Maplefor Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

14. Maple's Control Statements

=114.1. Introduction

In order to write interesting examples of procedures, we need to define two new kinds of Maple
commands, the r epetition statement and the conditional statement. These are called control
statements since they control the order in which Maple commands are executed. So far, whenever
we have lumped M aple commands into a group, either in an execution group or in a procedure body,
the commands in the group have been executed in a sequential, or linear, order, one after the other.
Now we will see how to get Maple to execute commands in a"nonlinear” order.

o[>
=] 14.2. Repetition statements

Sometimes we want Maple to do more or less the same thing many timesin arow. Another way to
put thisis that sometimes we might want Maple to repeat a command (or group of commands) many
times. How can we get Maple to do something in a very repetitious way? By using aMaple
command called afor-loop. Here is a basic example of afor-loop; it computes powers of 2.

[>for i fromO to 6 do 2%i; od,

Thisfor-loop told Maple to evaluate the expression 2| seven times but to use a different value for

I each time. The command produced seven lines of output, one line for each of the successive
valuesthat i takesfrom 0 to 6. What if you wanted alot more, say 20 or 30 lines of output? Notice
how easy it would be to go back and change the command to generate as many lines of output as you
might want. (Try it.)

Here are some simple modifications of this last for-loop. First of al, we can have Maple do more
then one command each time the for-loop loops (or iterates).

[>for i fromO to 6 do 2*i; 3"i; od;

For each time the loop looped, Maple executed two commands, one evaluating 2”1 and the other
evaluating 371 , so there are 14 lines of results. But thisis hard to read so instead of having Maple
execute two commands per loop, let us have it compute two results per loop and put those results
into one expression sequence per loop (i.e., change a semi colon into acomma).

[>for i fromO to 6 do 2%i, 3"i; od;

Now we are back to seven lines of output and this time each line has two numbersonit. Let usadd a
third number to each output line, the loop counter i , so that we can easily see which value of i was
used to compute each line of output.

Page 1

[>for i fromO to 6 do i, 2%, 3"i; od;

Let ustry to make those results a little more self explanatory.

[>for i fromO to 6 do 'i' =i, "2Ni' = 2%, "3"N' = 3"Ni; od;
Notice how the right quotes, for delayed evaluation, were useful. What output would the next
command produce and why?

[>for i fromOto 6 do '"i' =1; "2""'" =2, "3MN' = 3" ; od,
We can have our loop begin with a negative number.

[>for i from-41to 2 do i, 2", 3%i; od,

We can also make our loop count by twos. We just add an extra clause to the for-loop statement.
[>for i fromO to 10 by 2 do i, 27*i, 3"i; od;

We can even make our loop count backwards.

[>for i from6 to O by -1 do i, 2%, 3"i; od;

[>

Exercise: Write aloop that will count backwards by threes from 12 to -9. (Replace the question
marks in the next command).
(> for i from? to ? by ? do i, 2%, 3%i; od,

[>
The syntax for abasic for-loop in Mapleis

for index variable fr ominitial_value t o final_value by step _sizedo
sequence_of Maple commands
od;

The Maple commands between the do and od are called the body of the for-loop. The for-loop
executes (or "loops through", or "iterates") its body over and over again, as the index variable
increments (or decrements) by the step size from the initial value to the final value. The by step size
part of the for-loop is optional. If initial_valueislessthan final_value and thereis no step_size, then
step_size defaults to one. The for-loop stops iterating when the index_variable is incremented, by
the step_size, to avalue that is greater than final_value (or, if step_size is negative, looping stops
after the index_variable is decremented by step _size to avalue less than final_value). Notice that
thisimplies that the for-loop is not completed until the index variable isincremented past the final
value. We will look at examples of thisjust below.

Exercise: What happens with afor-loop for which the final_value isless than theinitial_value and

thereisno step _size? Does step_size default to - 17
[>

The formatting of afor-loop as shown above, with the od on its own line and the

sequence_of Maple commands indented a bit, is not part of the syntax of afor-loop. Thisway of
formatting afor-loop isjust away to help areader understand the structure of the loop. It isavery

Page 2

good ideato write for-loops using aformat like this. But be careful to have all of the lines that make
up the for-loop in one execution group. (Asfar as Maple is concerned, the entire for-loop is just one
single Maple command, so you can also have the entire for-loop on asingle lineif it is ashort loop).

Here are some examples of simple for-loops. Notice that a for-loop ignores whatever value the index
variable might have before the for-loop is executed.

> 1 = -100;

> for i from5to 10 by 2 do 'i' =1 od;
Notice that the last output from the for-loop wasi =10. Let us check the current value of |
(>0

When afor-loop terminates, the value of index_variable is always greater than final_value. But
exactly how much greater depends on all three of the initial value, the final value, and the step size.
Consider the following examples.

> for i from3 to 7 do '"i'=i od;
>0

> for i from3 to 7 by 2 do "i'=i od;
L> 0

> for i from3 to 8 by 2 do '"i'=i od;
>0

> for i from2 to 8 by 2 do "i'=i od;
L> 0

> for i from2 to 8 by 3 do 'i'=i od;
>0

[>

Exercise: For afor-loop, let i denote theinitial value, let f denote the final _value, and let s denote
the step_size. Suppose all three of these are positive and i < f. Let a denote the value of the
index_variable after the loop has completed. Find aformulafor the value of aintermsof i, f, and s.
Use Mapleto verify your formula.

[>

Thef r ominitial_value and thet o final_value parts of afor-loop can be omitted. Thisismore
likely to happen by accident than by design, but if you do leave them out, even accidentally, Maple
will not warn you sinceit is not a syntax error. If you omit f r ominitial_value, then the initial_value
defaultsto 1.

[>for i to 5 do "i'=i od;

[>

However, if you should omit thet o final_value part of afor-loop, then the for-loop never
terminates! This can be inconvenient. If this should happen, sometimes you can get Maple to stop by

Page 3

clicking on the "Stop" button near the top of the Maple window. But Maple does not always respond
to the "Stop" button. If Maple refuses to respond to the stop button, then you have no choice but to
wait for some kind of error to occur, which will stop Maple, or you need to use the operating system
to halt the Maple program, which will cause you to loose all of your work since the last time you
saved your worksheet. So look over your for-loops carefully before hitting the return key.

The for-loop syntax we just looked at is the syntax for the basic loop. Maple has many other forms
of loops. We will look at some of these other formsin some of our examples later on.

For-loops are useful for generating "tables" of results. For example the next command lists the
binary and hexadecimal number system versions of some integers.

> for i from100 to 110 do

> i, convert(i, binary), convert(i, hex);

> od;
Notice how the for-loop was written on three lines and the middle line was indented. Thisisto try
and make the for-loop easier to read. It isimportant that all three of those lines be in the same
execution group, otherwise Maple will generate error messages. But it is also important to realize
that those three lines were not separate Maple commands. The three lines together make one

for-loop and Mapl e treats that for-loop as a single Maple command.
[>

The next command creates an interesting table of polynomials and their factorizations.
[> for i from1l to 10 do
> expl := add(x"j, j=0..1);

> exp2 := factor(expl);
> print(expl = exp2);
> od:

L et us examine this for-loop more carefully since it has afew new features. First of all, notice that
the od at the end of the for-loop has a colon after it, not a semi colon. That actually means that the
for-loop does not print out any result. So why do we get ten lines of output? The output lines are
produced by the pr i nt command, which always prints out aresult. For example, consider the next
two print commands. One has a colon and the other has a semi colon after it but they both print out a
result.

(> print("hello"):

[> print("hello again");

Now go back up to the last for-loop and change the colon after the od to a semi colon. If you
re-execute the loop it will now produce 30 lines of output since there are three commands in the
loop body and the body is executed ten times. Try changing the semi colonsin the loop body to
colons and re-executing the for-loop. If you do, you will still get 30 lines of output. In the body of a
for-loop (asin the body of a procedure) there is no difference between a colon and a semi colon. So
either all the commands in the body of afor-loop produce an output or they al do not produce an
output, and it is the semi colon or colon after the od that controls this. The best way to control

which results you want printed out and which results you want to suppress from the body of aloop is

Page 4

to put a colon after the final od of the for-loop and then use the pr i nt command inside the body of
the loop to selectively print out the results that you want to see. (There is an optional section later in
this worksheet that has more to say about the use of the pr i nt command inside loops.)

[>

Notice that for-loops can quickly and easily produce alot of results. For example, the next for-loop
produces quite afew polynomials.

>for i froml1l to 5 do

> add(x7j, j=0..1);

> factor(%);

> od;
What if we wanted to give these polynomials names so that we can refer to them later on? We need
away for the for-loop to automatically generate names, similar to how it can automatically generate
the polynomials. In fact, Maple provides two ways for afor-loop to create names as it loops. Here
we will look briefly at these two ways, which are called dotted names and indexed names. (In an
earlier worksheet there were optional sections on dotted and indexed names that had more
information in it them then what we need now.)

A dotted name is a name followed by a dot followed by a number, suchasx. 3. Thedot isredly an
operator and Maple evaluates the dot by taking the number on the right of the dot and concatenating
it to the name on the left of the dot. So x. 3 becomes x 3.
[> X.3;
What makes this so useful is that the number on the right of the dot can come from evaluating a
variable. So if thevalueof i is3themx. i evauatesto x 3.
>0 = 3;
> X0
In our loop that created lots of polynomials, here is how we can give the factored ones names.
> for i froml to 5 do
> add(x?j, j=0..i);

> p.i := factor(%);
| > od;
And now p3, for example, is aname for one of these factored polynomials.
[> p3;
[>

An indexed name is a name followed by a pair of brackets enclosing a number, such as x| 3] . (We
have seen indexed names used before as away of accessing the dataitems in expression sequences,
lists, sets, and strings.)

[> x[3];

Notice how Maple typesets the indexed name as a subscripted variable. The number inside the
brackets can come from evaluating avariable. So if 3isthevalueof i ,then x| i | evaluatesto the
indexed name x| 3] .

Page 5

>0 = 3
L x[i];
In our loop that created alot of polynomials, here is how we can associate indexed names with the
rest of the polynomials.

> for i from1l to 5 do

> p[i] = add(x"j, j=0..1);

> p.i factor(%);

> od;
Notice how in this example the indexed names were used in equations, not in assignment
statements. Sometimes we only want the names for display purposes, not for assigning to. (If you
want, you can try changing the equations into assignments in the for-loop.)

[>

This next loop computes the first ten prime numbers. Each primeis displayed in an equation with an
indexed name.
> for j from1l to 10 do
> prime[j] = ithprime(j);
| > od;
We can assign dotted names to the primes like this.
> for j froml to 10 do
> prime.j = ithprime(j);
. > od;
Hereisafancy way to list afew of our primes using their dotted names.
[> prine.(5..9);
[>

Exer cise: Compute the one thousandth through one thousand and tenth prime numbers.

[>

For-loops can take on forms other than the ones used in the examples given above. One other form
isthefor-in-loop. Its syntax is

f or index variablei n data_structure do sequence of Maple commands od

Here are afew examples. Study them carefully. Try making some changes in them.
[>for i in [10!, 211!, 12!, 13!, 14!, 15!, 16!] do length(i); od;

{> counter := 0;
>for i inf(x, y, z, w do counter := counter+1; od;

(> for letter in "Hello world."” do letter; od;

[> for termin x"2+2*x+(1/x)-y+z do term whattype(term; od;

Page 6

What does the following command do?
(> for nin seq(i!, i=10..16) do ifactor(n); od;

Here isaway to get one line from Pascal's triangle.
[> for termin expand((a+b)”8) do coeffs(ternm); od;
[>

Still another form for a repetition statement is the while-loop. It has the following syntax.
whi | e boolean_expression do sequence_of Maple commands od
The while-loop iterates as long as the boolean expression is true (we will say more about boolean

expressions later in this worksheet). Here is an example of how we can make awhile-loop iterate
exactly ten times. This loop determines which numbers between one and ten are or are not primes.

>j :=1;, # Gve i an initial value.
> while i <= 10 do

> i, "ls it aprime?", isprime(i);
> o= 0+

| > od;

[>

Let us go over this example in detail. Notice from the syntax for awhile-loop that while-loops do
not have index variables, so i isnot anindex variable. That iswhy we haveto initializei before
executing the while-loop. The while-loop iteratesaslong asi islessthan 10 (soi actsalot like an
index variable, but it is not one). Notice that the body of the loop has two statements, one of which
incrementsi to the next value. In afor-loop, the index variable isincremented automatically from
one iterate of the loop to the next, but i is not an index variable so we need to increment it
ourselves. Notice what the value of i iswhen the loop terminates.

[>0
Thevalue of i needed to reach 11 so that the boolean expression i <=10 could become false and
terminate the loop. If we wereto forget thei : =i +1 statement in the body of this while-loop, the

loop would iterate for ever (why?), which is sometimes called an "infinite loop™. (You can try thisif
you wish, but be careful. First be sure to save all of your work, in case you cannot get Maple to stop.
Then deletethei : =i +1 statement, execute the infinite loop, then use the "Stop" button at the top
of the Maple window to bring the loop to a premature end.)

Exercise: Modify the while-loop so that it does not output all the results from the incrementing
statement i =i +1.

[>

Exercise: Modify the while-loop example so that it determines which integers between 1000 and
1010 are primes.

Page 7

[>

Exer cise: Even numbers are never prime (except for 2) so thereis no point in testing them. Modify
the while-loop example so that it skips over the even numbers and only tests the odd numbers.

[>

Exercise: Rewrite the while-loop example as afor-loop. Notice that the for-loop version is much
more straight forward. In the next example we will look at awhile-loop that cannot be rewritten asa
for-loop.

[>

The previous exampleisreally not agood use for awhile-loop. It is better written as afor-loop. This
Is because we know in advance exactly how many times we want the loop to iterate. The strength of
awhile-loop isthat it can be used for loops in which we do not know in advance how many times
the loop will need to iterate. For example, the following while-loop finds the first prime number
greater than the integer n. Since we do not know which prime number this will be, we do not know
in advance how many times the loop will iterate as it searches for the answer. Notice that the
variable n, which is not an index variable, needs to be initialized before the loop starts and we need
to increment n ourselves in the body of the loop.

> n .= 1000:
{> while not isprinme(n) do n := n+l od;
This next while-loop will find the first prime number less than the integer n. Notice how we have to
decrement n ourselvesin the body of the loop.

> n := 1000:
{> while not isprime(n) do n := n-1 od;

[>

Exercise: What is the output from either of the last two while-loopsif theinitial value of n isa
prime number? Explain why.

[>

Exercise: What happens in either of the last two while loops if n is a negative number. (Warning:

Think about this before trying it out!)
[>

A common way to use loopsisto nest them inside of each other. The following nested for-loops
count how many prime numbers there are less than 2 for each i from 2 to 18. The outer for-loop
incrementsi from 2 to 18 and it contains two commands in the body of the loop, another for-loop
and apri nt command. The inner for-loop counts how many primes there are between 27 (i - 1)
and 2”1 (notice how the index variable from the outer loop is used to set the initial and final values
for the index variable in the inner loop). When the inner loop completes its iterates, the pr i nt
command in the outer loop prints out the running total of primes found so far. Notice how the

Page 8

for-loops are indented to make it easier to distinguish them.

| > counter := 1:

> for i from2 to 18 do

> for j from2~(i-1)+1 to (2%)-1 by 2 do

> if isprime(j) then counter := counter+1 fi

> od;

> print('27'=2"i, “nunber of prinmes =counter);
> od:

The following nested loops do the same cal culation as the above nested loops, but the following
version uses awhile-loop nested inside of afor-loop.

> =1

>for i from2 to 18 do

> while ithprime(j) < 2% doj :=j+1 od;

> print('27"'=2"i, “nunber of primes =-1);

| > od:

It isinteresting to note that when the above two examples have their outer loop index run from 2 to
18, then the examples run in about the same amount of time. But when the outer loop index is
changed to go from 2 to 19, then the second example takes much longer to run then the first

example.
[>

The following while-loop finds the first integer whose factorial has 1000 digits. Notice again that the
variable i , which isnot an index variable, needs to be initialized before the loop starts and we need
toincrement i ourselvesin the body of the loop.

>0 =1

> while length(i!)<1000 do i := 1+l od:

> 0% # Display the result.
What would happen if you changed the colon at the end of the od to a semi colon?

[>

The next loop does the same calculation as the last loop but uses a combination while and for-loop.
Notice that there is nothing between the do and the od. Thisloop has no body! In the previous
while-loop, the only statement in the body was the incrementing statement. But notice that in this
for-while-loop, i isanindex variable and it isinitialized and incremented by the for-loop part of the
for-while-loop (so there is no need for an incrementing statement in the body).

{> for i from1l while length(i!)<1000 do od;

>i; # Display the result.
What would happen in this example if you changed the semi colon at the end of the od to acolon?
Why?
[>

Here is an example of aloop that combines while and for-in. This for-in-while-loop finds the first

Page 9

number in alist.

>L :=[a,b,c,d,e, 10,9, 8,7];

>for i inL while not type(i, numeric) do od;

>
Asthe last couple of examples showed, Maple has a number of variations on the basic idea of a
loop. The three basic kinds of loops, for-loop, for-in-loop, and while-loop, can be combined to form
other kinds of loops such as for-while-loop, and for-in-while-loop. There are still other forms that a
loop can take, but we will not make use of them.

Exer cise: Rewrite the two while-loops for finding primes as for-while-loops.

[>

Exercise: Write aprocedure caled pri nme_br acket that takes asinput any positive real number
(not just an integer) and finds the smallest prime number larger than or equal to the input and the
largest prime number smaller than or equal to the input. The procedure should return the two primes
inalist. Sothe output of pri ne_bracket (11.5) will bethelist[11, 13] . Do not use the
Maple functionsnext pri me and pr evpri e inyour procedure.

[>

Exercise: If you had to choose between writing all of your loops as for-loops or writing all of your
loops as while-loops, which would you choose? Why?

[>

Exercise: Does Maple have a while-in-loop?
[>

Exercise: What doe the following loops tell you about how Maple executes afor-loop and a
for-in-loop?
>L :=1[a, b, c]:
{> for n froml to nops(L) do L :=1[n, op(L), n] od;
>L :=1[a, b, c]:
{> for ninLdoL :=1[n, op(L), n] od;
[>

Exercise: From Introduction to Maple, 2nd Ed., by Andre Heck, page 221-222. Define the following
procedure.

>f :=proc(x, n)

> | ocal i, t;

> t = 1;

> for i froml to n do
> t = X,

> od;

Page 10

> t:
> end;
Now call this procedure a couple of times. Explain how the procedure computes these results.
(> f(x, 22);
(> f(sin(x), 12);
For fun, ask Maple to differentiate the above results.
(> diff(f(x,7), x);
(> diff(f(sin(x),12), x);
[>

In the next section we will do some longer, more complicated examples that make use of for-loops.

[>
L[>
=114.3. Moreloop examples

In this section we work on more involved examples using loops.

[>

/= 14.3.1. Example 1: Riemann sums

A common use afor-loop isto compute a sum. In this example we show how to use aloop to
compute Riemann sums from calculus. But first let us ook at a couple of simple sums written as
for-loops.

A well known result about sums of integersisthat the sum of the first n positive integersis

n(n+ 1)/2. Let usverify thisfor n = 1000 using afor-loop. We want a for-loop that will
compute the following sum, written in sigma notation.

1800

ai

i=1
The basic idea of using afor-loop to compute a sum is that we compute a running total. If you
want to add 1+2+3+4+5+6+7, we start with O, then we add 1 to 0, then we take the result and
add 2 to it, then we take that result and add 3 to it, then we take that result and add 4 to it, etc. In
the following for-loop, we will let the running total be called s (for sum) and we will initialize
s with the value 0. Notice how the single command in the body of the for-loop adds another
integer to the sum for each iterate of the loop. Compare this for-loop with the sigma notation
above. In what ways are they alike and in what ways do they differ.

>s = 0O

{> for i fromlto 1000 do s :=s + i od:
Notice that we have a colon at the end of the loop so that we do not see 1000 lines of output. Let
us check the value of s, the sum.
[>s;
Now verify this against the formulan(n + 1)/2.

Page 11

[> 1000*(1000+1)/ 2;
By the way, Maple can verify the above (symbolic) formulafor us by using the sumcommand.

[(>i:="1": n.="n":

(> sunm(i, i=1..n);
[> factor(%);
[>

Exercise: Write aprocedure caled add_| i st that takes one input, alist of numbers, and
computes the sum of the numbersin thelist. Do not use Maple'sadd or sumcommands.

[>

Here is another example of computing a sum. We know from cal culus that the number eisthe
sum of the reciprocals of all the factorials. So we can compute an approximation of e by
summing the reciprocals of the factorials from say 0! to 10!. So we want a for-loop that will
compute the following sum, written in sigma notation.

3 1
ay
n=0
Compare the next for-loop with this sigma notation.
>e = 0;
{> for n fromO to 10 do e := e + 1/(n!) od;

That is not what we really want. Let us modify the loop so that it computes with decimal
numbers.

>e = 0;
{> for i fromO to 10 do e :=e + 1.0/(i!) od;
In this example we put a semi colon at the end of the loop so that we could see the answers
converge to the correct value of e, which is given by the next command (to ten decimal places).
[> eval f(exp(l));

[>

Now let us turn to Riemann sums. The following execution group will compute a (left hand)
Riemann sum for the function f over theinterval from a to b using n rectangles. If you want to,
you can change any of thevaluesfor f, a, b or n.

>f 1= x ->sin(x); # The functi on.

> a = 0; # Left hand endpoi nt.

> b = 2*Pi; # Ri ght hand endpoint.

> n = 100; # How many rectangl es.

>L.n:=0: # Set the running total to O.

> for i fromO to n-1 do

> X.1 = a+i*(b-a)ln; # Conpute a partition point.

> L.n:= L. n+tf(x.i)*(b-a)/n # Add area of rectangle to sum
> od:

>'L[n]" =% # Display the result synbolically,

Page 12

| > 'L[n]' = eval f(9%4); # and nunerically
Y ou should think of the for-loop in this execution group as the Maple version of the following

formulafrom calculus.

n-1

o]

L,=a f(x)Dx

i=0
This sigma-notation represents the sum and the for-loop in the execution group computes the
sum. An interesting feature of actually computing the sum, instead of just representing it
abstractly, is that the computation must be very precise about what it is doing. For example,
notice how X, in the sigma-notation is a short hand for the Maple expression a+i * (b-a)/ n.In
calculus courses where this sigma-notation is used, students often do not realize just what the x,
represents. But if you have to write a Maple for-loop to implement the sum, then you are forced
to explicitly state what the symbol x; means. Maple will not be able to figure out for you what x
representsif you useit in afor-loop without defining it.

[>

Exercise: Modify the execution group for computing L, to compute R, right hand sums, and
thentry T, nd S, the trapezoid sums and Simpson's rule.

[>
_L>

ﬂ 14.3.2. Example 2: Pascal'striangle

Our next example shows how we can develop a procedure for printing out Pascal'striangle. The
next for-loop prints out atable of expansions of (x +y)".

> x:="x'royr=tyh

> for i fromO to 8 do

> expand((x+y)”i);

> od;
The coefficients in these polynomials have a name (the binomial coefficients) and they make up
what is called Pascal's triangle. Pascal's triangle and the binomial coefficients have alot of
interesting properties, so let us see if we can extract Pascal's triangle out of the last example.

The Maple command coef f s returns the coefficients of a polynomial as an expression
sequence. The coefficients of the above polynomials make up Pascal's triangle. So let us see if
the next for-loop will give us Pascal's triangle.

> for i fromO to 8 do

> coeffs(expand((x+y)”i));

> o0d;
That did not work. The output from coef f s givesthe coefficients of each polynomial as an
expression sequence, but the coefficients are not in the same order as in the polynomial (see the
next two commands).
[> expand((x+y)”8);

Page 13

[> coeffs(%);
So we do not yet have Pascal's triangle. Let us try another approach. Since polynomials are data
structures, let us use our knowledge of Maple's data structure commands to get the coefficients
of each polynomial in the order we want them. Since we want the coefficientsto bein an
expression sequence, we will use the seq command. We can use an op command to pick off
the individua terms of the polynomial, and then we can use the coef f s command to return the
coefficient of just oneterm at atime.
[> expand((x+y)"8);
[> seq(coeffs(op(j, %), j=1..nops(%);
That worked. Here is afor-loop built around the last two commands.

> for i fromO to 8 do

> expand((x+y)™i);

> seq(coeffs(op(j, %9), j=1..nops(%);

> od;
Oops, too much output. Put a colon at the end of the final od and useapr i nt command in the
body of the loop.
> for i fromO to 8 do
> expand((x+y)™i);
> seq(coeffs(op(j, %9), j=1..nops(%);
> print(%);
| > od:
There we go. Notice that every number in Pascal's triangle is the sum of the two numbers just
above it.

Of course, if binomial coefficients are important in mathematics, then we should expect Maple
to have a command for computing them directly instead of picking them out of the expansion of

(x+y)". Thecommand bi nomi al (n,j) returnsthe coefficient of thej'th term of (x +y)".
[> seq(binomal (8,j), j=0..8);
So we can get Pascal's triangle with the following for-loop.

> for i fromO to 8 do

> seq(binomal (i,j), j=0..i);

> od;
Notice how this loop uses two index variables, one for the loop itself and one for theseq
command. Thei index variable is counting the rows of our output and the] index variableis
counting the "columns'. And thei index variable from the "outer loop" isthe fina value for the
J index inthe"inner loop".

[>

Here is a procedure that allows us to conveniently print out as many lines of Pascal'striangle as
we want. (Notice the multiple levels of indentation to make this easier to read.)

> pascal := proc(m n)

> local i, j, X, v;

Page 14

> for i frommto n do

> expand((x+y)”i);

> seq(coeffs(op(j, %9), j=1..nops(¥N);
> print(%);

> od;

> end;

Let ustry it out. (On my computer screen | can fit up to 18 lines of Pascal'striangle.)

[> pascal (0, 8);

Notice how this procedure usesthe pr i nt command to print out one line of Pascal's triangle
for each loop through the for-loop. Normally a procedure only has one output, which is the last
line executed by the procedure (the "return value" of the procedure). But this procedure has n
lines of output. These extralines of output have a name, they are called side effects. Anything
else that a procedure does besides returning its "return value" is called a side effect. (Y ou may
wonder just what the return value of this procedureis. We will look at that question later in this
worksheet.)

[>

Exercise: Modify the procedure so that it usesthe bi nom al command instead of the expand
and coef f commands.

[>

[>

ﬂ 14.3.3. Example 3: Periodic extensions

Our third example will use awhile-loop. We show how to take an arbitrary function g defined
on an interval between two numbersa and b, a < b, and produce afunction f that is periodic on
thewholereal line, with period p=b - a, and is equal to the original function g between aand b
. Thisnew function is called the periodic extension of the original function.

[>

Before showing how to use Maple to define the periodic extension, let ustry to describeit in
words. We start with what we might think of as a segment of a function g, defined just between
aand b. The periodic extension f will have copies of this segment repeated over and over again
on thereal line. There will be one copy between b and b + p (wherep = b - aisthelength of the
interval that g isoriginaly defined on) and another copy between b + pand b + 2 p, etc. How
should we define the extension f on the "first" interval from b to b + p? Visually, we would just
imagine dliding the graph of g from theinterval [a, b] over onto theinterval [b, b + p]. We
would express this mathematically by saying that, if xisin[b, b + p], thenf(x) =g(x- p)
(make sure you understand this step). For the interval fromb + pto b + 2 p, we would again just
imagine dliding the graph of g from[a, b] overto[b+p, b+ 2p]. Andif xisin

[b+p, b+ 2p], thenwewould let f(x) =g(x- 2 p). Ingenera, for any positive integer k, if x
isin[b+kp, b+ (k+1)p], thenf(x) =g(x- (k+ 1) p). Inshort, to define f(x) for b <xwe

Page 15

need to keep subtracting p from x until we get a number that is between a and b, and then use
that number to evaluate g. This process of subtracting p's from x until we get a number between
aand b is exactly what awhile-loop can do for us. Since we do not know the value of x ahead of
time, we do not know how many p's we need to subtract, but while-loops are exactly what we
should use when we want to iterate something an unknown number of times.

Exercise: Figure out how we would define f(x) for x < a.

[>

Let g beaMaple function and let a and b be two numbers with a<b. Here is how we define the
periodic extension f of g.

> f = proc(x)

> | ocal vy;

> Yy =X

> whiley > Db doy :=y-(b-a) od,
> whiley <a doy :=y+(b-a) od,
> 9(y);

> end;

This definition of f worksfor any g, a and b. Let us define specific g, a, and b.
[> Qg :=X -> X2
[>a ::=-2; b:=3;
Now graph the periodic extension of g.
> plot(f, -7..18, scaling=constrained, discont=true, color=red
L)
We should note here that if wetry to graph f as an expression, then we get an error message.
> plot(f(x), x=-7..18, scaling=constrai ned, discont=true,
| color=red);
Similarly, if wetry to look at the formulafor f asan expression, we get the same error message.
[> f(x);
We will find out how to fix this later in this worksheet. For now, hereisaway to graph f asan
expression if you really want to.
> plot("f(x)', x=-7..18, scaling=constrained, discont=true,
{ col or=red);

[>

Exercise: With the same g asin the last example, try changing the values of a and b. How does
this change the periodic extension?

Exercise: Try defining periodic extensions for some other functions g.

[>
Exercise: How arewe defining f (a+k* p) for any integer k? What other reasonable choices

Page 16

aretherefor thevalueof f (a+k*p) ?

[>

Recall that afunction f iseven if for all x it istruethat f(- x) =f(x). A functionisevenif its
graph is symmetric with respect to the y-axis. Recall that afunctionisodd if for all xitistrue
that f(- x) = - f(x). A function is odd if its graph is symmetric with respect to the origin,
meaning that if we rotate the graph of f by 180 degrees, then the graph remains unchanged.

If bisapositive number and we define the periodic extension of afunction g on the interval

[0, b], then the periodic extension will be an odd function for some g, an even function for
some other g, and neither even nor odd for most g. For example, the periodic extension of sin(x)
ontheinterval [0, p] isan even function.

[> g := X ->sin(x);

[> a:=0; b:=Pi;

(> plot(f, -3*Pi..3*Pi);

And the periodic extension of cos(x) on theinterval [0, p] isan odd function.

[> g := X ->cos(X);

[> a:=0; b:=Pi;

[> plot(f, -2*Pi..2*Pi);

There isaway to define a periodic extension so that it is always even or always odd, no matter
what the function g on the interval [0, b] looks like. The following procedure defines the even
periodic extension of afunction g on the interval from 0 to b. The even extension defined by this
procedure has period 2 b. (Notice the use of an anonymous function in the last line of the

procedure.)
> f _even := proc(x)
> | ocal v;
>y =X
> whiley > b doy :=y-2*b od,
> whiley <-bdoy :=y+2*b od,
> (z -> piecewise(z<0, g(-2z), 9(z)))(y);
> end;

The next procedure defines the odd, 2 b periodic extension of afunction g on the interval from 0
tob.
> f_odd : = proc(x)

> | ocal vy;

>y =X

> whiley >> b do y :=y-2*b od;
> while y < -b doy := y+2*b od;

> (z -> piecewise(z<0, -g(-z), g(z)))(Y);
> end;

Let us try some examples using these two procedures. Here are the even and odd 2 p periodic
extensions of sin(x) on theinterval [0O, p].

Page 17

[> g .= sin;

[(>Db := Pi;

[> plot(f_even, -3*Pi..3*Pi);

[>plot(f_odd, -3*Pi..3*Pi);

Here are the even and odd 2 p periodic extensions of cos(x) on theinterval [0, p].
[> g := cos;

[>b .= Pi;

[> plot(f_even, -3*Pi..3*Pi);

[> plot(f_odd, -3*Pi..3*Pi);

Let ustry theidentity function, g(x) = x ontheinterval [0, 1].

[> g =X ->X;

(>b = 1;

[> plot(f_even, -3..3);

[> plot(f_odd, -3..3);

(> plot(f, -3..3);

Let ustry anon symmetric piece of aparabolaon theinterva [0, 1].
(> g :=X ->(x-1/4)"2;

(>b = 1;

[> plot(f_even, -3..3);

[> plot(f_odd, -3..3, discont=true, color=red);
(> plot(f, -3..3, discont=true, color=red);

[>

Exercise: Try defining even and odd periodic extensions for some other functions g.

[>

Exercise: Part () Under what conditions on the function g will the functionf _odd be
continuous at 0 and b? Under what conditions on the function g will the functionf _even be
continuous at 0 and b?

[>

Part (b) Under what conditions on the function g will the functionsf _odd andf be the same
function (wheref isthe b periodic extension of g on the interval from 0 to b). Under what
conditions on the function g will the functionsf _even and f be the same function.

[>

Here is an interesting example that uses a parabola.

[>0g := X -> 4*x*(1-X);

(> Db =1

[> plot(f_odd, -4..4);

L et us compare this periodic function to asine curve.

[> plot([f_odd, x->sin(Pi*x)], -2..2);

Notice how amazingly similar the two functions are. The following parametric graph uses the

Page 18

odd periodic extension of g. Which isthereal circle?
> plot([[f_odd, t->f odd(t-1/2), 0..2],

> [cos, sin, 0..2*Pi]],
> scal i ng=constrai ned);
[>

Exercise: Given afunction g defined on aninterval [O, b], write aproceduref _oddeven that
defines a4 b periodic extension of g that is odd and such that the horizontal shift of the
extension by the amount b is even. Similarly, write aproceduref _evenodd that definesa4 b
periodic extension of g that is even and such that the horizontal shift of the extension by the
amount b is odd. (Hint: Think of how si n isbuilt up from just one quarter of si n'sgraph, the
part from O to Pi / 2, and then think of how cos isbuilt up from just one quarter of cos's
graph.)

[>

Exercise: Make up your own periodic function by extending some function g, and then use your
periodic function in place of the trig functions sin and cos in several parametric curves and
surfaces like cardiods, spirals, lemniscates, roses, sphere, torus, etc. Try to come up with areally
unusual curve or surface.

[>

[>

H 14.3.4. Example 4: Drawing graphs

Our fourth example uses afor-loop and alist data structure to draw a graph. Each iterate of the
for-loop will compute the coordinates of a point and put the point in alist of pointsthat areto be
plotted. Then the pl ot command will be used to draw a graph of al the pointsin thelist. This
isafairly common way to create a graph in Maple and, as we showed in an earlier worksheet,
thisis fundamentally how all graphs are drawn in Maple.

The following for-loop computes 9 equally spaced sample pointsin the interval from O to 2 p.
Each iterate of the loop computes one sample point, evaluatesthe si n function at the sample
point, and puts the ordered pair of the sample point and the value of si n into alist called dat a.
Then the pl ot command is used to graph the list dat a, and we get agraph of thesi n
function. Notice that dat a starts off asthe empty list, [| , and as each new point

[x, sin(x)] iscomputed, it is put into the list using acommand of the form

dat a: =[op(data), [x, si n(x)]].Notice how thisisvery much like computing a
running sum s, where we start off with s equal to the "empty" sum, 0, and then as each new
term in the sum is computed it is added to the sum using acommand likes: =s+somnet hi ng.
[> N:=8;

[>b .= 2*Pi;

[> data :=[];

Page 19

> for nfromO to N do

> data := [op(data), [n*b/N, sin(n*b/N]];

> od;
Notice that the output from the for-loop isin symbolic form. Since we are going to just plot the
contents of the list, we do not need exact symbolic results. So let us modify the for-loop so that
it computes with decimal numbers. When working with loops that might create thousands of
points, this could help speed things up. (If we want, we could even use the eval hf command
and hardware floating points for even more speed.) First, we need to reinitialize | i st to bethe
empty list again.

> data :=[];

> for nfromO to N do

> data := [op(data), [evalf(n*b/N), sin(evalf(n*b/N))]];

> od;
Now use pl ot tographthelist dat a.
[> plot(data);
[>

Exercise: Modify the above example so that it can be used to graph the si n function over any
interval from a to b. (Y ou should suppress the output from the for-loop in your example, so that
you do not fill up the worksheet with an unwieldy amount of output.)

[>

Exercise: Modify the above example so that it is easy to change the function that is being

graphed. Try graphing the function f(x) =3 x*- 2x- 1 over theinterval [- 2, 3].
[>

Exercise: Consider the following three execution groups. Each one graphsthe si n function and
each one uses a glight variation on the last for-loop. Suppose Nis avery large number. How do
you think these three execution groups would compare, in terms of speed, with the last for-loop
and with each other?

> N := 8§;

> b = 2*Pi;

> data :=[]:

> for nfrom0O to N do
> data := [op(data), [evalf(n*b/N), evalf(sin(n*b/N))]];
> od:

| > plot(data);

[>

> N := 8;

> b = 2*Pi;

> data =[]
>n:.="'n

Page 20

> x := evalf(n*b/N);
> for nfromO to N do
> data := [op(data), [x, sin(x)]];
> od:
| > plot(data);
[>
> N := 8;
> b = 2*Pi;
> data :=[]:
>n ::="'n:
> x :=evalf(b/N);
> for nfromO to N do
> p = n*x;
> data :=[op(data), [p, sin(p)] 1;
> od:
| > plot(data);
[>

The following for-loop computes five equally space points on the circumference of the unit
circle and putsthese point in alist called dat a. Notice that once again dat a starts off asthe
empty list, [| , and as each new point [x, y] iscomputed it is put into the list using acommand
of theformdat a: =[op(data), [x,y]].

> N :=5;

> data :=[];

> for nfrom0O to N do

> data := [op(data), [cos(eval f(n*2*Pi/N)),
sin(evalf(n*2*Pi/N))] 1;

> od;

Notice how the list of points grew by one point with each iteration of the loop. Now use the

pl ot command to plot the list.

[> plot(data, style=point, scaling=constrained);

Now plot it with lines connecting the dots.

[> plot(data, style=line, scaling=constrained);

In the next for-loop we use the names x and y to represent the calculation of the coordinates of
each of the points. Convince yourself that the next execution group does exactly the same
calculation as the previous execution group. The reason for rewriting it like thisisto try and
make the execution group easier to read. (And this time we are suppressing the output from the

for-loop.)
> N :=5;
> data :=[];
>n:='n"; # be sure that n is unassigned
> theta := evalf(n*2*Pi/N);
> X := cos(theta);

Page 21

>y := sin(theta);

> for nfromO to N do

> data := [op(data), [x, y] I;
> od:

Plot the points again, to verify that it was the same calculation.

[> plot(data, style=line, scaling=constrained);

Now go back to the last execution group and change the value of Nfrom5to 7 or 9. The
execution group will plot 7 or 9 equally spaced points on the circumference of the unit circle.
Try any positive integer for N.

[>

Here is avariation on this example. The next execution group plots 5 equally spaced points on
the circumference of the unit circle, but they are not computed in sequential order around the
circle. Try to figure out exactly what this version computes and how it doesit.
> N :=5;
J = 2;
data : = []:
n:= :
theta := J*2*Pi / N,
X := cos(n*theta);
y := sin(n*theta);
for n fromO to N do

data := [op(data), [x, y] 1;
od:
| > plot(data, style=line, scaling=constrained);
Try changing Nto 7 and J to 3. Try several different valuesfor Nand J.
[>

V V.V VYV VYV VYV

Exercise: Convert the last execution group into a procedure that takes two positive integer
parameters, the N and J, and draws the appropriate graph. Thiswill make it alot easier to try out
different parameter values.

[>

One more variation on this example. This version has three parameters, N, J, and K. Try to
figure out exactly what this execution group is doing. (Hint: It does pretty much the same thing
asthe previous version, but it does it twice per iterate of the loop.)

>N, J, K:= 36, 21, 9;

> data :=[]:

>n:="'n:

> thetal := J*2*Pi /N,

> theta2 := K*2*Pi/ N;

> x1, yl := cos(n*(thetal+theta2)),
> sin(n*(thetal+t heta2));

Page 22

> x2, y2 .= cos(n*(thetal+theta2)+thetal),

> sin(n*(thetal+theta2)+thetal);

> for nfromO to N do

> data := [op(data), [x1, yl], [x2, y2]];

> od:

| > plot(data, style=line, scaling=constrained, axes=none);
[>

Here are some values for the parameters N, J and K that produce nice graphs.
15, 8, 13

28,19,15

39,33,27

19,13,11

[>

Exercise: Part (a) Convert the last execution group into a procedure that has three positive
integer parameters and draws the appropriate graph. Call your procedure with a number of
different parameters.

[>

Part (b): Convert your procedure from Part(a) into a procedure that takes no input parameters
and generates the three integers it needs randomly. Y our procedure should use the Maple
function r and to generate the random integers (the expressionr and(a. . b) () (with both
sets of parentheses) generates arandom integer between a and b). The procedure should print
out the values of the randomly chosen integers and draw the appropriate graph. Run this
procedure many times. Y ou should get some very elegant graphs.

[>

[>

ﬂ 14.3.5. Example 5: Butterfly curve

Our fifth example uses afor-loop and a data structure (alist) to draw afairly complex graph, a
version of abutterfly curve.

The curve we will draw is not in fact a curve. Instead we will be plotting points, thousands of
points, and not connecting them together with line segments. The points we will be plotting will
be computed by afor-loop and placed in alist (asin the last example). Then the pl ot
command will be used to draw a graph of al the pointsin the list (without connecting them
together with line segments). Almost al of the work in this example isin computing the
coordinates of al the points that we want to plot.

The loop in this example is fairly computationally intensive. Y ou should save al of your work
before executing it, in case it takes too long for it to compute on your computer (do not try this
on a Pentium, use at least a Pentium 11). 1f your computer isreally fast, you can try changing N.
Try N: =21000, or N: =41900 (which should run for a pretty long time). Different values of N

Page 23

give different butterfly curves.

[>r = phi -> (exp(cos(phi))-2*cos(4*phi)

) *si n(99999999* phi) N4;

> N := 11500; # Nunber of points to conpute.

> h = eval f(2*Pi/ N); # Step size between points.

>n:="'n"; # Just to be safe.

> X :=r(n*h)*sin(n*h); # x-coord of a point on the
curve

>y :=r(n*h)*cos(n*h); # y-coord of a point on the
curve

> data :=[]; # Start with an enpty |ist.

> for nfroml to N do # This do-loop conputes the
butterfly.

> data := [op(data), [evalhf(x), evalhf(y)]]

> od:

Now that we have computed our list of points, let us graph it.

[> plot(data, style=point, synbol =point, color=black);

The origina reference for butterfly curvesis The Butterfly Curve, by Temple H. Fay, in The
American Mathematical Monthly, Volume 96, Issue 5 (May, 1989), pages 442-443. The version
of the butterfly curvein this exampleisfrom A Sudy in Step Sze, by Temple H. Fay, in

M athematics Magazine, Volume 70, No. 2, April 1997, pages 116-117.

[>

[>

H 14.3.6. Example 6: Animations

Our last example is the use of afor-loop to compute the frames of an animation. Earlier we
created animations using the ani mat e command. But the ani mat e command islimited in the
kind of animationsit can draw. For example, it cannot animate the graphs of equations. Thereis
another way to create animations in which we use a for-loop to create and label a sequence of
graphs (the frames) and then we use a specia form of the di spl ay command to turn the
sequence of graphs into an animation. Here is an example of this technique.

First, afor-loop is used to create and name, using dotted names, 51 two-dimensional graphs,
each with a parameter slightly changed. Then the di spl ay command is used to "sequence” the
51 graphsinto a short movie. To view the movie, after the first graph is visible, place the cursor
on the graph. Some V CR type buttons will appear at the top of the Maple window. Click on the
"play" button. (The for-loop takes a little while to complete.)

> X 1="'x'1y ="y

> for i from-20 to 30 do

> p.i :=plots[inplicitplot](x"3+y"3-5*x*y = 1-i/8,

> x=-3..3, y=-3..3, nunpoi nts=800,
tickmarks=[2,2])

Page 24

| > od:
[> plots[display](p.-(-20..30), insequence=true);
[>

L[>
=] 14.4. Conditional statements

In the previous two sections we learned how to make Maple repeat ablock of statements. In this
section we learn how to make Maple skip over certain blocks of statement.

Here is asimple procedure. It takes in two numbers as parameters and it returns the larger of the two

numbers.
> bigger := proc(a, b))
> if a> Db then a else b fi;
> end;

Try it out.

[> bigger(3, 5);
[> bigger(-3, -5);
[>

The procedure bi gger introduces another important element of programming, the conditional
statement (also called aif-then-else-fi statement) . The conditional statement allows Mapleto
make a choice when it is computing. A conditional statement is aso sometimes called a branching
statement since it gives Maple a choice between two possible branches of calculations to make. Here
isMaple's syntax for a conditional statement.

I f boolean_expressiont hen

sequence_of Maple commands
el se
sequence_of Maple commands

fi
The part of the if-then-else-fi statement between thei f and thet hen is called the conditional-part
and it is either true or false. If the conditional-part is true, then Maple executes the statements
between thet hen and the el se. These statements are called the body of the then-part. If the
conditional-part is false, then the Maple executes the statements between the el se and thef i .
These statements are called the body of the else-part. The bodies of either the then or else part can
contain any number of Maple commands. The body of the else-part is optional and if it isleft off,
then the conditional statement has the following ssmpler form, which isreferred to as an
if-statement.

I f boolean_expressiont hen

sequence_of Maple statements

fi

If the conditional-part of an if-statement is true, then Maple executes the body of the then-part. If the

Page 25

conditional-part of an if-statement is false, then Maple does not execute any statements, and it
appears asif the if-statement did nothing.

The formatting of the conditional statement, with the bodies of the then and else parts indented
dightly and thewordsel se andf i ontheir own lines, isnot part of the syntax. But the formatting
makesit alot easier to read a conditional statement and should be used most of the time.

Here are afew examples of simple conditional statements. The next command randomly generates a
zero or one and if the random number is zero, the statement outputs heads, otherwise it outputs
t ai | s. Try executing this statement several times.

> if rand(0..1)() = O then
> head
> el se
> tail
> fi;
[>

If we remove the else-part of the if-then-else statement, so that it becomes an if-statement, then the
statement will produce no output about half of the time. Try executing this statement several times.
[>if rand(0..1)() = 0 then head fi;
[>
The following execution group generates along list of random integers between 1 and 10 and then it
uses an if-statement inside of afor-in-loop to determine what percentage of the random integers
were 10's. What answer do you expect to get?
> N := 1000:
counter := 0:
seq(rand(1l..10)(), i=1..N):
for i in %do # Check for 10's.

if i = 10 then counter := counter+1 fi
od;
counter/N,
| > evalf(%);
Try executing the execution group several times. Try changing the value of N to 100 or 10 or 10000.
[>

\%

V V.V V V V

In the last section of this worksheet we saw that |oop statements can be very useful commands to use
at the Maple command prompt. The conditional statement however is of pretty limited use at the
Maple prompt. Instead it is amost always used in the body of a procedure definition or in the body
of aloop. Almost all of our examples of conditional statements will be in procedure bodies.

One common use of conditional statements in mathematics textbooks isin the definition of

piecewise defined functions, that is functions defined by different formulas on different parts of the
domain. Here are afew examples.

Page 26

Suppose we wanted to represent in Maple the mathematical function defined by % + 1 for x < 0 and
by sin(p x) for O £ x. Here is how we can do it using a procedure containing a conditional statement.
>f = proc(x)
> if x <0 then x*"2+1 else sin(Pi*x) fi
> end;
Notice how there is only one boolean expression, even though there are two pieces to the function.
The second piece of the function, the sin(p x) part, should apply whenever O £ x. But we only have
0 £ x whenever the boolean expression x <0 isfalse, which automatically puts usin the else-part of
the conditional statement. So only one boolean expression is needed for a piecewise defined
function with two pieces. But thisis not how traditional mathematics books would typeset the
definition of this function. Mathematics books almost always write out a boolean expression for
each piece of the function, like this.
= X*1 x<0
sin(p x) O0£x
What appears in a mathematics book is more like the following Maple procedure.

> f = proc(x)

> if x <0 then x"2+1 el se

> if x >= 0 then sin(Pi*x) fi;
> fi

> end;

This version has two boolean expressions because it has two if-statements. Thisis not the preferred
way of defining our function in Maple for several reasons. First of all, it isnot as easy to read asthe
previous version. With only one conditional statement we know that the else-part is mutually
exclusive of the then-part. With two conditional statementsit is not obvious that the two statements
are mutually exclusive. A reader must carefully examine the boolean expressions to determine if
they are meant to be mutually exclusive or not. Secondly, the version with one conditional is
computationally more efficient than the version with two conditional statements. Every call to the
second version must evaluate two boolean expressions while every call to the first version only
needs to evaluate one boolean expression. This can make a difference if the function is going to be
called thousands (or millions or even billions of times) of times.

Exercise: Define afunction g similar to the last definition of f in such away that the two boolean
expressions are not mutually exclusive. Draw agraph of g. If the boolean expressions are not

mutually exclusive, how does that affect the graph of g?
[>

Let us graph our function f to see what it looks like.

(> plot(f, -1..1, discont=true, color=red);

It isworth noting that the following command does not work, even though it looks perfectly OK.
The function f is converted to an expression by evaluating it a x, and then the form of the pl ot
command for expressions is used.

[>plot(f(x), x=-1..1);

Page 27

What went wrong is that Mapleisusing its rule of full evaluation, so Maple triesto evaluate all of
the operandsin the pl ot command before actually calling the pl ot procedure. When Maple tries
toevaluatef (x) thereisan error, since the actual parameter x is an unassigned variable and the
conditional statement inf has no way to determine if the boolean expression x<0 istrue or not.
[> f(x);

The following command does work, since it prevents the evaluation of f (x) until the pl ot
procedure actually starts sticking numbers as actual parametersinto the formal parameter x inf (x)

[>plot("f(x)', x=-1..1);
In an optional section later in this worksheet we will say more about this situation with f (x) .

[>
Exercise: Hereis what seems to be areasonable definition for the function f .
> f = proc(x)
> if x <0 then x"2+1 fi;
> if x >= 0 then sin(Pi*x) fi;
> end;

But it is not correct. Look at the graph of thisversion of f .

[>plot(f, -1..1);

What happened to the left half of f , the part for x<0? Hereisahint. What is the return value for the
procedurecall f (- 2) ?

[> f(-2);

[>

Exercise: Consider the following two functions.

(> f = proc(x) if x>=0 then x*2 else 0 fi end;
[> g := proc(x) if x>=0 then x*2 fi end;

Their graphs look similar.

[>plot(f, -10..10);

[>plot(g, -10..10);

But they are not the same function. Explain how they differ.

[>

Hereis an interesting variation on the idea of a piecewise defined function. We will create a
randomly defined piecewise function. The following procedure, like the piecewise defined function
above, evaluatesf by choosing between two expressions, x”2+1 and si n(Pi * x) . But instead of
basing the choice of the expression on the value of the input x, this version bases the choice on a
random number generated within the procedure.

>f = proc(x)
> if rand(0..1)()=0 then x"2+1 el se sin(Pi*x) fi
> end;

So the value of the function f at any point will be one of two randomly chosen numbers. Try

Page 28

executing the following command several times.

[> f(5), f(5), f(5), f(5), f(5);

Here iswhat a graph of this function might look like. Notice that each time the function is graphed,
we get adifferent graph (why?).

[>
[>
[>

plot(f, -1..1);
plot(f, -1..1);

Exercise: What causes the vertical bands of red in the graph? Hereis a hint.

E

[>

plot(f, -1..1, style=point, synbol =circle, nunpoints=50,
adapti ve=fal se);

Suppose that we want to represent in Maple a piecewise defined function with three pieces. For
example, suppose we want to represent the function g defined by

+xforXx£ 0, by sin(x) forO<x<3p,andby xX"- 6xp+9p - x+3pfor3p£x,
X* +x f by sin(x) f d by x* 2 f

or, to use a notation similar to (but not exactly like) standard mathematical notation,

! X + X X£0
o(x) = sin(x) x<3p
1 X°- 6px+9p°- x+3p 3pE£X

Here is a procedure that computes this function.

>

\

V V.V V VYV VYV

>
[>

g := proc(x)
if x <= 0 then
X2 + X
el se
if x < 3*Pi then
si n(x)
el se
XN2-6*x*Pi +9* Pi A2- x+3* Pi
fi
fi
end;

This procedure uses a conditional statement as the body of the else-part of another conditional
statement. We call these nested conditional statements. Notice three things. First, notice how three
levels of indentation are used to help show the structure of the procedure body, in particular, the way
the second conditional statement is the else-part of the first conditional statement. Second, there are
only two boolean expressions even though there are three pieces of the function. The third piece of
the function acts as the "default” piece and it applies whenever the first two pieces do not. Third,
notice how the second boolean expression does not say 0<x<3* Pi (asit would probably be written
in a mathematics book). There are two reasons for not writing the boolean expression thisway. First,
it is syntactically incorrect in Maple (see the next section for more about the syntax of boolean

Page 29

expressions). Secondly, it is partially redundant with the first boolean expression. Since we arein
the else-part of the first (outer) conditional statement, we know that x <=0 isfalse, so it must be that
X ispositive, so there is no need to have the boolean expression check again if 0<x.

Let us plot this function.
[> plot(g, -3..3*Pi+3);
[>

Exercise: Why was the right hand endpoint of this plot set to 3* Pi +37? If we make the left hand
endpoint - 4, what would be a good choice for the right hand endpoint? What would the graph of g
look like if we graphed it over alarge domain, say from -100 to 100? Why?

[>

Nested conditional statements are fairly common, so Maple has a special abbreviation for them.
Hereis the definition of g using this abbreviation.

> g := proc(X)
> if x <= 0 then
> XN2 + X
> elif x < 3*Pi then
> si n(x)
> el se
> XN2-6*x*Pi +9* Pi A2- x+3* Pi
> fi
| > end;
[>

Thisversion of g has only one conditional statement in it (noticethesinglef i at the end of the
procedure body and the use of fewer levels of indentation). There is no nesting of conditional
statementsin this version of g. Where the previous version of g had a conditional statement in the
else-part of the outer if-then-else-fi statement, the abbreviated version has an elif-part (el i f isan
abbreviation for "el sei f ") followed by an else-part. Thisform of the conditional statement is
caled an if-then-elif-then-else-fi statement. There can be as many elif-then clauses as you want in
an if-then-elif-then-else-fi statement. For example, if we want to represent a piecewise defined
function with four pieces in its definition, then we can use two elif-then clauses (in asingle
if-then-elif-then-el se statement).

> h := proc(X)

> if x <= 1 then
> X

> elif x <= 2 then
> X2

> elif x <= 3 then
> 6- X

> el se

Page 30

> XN2-6*x+12

> fi
> end;
[>

When you read a conditional statement like this, it isimportant to remember that the boolean
expressions are "cumulative'. So for example, the x 2 part is not used just when x<=2 istrue as
theel i f clausejust before it might seem to imply. The x*2 part isonly used when x<=2 istrue
and x<=1 isfase. Thetest for x<=2 only comes after the test for x<=1 fails. Similarly, the test for
x<=3 only comes after both x<=1 faillsand x<=2 fails. And the x*2- 6* x+12 part isused only if
each of thethreetests x<=1, x<=2, and x<=3 dl fall.

[>

Let uslook at graphs of these last two functions.
[>plot(g, -3..3*Pi+3);
[>plot(h, -1..5);

[>

The syntax for aif-then-elif-then-else-fi statement should be pretty clear by now.
i f boolean_expressiont hen
sequence_of Maple_commands
el i f boolean expressiont hen
sequence_of Maple commands
el se
sequence_of Maple commands
fi
Remember that there can be as many €lif-then clauses as needed in this form of the conditional
statement.

[>

The next example shows how we might need two if-then-else-fi statements nested inside of an
if-then-else-fi statement, one in each of the then and else parts. This procedure finds the largest of
three numbers.

> bigger3 := proc(a, b, c)

> if a >= b then

> if a > c then a else b fi;
> el se

> if b > c¢c then b else ¢ fi;
> fi:

> end;

fry this procedure out.
[> bigger3(1, 2,
[> bigger3(3, 2,

= W
~— —

Page 31

[> bigger3(1, 3, 2);

[>

This procedure could usethe el i f abbreviation for one of the nested conditional statements, but
that probably would not make the procedure any easier to understand.

[>

Exercise: Rewrite the procedure bi gger 3 using an elif-clause in the outer conditional statement.
[>

There is another way to implement bi gger 3. Thisversion uses nested calls to our procedure
bi gger instead of nested conditional statements. (Recall that bi gger was defined at the very
beginning of this section.)

> bigger3 := proc(a, b, c)

> bi gger (bigger(a, b), c);

> end;
Thisis a common technique in programming. Use one procedure as part of the definition of another
procedure. If we compare the two versions of bi gger 3, notice how theinner call to bi gger
plays the same role as the outer conditional statement, and the outer call to bi gger playstherole of
both the inner conditional statements.
[> bigger3(-3, 4, 2);
[>

We can aso create a procedure bi gger 4 that finds the largest of four numbers. We can do this two
ways, one way using nested conditional statements and another way using nested procedure calls to
bi gger 3 and/or bi gger . The nested conditional statement version of bi gger 4 will be quite
messy but you should try writing it. Here are several ways of writing bi gger 4 using nested
procedure calls.
[> bigger4d4 := proc(a, b, c, d)

> bi gger (bigger(a, b), bigger(c, d));
| > end;

[> bigger4 := proc(a, b, c, d)
> bi gger (bigger(bigger(a, b), c), d);
| > end;

[> biggerd4 := proc(a, b, c, d)

> bi gger (bigger3(a, b, c), d);

| > end;

There are still several other ways of making bi gger 4 out of bi gger and bi gger 3. What are
they?

[>

Page 32

Exercise: Writeaversion of bi gger 4 that uses only nested conditional statements.
[>

Exercise: Write aversion of bi gger 4 that uses procedure calls nested inside of conditional
Statements.

[>

For the sake of completeness, what about finding the maximum of an arbitrary number of numbers.
Thisislike our problem of finding the average of an arbitrary number of numbers. We solve it by
using alist (which is adata structure) as the input to our procedure.

> biggest := proc(list::list(nuneric)) # Type check the input.
> | ocal candidate, i;

> candidate :=list[1]; # Make an initial guess.
> for i from2 to nops(list) do

> if list[i] > candidate then

> candidate :=list[i]; # Update our guess.
> fi:

> od;

> candi date; # Return our final answer.

| > end;
Now try it out.

[> biggest([1,2,3,4,5,6100,6]);
L et us test our procedure on arandomly generated list of integers.

[> randomlist _of integers :=][seq(rand(), 1=1..12)];
[> biggest(randomlist_of integers);
[>

Exercise: Change the definition of bi ggest touseacall to procedure bi gger in place of the
if-statement.

[>

Exercise: If you read the optional section on the special loca variablesar gs and nar gs, then
write aversion of bi ggest that does not need the bracketsin its procedure call.

[>
>
=1 14.5. Boolean expressions

Boolean expression are used mostly with while-loops and conditional statements. In this section we
will ook at more examples that use boolean expressions and we will define the syntax for boolean
expressions.

Page 33

Recall our first definition of bi gger 3.
> bigger3 := proc(a, b, c)

> if a>= Db then

> if a > c then a else b fi;
> el se

> if b > c then b else c fi;
> fi;

> end;

Hae is another way to write it.
> bigger3 := proc(a, b, c)

> if a>= b and a >= ¢ then
> a;

> elif b > a and b >= ¢ then
> b;

> el se

> C,;

> fi:

> end;

Try this new version out.

[> bigger3(1l, 2, 3);

[> bigger3(3, 2, 1);

[> bigger3(1, 3, 2);

The new version uses a single conditional statement (with an elif-part) and it uses a more

sophisticated kind of boolean expression. Let us define several terms used with boolean expression.
[>

Boolean expressions are expressions that evaluate to be either t r ue or f al se. We will say that
true andf al se are the two possible boolean values. Boolean expressions can be contrasted with
arithmetic (or algebraic) expressions which are expressions that evaluate to a number. Just as
arithmetic expressions are made up of basic arithmetic operators (e.g., +, -, *,/,”) and functions
that return a number (i.e., real valued functions), boolean expressions are made up of the three
logical operators(and, or, not), therelational operators (<, <=, >, >=, =, <>), and functions
that returnt r ue or f al se (i.e., boolean functions). We have aready mentioned the relationa
operators and we have seen examples of using boolean functionslikei spr i ne. But we have not
mentioned the basic logical operators and, or ,and not , so we will go over them now.

We call and and or binary boolean operatorsand we call not aunary boolean operator. A
binary operator is an operator that acts on two operands (like +, - , *, / , and ™) with one operand
placed on either side of the operator. But +, -, *,/ , and " are arithmetic operators that operate on
numbers, and the result that they return is a number. The operators and and or operate on boolean
values and return a boolean value, so they are boolean operators. A unary operator acts on only one
operand which is sometimes placed before the operator and sometimes placed after the operator

Page 34

(placing the operand after the unary operator symbol is more common). A common example of a
unary operator is the arithmetic operator - for negation (not to be confused with the binary operator
- for subtraction) which is place before the operand. Another unary operator is the factorial operator
I which is placed after its operand. The not operator is placed before its boolean operand.

[>

Since boolean operators operate on boolean values, and there are only two boolean values, it is
possible to make atable of a boolean operator's value for every possible input. We call these truth
tables. Hereisthe truth table for or .
X y X ory
false | false | fal se
false |[true |true
true | false |true
true |true |true
Hereisthe truth table for and.
X y x andy
false | false | fal se
false |true |false
true | false | false

true |true |true
Hereisthe truth table for not .
X not x
false | true
true | false

We can verify some of these entries with simple Maple commands.
[> fal se and true;

[> true or false;

[> not false;

[>

Exercise: Here are several examples of boolean expressions. Explain their values.

[> isprinme(7) and not 7<b5;

[> nmenber(d, [a, b, [c,d]]) or a=b;

[> has([a, b, [c,d]], d) and 7<5;

[>(1/3 + 1/3 = 2/3) and type(a+b, algebraic);

[> true <> false or 0!=1;

[> not(x=y) and O>-infinity;

Note: The parenthesesin the last example are not part of afunction call since not isnot afunction.
The parentheses are for grouping, and not (x=y) should be thought of like the arithmetic
expression - (x+y) (recall that both not and negation are unary operators).

[>

Page 35

Exercise: The expression - (x+y) isthesameas(- x) +(-y) .Isnot (x=y) thesameas(not
x)=(not y)?
[>

Exercise: Give examples of some other binary operatorsin Maple. Give examples of some other
unary operators. For your examples, specify the data type of the operands and the return value of the

operator.
[>

Notice that the following is not a boolean expression in Maple, though it would be a true statement
in a mathematics book.

[> 3 <=4 <= 5;

Here is how the last example should be expressed in Maple.

[> 3 <=4 and 4 <= 5;

Similarly we cannot say the following in Maple.

(>1 =0 = 1!;

Instead we must put it this way.

[>1 =0! and 0! = 1!;

Thislast result may seem surprising. We were expecting to get t r ue. For example, if we modify the
expression just a bit, then it doesreturnt r ue.

[>1 =0! and 2 = 2!;

[>

Let us analyze how Maple evaluates the boolean expression 1=0! and 0! =1!, sinceit brings up
an important fact about equations and boolean expressions. Since 0! evaluatesto 1, Maple
evaluates (using the rule of full evaluation) the equation 1=0! to be the equation 1=1. Similarly for
or=1'.

[> 1=0!,;

[> 0!=1!;

So theexpression 1=0! and 0! =1! evaluatesto 1=1 and 1=1.Then Maple automatically
simplifiesthe expression 1=1 and 1=1tobel=1 (theexpressionx and x automatically
simplifiesto x for any expression x (why?)).

[> x and Xx;

[> 1=1 and 1=1;

But why does the equation 1=1 not evaluatetot r ue, sinceit certainly is true? The reason has to do
with adual role that equations (and inequalities) play in Maple. Equations are used both as boolean
expressions and as algebraic equations.

[> type(1l=1, bool ean);

[> type(1l=1, equation);

For example, it would be very inconvenient if Maple would take an equation like the following and
automatically evaluate it as a boolean expression.

[> a*x"2+b*x+c=0;

Page 36

Of course, the above equation is a boolean expression, but that is usually not what we have in mind
when we typeit in. Here is how Maple would evaluate it as a boolean expression.

[> evalb(%);

Since equations in their role as algebraic equations are so common, Maple has arule that it will not
evaluate an isolated equation (or inequality) as a boolean expression unless explicitly told to do so
by using the eval b command. But if an equation (or inequality) is part of alarger boolean
expression, or contained in the boolean part of awhile-loop or conditional statement, then Maple
will automatically evaluate the equation (or inequality) as a boolean expression.

So now we know why Maple evaluates the expression 1=0! and 2=2! astr ue but it evaluates
the similar expression 1=0! and 0! =1! as1=1.

[> 1=0! and 2=2!;

[> 1=0! and 0!=1!;

Even though the expression 1=0! and 0! =1! startsout as a boolean expression, it automatically
simplifiesto an equation, and Maple will not evaluate this isolated equation as a boolean expression
unless we explicitly tell it to do so by using the eval b command.

[> "evalb' (1=0! and 0!'=1!);

[> %

[>

Parentheses play an important role in boolean expressions just as they do in arithmetic expressions.
For example, the following two expressions are equivalent.

[>x =y and z;

[> (x =y) and z;

But they are not equivalent to the next expression.

[>x = (y and 2z);

(Why did Maple not evaluate this last expression astrue or false?)

There is awhole algebrato boolean expressions that specifies the order of precedence for all of the
boolean operations, associativity rules for each boolean operation, and algebraic identities for
boolean expressions. For example, here are some automatic simplifications that Maple knows for the
algebra of boolean expressions.

[> fal se or x;

[> true and x;

[> X or X;

[> x and Xx;

[> not not X,

[> (not x) or (not y);

[> (not x) and (not y);

The last two ssimplifications are known as DeMorgan's Rules.

[>

Most of the boolean expressions that we need for conditional statements and while-loops are formed

Page 37

using simple combinations of and, or , not , therelational operators, and a few boolean functions
liket ype,i sprine, has, and menber . So we will not got into any more detail about the algebra
of boolean expressions.

[>

L[>

=1 14.6. For-loop like commands

The three commands seq, add, and pr od act very much like for-loops. In a sense they are
abbreviations of special purpose for-loops. Let uslook at afew examples of each of these
commands

We have seen the seq command before. It is used to create expression sequences. Hereis an
example.

[> seq(ifactor(n), n=1..10);

Compare thislast command to the following for-loop.

[>for nfromlto 10 do ifactor(n) od;

Both commands did roughly the same thing. An index variable n was incremented, in steps of 1,
fromaninitial value of 1 to afinal value of 10 and for each value of the index variable the
procedurei f act or (n) was evaluated. The main difference between the two commands s that the
seq command produced one result, an expression sequence, but the for-loop produced 10 separate
results. Here is away to rewrite the for-loop so that it produces an expression sequence.

> result := NULL: # Start with an enpty exprseq.
>for nfrom1l to 10 do
> result :=result, ifactor(n) # Append an operand to the
exprseq.
> od:
| > result; # Show the final exprseq.

Except for the fact that this execution group needed to use an extra variable, the execution group
produces the same result as the above seq command.
[>

Here is another example. This produces, more or less, one line of Pascal's triangle.

[> seq(op(1l,n), n=expand((a+b)”"12));

In this case, instead of the index variable counting from an initial value to afinal value, the index
variable steps through the operands of a data structure. The following for-in-loop produces the same
expression sequence as the seq command.

> result := NULL:
> for n in expand((a+b)”12) do
> result :=result, op(1l,n)
> od:
| > result;

Page 38

Notice how much more clear it isto use the seq command. Besides being easier to read and write,
the seq command is also more computationally efficient than the equivalent for-loop. The for-loop
produces a lot of intermediate results (which we hide by using a colon) but the seq command is
implemented in away that avoids all the intermediate expression sequences.

[>

Now let usturn to the add command. The following command will add up the first ten squares.
[> add(n™"2, n=1..10);
This can also be done with afor-loop.

> result := O:

> for nfrom1l to 10 do

> result :=result + n"2
> od:

> result;

fhe main difference between the two is that the for-loop needed an extra variable and it produced a
lot of intermediate results. The add command is also faster. Try adding up the first one million
squares using first the add command and then the for-loop.

[>

Recall that earlier we said that for-loops can be used to implement the sigma notation used in
mathematics. The add command is a direct analogue in Maple to sigma notation. An add command
of theform

add(f(n), n=a..b)
means exactly the same thing as

o
a f(n)
n=a
and their for-loop equivaent is
result := 0:
for n froma to b do
result :=result + f(n)
od:
result;

By the way, look at the interesting output from these nested "loop" commands. They sum up the first
10 squares, then the first 100 squares, then the first 1000 squares, etc. Can you explain the pattern?
> for k from1l to 6 do
> add(n*2, n=1..10"k)
> od;

The nmul command is much like the add command, it just uses multiplication instead of addition.
So the following command will find the product of the first ten squares.

Page 39

[> mul(n*2, n=1..10);
Here is the equivalent for-loop.

> result = 1:
> for nfrom1l to 10 do
> result :=result * n"2
> od:
| > result;
[>

Thenul command is adirect analogue in Maple to mathematical product notation. A nul
command of the form

mul (f(n), n=a..b)
means exactly the same thing as the standard mathematical product notation

L
O f(n)
n=a
and their for-loop equivalent is
result := 1:
for n froma to b do
result :=result * f(n)
od:
resul t;

There are two Maple commands that are related to the add and mul command but they are not
abbreviations for for-loops. They arethe sumand pr oduct commands. These two commands do
symbolic summation and symbolic multiplication. For example, consider the next command, which
will sum up thefirst | squares.
[>sun('n*2', 'n'=1..j);
This command gave us a symbolic answer for the sum of thefirst] squaresfor any valueof | . The
result from the sumcommand can be simplified quite a bit.

> sinplify(%);
{> factor(%);
The sumcommand can even sum up infinite series. Here is a geometric series.
[>sum('r*n', 'n'=1..infinity);
The product command does much the same thing for products.

> ="t
{> product('n*2', 'n'=1..));
The product of thefirst] sguaresis given symbolically in terms of a special function, G, called the
gamma function. Let us test thisresult with j equal to 99.
[> mul (n*2, n=1..99);
[> GAMVA(99+1) ~2;
The pr oduct command can also do infinite products. The following command uses the "inert"
form of the pr oduct command (i.e. Pr oduct) to display atypeset version of the product

Page 40

notation on the left hand side of an equal sign, and on the right of the equal sign isthe regular
product command to evaluate the infinite product.
> Product(1-1/(4*' n'72), 'n"=1l..infinity)
{> = product(1-1/(4*' n"'"*2), 'n'=1l..infinity);
[>

Here is one tricky difference between add, nmul on the one hand and sum pr oduct on the other
hand. Let usgive the variablei avalue (it does not matter what value).

>0 1= 0;

Now usei astheindex variableinanadd andanul command.
[> add(i, i=1..10);

[> mul (i, i=1..10);

Let us check thevalue of i now.

L[>

Itisstill zero. Thevalue of i did not affect, and was not affect by, theindex i intheadd or nmul
commands. The index variablein an add or anul command islocal to that command and does not
have anything to do with the global variable with the same name (just like local variablesin
procedures). Now try the sumand pr oduct commands.

[>sum(i, i=1..10);

[> product(i, i=1..10);

The index variablein the sumand pr oduct commands are global variables. Hereis how to fix the
last two commands.

[>sun("i', "i"'=1..10);

[> product("i', "1'"=1..10);

Now check thevalueof i .

>0

Strangely enough, even though the index variablein the add and pr oduct commandsis the global
variablei , i dill retainsits value from before the commands were executed.

The moral of thisisthat you need to be more careful when using sumand pr oduct than when you
useadd or mul . Alwaysuse add and nul if you do not need the extra abilities of sumand

product .
[>

Exer cise: Compare the way Maple handle the "index variable” inadd, nmul , sum and pr oduct
with the way Maple handles the index variable in afor-loop.

[>

L[>

=114.7. Statements vs. expressions (optional)

Suppose we have alist L of numbers and we want to compute their average. Here is how we might

Page 41

do this.

>L :=10[2,3,4,5,6,7,8];

> total := O:

>for i inL do total := total +i od:

> avg = % nops(L);
Here is something that you cannot do in Maple even though it seems perfectly reasonable. The last
result variable (%) in the fourth line of the execution group holds the result of the for-loop from the
third line. Why not save aline and put the for-loop directly in the numerator of the expression that

computes the average?
>L:=1[2,3,4,5,6,7,8];
> total := O:
> avg := (for i in L do total := total +i od)/nops(L);

Maple does not like that. Why not? The reason is that we cannot use the for-loop (which isa
statement) asif it were an expression.

[>

M aple makes a distinction between expressions and statements. For the most part in Maple, you
cannot use statements where you are supposed to use expressions. For example, you cannot put a
statement after an assignment operator and you cannot put statements in expression sequences.
[> X 1=y =5

[>y :=if x<0 then -x else x fi;

(>0, x:=1, y:=2, 3

The most common kinds of statements in Maple are repetition statements, conditional statements,
assignment statements, and ther est art statement. Almost everything elsein Mapleis an
expression (and every expression is also a statement).

[>

Here is another example of how Maple treats statements and expressions differently. It also shows
how the rules about where you can use a statement are not very clear. Suppose we want to represent
in Maple the mathematical function that is equal to sin(x) for x less than O but is equal to sin(p x)
for x greater than 0. Here is one way that we can do this.

[>f :=x ->if x<0 then sin(x) else sin(Pi*x) fi;

Here we used the arrow notation with a conditional statement in the body of the Maple function. On
the other hand we could aso do the following.

([>g:=x ->"if (x<0, sin(x), sin(Pi*x));

Here we used the arrow notation with a conditional operator in the body of the Maple function. The
conditional operator isan expression version of the conditional statement. Sof and g are defined
using a statement and an expression, respectively, after the arrow. Notice how Maple seems to store
the definition of these two functions differently.

(> eval(f);

[>eval(g);

Now hereisan arrow operator with arepetition statement after the arrow.

Page 42

[>h :=n->for n fromn while not isprine(n) do n+l od;
So Maple alowed a conditiona statement after the arrow but not a repetition statement. The
function h was meant to return the first prime after the positive integer n as the next execution group
does.

> n := 10010:

> for n fromn while not isprinme(n) do n+l od:

> %
[>

Exercise: Rewrite h as a procedure.

[>
L[>

=114.8. Print levels, printlevel , and pri nt commands (optional)

When you place for-loops inside if-statements or if-statements inside for-loops, things do not work
out quite the way you might expect them too. Here is an example.

> if 1=1 then

> for i fromO to 10 do i od

> el se

> for i from-10 to O do i od

> fi;

There was no output from the command. But we know that the first for-loop was executed. The
problem is that Maple has a notion of print levels. A for-loop inside of an if-statement is at the
second print level. By default, Maple only prints out results from commands at the first print level.
There are two ways to solve this problem. The easiest isto use the pr i nt command, which always
prints no matter what print level it is at.

> if 1=1 then

> for i fromO to 10 do print(i) od

> el se

> for i from-10 to O do print(i) od
> fi;
Now go back and try changing 1=1 to 1=0.
[>

The other solution isto change the value of thepr i nt | evel variable. Right now the

printl evel variable hasthevalue 1, which isits default value. So Maple only prints out the
results of commands at the first print level.

[> printlevel;

The following command tells Maple to print the results of all commands at both the first and second
print levels.

[> printlevel := 2;

Page 43

Let ustry it out.

> if 1=1 then

> for i fromO to 10 do i od

> el se

> for i from-10 to O do i od

> fi;

Try changing pri nt | evel back to 1 and executing the last if-statement again.
[> printlevel := 1,

[>

The same thing happens for if-statements inside of for-loops. (Try thiswith pri nt | evel equal to
1)

>for i fromO to 10 do
{> if i > 5then i fi

> od;
How many lines of output should this command have produced? To see the output we can either use
apri nt command inside the if-statement, or set pri nt | evel higher than 1. Hereisthe version
using the pr i nt command.

> for i from0O to 10 do

{> if i > 5 then print(i) fi
> od;

Now set printl evel to2.

[> printlevel := 2;

Re-execute the for-loop (without the pr i nt command).

> for i fromO to 10 do
> if i > 5 then i fi
> od;

[>

Notice that withpri nt | evel equal to 2, thereisstill no output from the following command.

> if 1=0 then

> for i fromlto 5 do

> for j fromltoi doj od
> od

> el se

> for i from-51to 0 do

> for j from-5toi doj od
> od

> fi;

éince this command had two nested for-loop nested inside of a conditional statement, we need
printlevel equa to 3to be ableto seethe output (or we could use pr i nt commands).
[> printlevel := 3;

Page 44

Now go back and re-execute the last if-statement to see its output.

[>

Changing thevalue of pri nt | evel andusing pri nt commands seem to be equivaent waysto
solve the problem of seeing your results when you have for-loops and conditional statementsinside
of each other. But these two techniques for seeing your results are not equivalent. Thereis a subtle
difference. Consider the following example.

[>if 1=1 then for i froml to 2 do (x+y)”*i od fi;

This command did not print out aresult but it did produce aresuilt.

[> %

Now use a print command to see the output of the for-loop (notice that the loop now goes from 1 to
4).

[>if 1=1 then for i froml1l to 4 do print((x+y)™i) od fi;

Now what is the value of the last result variable %%

L[> %

Why does %have the value (x + y)? and not (x + y)*? Let us do a small experiment.

[> 1 + 1;

(> if 1=1 then for i from1l to 4 do print((x+y)*i) od fi;

[> %

The loop had no effect on the last result variable. The loop was executing pr i nt commands. Does
the pri nt command change the last result variable?

[> print("hello");

[> %

Sothe pri nt command itself does not have any effect on the last result variable. Now we see why
changing thevalue of pri nt | evel isnotthesameasusing pri nt commands. How the loop
effects the last result variable is different if we use pri nt commands.

[>

Here is another example of the difference between using pr i nt commands and changing the value
of print| evel . Recal that the following loop prints out Pascal's triangle.

> for i fromO to 8 do

> seq(binomal (i, j), j=0..1);
. > od;
Let us put thisloop inside the body of a procedure.

[> pascal := proc(n)

> | ocal i, j;

> for i fromO to n do

> seq(binomal (i, j), j=0..1);
> od;

> end;

Now let ustry our procedure.
[> pascal (8);

Page 45

What happened? We only got the last line of Pascal'striangle. Recall that a procedure has a return
value and the return value is the last command executed in the body of the procedure. So the last line
of Pascal's triangle was the return value of the procedure call and the other lines of Pascal's triangle
were computed but thrown away. To see al of Pascal's triangle we could use a higher value of
printlevel.

[> printlevel := 6;

[> pascal (8);

Notice that the procedure call produced alot of output, but the return value of the procedure cal is
still the last result computed.

[> %

But putting pri nt | evel thishigh can be very inconvenient since we will be getting alot of
unwanted output now from alot of the Maple commands. So letsusreturn pri nt | evel toits
normal value.

[> printlevel := 1;
A better way to see dl of Pascal'striangleistouseapr i nt command in the body of the procedure.
[> pascal := proc(n)

> | ocal i, j;

> for i fromO to n do

> seq(binomal (i, j), j=0..1);

> print (%);

> od;

> end;

Now lets ustry thisversion.

[> pascal (8);

Now hereis an interesting question? What was the return value of this procedure call? Was it the
last line of Pascal'striangle? The last result variable (i.e. %9 should hold the return value for us at
this point.

> %

Why did we get that? Let ustry an experiment.

[> 2 + 2

[> pascal (3);

> %

The procedure call had no effect on the last result variable. Did the procedure have areturn value?
Let us try another experiment.

[> xxx := pascal (3);

[> XXX;

[> assigned(xxx);

The procedure did seem to have some kind of return value, but it seems to be a value without a
value. Thereturn value of aprocedure isthe last command in the procedure body and in the case of
thisversion of pascal thelast command would be the pri nt command. What is the return value
of apri nt command?Isit what the command prints?

[> whattype(print("hello"));

Page 46

Thereturn type of pri nt isexprseq, soitsreturn value is not what it prints out (which has type
string). Sowhatisthereturn value of the pr i nt command? The pri nt command returns a
special result called NULL, which is actually a name for the empty expression sequence.

[> whattype(NULL);

[> evalb(NULL = op([]));

[> evalb(print("hello") = NULL);

The last result variable, % hasthe property that it alwaysignoresthe result NULL. Thisiswhy the
pri nt command did not have any effect on the last result variable. Here is another example of print
returning NULL.

[> nothing there := [print('x"), print('y"), print('z")];

Thelist on the right hand side of the assignment operator evaluates to the empty list because the
value of each pri nt command is NULL (the empty expression sequence).

[>

Here is something that might seem confusing. If acommand likepri nt (" hel | 0") returnsthe
value NULL but it also printsout " hel | 0", then what do we call the printed out " hel | 0" ? The
printout from the pr i nt procedureisaspecial case of what is called aside effect. A side effect is
any result from a procedure other than its return value. Notice that the phrase "output from a
command" is, unfortunately, kind of vague. Sometimes it refers to the value returned by a command,
and sometimesiit refersto a side effect of acommand. (And some "commands" are procedures while
other "commands" are statements, which further confuses the idea of the "output from a command".)

[>

So putting pr i nt commands in a procedure can change what the return value of the procedureis.
On the other hand, changing the value of pri nt | evel does not have any effect on the return value
of aprocedure (but it can produce alot of unwanted "output"). So there is a difference between

using pr i nt commands and changing pri nt | evel .

[>
L[>

=114.9. Proceduresthat return unevaluated or return NULL
(optional)

In the section on conditional statements, we defined procedures that used if-then-else-fi statements
to implement piecewise defined functions. But there were some subtle problems with those
procedures that we left unresolved in that section. Here is an example.

[>f :=proc(x) if x <0 then x else x*2 fi end;

Here are two problems with this function definition. First, if we convert this function into an
expression f (x) , then we cannot graph the expression the way we would expect to.

[>plot(f(x), x=-1..1);

This problem is pretty easy to avoid. Either do not use an expression to graph the function, or use

Page 47

right-quotes to delay the evaluation of the expression in the pl ot command.

[>plot(f, -1..1);

(> plot("f(x)', x=-1..1);

But both of these solutions are avoiding a deeper problem. Here is an example of the deeper
problem. Suppose we wish to work with our function f in some kind of symbolic way, such as
working with its difference quotient.

[> (f(x+h)-f(x))/h;

We cannot work with f in any kind of symbolic way.

[> f(x+h); f(x);

One of the whole points of Mapleisto be able to work with functions symbolically, so thisisa
serious problem. The solution to this problem uses a subtle and important technique that is referred
to asa procedurereturning unevaluated. Here is the correct way to define the proceduref .

> f = proc(x)

> if type(x, nuneric) then

> if x <0 then x else x*2 fi
> el se

> " (Xx)

> fi

> end;

Thisversion of f uses type checking to determine if theinput to f is some kind of number. If the
input is not a number, then it must be some kind of symbolic input, so in that case the function just
returnsitself "unevaluated”, i.e.,' f' (x) . On the other hand, if the input is some kind of number,
then the function is evaluated just as before. Here are some examples.

[> (f(x+h)-f(x))/h;

The next exampleis partly a symbolic use of f and partly a numeric use of f .

[> (f(2+h)-f(2))/h;

Now we can graph f as an expression the way we expect to be able to.

[>plot(f(x), x=-1..1);

The situation with f is now far better than it was before. The new version of f behaves pretty much
the way we would expect afunction to behave symbolically.

[>

Whenever afunction is defined using a procedure, especialy if the procedure uses a conditional
statement (or while loop), the procedure body should begin with a type check on the input to seeif it
isnuner i ¢, and if not, return the function call unevaluated.

[>

Here is another, dlightly different example of afunction returning unevaluated. Consider the
following three procedures. Each one is an implementation of the mathematical function 1/x. Each
procedure uses the technique we just went over in the last example. The three procedure differ only
in how they react to an input of 0.

> f = proc(x)

Page 48

if type(x, nuneric) then
i f x<0 then
1/ x
elif x>0 then
1/ x
elif x=0 then
ERROR("O is a singularity.")
fi
el se
£ (x)
fi
end;

V VVVVVVYVYVYVYVYV

g : = proc(x)
if type(x, numeric) then
if x<0 then
1/ x
elif x>0 then
1/ x
fi
el se
"g' (x)
fi
end;

V VVVVYVYVYVYVYVYV

> h := proc(x)
if type(x, numeric) then
if x<0 then
1/ x
elif x>0 then
1/ x
elif x=0 then
"h' (0)
fi
el se
"h' (x)

V VVVVYVYVYVYVYVYV

> fi

| > end;

Each procedure demonstrates a different technique for dealing with an invalid input. Let ustry each
procedure. Thefirst one, f , outputs an error message when the input is 0.

[> 1(0);

The second example, g, just ignores the input 0 and does not return anything (be sure to ook over
the definition of g to see how it ignores 0).

Page 49

[> 9(0);

The third example, h, returns an unevaluated function call when the input isO.

[> h(0);

So we see three different waysto deal with "invalid” inputs to a function, and one of them uses a
function that returns unevaluated. Of the three methods, the first and third are both reasonable.
Sometimes one is used and sometimes the other is used.

[> 1n(0);

[>1In(-2);

Thereason for returning | n(- 2) unevaluated isthat it can, under certain circumstances, be given a
value (though in calculus books it is considered undefined). Similarly, the function h returnsh(0)
unevaluated since it is very possible that we may later define avalue for h at O (we are free to define
afunction any way we want). Mathematically, we can say that the difference between f and h isthat
f isdefined such that O isnot in its domain, and h is defined so that O isin its domain, but we have
not yet specified what its value is there.

[>

The way that g handles the input O is not, however, avery good idea. Likef , g implements a
function for which O is not in its domain. But the way g is defined can lead to some pretty
mysterious error messages. Here is an example.

[>k :=h + g;

[> k(0);

Compare that with using f in place of g.

[>k :=h + f;

[> k(0);

At least this error message makes some sense. So what is g's error message referring to? Consider
the following.

[> h(0) + NULL;

When Mapletried to evaluate k(0) using g, firstit got h(0) +g(0) , and then this evaluated to
h(0) +NULL, and we just saw that this caused the error message. So why did g(0) evaluate to
NULL and what is NULL? NULL isthe specia symbol for the empty expression sequence. The
empty expression sequence is Maple'sidea of nothing, and g returned nothing for the input O, so
Maple considers NULL to be the value of g at 0. But NULL cannot be added to anything, hence the
error message. So it isnot really agood idea for afunction to return nothing (i.e., NULL) for inputs
that are not in itsdomain. An explicit error message is preferable.

But there are times when Maple commands will return nothing. Here is an example of aMaple
command that returns a NULL value.

[> solve(sin(x)"2+x"5=0, X);

The sol ve command could not find a (symbolic) solution so it returned nothing. It can be argued,
from a user interface point of view, that thisis another example where returning nothing is not a
good idea and that an explicit message would have been better, but at least it shows that Maple does
have commands that can return NULL.

Page 50

[>

Here is another example of a command that returns NULL. The pr i nt function produces an output
but its output is not its value (the output is a side effect).

(> 1 + print(5);

Thepri nt command outputted the 5 but 5 was not itsvalue. The pr i nt command's value was

NULL which iswhy we see that same error message again from the sum.
[>

Finally, here are two exercises from the section on conditional statements that we reproduce here
because you should now be able to give them a more detailed solution.

Exercise: Here is what seems to be a reasonable definition for the function f .

> f = proc(x)

> if x <0 then x"2+1 fi;

> if x >= 0 then sin(Pi*x) fi;
> end;

But it is not correct. Look at the graph of thisversion of f .

[> plot(f, -1..1);

What happened to the left half of f , the part for x<0? Hereisahint. What is the return value for the
procedurecall f (- 2) ?

[> f(-2);

[>

Exercise: Consider the following two functions.

> f proc(x) if x>=0 then x*2 else 0 fi end;
[> g := proc(x) if x>=0 then x*2 fi end;

Their graphs look similar.

[> plot(f, -10..10);

(> plot(g, -10..10);

But they are not the same function. Explain how they differ.

[>

L[>

'=114.10. Online help for control statements

Here is the main help page about repetition statements.

[> ?for

Here is the main help page about conditional statements (and the conditional operator).
> 2if

Here is further information about boolean expressions.

[> ?bool ean

Page 51

[> ?evalb

[> ?type, | ogi cal

One way to discover some of Maple's boolean functionsisto use the "Topic Search” menu itemin
the Maple Help menu and enter into the "Topic:" field just the two letters "is". Thiswill bring up a
list of several Maple functions that begin with "is* and which are boolean functions.

In the section on boolean expressions we mentioned that equations (and inequalities) are considered
as both boolean expressions and as algebraic equations, and as boolean expressions they are
evauated differently than other kinds of boolean expressions. These facts are mentioned briefly in
thefirst two bullet itemsin the first of the following three help pages, and in the third bullet item in
each of the other two help pages.

[> ?eval b

[> ?bool ean

[> ?equation

The next two commands bring up the help pages for the seq, add, and nul commands. In these
help pages are precise descriptions of how these commands are related to for-loops.

[> ?seq

[> ?add

The next two commands bring up the help pages of the sumand pr oduct commands. Neither of
these help pages mentions for-loops, since these commands are much more sophisticated than just a
for-loop

[> ?sum

[> ?product

For an explanation of print levelsand the pr i nt | evel variable, read the following help page.
[> ?printlevel

Here isthe help page for the pri nt command.

[> ?print

And here is a page that mentions what the name NULL represents.

[> ?NULL

Variableslikeprint| evel ,Di gits, and %play aspecia rolein Maple. They are called
environment variables. The following command brings up a general page about environment
variables.

[> ?envi ronnment

Another name for %isdi t t 0; hereisapage about it.

[> 2ditto

Notice how in one help page %is referred to as an environment variable, but in the other help page %
isreferred to as the ditto operator. Variables and operators are very different things. This just goesto
show you how inconsistent the documentation can be.

Page 52

Maple has a built in way for a procedure to return unevaluated. Thisis described in each of the
following two help pages. The documentation refersto this as "fail return”.

[> ?RETURN

[> ?procnane

Control statements are just one kind of Maple statement. The next command calls up an index to all
of Maple's statements. Notice however that this page in kind of misleading. For example, pr oc and
functi on arelisted on this page as "statements’, but the help pagesfor pr oc andf unct i on
clearly state that these are expressions.

[> ?stat enent

[>

Page 53

