command, the index was
not appropriate for the list, hence the error message. If Maple had not evaluated thadreade
then the assignment would have created a table nant&at w is still a list.

[>w;

So in some circumstances, Maple will evaluate the header of an indexed name ihgtassigned
to. So we should try to restate our rule for evaluating an indexed name. Here is areth@radta
rule.

In an indexed name, the index is always fully evaluated (unless last name evatuagipropriate).

If an indexed name is not being assigned to, then the header is also fully evaluateda@inesse
evaluation is appropriate). If an indexed name is being assigned to, then the header mastde a

If an indexed name is being assigned to, and the header name does not evaluate to an expression
sequence, set, list, or table, then the header name is not evaluated (and the assiggie®ateew

table with the header name as its name). If an indexed name is being assigned to, audthe he
name evaluates to an expression sequence or set, then there is an error messadexéddname

is being assigned to, and the header name is a name for a list or a table, then the header nam
evaluated and an element of the list or table is assigned to (assuming that the amtegpriate).

an indexed name is being assigned to, and the header name evaluates indirectlytablesttben

things get complicated. Here are a couple of examples that demonstrate theatomnpli
[>

Let w be indirectly a name for a table.

[> X=X wWiEX;

[> x[apple] := pear;

Now assign something to an indexed name wits the header.

[> w[2] :=Pi;

It seems like the last command created a table nana@d put an entry in the table. Let us check.
[> eval(w);

But this looks like the table named The following command shows that there is in fact no table
namedw, wis still an indirect name for.

[> eval(w, 1);

So in the assignment statemeii2]:=Pi , even though the output from the command made it
like wwas not evaluatedy was evaluated to beand the assignment was really made[®) . So

if an indexed name is being assigned to, and the header name evaluates indiredbhe toheetethe

header name is evaluated and an element of the table is assigned to.
[>

Now letw be indirectly a name for a list.

[> X=X, wWi=X;

[> x:=[apple, pear, orange];

Now assign something to an indexed name wits the header.

[> w[2] :=Pi;

The output once again makes it look like a table was created with theann&eteus check.

[> eval(w);

It looks like maybew is still pointing indirectly to the list. Let us check.

[> eval(w, 1);

Sowis not pointing to<. Let us check.

[> X

So the assignment statemer2]:=Pi made a copy of the list, madew a name for the copy, al
then made the assignment in the copy. So if an indexed name is being assigned to, and the heade
name evaluates indirectly to a list, then the header name is not evaluated, a copgtatthmtle
and given the name of the header, and an element of the new list is assigned to (assuiinéng tha

index is appropriate for the list).
[>

Exercise First make the following assignments.

[> |:="[a,b,c];
[> s:='atb+c’
(> i=2;

Explain how Maple arrived at each of the following outputs.
[> [i];

[> sli];

L > I

|

's[i];
T;
's'Til;
[T
s['T;
1[0];

s[O];

I[abc];
s[abc];
I[abc] := 0;
s[abc] :=0;

[>
[>
[>
[>
[>
[>
[>
[>
[>
[>
[>
[>

Exercise Is there any difference between the following namésw[w]) , (w|jw)[w] , and
w||lw[w] ? Investigate this withv both unassigned and assigned.
>

L[>

=/11.11. Online help for evaluation rules

There does not seem to be any one online help page that describes, or even summarizes, Maple'
evaluation rules. Little bits and pieces of information are scattered in a fe\wdgses.

A definition of full evaluation and examples of levels of evaluation can be found in the following
help page.
[> ?eval

Examples of delayed evaluation and using right quotes to convert an assigned name into an
unassigned name are described in the next two help pages.

[> ?quotes

[> ?uneval

The last help page also describes the special case of unassigning an indexed orrdetitena,
instead of using right quotes, you need to usetlaé command.

[> ?evaln

The evaluation rule used on the left hand side of an assignment operator is described trhip

page.
[> 7?assignment

There is a page that describes last name evaluation.
[> ?last_name_eval

There is a help page about some of the special evaluation rules used by certain procedures
[> ?spec_eval_rules

A little bit about evaluating concatenated names can be found in the following page.
[> 7]

And some information about the evaluation of indexed names is in the next help page.
[> 7?selection

L[>

