Maplefor Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

15. Manipulating Data Structureswith Procedures

=115.1. Introduction

Almost all Maple commands are really procedures written in the Maple programming language.
Most of the symbolic algebracommands (likef act or, conbi ne, si npl i f y) are procedures
that manipulate data structures in order to perform the symbolic manipulations. In this worksheet we
look at examples of how a procedure can manipulate a data structure to accomplish a symbolic
calculation. Thiswill give us an idea of how Maple doesits job.

L[>
=1 15.2. Differentiating a monomial

The derivative with respect to x of the monomial ¢x” is cn X" Y o, for example, the derivative
of 3x° is15x*. Hereisa procedure that implements this rule.

> diff _term:= proc( term)

>
op(l,term*op(2,0op(2,term)*op(l,op(2,term)~(op(2,0p(2,term)-
1)

| > end;

Before explaining how the procedure works, let ustry it out.
[> diff_term 3*x"5);
(> diff_term 2*t"3 );
(> diff_term a*x"n );
(> diff _term( x*3 ); # W will fix this bug later.
The proceduredi f f _t er mhasasingle formal parameter, t er m which the procedure assumesis a
data structure representing one term of a polynomial (i.e., amonomial). The procedure does its work
by breaking up the data structure named by t er m into its basic parts and then reconstructing those
partsinto the derivative of t er m For example, if t er mhasthe value 3* x5, then the pieces of
t er mare 3, x, and 5, and hereis how those pieces are built up into the derivative 3* 5* x" 4.
[ > term:= 3*xX"5;
> op(l,term, op(2,o0p(2,term), op(l,op(2,term),
{ op(2,0p(2,term)-1;

{> op(l,term*op(2,0p(2,term)*op(l,op(2,term)~(op(2,0op(2,term)-
1);

Page 1



Hereisaway to watch how the procedure di f f _t er mworks. Let us redefine the procedure using
right-quotes to delay the evaluation of certain results.

> diff_term:= proc( term)

> “op(l,term* op' (2,0p(2,term) *

> op' (1,op(2,term)"("op' (2,0p(2,term)-1) '
> end;

Notice that we delayed the evaluation of the entire command in the body of the procedure and we
further delayed the evaluation of three of the op commands. Let us apply this modified version of
di ff _t er mtoamonomia and watch the steps taken in the evaluation of the derivative.

[> diff _term( 3*x"5);

[> %

[> %

[ >

Now let uslook at the bug that showed up earlier. Something went wrong when the input was x” 3.
Let us see what.
[ > term:= xX"3;

> op(l,term; op(2,o0p(2,term); op(l,op(2,term);
{ 0p(2,0p(2,terr‘r))-1;
Now we see what went wrong. Thereisnoop( 2, op(2,term ) whent er misx”3 (why?). We
need a special case to handle monomials without aleading coefficient. Here is another version of
diff term
> diff _term:= proc( term)
> if type( term "~ ) then

> op(2,term*op(l,term”(op(2,term-1)
> el se
>
op(1l,term*op(2,0op(2,term)*op(l,op(2,term)™(op(2,0p(2,term)-
1)
> fi
| > end;

Notice how we have used a conditional statement to break up our calculation into different cases.
The boolean part of the conditiona statement usesthet ype command. This command is used to
ask if aparticular data structure is of a particular data type, and the result iseither t r ue or f al se.
If t er misof type ", then we are assuming that t er mis of the form x”n (i.e., the monomial has
no coefficient), otherwise we are assuming that t er mis of the form c* x"n.

Let us seeif thisworks.

(> diff_term x*3); # Yeal

(> diff_term( x*1); # Opps.

We were assuming that the variable x has an exponent other than 1, but it need not. If the exponent
is 1 then Maple (automatically) simplifies the expression to not have an exponent. We also get an

Page 2



error with the following inpuit.
(> diff_term 3*x"1 );
So we need another specia case. Let ustry again.

> diff_term:= proc( term)

> if type( term {nane, nuneric}& nanme ) then

> op(1,term

> el se

> if type( term "~ ) then

> op(2,term*op(l,term”(op(2,term-1)

> el se

>
op(l,term*op(2,0op(2,term)*op(l,op(2,term)~(op(2,0p(2,term)-
1)

> fi

> fi

| > end;

This version handles three special cases. Thefirst case is new and the last two are the same cases as
in the previous version. Notice that the first t ype command has a special datatypein it, something
called astructured data type. The structured datatype { nane, nuner i c} & namne matches any
data structure which is of the form "a name or number times aname”, e.g., either c* x or 3* x. In
both cases the derivative is the "constant” in front of the "variable". Let us try out this new version.
(> diff_term x"3);

(> diff_term 3*x );

(> diff_term -x);

[>diff _term( x ); # Opps again.

Another special case that we have to worry about. One more time.

> diff term:= proc( term)

> if type( term nane ) then

> 1

> el se

> if type( term {nane, nuneric}& nane ) then
> op(1,term

> el se

> if type( term 7 ) then

> op(2,term*op(l,term”(op(2,term-1)
> el se

> op(1,term*op(2,op(2,term)

> * op(l,op(2,term)™(op(2,0p(2,term)-1)
> fi

> fi

> fi

> end;

Givethisversion atry.

Page 3



(> diff _term( x"3);

(> diff_term 3*x );

(> diff_term a*x );

(> diff_term x );

(> diff _term( 10 ); # Oh no.

If we stop and think about it, thisisour last special case. We are trying to differentiate terms of the
form a* x”n, and this term can be in any of the following special forms, each of which isreally a
different kind of data structure with a different (structured) data type.

[ >
form data type
a nuneri c or nane
X name
a* x {numeri c or nane}*nane
A N
a*x”™n {numeri c or nane} *nanme”™{ nuneri c or nane}
[ >

So we really need a special case for each of the five forms that the input term can take.

> diff_term:= proc( term)

> if type( term numeric ) then

> 0

> el se

> if type( term nanme ) then

> 1

> el se

> if type( term {nane, nuneric}& name ) then
> op(l,term

> el se

> if type( term "~ ) then

> op(2,term*op(l,term~(op(2,term-1)
> el se

> op(l,term*op(2,0op(2,term)

> * op(l,op(2,term)”™(op(2,0p(2,term)-1)
> fi

> fi

> fi

> fi

| > end;

Let ustry this out.

[>diff _term a*x"n );
(> diff_term x"3);
(> diff_term 3*x );
(> diff_term a*x );

Page 4



[>diff _term x );

(> diff_term( 1);

(> diff _term a ); # \Wat should we get here?

Let us not worry about the last one for now. Instead, let uslook at adightly cleaner way to write

di ff _term Nestedif-then-else-fi statements are so common that there is a nice shorthand for
them. This shorthand makes nested if-then-else-fi statements easier to read, it getsrid of many levels
of indentation, and it getsrid of al thetrailing f i 's. Hereisdi f f _t er mrewritten using this
shorthand, the if-then-elif-then-else-fi construction.

[ >
> diff _term:= proc( term)
> if type( term nuneric ) then
> 0
> elif type( term nane ) then
> 1
> elif type( term {nane, nuneric}&nane ) then
> op(l,term
> elif type( termp "~ ) then
> op(2,term*op(l,term”(op(2,term-1)
> el se
>
op(1l,term*op(2,o0p(2,term)*op(l,op(2,term)™(op(2,0p(2,term)-
1)
> fi
| > end;

Notice how thisversion ismuch easier to read. Let ustry thisversion to make sure that it still
works.

[>diff _term a*x"n );

(> diff_term x"3);

(> diff_term 3*x );

(> diff_term a*x );

(> diff _term x );

[>diff _term 1);

[ >

Exercise: Use the delayed evaluation trick in the body of the most recent version of di f f _t er mto
watch how the procedure eval uates the derivatives of various monomials.

[ >
Exercise: Writeaprocedurei nt _t er mthat finds an antiderivative of amonomial. If you model

your procedureondi f f _t er mthenyouri nt _t er mshould aso work with "monomials’ with
negative coefficients. Make your version of i nt _t er mcompute the correct antiderivative for the

Page 5



1
special case of ;

[ >

Now that we have a procedure that differentiates monomials, it would be nice if we could useit to
define a procedure that differentiates polynomials, which are just sums of monomials. In the next
section, we show how to define such a procedure. The main tool that we need is a specia data
structure manipulating command called map.

[ >

L[>
=115.3. Differentiating a polynomial; the nap command

What about differentiating a polynomial, which is a sum of monomials (i.e. terms). The derivative
with respect to x of asum of termsisthe sum of the derivatives of each term. So, for example, the

derivative of 3x2+5x°is6x + 15 x°. How canweuseour di f f _t er mprocedure to accomplish
this? To find out how, we need to first look at a new Maple command.

Maple provides a procedure called map which applies agiven procedureto al of the pieces of a
given data structure and returns the result in the same kind of data structure as the input. For
example the next command will apply thesqrt function to each number in the given list and return
theresultsinalist.

(> map( sqrt, [9, 16, 25, 36, 49, 64, 81] );

Hereisan interesting trick. If we delay the evaluation of thesqr t function, then we can see the
intermediate step in the calculation of the map command.

[>mp( ""sqrt'', [9, 16, 25, 36, 49, 64, 80] );

Here we see that the map command produced alist of thesqr t function applied to every number
from the original list.

The next command applies the squaring function to a set of numbers and returns the results in a set
(why are there only four numbers in the result?). Notice how the squaring function that we use here
is an anonymous function.

[ > map( x->x"2, {-3, -2, -1, 0, 1, 2, 3} );

The next command applies the delayed evaluation trick to see the intermediate resullt.

[> map( "' x->x"2'', {-3, -2, -1, O, 1, 2, 3} );

Here we see that map has produced a set containing the squaring function applied to each of the
seven elements of the original set.

The next command produces a list of values of sin(x) for x from 0 to 2 p in steps of p/6. The
command does this by applying the si n function to every number in the list produced by the seq
command.

Page 6



[ > map( sin, [seq( (i*Pi)/6, 1=0..12)] );

The next example returns the sum of the coefficients of the polynomia (why?).
[ > map( coeffs, x4 + 2*x"3 + 3*x"2 + 4*x + 5 );

Here iswhat the intermediate step from this last calculation looks like.

[ > map( ''coeffs'', x4 + 2*x"3 + 3*x"2 + 4*x + 5 );

The next exampleusesdi f f _t er m(from the last section) and returns the derivative of the
polynomial.

(> map( diff_term x"4 + 2*x"3 + 3*x"2 + 4*x + 5 );

Here is the intermediate step.

(> map( '"diff_term', x4 + 2*x"3 + 3*x"2 + 4*xX + 5 );

The map command is an example of a powerful Maple command for manipulating data structures. It
has alot of usesin Maple.

Exercise: It isimportant to remember that the first operand of the map command should be a
function or a procedure. For example, what if we redo the above squaring example, but we represent
the squaring function with an expression instead of with a Maple function? Explain the result of the
next command.

[> map( x*2, {-3, -2, -1, 0, 1, 2, 3} );

This example showsthat it is not always possible to interchange "mathematical functions as
expressions” with "mathematical functions as Maple functions'. There are times when we must
work with Maple functions.

[ >

Let usdefineanew proceduredi f f _pol y that usesmap and di f f _t er m(from the last section)
to differentiate a polynomial (i.e. asum of terms). We use map to apply di f f _t er mto each term
of an input polynomial and get aresult that is also a polynomial.

> diff_poly := proc( poly )

> map( diff_term poly )

> end;
Let ustry it out.
[ > diff_poly( x"4+2*x"3+3*x"2+4*x+5 ) ;
[ > diff_poly( 10+x-5*x"2+x"4 );
[ > diff_poly( 5*x"5-4*x"4+3*x"3-2*x"2-2*x"(-2) );
(> diff_poly( a*x*n ); # Opps
[> diff_poly( 3*x*n ); # Opps again
Now something is broken. The last two results are not right even though we had those working in
the last section. Let usanalyzeacall todi ff _pol y with the actual parameter a* x*n. The map
command in the body of di ff _pol y will apply the proceduredi f f _t er mto each piece of the
data structure a* x”*n.
[> map( diff _term a*x™n );

Page 7



But a* xn isadatastructure of type " *° with operandsa and x*n sodi f f _pol y will return the
product of di ff _termn(a) (whichisl)anddi ff _ternm(x”n) (whichisn*x”(n-1))toget
thefinal result n* x”( n- 1) . Hereisthe delayed evaluation trick so that we can see what map is

doing.

(> map( '"diff_term', a*x"n );
[> %

Thisis not what we want.

[ >

Exercise: Analyzethecal todi ff _pol y with the actual parameter 3* x*n to see exactly what
happened in that case.
[ >

So the problemisthat di f f _pol y assumes (unwisely) that itsinput is asum of terms. We need a
conditional statement insidedi f f _pol y to check the datatype of the input. If theinputisa™ +
data structure then it is a sum of terms, otherwise we will assumeit isasingle term.

> diff_poly := proc( poly )

> if type(poly, "+ ) then

> map( diff_term poly )

> el se

> diff _term( poly )

> fi

| > end;

Let ustry this new and improved version.

[ > diff_poly( a*x"n );

[> diff_poly( 3*x"n );

[> diff_poly( 3+2*x+a*x );

[ > diff_poly( 10+x-5*x"2+x"4 );

[ > diff_poly( 5*x"5-4*x"N4+3*x"3-2*x"2-2*x"(-2) );

Notice that the last example was not even a polynomial (why?), but it worked. Let us try our
differentiation procedure on arandomly chosen polynomial in x.

[ > randpoly( x );

(> diff_poly( %);

So far so good. However, the next three examples all give erroneous answers.

> diff_poly( x*3 + z"2 ); # This result doesn't really nake
{ sense.

[ > diff_poly( x*y"2 + y*x"2 ); # Neither does this one.

(> diff_poly( cos(x) ); # And this doesn't work.

Our di ff _pol y procedure was not designed to handle these kinds of inputs, e.g., polynomiasin
severa variables or arbitrary functions. But our procedure should not return erroneous results or
cryptic error messages for inputsit was not designed for. It would be better if our procedure had
Maple do some "type checking” of the procedure's input so that Maple could inform users of the

Page 8



proper kind of input. We want to make sure that the procedure's input is a polynomial in one
variable. Hereisaversion of di f f _pol y that only accepts univariate polynomials. The word
pol ynommeans a polynomial datatypeto Maple and pol ynon( nanme) means a polynomial of a
single variable.

> diff _poly := proc( poly::pol ynom nane) )

> if type(poly, "+ ) then

> map( diff _term poly )

> el se

> diff _term( poly )

> fi

| > end;

Let us seeif this helps.

[ > diff_poly( cos(x) );

[> diff_poly( x"2+y"2 );

It seems to help, but now something else iswrong.

[ > a*x’n;

(> diff_poly( %); # nowthis is broken.

Our strategy for designingthedi ff _termanddi ff _pol y proceduresis not really very good.
That iswhy we are having trouble getting some things just right. But the examples in this section
have given you an idea of how a procedure can manipulate a data structure that represents a
polynomial to build up a new data structure that represents the polynomial’s derivative. We have
seen that we can use type checking to test the kind of inputs our procedure accepts but we have also
seen how subtle and difficult it can be to really get things right when we want to do a symbolic
mathematical manipulation.

[ >

Exercise: Use the map command and your i nt _t er mprocedure from the last section to write a
procedurei nt _pol y that finds an antiderivative of a polynomial.

[ >

Let us see how Maple's own differentiation command works. If we are differentiating an expression,
Maple requires that we specify the independent variable that we wish to differentiate with respect to.
This requirement solves some of the problems we are having with di f f _pol y, and it isone of the
main difference between our di f f _pol y and Maple's di f f . (The other main differences are that
di ff workson any expression, not just polynomials, and di f f does not have any bugsinit.)
[>diff( 3*x"2, x );

(> diff( 3*t"2, t );
(> diff( 3*t"2, x );
(> diff( a*x™n, x ); # Does this give the right answer?
[>diff( a, x);

[>diff( a, a);

[>diff( x*3 + z"2, X );

Page 9



[ > diff( exp(x)*cos(x), x );
(> diff( f(x)*g(x), x ); # diff knows the product rule.
[>diff( f(g(x)), x); # And diff knows the chain rule.

[ >

In alater section of this worksheet we will see how to modify our di f f _pol y procedure to make it
act more like Maple'sdi f f command. Before doing that, let us look at some examples of real

Maple procedures that are written in the Maple programming language.
[ >

L[>
=115.4. Somereal Maple procedures

The examples from the previous two sections demonstrate two main points. First, to show how some
of Maple's data structure manipulating commands are used. Second, to show that by using data
structure manipulating commands, we can write interesting commands that do mathematics
symbolically. The basic ideas behind these examplesisin fact the basis for how much of Maple
itself iswritten. In this section we show how most Maple commands are really procedures writtenin
the Maple programming language and that many of these procedures do data structure manipulations
like the ones that we did in the previous two sections.

[ >

If most Maple commands are really procedures written in the Maple programming language, then we
should be able to print out the definition of acommand and see how it iswritten. So let ustry to
look at the definition of areal Maple command.

To do thiswe need to use a special command, Maple'si nt er f ace command. Let ustry to look at
the definition of thef act or command.

[ > print( factor );

That did not tell us much. The next command will help.

[ > interface( verboseproc=2 );

Now let ustry printing the definition of f act or again (the definition is pretty long).

[ > print( factor );

If you look carefully at the Maple codeinthef act or command, you will seethat it issimilar in
structureto our di f f _t er mprocedure. There are alot of nested if-then-else-fi statements that

check for specific data types.
[ >

Hereisthe definition of thesi npl i f y command.

(> print( sinmplify );

If you want to see areally long Maple program, look at the source code to pl ot (recall that key
combination Ctrl-Z can be used to make the output go away after it has been displayed).

[ > print( plot );

Page 10



Looking at the source code of Maple commands can be intriguing. For example, what are those two
very large integers doing in the source codefor i spri me?
(> print( isprine );

[ >

We cannot examine the source code for every one of Maple's commands. Some commands are
"built in" commands, which means that they are written in the C programming language instead of
in Maple's own programming language. Y ou cannot see the source code for these built in
commands. Here are afew examples of built in commands.

(> print( diff );

[ > print( expand );

[ > print( eval );

Maple knows when a procedure is built in because a built in procedure hasthe bui | t i n optionin
the third operand of its pr ocedur e data structure.

[ > op( 3, eval (diff) );

[ >

Exercise: The command next pr i ne hasavery short Maple program.

[ > print( nextprine );

Explain in detail exactly how this program works. In particular, which lines of code are responsible
for each of the following results?

[ > nextprinme( -5 );

[ > nextprinme( 19 );

[ > nextprine( hello );

[ > nextprine( 19/2 );

[ >

Exercise: Both this and the next exercise use the definition of the | n procedure.

[>print( In);

Find the part of the code for | n that implements the rule In(b*) = aIn(b). (Hint: There are actually
two different placesin the code that implement this rule, but for different data types of a and b.)

[ >

Exercise: What do the third and fourth elif-parts do in the code for the | n function? What logarithm
rules do they implement?

[ >

Exer cise: Examine the code for the function sqr t and find the part that is responsible for
rationalizing the square root of fractions such as the following.

[ > sqgrt(1/2), sqrt(1/3), sqrt(3/5);

[ > print( sqrt );

[ >

Page 11



Exercise: This exercise is about the source code for the si n function.

(> print( sin);

Find the part of the code for si n that is responsible for each of the following calculations.

[ > sin(-x);

[ > sin(arctan(y));

[ > sin(z+Pi/2);

Recall that the remember table for si n alows Maple to return the following symbolic results.

[ > sin(Pi/5);

[ > sin(2*Pi/5);

If we examine the remember table for si n, we see that thereisno entry init for 3* Pi / 5 and yet
Maple knows the following symbolic result.

[ > sin(3*Pi/5);

[ > op( 4, eval(sin) );

Use the source code for si n to explain exactly how Maple was able to calculate the symbolic result
forsin(3*Pi/5).

[ >

Exercise: This exercise uses the source code for | n again.

(> print( In);

Click on the source code for | n so that it is highlighted. Then use the Copy item in the Edit menu to
put this code in the clipboard. Now use the Paste item from the Edit menu to paste the code for | n
into the next prompt right after the my | n : =. Now edit the error message for | n( 0) (you need
to find this error message first). Change it to anything you want. Put a semi colon at the very end of
the code. Then hit the enter key (with the cursor still in the new code for | n) to redefinethel n
function and give the redefinition the name my | n (the namel n is"protected”, so it is difficult, but
not impossible, to use that name). Then executetheny | n( 0) command at the second prompt
below to see your new error message.

[>nmy |In:=

[ > ny_I n(0);

Using this technique, any Maple command, except for the built in ones, can be modified to your
heart's content. This alows people with specialized mathematical needs to modify Maple for their
own purposes. It also allows users to fix bugsin Maple. Occasionally, in the Maple Users Group
e-mail mailing list, people will post bug fixes for Maple that one can implement by modifying a
command's code, just as you did here.

[ >

How does M aple know which procedure definitions can be seen by default and which ones need
ver bosepr oc setto 2? Recall that apr ocedur e data structure has an options operand, which is
the third of seven operandsin apr ocedur e data structure. One of the possible optionsis called
Copyri ght . If apr ocedur e datastructure hasa Copyr i ght optionin itsthird operand, then
weneed ver bosepr oc setto 2 in order to see the procedure's definition.

Page 12



[ > op( 3, eval(sinplify) );

Sincesi npl i fy hasthe Copyri ght option, weneed ver bosepr oc setto 2toview its
definition. All of the commandsin the Maple library have the Copyr i ght option. We do not
however need ver bosepr oc set to 2 to be able to seethe pr ocedur e data structure for a
procedure. Every procedure data structure can be examined using the op command (recall that a
procedure's definition is not part of apr ocedur e data structure).

[ >

Exercise: Create asimple procedure and give it the Copyr i ght option. Recall that options, like
Copyri ght,renmenber,andt r ace, are declared right after the local and global variable
declarations. Try to view the definition of your procedure with ver bosepr oc setto 1 and 2.

[ >

Finally, let us make sure that we set the i nt er f ace back to its default setting.
[ > interface( verboseproc=1l );

[
=/ 15.5." Reversing" a polynomial

We know that a polynomial like 10 x> - 3x* + 2 x- 5isrepresented in Maple by a data structure.
Let uswrite a procedure that takes as its input a data structure representing a polynomial and
mani pul ates the data structure so asto reverse the order of the coefficientsin the polynomial, so

10x3- 3x°+2x- 5will become-5x+2x*- 3x+10.

But before trying that, let us write a procedure that reverses the elements of a ssmpler data structure,
alist.
> reverse list := proc( my_list )
> local i, N
> N := nops(my_list);
> [ seq( op(N-i, my list), i=0..N1) ]
| > end;
Let ustry it out before we explainit.
[>reverse list( [1,2,3,4,5] );
> [ seq( 2", 1=-4..4) ];
{> reverse list( %);
> enmpty list :=1[];
{> reverse list( enpty list );

Toexplanreverse_|i st letusstart withasimplelist.

[>sinple list :=1]a,b,c];

There are three elements in thislist. Notice what the following commands do.
> op(3-0, sinple_list); op(3-1, sinple_list); op(3-2,

Page 13



| sinple list);

We can use the seq command to abbreviate this.

[ > seq( op(3-i, sinmple list), i=0..2);

Put square brackets around the last command so that the result isalist.

[> [ seq( op(3-i, sinmple list), i=0..2) ];

Finaly, let us notice that 3 isthe sameasnops(si npl e_| i st) and 2 isthesame as
nops(sinple |ist)-1.

> N := nops(sinple_list);

| > [ seq( op(N-i, sinmple_list), i=0..N1) ];

Now try alesssimplesi npl e |1 st.

> sinple_list :=

. [a,b,c,d,e, f,g,hi,j,k,I, mn,o0,p,q,r,s,t,u,v,wXx,V,z];
> N := nops(sinple_list);

| > [ seq( op(N-i, sinple list), i=0..N1) ];

(Why istherea 17 in the reversed list? How can we get rid of it?)

[ >

Hereisadightly different way to write the command that reverses alist. What has been changed

and why?

[ > seq( op(-ii, sinple list), ii=1..N) ];
Hereis an even more brief way to write the command that reverses alist.
[> ] seq( sinple list[-i1], 1i=1..N) ];

Hereis till another way to write this.
(> sinple_list[-ii]$ii=1..N];
[ >

Now let us return to our original problem and use asimilar ideawith a polynomial. The main
difference here is that the data structure is a bit more complicated.

> reverse_coef := proc( poly )

> local i, j, N

> N : = nops(poly);

> [ seq( op(1l, op(Ni+1, poly))*op(2, op(i, poly)), i=1..N) ];
> add( op(j, %, j=1..N);

> end;

L et us test this on some polynomials.

[ > 101*x + 102*x"2 + 103*x"3 + 104*x"4 + 105*x"5;

| > reverse_coef( %);

[ > 5*x"2 + 2*X + 9*X"3;

| > reverse_coef( %);

We can simplify our procedure a bit. Instead of creating a sequence and then adding the terms of the
sequence to form the final polynomial, we can use the add command to simultaneously create the
sequence of terms and add them.

> reverse_coef := proc( poly )

Page 14



> local i, N

> N : = nops(poly);

add( op(1, op(N-i+1, poly))*op(2, op(i, poly)), i=1..N);

| > end;

Let ustest thisagain.

[> 101*x + 102*x72 + 103*x"3 + 104*x"4 + 105*x"5;

| > reverse_coef( %);

[ > 5*x"2 + 2*X + 9*X"3;

| > reverse_coef( %);

Let ustry the procedure on arandomly chosen polynomial.

[ > randpoly( z );

[ > reverse_coef( %);

What went wrong? Here are the crucial lines from the body of the procedure with some delayed
evaluation added so that we can observe how the terms are evaluated.

[ > poly :=randpoly( z );

[ > N := nops(poly);

{> add( 'op' (1, op(N-i+1, poly))* "op'' (2, op(i, poly)), i=1..N)

\%

> %
L[> %
If welook at each of the six op commandsin the last output, we see that the very last term in the
sum has an op command with an invalid index. So there was a problem with the constant termin

the polynomial. We assumed that every term in the polynomial has the form ¢ X" but a constant term
does not have that form. In fact, here is another polynomial that will cause an error.

[ > 3*X"N3+x"2- 5%,

[ > reverse_coef( %);

The polynomia had aterm of the form X% without an explicit coefficient. Let us see in detail how the
procedure evaluated the polynomial.

[ > poly := 3*X"3+x"2-5*%x;

[ > N := nops(poly);

{> add( 'op' (1, op(N-i+1, poly))* "op'' (2, op(i, poly)), i=1..N)
[> %

L[> %

We see that the middle term x” 2 was not handled properly at al. Neither the coefficient nor the
variable part were extracted properly from thisterm. (Why did the final result have only two terms?)

In our procedurer ever se_coef we need to be more careful about selecting the coefficient part
and the variable part from each term of the polynomial. We need our procedurer ever se_coef to
have aform like the following, where we need to define new procedures coef part and
var_part.

[ > rever se_coef := proc( poly )

Page 15



> local i, N
> N : = nops(poly);
> add( coef_part(op(Ni+1, poly))*var_part(op(i, poly)), i=1..N
);
| > end;
Hereiswhat acall tor ever se_coef lookslike at this point.
[ > 3*X"N3+x"2- 5%,
[ > reverse_coef( %);
[ > randpol y( x, degree=10, terns = 3 );
[ > reverse_coef( %);
Hereisadefinition for coef part.

[ > coef _part := proc(term
> if type(term constant) then term
> elif type(term "~°) then
> 1
> el se
> op(l, term
> end
| > end;
And hereisadefinition for var _part .
[ > var_part := proc(term

> if type(term constant) then 1

elif type(term "~~°) then
term

el se
op(2, term

> end

| > end;

Try them out.

[ > 3*X"N3+x"2- 5%,

[ > reverse_coef( %);

[ > 5*XA5+2* XN3+XN2- 6* X,

[ > reverse_coef( %);

[ >

V V. V V

Exercise: Each of coef part andvar part containsasingleif-then-elif-else-statement in its
body. Explain in detail what kinds of monomial terms each of the three clauses deals with.

[ >

We still have aproblem withr ever se_coef . Consider the next example.
[ > 3*z"3+2*z"2+z;
[ > reverse_coef( %);

[ >

Page 16



Exercise: The error message in the last example identified the procedurevar part asthe source
of the problem. Hereisarewritten var _par t . What was wrong with the previous version and why
does this version fix the problem?

> var_part := proc(term

> if type(term constant) then 1
> elif type(term nane) then term
> elif type(term “7~7) then

> term

> el se

> op(2, term

> end

> end;

But we still have aproblem withr ever se_coef . Consider the last example again.
[ > 3*z"3+2*z"2+z,

[ > reverse_coef( %);

There is still a problem with the procedure coef par t . Find the problem and fix it.
[ >

There is one last issue to consider with our procedurer ever se_coef . Consider the next example.
[ > x"2-2*X-3;

[ > reverse_coef( %);

Theresult fromr ever se_coef iscorrect, but it may not look like what we were expecting. In
Maple, the way a polynomial gets displayed is session dependent and it can change from one session
to another. In my version of Maple, the last result has the constant term at the beginning of the
polynomial instead of at the end where we usually expect it to be. We do not have much control over
how Maple decides to order the terms of a polynomial. We can usethesor t command to order the
terms in descending order of degrees.

[ > sort( %);

Usually, when we enter a polynomial, Maple will display the polynomial with the termsin the order
that we entered themin.

[ > 4*Xx"3- 7T+5*x"8;

But now consider the next example

[ > 5*xX"8+4*x"3- 7,

In my session, Maple "remembered" the order of the terms of this polynomial from the last entry and
displayed the polynomial as before. So Maple will sometimes change the order of the terms of a
polynomial.

Now what should be the result of the next command? The actual result will depend on how Maple
orders the terms of the input polynomial.

[ > reverse_coef( 5*x"8+4*x"3-7 );

Theresult fromr ever se_coef iscorrect (what did it do?). But this behavior of Maple's with

Page 17



respect to ordering the terms of a polynomial can make it very difficult to predict the results of
rever se_coef . Oneway to avoid this confusion would befor r ever se_coef tosort its
input polynomial and also sor t itsreturn polynomial just before returning it.

[ >

Exercise: Add sort commands to the definition of r ever se _coef asdescribed in the last

paragraph. Try out the new version of the procedure.
[ >

Exercise: Maple has acommand coef f s that can be used to return the coefficient of a monomial.
We should be able to use this command to replace our procedure coef par t inthe definition of
rever se_coef.Butthecoef f s command needsto be told the variable with respect to which
we want the coefficient.

[ > coeffs( 12*x*y, x );

[ > coeffs( 12*x*y, y );

Our procedurer ever se_coef isdesigned to work with any polynomial in one variable, so we do
not know ahead of time what variable isin the polynomial. However, the Maple command i ndet s
(for "i ndet erminates™”) will return the set of variables used in an expression. Rewrite
reverse_coef tousei ndet s andcoef f s instead of coef part.

[ >

Exer cise: Notice in the online documentation that the Maple command coef f s hasa"cal by
name" parameter that can be used to return the part of amonomial that the coefficient is"in front

of".

[ > coeffs( 12*x*y, x, "t' );
L[>t

[ > coeffs( 12*x*y, y, 't' );
L[>t

In the last exercise you used coef f s to eliminate the procedure coef _par from the definition of

reverse_coef.Now usecoef f s to also eliminate the procedurevar _part.
[ >

Exercise: Rewriter ever se_coef sothat it works with multivariate polynomials. Define
rever se_coef sothat it expects asecond parameter that specifies the variable with respect to
which it reverses the coefficients. Consider whether you should use Maple'scol | ect andsort
commands.

[ >

0>
=115.6. Teaching Maple new tricks

One feature that makes Maple so powerful for doing symbolic mathematics is that many of Maple's

Page 18



most important commands are "extensible”. What this means is that we can extend the capabilities
of these commands by writing specia "interface" procedures. In this section we give examples of
extending the capabilities of theexpand and si npl | f y commands.

Many well known mathematical functions have special algebraic properties that Maple is aware of
and can make use of in its symbolic manipulations. Here are some exampl es that use the expand
command.

[ > abs(x*y);

[ > expand( %) ;

[ > exp(x+ty);

[ > expand( %);

[ > sin(athb);

[ > expand( %) ;

Maple's knowledge of these propertiesis built into the expand procedure. If we want to teach
expand anew identity for some function, it would be impractical to try to modify the code for
expand (especialy since expand isabuilt in command and so it is not written in Maple's own
programming language). So we need away to inform expand of an identity that is not already built
into it. Let uslook at an example of how we do this.

[ >
L et us suppose there is afunction h for which the following identity istrue.
h(x+y) h(x)
X+y)=
h(y)*

Let usteach expand about thisidentity. Maple provides an "interface” to the expand procedure
that allows usto extend its capabilities. The way that we use this interface to teach the expand
procedure about our function h iswe define aprocedure called * expand/ h™ . When we call the
expand procedure and it finds a function call of theform h( u) (for any expression u), the
expand procedure looks to seeif there is adefinition for the procedure " expand/ h™ and if there
isone, expand cals” expand/ h™ (u), which should return the appropriate expansion of h( u) ,
and then expand replaces the expression h( u) with theresult returned by ~ expand/ h™.

[ >

Before doing the more complicated example of h, let us start off with a simple example. Suppose we
want to teach expand about afunction g that has the (silly) property that g( x) expandsto g(2 x)/2
for any input x. Hereis a definition for the procedure " expand/ g that implements this simple
expansion.

> “expand/ g := proc( u)

> g (2*u)/2;

> end;
So now whenever the expand procedure comes across a function call of theform g( u) (for any
expression u), expand makes the procedure call * expand/ g (u) , which returns the expression

Page 19



g(2*u)/ 2, and then expand replaces the original expression g( u) with its expansion
g(2*u)/ 2.

[ > expand( g(a) );

[ > expand( %);

[ > expand( exp(g(x"2)) );

So far so good. But the next two examples demonstrate a problem with our procedure

“expand/ g .

[ > expand( g(exp(x+y)) );

[ > expand( g(g(y)) );

Notice that expand did not expand the exponential inside of g nor did it expand the g inside of g.
Here is how we can fix this. We put an extra (recursive) call to expand inside of the return value of
“expand/ g . Thiscausesexpand to keep on working on whatever is inside the expanded
function call g( 2*u) / 2.

> “expand/g := proc( u)
> "g' (expand(2*u))/ 2;
> end;

Let ustry this new version.

[ > expand( g(exp(x+y)) );

[ > expand( g(g(y)) );

Why did that not work? Let ustry an experiment. Restart Maple.
[ > restart;

Define " expand/ g again.

> “expand/ g := proc( u)
> "g' (2*expand(u))/ 2;
> end;

And now try it again.

[ > expand( g(exp(x+y)) );

[ > expand( g(g(y)) );

[ > expand( %) ;

The problem was that the procedure expand was "remembering” (using aremember table) the
previous, erroneous, results about g. Look at the following remember table for expand. Notice how
it contains the results from the last two calsto expand.

[ > op( 4, eval (expand) );

When we redefine " expand/ g, this does not cause the remember table for expand to be erased.
Subsequent callsto expand can get their results directly from the remember table without ever
caling the redefined ~ expand/ g .

[ >

Here are two examples in which expand produces aresult that we are probably not expecting.

[ > expand( exp(g(x)+z) );

[ > expand( sin(g(x)+z) );

Notice that in each of these examples the expansion of g occurs inside the expansion of some other

Page 20



function. Notice also that it appearsasif ~ expand/ g  gets called twice in each example instead of
just once as we might have expected. We can verify that * expand/ g~ isbeing caled twice by
tracing callsto this procedure.
[ > trace( "expand/g );
Now let us re-execute one of the last two examples.
[ > expand( exp(g(x)+z) );
The trace did not work because expand got that result out of its remember table. We need to erase
expand's remember table again.
[ > readlib(forget)( expand );
Now re-execute the example.
[ > expand( exp(g(x)+z) );
Now we seethat “ expand/ g really was called twice. If we also trace the expand and
“expand/ exp” procedures, then we can get abit of anideawhy ~ expand/ g was called twice.
In order to do this trace, we first need to forget expand's remember table.
[ > readlib(forget)( expand );
Now set the procedures that we want to trace.
[ > trace( expand, " expand/exp , ~expand/ g );
Re-execute the example (and then untrace the procedures).

> expand( exp(g(x)+z) );
{ > untrace( expand, "“expand/exp , ~expand/g ):
By carefully reading the above trace, we see that the first call of ~ expand/ exp , with operand
g( x) +2, calsexpand on thisoperand, and this causes thefirst call of * expand/ g . Then
“expand/ exp  actualy expands the exponential. Then after the exponential is expanded,
“expand/ exp cals expand/ exp on each term of the expanded exponential. Thisleadsto a
second call of " expand/ g .So expand/ g iscaledtwice becausethe expand/ exp"
procedure expands all of its operands both before and after it expands the exponential. The reason
that expand keepstrying to expand operands is that it is hard to know ahead of time in just what
order the operands in an expression should be expanded. For example, in the following expression,
the inner function needs to be expanded before the outer function can be expanded.
[ > sin(cos(x+ty));
[ > expand( %) ;
But in the next example we cannot expand the inner functions, but after the outer function has been
expanded, more expansion still needs to be done on the result.
[ > sin(2*arctan(x+y));
[ > expand( %);
Here is the same expression with alot of delayed evaluation. This allows us to see the order that the
expansion isdonein. First, the si n is expanded.
[ > expand( sin(2* "arctan('x+y')"'"') );
Next is some automatic simplification.
[> %
Get rid of one level of delayed evaluation.
> %

Page 21



Now another expansion is still needed.

[ > expand( %);

Aswe will seein the example below, when writing a procedure that interfaces with expand, itis
important to make sure that every possible expansion gets done and this is usually accomplished
with anumber of recursive callsto expand.

[ >

At this point we seem to need to restart Maple, otherwisethef or get procedure does not work for
expand. It seemsthat using t r ace on the expand procedure somehow gets Maple confused.
[ > restart;

Now let us turn to the function h and teach expand the identity h(x +y) = h(y)z' Hereisafirst
attempt at defining * expand/ h™.
> “expand/h” := proc( u)
> if type(u, "+ ) then
> "h'" (op(1,u))/"h" (op(2,u))"2;
> el se
> "h' (u)
> fi
| > end;
Let ustry thisout.
[ > h(x+y);

[ > expand( %) ;

[ > exp(h(x+y)) +h(z)/h(z"2-3);

[ > expand( %);

So far so good. But the next few examples show that we need to do somework on ~ expand/ h™ .
[ > h(x+y+z);

[ > expand( %);

[ > h(exp(x+y)+h(a+tb));

[ > expand( %) ;

[ > h(abs(x*y));

[ > expand( %);

Of the last three examples, the first showed that we need to be more careful of how we handle asum
in the definition of * expand/ h™ , and the last two examples show that expand isnot being
allowed to work on the operand of afunction call h( u) . The second problem is easy to fix. Hereis
aredefinition of “ expand/ h™ that callsexpand recursively.

> “expand/h” := proc( u)

> if type(u, "+ ) then

> "h' (op(1, expand(u)))/"' h' (op(2, expand(u)))"2

> el se

> "h' (expand(u))

Page 22



> fi

> end;
L et us clear the remember table for expand.
[ > readlib(forget)( expand );
Now let us retry some of the above examples.
[ > h(exp(x+y) +h(atb));
[ > expand( %) ;
[ > h(abs(x*y));
[ > expand( %);
The first example now works fine because we put callsto expand in the then-part of the
conditional statement inside the body of * expand/ h"™ , and the second example now works
correctly because of the call to expand in the else-part. But now consider the following two
examples.
[ > h(sin(x+y));
[ > expand( %);
[ > h(cos(2*x)+1);
[ > expand( %);
Neither of these examplesis correct. In the function call h( si n( x+y) ), h has only one operand,
so there is no need to apply the identity for h. But after expand applies atrig identity to the single
operand, the operand for h becomes a sum, and then the identity for h should be applied. So in the
case where the operand for h is not a sum, we need to check if the operand becomes a sum after
expand iscalled to expand the operand. And in the function call h( cos( 2* x) +1) , the operand
isasum, so  expand/ h™ executes
"h" (op(1, expand(u)))/"h" (op(2, expand(u)))”™2 withu equal tocos(2*x) +1. But
hereiswhat expand( u) returns.
[ > expand( cos(2*x)+1 );
So here we have the case of an operand that isasum, but it isno longer a sum after it is expanded by
expand. These two examples show that what we really should be doing in ~ expand/ h™ is
expanding the operand from the call h( u) before we do any analysis of its structure and have the
conditional statement analyze the structure of the expanded operand. Here is another version of
“expand/ h'.
> “expand/h” := proc( u)
> | ocal tenp;
> tenp := expand( u );
> if type(tenp, "+ ) then
> "h' (op(l,tenp))/"h' (op(2,tenp))”"2
>
>

el se
"h' (tenp)
> fi
> end;

Iin thisversion of “ expand/ h™ , thelocal variablet enp holds the result of expanding the operand
from the function call h( u) . If t enp isnot asum, then the else-part just returns h composed with

Page 23



theresultsfrom expand. And if t enp isasum, then we apply the identity. Before we can try this
out we need to clear expand's remember table again.

[ > readlib(forget)( expand );

Now retry the last two examples.

[ > h(sin(x+y));

[ > expand( %);

[ > h(cos(2*x)+1);

[ > expand( %) ;

If we really want to apply the identity for h to the sum cos( 2* x) +1, without expanding this sum
first, then we can use right-quotes to delay the evaluation of thecos( 2* x) term.

[ > expand( h(''cos(2*x)"'"'+1) );

[> %

Or, better yet, we can use acos option to expand to prevent expand from expanding the cosine
sub-expression.

[ > readlib(forget)( expand );

[ > expand( h(cos(2*x)+1), cos );

[ >

Now let us turn to the problem of handling sums. The following result is obviously not correct.
[ > expand( h(atb+c) );
Our definition of * expand/ h™ assumesthat if the expanded operand from the function call h( u)
isasum, then it only has two terms, which need not be the case. We need away to handle sums of
three or more terms. We need to be able to replace this command,
"h' (op(1,tenmp))/"h' (op(2,tenp))"2

with something like

"h" (op(1,tenp))/" h" (second-through-last-terms-of-t enp) " 2.
Unfortunately, there is no obvious way to get the second through last itemsfroma™ +  data
structure. With al i st data structure we can use the following index notation.
[>[a,b,c,d,e][2..-1];
But this notation does not work with * +" data structures.
[ > (atb+c+d+e)[2..-1];
But hereisatrick that will do what we want. The subsop command allows us to substitute for
itemsin adata structure, much like subs, but subsop alows usto specify the index of the
operand that we want to substitute for. Here are afew examples.
[ > subsop( 2=Pi, atb+c+d+e );
[ > subsop( 5=Pi, atb+c+d+e );
[ > subsop( 2=7, Xx+x"2+x"3 );
So hereisthetrick that we want. If we use subsop to substitute O for aterm of a sum, then that
term goes away because of automatic simplification.
[ > subsop( 1=0, atb+c+d+e );
[ > subsop( 4=0, atb+c+d+e );
So let ususethistrick in “ expand/ h™.

Page 24



> “expand/h” := proc( u)

> | ocal tenp;

> tenp := expand( u );

> if type(tenp, "+ ) then

> "h' (op(l,tenp))/' h' (subsop(1=0,tenp))"2

> el se

> "h' (tenp)

> fi

| > end;

Clear expand's remember table again.

[ > readlib(forget)( expand );

Try thisversion out.

[ > expand( h(atb+c) );

[ > expand( %) ;

[ > expand( h(atb+c+d) );

[ > expand( %);

[ > expand( %);

Hereis another example.

[ > h(cos(x+y) +sin(x+y));

[ > expand( %) ;

WEll, things are better now, but still not correct. The identity for h needsto be applied now to the
term in the denominator. Here is how we do that. We call expand on the term in the denominator,
which will just call “ expand/ h™ again for us and apply the identity.

> “expand/h” := proc( u)

> | ocal tenp;

> tenp : = expand( u );

> if type(tenp, "+ ) then
>

>

>

"h'" (op(1,tenp))/expand(’' h' (subsop(1=0,tenp))~"2)

el se
"h' (tenp)
> fi
> end;

Clear expand's remember table again.

[ > readlib(forget)( expand );
Try thisversion out.

[ > expand( h(a+b+c) );

[ > expand( h(at+b+c+d) );

[ > h(cos(x+y) +sin(x+y));

[ > expand( %) ;

[ >

Exercise: If you carefully study our version of ~ expand/ h™, you will seethat it istreating

Page 25



addition as right associative, that isit treatsa+b+c asa+( b+c) . We did thisto make the procedure
easier to write. But addition is usually considered to be left associative. Here is away to force | eft
associative expansion of h( a+b+c) . Notice that the final result is different from above.

[ > expand( h(''(atb)'"'+c) );

[ > expand( %);

Modify the procedure " expand/ h™ so that addition istreated as | eft associative.

[ >

Exercise: Teach expand the following expansion rule for the function k.
k(xy) =yk(x)
Treat multiplication as |eft associative, so k(xy z) =y zk(x). Also, be sure you get the result
ki xy]) =[y[k(x]).
[ >

Thesi npl i fy command also has an interface like the expand command. If we want to teach
si npl i fy aspecia smplification rule for afunction f, then we need to define a procedure
“sinplify/f . Butthereisabig difference between the interfaceto expand and the interface
tosi npl i fy. Givenafunctioncal likef (u) , expand will makethecal ~expand/f (u),
but si npl i fy makesacall of theform ™ si npl i fy/f  (expression) whereexpressionisan
expression containing the function call f (u) . It isnot hard to figure out why si npl i fy needsto
cal “sinplify/f  withexpressionscontaining f . Many simplifications involve more than one
occurrence of afunction or even the occurrence of several different functions. For example, the
following simplification requires two occurrences of the function exp.

[ > sinmplify( exp(x)*exp(y) );

The following simplification requires the presence of two different functions, si n and cos.

[ > simplify( cos(2*x)+sin(x)"2 );

Sothesi npl i f y command needsto providea si npl i fy/f " procedurewith alot of
information about the context that f appearsin. Hereisasimple " si npl i fy/f " procedure that
we can experiment with. This procedure prints out the value of itsinput cont ext , so that we can
seehow si npl i fycaled sinplify/f ,andthenitreturnscont ext unmodified.

> "sinplify/f" := proc( context )

> print( "calling sinplify/f with paraneter™ = context );
>  context

> end;

Now let us use this procedure to watch some examplesof si npl i fy calling " si nplify/f'.In
thefirst two examples, " si npl i fy/ f  iscaledtwice, each time with adifferent expression
containing f . (Notice that we put colons at the ends of these examples to suppress the final output
fromsi mpl i fy).

[> sinmplify( x+f(y*f(x)) ):

[ > simplify( exp(f(y)"2) ):

In the next example, " si npl i fy/f " iscaledtwice, and one of the calls occurs after si npl i fy

Page 26



does some simplification.

[> simplify( exp(x)*exp(f(z)) ):

In each of the next two examples, " si npl i fy/f " iscalled threetimes.

[ > exp(a)*exp(f(u))+exp(b+f(u));

(> sinmplify( %):

[ > tan(exp(f(wW)));

[> simplify( %):

If you should go back and re-execute the above examples, al of them will produce no output the
second time they are executed. Thisisbecausesi npl i fy will useits remember table the second
timeit is called with the same input. Thisis also why we kept changing the variables in each
example, to keep si npl i fy from using its remember table. If you want to experiment with some
of the above examples, you will probably want to clear si npl i f y'sremember table just before
each execution of si npl i fy.

[ > readlib(forget)( sinplify );

The above examples should convince you that working with the interfaceto si npl i fy will be

quite different from working with the interface to expand.
[ >

Let ustry doing asimple exampleof a” si npl i fy/f " procedure. Let usteach si npl i fy that f
isalinear function, that is, let usteach si npl i f y to implement the identity f(x) +f(y) =f(x +y).
Hereisafirst attemptat “ si npl i fy/f .

> "sinplify/f" := proc( context )

> | ocal cntxt, new operand, sinplified, i;

> cntxt := context;

> new _operand : = O;

> sinplified := fal se;

> if type( cntxt, "+ ) then

> cntxt := convert( cntxt, list ); # it's easier to work with
a list

> for i from1l to nops(cntxt) do # look for calls to f

> if type(cntxt[i],function) and eval b(op(0,cntxt[i])="f")
t hen

> new operand : = new operand + op(l,cntxt[i]);

> cntxt[i] := 0; # renove the termfromthe sum

> sinplified := true

> fi

> od;

> cntxt := convert( cntxt, "+ ); # convert back to a sum

> if simplified then cntxt := "f'(new_operand) + cntxt fi

> fi:

> cntxt # this is always the return val ue

| > end;

Page 27



This procedure works by first checking if the context that f isinisasum. If the context isnot a
sum, then the procedure does nothing. If the context is a sum, then the procedure checks each term
of thesumto seeif itisafunction call tof (but first the sumis converted into alist, sinceit isabit
easier to manipulate lists, e.g., we can use index notation with lists but not with sums). If aterm of
the context isacall tof , then the operand of that call is added to alocal variable, new _oper and,
that holds arunning total of the operandsto all thecallstof in the context. After the operand of the
call isadded to the running total, the call tof isremoved from the sum (by making the term 0) and a
flag is set. After al of the termsin the context have been checked, the context (minus any callsto )
is converted back into a sum and then the new call tof (if there is one), with the new operand, is

added on.
[ >

Let ustry this procedure out.

[> f(x)+f(y)+f(2);

[>simplify( %);

[> f(x) + sin(x) + f(3) + exp(x);

[>simplify( %);

In the next example, noticethat si npl 1 fy simplifiesthe operand of the first call to f beforeit
cals sinmplify/f .

[> sinplify( f(exp(x)*exp(y)) + f(z) );

In the next example, si npl i fy needsto do a(symbolic) simplification before ™ si npl i fy/f"
can do its simplification.

[ > arctan(tan(f(x)))+f(y);

[> sinplify( % symbolic );

But hereisan examplewhere " si npl i fy/ f " does not do al of the simplifications that it could
do.

[> £(f(x))+f (y)+(f(2));

[> simplify( %);

Thereis still more simplification that can be done, as the next command shows.

[>simplify( %);

We can solve this problem by recursively calling si npl i fy on the new operand for the ssmplified
cal tof .

[ >
> "sinplify/f := proc( context )
> | ocal cntxt, new operand, sinplified, i;
> cntxt := context;
> new_operand : = O;
> sinplified := fal se;
> if type( cntxt, "+ ) then
> cntxt := convert( cntxt, list ); # it's easier to work with
a list
> for i from1l to nops(cntxt) do # look for calls to f

Page 28



\

if type(cntxt[i],function) and eval b(op(0,cntxt[i])="f")
t hen
new _operand : = new operand + op(1,cntxt[i]);
cntxt[i] := 0; # renove the termfromthe sum
sinmplified := true
fi
od;
cntxt := convert( cntxt, "+ ); # convert back to a sum
if sinmplified then
# first check if the new operand can be sinplified
new operand := sinplify( new operand );
cntxt :="f'(new_ operand) + cntxt
fi;
fi;
> cntxt # this is always the return val ue
| > end:
We need to forget si npl i f y'sremember table.
[ > readlib(forget)( sinplify );
Now try our last example again.
[> F(F(x))+f(y)+f(f(2));
[ > simplify( %);
[ >

V VVVVVVYVYVYVYVYV

Let us seeif we can add the other part of the definition of linearity to the procedure
“sinmplify/f . Wewanttoteachsi npl i fy toimplement the identity a f(x) =f(ax) whenais
aconstant, e.g., 3 f(x) =f(3 x). We need to ask ourselves though, just what is a constant in Maple?
It turns out that Maple has two data types that represent constant values, const ant and

conpl excons. An object is of typeconpl excons if it can be evaluated to a complex floating
point number by eval f . So every number, i.e., i nt eger,fraction,orfl oat,hastype
conpl excons. But some other, more symbolic expressions, are also of type conpl excons.

[ > type( Pi, conpl excons );

[ > type( sin(l), conplexcons );

But an arbitrary unevaluated function call with a constant parameter need not have type

conpl excons.

[ > type( h(1l), conplexcons );

Thetypeconst ant isabit more general than conpl excons. Any object of type

conpl excons isaso of typeconst ant . In addition, arbitrary unevaluated function calls with
constant parameters do have type const ant .

[ > type( h(1), constant );

Thetypeconst ant also includes some symbolic constants that are not very numeric.

[ > type( false, constant );

The generality of thetype const ant can make thingstricky for us, so we will take the type

Page 29



conpl excons asour definition of a constant. After we implement the identity with constants of
typeconpl excons, wewill look at some of the difficulties that constants of type const ant can
cause.

[ >

Before trying to rewrite " si nmpl i fy/ f ", let us experiment again and see what kind of contexts
“sinplify/f' might be called with. Hereistheversionof “ si npl i fy/f " that reportsthe
context for us.

> "sinmplify/f> := proc( context )

> print( "calling sinplify/f with paraneter™ = context );
>  context

> end;

Hereisatypica expression that we would like to be able to simplify.

[> simplify( 3*f(x)+f(y) ):

Notice that the context is the whole sum. The si npl i f y command does not help us out by, say,
making 3* f ( x) acontext by itself. Here are two more expressions that we would like to be able to
simplify.

(> sinmplify( 3*x*f(x) ):

(> sinplify( 3*sin(1)*f(x) ):

In these examples the context is a product, and notice that in the second exampl e there are two
constants in the product that need to be simplified. So our version of ~ si npl i fy/f " will needto
look for both product and sum contexts, and in the case of asum context, ~ si npl i fy/f " will
need to look for pertinent product sub-contexts. And in a product context, our procedure will need to
look for an arbitrary number of constants that need to be moved into the function call.

Since a product context can arise in two different ways, as either the whole context or as a
sub-context of a sum context, it is useful to define a helper procedure, “ si npl i fy/f/scal ar ",
that handles only product contexts, and then have " si npl i fy/ f " call this helper procedure from
two places, from where it tests for a product context and from where it test for a product
sub-context. Here is the new definition for ~ si npl i fy/ f "~ that usesthe helper procedure.

[ >
> "sinplify/f" := proc( context )
> | ocal cntxt, new operand, sinplified, i;
> cntxt := context;
> new _operand : = O;
> sinplified := fal se;
> if type( cntxt, “* ) then cntxt := “sinplify/f/scalar (
cntxt );
> elif type( cntxt, "+ ) then
> cntxt := convert( cntxt, list ); # it's easier to work with
a list
> for i from1l to nops(cntxt) do # look for calls to f

Page 30



> if type(cntxt[i], “* ) then # found a product
sub- cont ext

fi:
fi;
> cntxt # this is always the return val ue
| > end;
And here is the definition of the helper procedure. This procedure assumesthat it is called with a
product context. After converting the context into alist, the operands of the context are searched to
seeif one of themisafunction cal tof . If afunction call isfound, a search is made for constantsin
the operands of the context. Whenever a constant is found, the constant is multiplied with the local
variablecnst nt (socnst nt isarunning multiple of all the found constants), and then the
constant is removed from the context (by setting its operand equal to 1). After all of the constants
have been found, the new constant, cnst nt , is put inside of the function call. Notice that once a
call tof isfound, the outer for-loop terminates because cnst nt will have anon-zero value.
Finally, the context is converted back to a product.

> cntxt[i] := "sinplify/f/scalar ( cntxt[i] );

> fi:

> if type(cntxt[i],function) and eval b(op(0,cntxt[i])="f")
t hen

> new operand : = new operand + op(l,cntxt[i]);

> cntxt[i] := 0; # renove the termfromthe sum

> sinplified := true

> fi

> od;

> cntxt := convert( cntxt, "+ ); # convert back to a sum

> if sinplified then

> # first check if the new operand can be sinplified

> new operand := sinplify( new operand );

> cntxt := "'f'(new_operand) + cntxt

>

>

[ >
> "sinplify/f/scalar  := proc( context )
> | ocal cntxt, cnstnt, i, j|;
> cnstnt := O;
> cntxt := convert( context, list );
> # look for a call tof in the operands of the context
> for i from1l to nops(cntxt) while eval b( cnstnt=0 ) do
> if type(cntxt[i], function) and eval b(op(0,cntxt[i])="f")
t hen
> # l ook for constants in the operands of the context
> cnstnt :=1; # this wll stop the outer | oop
> for j from1 to nops(cntxt) do
> if type( cntxt[j], conplexcons ) then
> cnstnt = cnstnt*cntxt[j];

Page 31



cntxt[j] := 1 # renove the constant fromthe product
fi
od;
# put the new constant inside the function call
cntxt[i] :="'f"( cnstnt*op(l,cntxt[i]) );
fi
od;
> convert( cntxt, “* ); # this is always the return val ue
| > end;
Let ustry this combination of procedures. First, forget si npl i f y'sremember table.
(> readlib(forget)( sinplify );
Here are some examples that test these procedures.
[> simplify( 3*f(x)+f(y) );
[> simplify( 3*x*f(x) );
[> sinmplify( 3*sin(1l)*f(x)*f(y) );
(> sinmplify( f(2)*3);
[> simplify( h(1)*f(x) );
(> sinmplify( f(2)*3*f(x) );
(> simplify( -3*f(2)+f(7) );
[> simplify( 5*(f(2*x)+f(y)) );
[> sinmplify( 3*x*f(x)+f(y)+2*f(z) );
[ >

V V.V VYV VYV

Exercise: Changethetype conpl excons toconst ant inthe procedure
“sinplify/f/scal ar andthen execute thefollowing si npl i f y commands. Try to explain
what is going on.

[ > readlib(forget)( sinplify );

[> simplify( h(1)*f(x) );

[> sinmplify( f(2)*3);

[> simplify( £(2)*f(x) );

(> sinmplify( f(2)*3*f(x) );

(> simplify( -3*f(2)+f(7) );

[ >

Exer cise: Notice that the following expression is not ssmplified completely. Modify
“sinplify/f/scalar” and/or sinplify/f tofixthis.

[> simplify( 3*f(f(x)+f(y)) );

The expression 3 f(f(x) +f(y)) can be simplified to f(f(3 x + 3y)) in different ways. For example,
the steps might be f(3 f(x) + 3f(y)) then f(f(3 x) +f(3y)) then f(f(3x+ 3y)). Or the steps might
be3f(f(x+y)) thenf(3f(x+y)) thenf(f(3 x+ 3y)). Which order does the combination of
sinmplify, sinplify/f and sinplify/f/scalar use?

[ >

Page 32



Exer cise: Suppose we assume that a is a constant.

[ > assune( a, conplexcons );

It would be niceif theidentity a f(x) = f(a x) worked with this assumption, but so far it does not.
[> simplify( a*f(x) );

[> simplify( 3*a*f(x) );

Modify the procedure " si npl i fy/f/scal ar ™ sothat it works with Maple's assume facility.
Also try experimenting with the property const ant , asin

[ > assunme( a, constant );

[>a ::="a".:

[ >

Exercise: Notice that an expression like 3 f(x)", with n a positive integer, can be transformed to
f(3x) f(x)(”' D using the linearity of f. It is not even clear that this transformation really isa
"simplification”, and our current version of ~ si npl i fy/f/scal ar” doesnot do this
transformation.

(> sinmplify( 3*f(x)"2 );

Go ahead and implement this transformationin ~ si npl i fy/f/scal ar .

[ >

Exer cise: Suppose that the three functionsf, g, and h, satisfy the following identity
f(x) + g(y) =h(x+y). Writeaprocedure " si npl i fy/ g that will alow si nplifyto
implement thisidentity. Try testing ~ si npl i fy/ g both with and without defining the
“sinplify/f procedurethat makesf linear. Notice that with “ si npl i fy/f  defined,
f(x) +g(y) +f(z) can simplify toany of h(x+ z+y) or h(x +y) +f(z) or f(x) + h(y + z). How do
we know which result these procedures will produce? What about an expression like
f[(X) +9(y) +9(3) +1(2) +f(y)?

>

Exer cise: Complete the definition of f asalinear function by writing a procedure (or procedures)
that interface to the expand command and let expand implement the identities
f(x+y) =f(x) +f(y) and f(ax) =af(x), whereaisaconstant.

[ >

Exercise: Write aprocedure VakeLi near that takes one parameter, a name, and makes that name
act likeanamefor alinear function. MakeLi near should work by constructing appropriate
procedures that interface with the proceduressi npl i f y and expand. So for example if we make
thecall MakeLi near ( k), then MakeLi near will define procedures ™ si npl i fy/ k",
“sinmplify/k/scalar ,and expand/ k" ,sothatsi nplify andexpand canimplement
theidentitiesk(x +y) = k(x) + k(y) and k(a x) =ak(x) where a is a constant. Notice that the name
k should remain unassigned after MakeLi near ( k) returns. The procedure VakeLi near should

Page 33



return NULL. Write another procedure, UnVakeLi near , that also takes one parameter, a name,
and unassigns the names of the three appropriate interface procedures. This procedure should also
return NULL. (Hint: Y ou will need to look up and use the Maple procedure par se with the

st at enent option.)

[ >

>
= 15.7. Differentiating functions

Let us go back to our (primitive) differentiation command and see if we can extend it some. Let us
try to teach our command to differentiate the trig functions sine and cosine. We will write a new
differentiation command and call it my_di f f . Wewould likeit to do everything that di f f _pol v
does plus we should be ableto call it thisway my di ff (si n(x)) orthisway

nmy _diff(cos(x)) andget the correct derivative.

[ >

First of all, hereisour version of di f f _t er m(note the colon at the end of the definition).
> diff _term:= proc( term)
> if type(term nuneric) then
0
elif type(term nane) then
1
elif type(term {nane, nuneric}& nane) then
op(1l, term
elif type(term “7~7) then
op(2, term*op(1l,term”~(op(2,term-1)
el se

VvV V.V VVYV YV VYV

op(1l,term*op(2,0op(2,term)*op(l,op(2,term)™(op(2,0op(2,term)-
1)

> fi

| > end:

And hereisour versionof di f f_pol y.

> diff_poly := proc( poly )

> if type(poly, "+ ) then

> map( diff _term poly )
> el se

> diff _term( poly )

> fi

> end:

The procedurenmy _di f f will have to be ableto tell when itsinput is of theformsi n( x) or

Page 34



cos(x).Mapleconsiderssi n(x) andcos( x) to bedatastructures of datatypef uncti on.
[ > whattype( sin(x) );
[ > type( cos(z), function );
If cos( x) isadatastructure, what are the pieces of datain the data structure?
[ > op( cos(x) );
[> op( sin(y) );
In Maple, anything of the form nane( expression sequence) isconsidered af unct i on data
structure and the expression sequence of actual parameters to the function are the datain the data
structure.
{> whattype( f(x,y,2z) );
> op( f(x,y,2) );
> type( colors(green, red, orange), function);
{> op( colors(green, red, orange) );
[ > whattype( plot(sin, -1..1, color=black) );
[ > op( "plot(sin, -1..1, color=black)' );
So our procedureny _di f f can test the data type of itsinput to seeif itisaf unct i on data
structure. But if it doesfind af unct i on datastructure, how will it tell if the functionissi n or
cos?Itturnsout that af unct i on datastructure isabit different from other data structures. A
funct i on datastructure has a 0'th operand and the O'th operand of af unct i on datastructureis
the name of the function.
[> op( f(x,y) );
[>op( 0, f(x,y) );
[> op( sin(w) );
[>op( 0, sin(w );
For most other data structures, the O'th operand is the data type of the data structure.
[>op( 1/3); op( O, 1/3);
[>op( [a,b,c] ); op( O, [a b,c] );
[>op( 1..5); op( O, 1..5);
[> op( g(a,b,c) ); op( O, g(a b,c) );
[ >

So the procedure my _di f f can usethe op command to find out what function it istrying to
differentiate. Here is afirst attempt at the procedureny di f f .
[ > ny diff = proc( f )
> if type(f, function) then
if op(0, f) = "cos' then -sin( op(f) )
elif op(0, f) = "sin" then cos( op(f) )
else 'D *f
fi
el se
diff_poly( f )
fi

V V.V VYV VYV

Page 35



| > end;

Try thisout.

[ > ny_diff( cos(x) );

[> ny_diff( sin(y) );

[>nmy diff( In(x) );

[> nmy_diff( g(x) );

(> ny_diff( 3*x"5);

[> nmy _diff( sin(x*2) );

Well we have not taught our command the chain rule yet so we should not have expected anything
else. But how hard would it be to get the chain rule to work? All we need to do is multiply the
current result with the derivative of what isinside the function. Here is an attempt at this.

>ny diff := proc( f )

> if type(f, function) then

> if op(0, f) ="cos' then -sin( op(f) ) * ny diff( op(f) )
> elif op(0, f) = "sin" then cos( op(f) ) * my_diff( op(f) )
> else "D *f * nmy_diff( op(f) )

> fi

> el se

> diff_poly( f )

> fi

> end;

Let ustry thisversion.

[>nmy diff( sin(x"2) );

[ > nmy_diff( cos(3*x"6+5*x-2) );

[> my_diff( cos(sin(x"2-5*x)) );

[> nmy _diff( cos(h(x)) );

[> ny_diff( g(h(x)) );

It seemsto work fairly well (but the last oneis a bit messed up because of an automatic
simplification). Notice how we have made use of recursion. The procedure my _di f f doesthe

chainrule by calling itself. A procedure that callsitself is said to be recursive.
[ >

Let usteachny di ff abunch of new derivative rules.
> ny_diff := proc( f )
> if type(f, function) then

> i f op(0, f) = "cos' then

> -sin( op(f) ) * my _diff( op(f) )
> elif op(0, f) = "'sin" then

> cos( op(f) ) * ny _diff( op(f) )

> elif op(0, f) = "tan' then

> sec( op(f) )"2 * ny_diff( op(f) )
> elif op(0, f) = "sec' then

>

sec( op(f) )*tan( op(f) ) * ny_diff( op(f) )

Page 36



> elif op(0, f) = 'cot' then

> -csc( op(f) )*2 * ny _diff( op(f) )
> elif op(0, f) = "csc' then

> -csc( op(f) )*cot( op(f) ) * ny_diff( op(f) )
> elif op(0, f) ="In" then

> (1 op(f)) * ny_diff( op(f) )

> elif op(0, f) = "exp' then

> f* my_diff( op(f) )

> else "D *f * nmy_diff( op(f) )

> fi

> el se

> diff_poly( f )

> fi

> end;

Here are several of examples of its use.

[>nmy diff( I n(x"2-2) );

[ > ny_diff( csc(exp(5*x-x"(-2))) );

[ > ny_diff( x*"2+cos(x"2) );

We should be able to differentiate functions like this last one. But fixing this problem, given the way
that wehaverry di ff,diff_poly,anddi ff _ter morganized, would be too difficult. So let us
step back alittle and reorganize what we have written so far. Wewant nmy _di f f to be ableto do
the sum rule for differentiation (i.e., the derivative of a sum isthe sum of derivatives). Right now,
we have that ruledoneindi f f _pol y for sums of monomials (implemented using the nap
commandand di ff _t ern). Let uspull thetest for the™ +  datatypeout of di f f _pol y and put
itinmy_di ff.Thenmy di ff canhandle sums of functions and monomials, and we will no
longer evenneed di ff _pol y (wejust need to changethecall todi ff _pol y at the end of

nmy _diff intoacaltodiff_termn).Andwedo not need to makeany changeindi ff_term
Hereisthe new versionof ny _di f f.

[ >

> ny_diff := proc( f )

sec( op(f) )*tan( op(f) ) * ny_diff( op(f) )
elif op(0, f) = 'cot' then

> if type(f, "+ ) then # do the sumrule
> map( nmy_diff, f )

> elif type(f, function) then

> if op(0, f) = 'cos' then

> -sin( op(f) ) * my _diff( op(f) )
> elif op(0, f) = "'sin" then

> cos( op(f) ) * ny_diff( op(f) )

> elif op(0, f) = "tan" then

> sec( op(f) )*2 * ny_diff( op(f) )
> elif op(0, f) = "sec' then

>

>

Page 37



> -csc( op(f) )*2 * ny_diff( op(f) )
> elif op(0, f) = "csc' then

> -csc( op(f) )*cot( op(f) ) * ny_diff( op(f) )
> elif op(0, f) ="In" then

> (1/op(f)) * ny_diff( op(f) )

> elif op(0, f) = "exp' then

> f* my_diff( op(f) )

> else "D *f * ny _diff( op(f) )

> fi

> el se

> diff _ term( f )

> fi

> end;

Let us see how well this works.

[> ny_diff( x"2 + cos(x"2) );

[> my diff( tan(x) + x"2 + 3/x );

[> ny_diff( | n(x*2+exp(x)) );

[> ny_diff( cos( x+exp(x"2+sin(x))) );
Very nice.

[ >

Exercise: Explainin detail how my di f f manages to compute the derivative of
| n(x"2+exp(x)) which hasthe sum rule inside of the chain rule.

[ >

Now how about the product rule? Can we do that also? The product rule should probably go in
nmy _di ff wherethe sum ruleis also taken care of.
[ >
> ny_diff := proc( f )
| ocal rest; # needed for the product rule
if type(f, "+ ) then # do the sumrul e
map( ny _diff, f )
elif type(f, "*) then # do the product rule
# renove the first operand fromthe product; put the rest
in rest
rest := subsop( 1=1, f );
my diff( op(1, f) )*rest + op(1, f)*ny diff( rest )
elif type(f, function) then
if op(0, f) = "'cos' then
-sin( op(f) ) * ny_diff( op(f) )
elif op(0, f) = "'sin" then
cos( op(f) ) * ny_diff( op(f) )
elif op(0, f) = "tan' then

V V.V V V

V V.V V VYV YVYV

Page 38



sec( op(f) )*2 * ny_diff( op(f) )
elif op(0, f) = "sec' then
sec( op(f) )*tan( op(f) ) * ny_diff( op(f) )
elif op(0, f) = 'cot' then
-csc( op(f) )~2 * nmy_diff( op(f) )
elif op(0, f) = "csc' then
-csc( op(f) )*cot( op(f) ) * nmy_diff( op(f) )
elif op(0, f) ="In" then
(1 op(f)) * ny_diff( op(f) )
elif op(0, f) = "exp' then
f* my_diff( op(f) )
else "D *f * ny_diff( op(f) )
fi
el se
diff_term( f )

VvV VVVVYVYVVVYVYVYVYVYVYV

> fi
| > end;
Will it work?
(> ny_diff( x*2*tan(x) );
(> ny_diff( f(x)*sin(x) );
[ > my_diff( x"2*exp(3*x)*cos(x) );
[ > expand( %);
[> ny_diff( f(x)*g9(x) );
Not quite right (can you see what happened?). We need a slight change in the definition of
my di ff inthe casefor unknown functions.
[ >
> ny_diff := proc( f )
| ocal rest; # needed for the product rule
if type(f, "+ ) then # do the sumrule
map( ny_diff, f )
elif type(f, "*°) then # do the product rule
# renove the first operand fromthe product; put the rest
in rest
rest := subsop( 1=1, f );
my diff( op(1, f) )*rest + op(1, f)*ny diff( rest )
elif type(f, function) then
if op(0, f) = "'cos' then
-sin( op(f) ) * ny_diff( op(f) )
elif op(0, f) = "'sin" then
cos( op(f) ) * ny_diff( op(f) )
elif op(0, f) = '"tan" then
sec( op(f) )*2 * ny_diff( op(f) )
elif op(0, f) = "sec' then

V V. V V V

V VVVVVYVYVVYV

Page 39



sec( op(f) )*tan( op(f) ) * ny_diff( op(f) )
elif op(0, f) = 'cot' then
-csc( op(f) )*2 * ny_diff( op(f) )
elif op(0, f) = "csc' then
-csc( op(f) )*cot( op(f) ) * ny_diff( op(f) )
elif op(0, f) ="In" then
(1/op(f)) * ny_diff( op(f) )
elif op(0, f) = "exp' then
f * nmy_diff( op(f) )
else "D (f) * my_diff( op(f) ) # slight change here
fi
el se
diff _ternm( f )

VVVVYVVYVVYVYVYVYVYV

> fi

| > end;

Now check thisversion.

[> ny_diff( f(x)*g9(x) );

[> nmy_diff( f(x)*g(x)*h(x) );
[ > expand( %) ;

Much better. Let us try some more examples.

Exercise: For each of the following examples, explain the order of the recursive callstomy di f f
that do the calculation. For each recursive call, give the parameter for the call and the part of the
procedure that handles the call. In each example, exactly how many timesareny _di f f and

di ff_termcaled?

Hereisasum ruleinside of a product rule.

(> ny_diff( (x*2+2*x)*In(x) );

Hereisaproduct ruleinside of asum rule.

(> ny_diff( x+x*exp(x)+sin(x) );

Hereisaproduct ruleinside of achain rule.

[>ny diff( tan(sin(x)*cos(x)) );

Hereisachain ruleinside of a product rule.

[ > ny _diff( exp(sec(x))*In(x) );

[ >

But all is not well now. Here isa simple example (that used to work).

[>ny diff( a*x ); # Opps!

It turns out that this mistake is related to an earlier bug that we ignored. Recall that our
differentiation procedures do not compute the following derivative correctly either.

(> ny_diff( x"2+y"2 );

The last result does not make sense because we are not specifying the variable that we are
differentiating with respect to. In the next section, we will present a more versatile differentiation
procedure that will correct this problem.

Page 40



[ >

[ >

L[>

>

VvV VVVVYVVVVVVYVVVVVVVVVVYVYVYVYVYVYV

Exercise: Explain exactly how nmy _di f f arrives at the following, incorrect, result.
(> ny_diff( a*x );

=115.8. Differentiating almost anything (optional)

Hereis adifferentiation procedure that can differentiate amost anything. In particular, it can do a
the basic differentiation rules from freshman calculus. This differentiation procedure, like the one
built into Maple, takes two parameters, the expression to be differentiated and the variable to
differentiate with respect to.

[ > ny diff := proc(f, Xx)

local i, rest;
if not has( f, x ) then O
elif f = x then 1

elif type( f, list ) then map( ny_diff, f, x )
elif type( f, set ) then map( ny_diff, f, x )
elif type( f, "= ) then map( nmy_diff, f, x)
elif type( f, "+ ) then map( nmy_diff, f, x )

elif type( f, ) then
rest := mul (op(i,f), i=2..nops(f));
ny_diff(op(1,f), x)*rest + op(Ll,f)*nmy_diff(rest, x);
elif type( f, "~ ) then
if has(op(1,f), x) and not has(op(2,f), x) then
op(2,f)*op(1,f)~(op(2,f)-1)*my _diff(op(1,f), Xx)
elif not has(op(1l,f), x) and has(op(2,f), x) then
f*In(op(l,f))*nmy_diff(op(2,f), x)

el se
f*xmy_diff( op(2,f)*In(op(l,f)), x)

fi

elif type( f, function ) then

if op(0,f) = "'"sin" then
cos(op(f))*ny_diff(op(f), x)

elif op(0,f) = "'cos' then
-sin(op(f))*my_diff(op(f), x)

elif op(0,f) = "tan' then
sec(op(f))"2*nmy _diff(op(f), x)

elif op(0,f) = "sec' then
sec(op(f))*tan(op(f))*nmy_diff(op(f), x)

elif op(0,f) = "'csc' then

Page 41



-csc(op(f))*cot (op(f))*ny_diff(op(f), x)
elif op(0,f) = '"cot' then
-csc(op(f))r2xmy_diff(op(f), x)
elif op(0,f) ="'In" then
(1/op(f))*my _diff(op(f), x)
elif op(0,f) = "exp' then
frmy _diff(op(f), x)
el se
if nops(f) = 1 then
"D (op(0,f))(op(f))*ny_diff(op(l,f), x)
el se
add( "D [i](op(0,f))(op(f))*ny_diff(op(i,f), x),
i =1..nops(f) )
fi
fi
el se
RETURN( ' procnane(args)"')
fi
| > end:
The rest of this section consists of a series of exercises that ask you to analyze how this procedure
works and examples comparing this differentiation procedure with Maple'sbuilt indi f f command.

[ >

V VVVVVVYVYVYVYVYV

V V.V V V

Exer cise: Find where this procedure distinguishes between the following differentiation rules
[>ny diff( x*n, x );

[>ny diff( x*n, n);

(> ny_diff( n*x, x );

(> ny_diff( x*x, x);

[ >

Exercise: This differentiation procedure is structured differently from the one in the previous
section. Explain why thereisno longer aneed for di f f _t er m In particular, explain how this
procedure differentiates each of the (five) different kinds of monomials. Explain exactly how this
procedure arrives at the correct result when differentiating a* x with respect to x.

(> ny_diff( a*x, x );

[ >

Exercise: Explain exactly how this procedure computes the following result for a derivative that in
freshman calculus would be calculated using the quotient rule.

[ > sin(x)/x"2;

[>nmy_diff( % x);

Compare this result with the result from Maple'sdi f f procedure.

[ >

Page 42



Exercise: Explain how this procedure arrives at the following results.
(> nmy diff( [t,t72,t"3], t );

(> ny_diff( {x*2, x"2+c, In(5*x), In(x)}, x);
Compare these results with the results from Maple'sdi f f procedure.

[ >

Exercise: Explain why this procedure returns the following result.
[>my _diff( vector (3, i->t"i), t );
Compare this result with the result from Maple'sdi f f procedure.

[ >

Exer cise: Explain how this procedure computes the following results.
[>ny diff( f(x), x);

(> ny_diff( f(x,x), x);

(> ny_diff( f(x*2,sin(x)), x);

Compare the last three results with the results from Maple'sdi f f command.

[ >

Exercise: Explain exactly how this procedure arrives at the correct derivative for the following
expression.

(> ny_diff( x"2+y"2, x );

[ >

Exercise: The notation 5( x) represents a call to the constant function with value 5. The derivative
of thiswith respect to x should be zero.

[>ny diff( 5(x), x );

(> diff( 5(x) , x);

Isthere anything in the code for ny _di f f that explicitly handles an expression like 5( x) ? How do
you think that the above results were arrived at by Maple?

[ >

Exercise: Fix thermy di f f procedure so that it returns an error message when its second operand
is not a name. In other words, the following command should return an error message similar to the
one returned by Maple'sdi f f procedure.

[>my _diff( 3*x"2, x"2 );

[> diff( 3*x"2, x"2);

[ >

Here are a number of examples that demonstrate minor differences betweentheny di f f
procedure and Maple'sbuiltindi f f procedure. For each of these differences, try to determine
wherein the procedure my _di f f the difference might come from.

Page 43



f(a(x));

my_diff( % x);
diff( % x );
F(x)*g(x);

my diff( % x );
diff( % x );
h(f(x),9(x));
ny_diff( % x);
diff( % x );
f(x);

‘nmy_diff( % x )'; # unevaluated call to nmy_diff
"diff( %® x )'; # uneval uated call to diff
a*x*exp(x);
ny_diff( % x);
diff( % x );
X"n;

ny_diff( % x);
diff( % x);
tan( x );
my_diff( % x);
diff( % x );
cot( X );
ny_diff( % x);
diff( % x );
exp(f(x));
ny_diff( % x);
diff( % x );
vector (3, i->x"i);
ny_diff( % x);
diff( % x );

1 I 1 i 1 i 1

1 [

11T T 1T 11T

1 I

1T
VVVVVVVVVVVVVVVVVVVVVYVVVYVVYVYVYVYVYV

[

One magjor difference between Maple'sdi f f procedure and our procedure my _di f f isthat di f f
allows the computation of higher order derivatives. If a sequence of names follows the expression to
be differentiated, then di f f will successively differentiate the expression with respect to each name
in the sequence. So, for example, the following command computes a second order (ordinary)
derivative.

[>diff( x*3, X,x );

And the next three commands compute mixed second order partial derivatives.

(> diff( x*3*y"3, X,y );

(> diff( h(u,v), u,v );

(> diff( h(u,v), v,u);

Caling di f f with a sequence of names after the expression amountsto calling di f f recursively.

Page 44



Thatisdi ff (f, x, x) isthesameasdi ff (di ff(f,x),x),anddiff(f,x,y) isthesame
asdi ff(diff(f,x),y).Hereishow we canimplement thisfeature with our procedure

ny_di ff.First,letusrenameny _di ff to nmy_diff/first  toindicatethat it only computes
first order derivatives.

(> my_diff/first™ :=eval( nmy_diff ):

Now let usredefineny di ff asa"frontend"to ny diff/first sothatny diff cando
higher order derivatives.

[ > ny diff := proc(f, x)

> if nargs > 2 then

> my diff( “nmy diff/first (f, x), args[3..-1] )
> el se

> my _diff/first  (f, x)

> fi

> end;

Now we can try out this new version of ny _di f f . Compare these results with the above results

fromdi f f.

[>ny diff( x*3, xX,x );

(> nmy_diff( x*"3*y"3, X,y );

[>nmy _diff( h(u,v), u,v);

[>nmy _diff( h(u,v), v,u);

Notice that the last result is correct, but it isnot as easy to read asthe result from di f f . On the

other hand, notice that the next two results are exactly the same for bothny_di ff anddi ff.
>ny diff( h(u,u,v), u,v,u);

{> diff( h(u,u,v), u,v,u);

[ >

Exercise: Having two procedures, ny _di ff and my_di ff/first ,isnotrealy very optimal.
We did it that way to make it easier to understand the change that was needed in order to implement
higher order derivatives. Combine these two procedures back into a single procedure named

my _di ff that can calculate higher order derivatives.
[ >

Another difference betweenmy di ff anddi f f isthat thedi f f command knows alot more
derivatives.

(> diff( erf(x), x);

[ > diff( BesselJ(2,x), X );

[> diff( Fresnel S(x), x );

(> diff( LambertWx), X );

[>diff( x!', x);

>'diff'( Int(f(x*2),x), X );

S

[ >

Page 45



Exercise: Add one of the above differentiation rulesto thermy di f f procedure.

[ >

The last exercise shows that to add anew functionto ny _di f f we need to edit and then reenter the
complete definition of ny _di f f . On the other hand, the Maple procedure di f f handles functions
in acompletely different way. For each function f that di f f knows how to differentiate, thereisa
function " di ff/f " thatdi ff calstoactually do the differentiation. For example, here isthe
function that di f f usesto compute derivatives involving the function t an.

[ > interface( verboseproc=2 );

[>readlib( diff/tan’):

(> print( diff/tan );

Notice that we now know why di f f computes the derivative of t an differently fromny_di f f.
(> diff( tan(x), x );

[> ny_diff( tan(x), x );

One advantage of the way that di f f handles functionsisthat we can modify theway di f f doesa
differentiation by modifying one of di f f 's helper functions, as the next example demonstrates.

Suppose that we really do not liketheway di f f differentiatesthet an function. Let us change this
behavior by redefining the function " di ff/tan .

(> "diff/tan := proc(a,x) (sec(a)”2)*diff(a,x) end,

(> diff( tan(x), x );

Our redefinitionof “di ff/tan" did not have any effect because di f f has aremember table. So
we need to clear this remember table.

[ > readlib(forget):

[ > forget( diff, reinitialize=false );

(> diff( tan(x), x );

Notice theform of f or get that we used. The help page for f or get mentions two important facts.
First, when we call f or get (di ff), Maple automatically callsf or get for every function whose
name beginswith di f f /. So, in particular, caling f or get (di ff) meansthat Maple aso cals
forget( diff/tan ). Second, the help page mentionsthat callingf orget ( diff/tan")
has the effect of not just resetting the remember tablefor “ di f f/ t an™ (which doesn't even have a
remember table), it also reinitializes " di ff/t an™ back toitsorigina definition. So the call
forget (diff) wipesoutour redefinitionof “ di ff/tan" . Theaboveway of caling f or get
prevents this wiping out of our redefinitionof " di ff/tan".

[ > forget( diff );

(> diff( tan(x), x );

[ >

Exercise: In this exercise you are to analyze the source code for the " di f f/ | nt ~ procedure.
[ > interface( verboseproc=2 );
(> readlib( diff/Int"):

Page 46



(> print( "diff/Int" );
There are two kinds of integrals that we can differentiate, indefinite and definite integrals.
Determine the exact part of the codefrom “di ff/ | nt ~ that implements the following three

deriviatives of indefinite integrals.
(> 'diff" ( Int(f(x), x), X );

> %
(> '"diff ( Int(f(t), t), x);
(> %
(> 'diff"'( Int(f(x), t), x);
[> %

Now natice that in the general form of the derivative of adefinite integral, there are three termsin

the derivative, one term from the integrand and one term from each of the limits of integration.
>Dff( Int(f(t,x), t=a(x)..b(x)), x)

{> =diff( Int(f(t,x), t=a(x)..b(x)), x);

Determine the exact stepsthat “ di f f/ | nt © goes through to compute each of the following

derivatives. In particular, look for where each of the three terms are calculated (each of the three

termsis always calculated, but aterm may end up being zero).
[>'diff'( Int(f(t), t=a..b), x);

> %
(> 'diff"'( Int(f(x), x=a..b), x);
[> %

(> 'diff'( Int(f(t), t=a..x), X );
[> %

(> 'diff"'( Int(f(t), t=x..b), x );
[> %

(> 'diff"'( Int(f(t,x), t=a..b), x);
(> %

(> 'diff"( Int(f(t), t=a(x)..b(x)), x);
[> %

Explain in detail the different stepsthat “ di ff/ | nt ~ usesin the calculation of each of the
following derivatives.

(> 'diff"'( Int(f(t,x), t=a(x)..b(x)), x );

L[> %

(> 'diff"( Int(f(t,x), x=a(x)..b(x)), x );

[> %

[ >

Exercise: Look at the source code for differentiating the absolute value function.
[ > interface( verboseproc=2 );

[>readlib( diff/abs):

(> print( diff/abs );

Now look at the following result.

(> diff( abs(x"2), x );

Page 47



It is not clear from the source code for ~ di f f / abs” wherethe| x| in the output comes from. Do
the same calculation but with some delayed evaluation thrown in.

(> diff( "abs' (x"2), x );

Do the calculation again with a different kind of delayed evaluation.

(> diff( abs(''x"2""), x );

> %

Use the help page on abs and the source code for ~ di f f / abs”™ to explain exactly how Maple
arrived at each of these results. In particular, explain exactly how the chain rule was applied. (Notice
how this example shows that delayed evaluation is not aways benign. It can sometimes change the

form of aresult.)
[ >

Oneredlly big advantage of theway that di f f handlesfunctionsisthat it makesthedi f f
procedure extensible. This means that we can use thisinterfacetothedi f f command to teach
di ff new differentiation rules. For example, suppose we have defined a pair of functionsf ob and
gob, and the derivative of f ob isgob and the derivative of gob isf ob squared. We can teach the
di f f command these new differentiation rules by defining two new procedures " di ff/f ob™ and
“diff/gob .Hereisthedefinitionof "di ff/fob" .
> "diff/fob := proc(u, x)

> gob(u) * diff(u, x) # be sure to inplenent the chain rule
| > end;
And hereisthe definition of ~ di f f/ gob™ .

> "diff/gob” := proc(u, x)
> fob(u)?2 * diff(u, x)
| > end;

Here are some derivatives using f ob and gob.
(> diff( fob(x), x );

[ > diff( gob(x), x );

(> diff( fob(x"2), x );
[>diff( fob(x), x,x );
[>diff( fob(x*2), x,x );

[ >

In general, if we have afunction f that wewant toteach di f f how to differentiate, we need to
define aprocedurecaled " di ff/f " .If f isafunction of one variable, then acall such as

di ff(f(u),x) causesthecal "diff/f (u,x).Iff isafunction of two variables, then acal
suchasdi ff (f(u,v), x) causesthecall " di ff/f (u,v,x).Iff isafunction of three
variables, thenacall suchasdi ff (f (u, v, w), x) causesthecal "di ff/f (u,v,w x).So
“diff/f isaprocedurewith one more parameter than f , and the last parameter for “ di ff/ f°
isthe variable name that we are to differentiate with respect to. The " di f f/ f © procedureis
responsible for doing all of the differentiation of the expressionf (u) , soinparticular “ di ff/f"
needs to make sure to implement the chain rule and computedi f f (u, x) .

Page 48



[ >

Let us change the definition of “ di f f/ f ob™ and drop the chain rule from the definition.

> "diff/fob” := proc(u, Xx)
> gob(u)
> end;

Let ustry out this (incorrect) versionof ~di ff/fob" .

(> diff( fob(x"2), x );

The chain ruleis still there. The reason isbecause di f f has aremember table, and di f f ispulling
that old result from its remember table. Let usclear di f f 'sremember table and then try again.

[ > readlib(forget):

[ > forget( diff );

(> diff( fob(x"2), x );

And now we seethat if “ di ff/fob™ doesnotimplement the chain rule, then the chain rule does

not get done.
[ >

Exercise: A function hob has the property that its derivative is the negative of the square root of
itself timesthe | n function. That is

ﬂlxhob(x) = -4/ hob(x) In(x).

Writeaprocedure " di f f/ hob™ that implements this differentiation rule.
[ >

Exer cise: Suppose that we have three functions, f g of two variables, f of one variable, and g also
of one variable, such that the partial derivatives of f g are given by the following formulas.

ﬂlfg(x, y) =f(x) o(y)
X

1

ﬂfg(x, y) =f(y) 9(x)
Write aprocedure " di f f/ f g that implements these differentiation rules. Find concrete examples
of three functionsf g, f , and g that have these properties.

[ >

L[>
=115.9. Online help for Maple programming

Thereisnot alot of online information about Maple programming. Here are some help pages related
to the above examples.

The following help page gives an example of an extension " di ff/f " fordi ff.

Page 49



[> 2diff

The following help page mentions how extensions ™ expand/ f ~ for expand are called, but it
does not give any examples.

[ > ?expand

The following help page mentions a direct way of calling an extension " si npl i fy/f " for

si nmpl i fy, butit gives no information about the automatic calling of ~ si npl i fy/f " that we
have been making use of, and it does not give any examples.

[> ?sinplify

In the examples we gave above of extending Maple commands, we informed Maple about the
properties of some functions. But in those examples the functions were unassigned names, so there
was no sense of evaluating the functions. The following commands give some information on how
to extend Maple's evaluators so that we can tell Maple how we want a certain function to be
evaluated.

[ > ?eval

[ > ?eval f

[ > ?eval apply

It is possible to define new datatypes by extending Maple'st ype command. Thisis briefly
mentioned in the following help page.
[ > ?type

The next example worksheet works out afairly detailed example of a collection of procedures that
extend Maple.
[ > ?exanpl es, bi narytree

We used the example of defining procedures that differentiate and integrate symbolically. The
following two example worksheets describe a very different way to implement symbolic
differentiation and integration.

[ > ?exanpl es, defi ne

[ > ?exanpl es, pat mat ch

There isalot more to Maple programming than just the use of the Maple language and Maple's data
structures. Another key ingredient to understanding how Maple works is to know the algorithms that
Maple uses. Here is a help page that lists several references for the algorithms that Maple uses for
polynomial manipulations.

[ > ?polyrefs

And here are some references for integration agorithms.

[ > ?intrefs

[ >

Page 50



