jGRASP

Tutorials

Tutorials for the JGRASP™ 1.8.7
Integrated Development
Environment

James H. Cross Il and Larry A. Barowski

Auburn University

September 2, 2009

Copyright © 2009 Auburn University
All Rights Reserved

The Tutorials have been updated with each new major
release of jGRASP since their original inclusion in the
JGRASP Handbook (Copyright © 2003 Auburn University).

James H. Cross Il is a professor of computer science and
software engineering at Auburn University.

Larry A. Barowski is a research associate in computer science
and software engineering at Auburn University.

Printing Considerations

The Tutorials are formatted for 5.5 in. x 8.5 in. pages with a base font of 10
point Times New Roman. This improves on-screen viewing and facilitates
booklet printing (four pages per sheet of 8.5 in. x 11 in. paper when printing
on both sides). On Adobe Acrobat’s Print dialog, select “Booklet Printing”
under Page Scaling. The default Booklet Subset will be Both sides.

The Tutorials may also be printed “two pages per sheet” on 8.5 in. x 11 in.
paper by selecting “Multiple pages per sheet” under “Page Scaling” on
Adobe’s Print dialog. This may yield a slightly smaller overall font than
booklet printing.

If “Page Scaling” is set to “None” (the default) or “Shrink to printable area”,
the Tutorials will be printed “one page per sheet” with the font slightly larger
than booklet printing. If “Page Scaling” is set to “Fit printable area”, the
Tutorials may be printed “one page per sheet” with the font even larger.

Regardless of the pages per sheet or page scaling you select, it is strongly
recommended that you print a few test pages before printing a large humber
of pages. The options on your particular printer may be different from the
ones described above.

Table of Contents

Overview of JGRASP and the Tutorials...........c........... 1
1 Installing JGRASP ...t 1-1
1.1 The INSLAll FIlES......coeiiii et 1-2
1.2 Installing on Windows 95/98/2000/XP/ViSta..........ccccerevirernieneninennnns 1-2
1.3 Installing on Mac OS X ...coooviiiiiiiiece e 1-8
1.4 Installing on Other Systems (including x86 Linux, SPARC Solaris, and
NELBSD/IBBB) ..c.vevevirieiiitirieiisiesieesie ettt bbb 1-12
IS O] 111]| [T £SO 1-12
1.6 Setting PATH and CLASSPATH ..o 1-14
1.7 JGRASP Start Up SEttingscceovvverieiriieireecseecseee e 1-15
1.8 PIug-Ins fOr JGRASPocvieeeece st 1-16
2 Getting Startedcccceeeeevee v 2-1
2.1 Starting JGRASPociiiiie e 2-2
2.2 Quick Start - Opening a Program, Compiling, and Running.................. 2-3
2.3 Creating a NEeW File ... 2-5
2.4 .SaVING @ FIlE ..o 2-8
2.5 Building Java Programs - - RECAP........coeererieenieiei e 2-9
2.6 Interactions (JaVa ONMY)ccovvvverreieecee st 2-10
2.7 Generating a Control Structure Diagram..........ccccoeeevrieceeieeieesesennennns 2-12
2.8 FOIAING @ CSD.....ooviiiieicieee ettt 2-14
2.9 LiiNE NUMDEIS. ...c.viieieiiesiest ettt st 2-15
2.10 Compiling a Program — A Few More Details.........ccccooervvicrnrnninnn. 2-15
2.11 Running a Program - Additional Options............cccevvivivveiieveieienenn, 2-18
2.12 Using the Debugger (Java Only)........cccooeieienenininieniee e 2-19
2.13 Opening a File — Additional OptioNnsccccevviereineneineneesee 2-22
2.14 CloSING @ Il .o.vvivce e 2-24
2.15 EXItING JGRASP ...ttt e 2-25
2.16 Review and Preview of What’s Aheadcccoceiiiiiiniinicieneennn, 2-25
2,17 EXEICISES .veuveeeiterteeieeteereeieeeste et ste s e s eneeseete st sbestesnesseeneenseseeneenees 2-27
3 Getting Started with Objects..........ccccccevivviveiieenne. 3-1
3.1 Starting JGRASP ..o e 3-2
3.2 Navigating to Our First Example Project.........cccovevveneieneinicneinennas 3-3
3.3 Opening a Project and UML WiNdOW..........cccovviviveenrieienenene e 3-4

3.4 Compiling and Running the Program from UML Window 3-5

3.5 Exploring the UML WiINAOWcccoveveriiiiiinesese e 3-6
3.6 Viewing the Source Code in the CSD Windowccccceveveieieninnnenn, 3-7
3.7 Exploring the Features of the UML and CSD Windows........................ 3-8
3.7.1 Viewing the source code for a class........cc.ccecereervrivrinninnnsnnnn 3-8
3.7.2 Displaying class information...........c.ccccoervinennineinieneinens 3-8
3.7.3 Displaying Dependency Informationccceceverevivrinnncnnnnn. 3-8
3.8 Generating Documentation for the Project..........ccoccoeeeveiicncinciennnns 3-9
3.9 Using the Object WOrkbench..........c.cocovvvieiininiesiesisecee e 3-10
3.10 Opening a Viewer WINdOW........c.ccceveviieiennse e see e s 3-13
3.11 Invoking @ Methodcocuiiiiiiiiieeee e 3-14
3.12 Invoking Methods with Parameters That Are Objectscccce...e. 3-15
3.13 Invoking Methods on Object Fields..........cccocvivvivinniecicie e, 3-16
3.14 Showing Categories of Methods.........cccccocviieie i, 3-17
3.15 Creating Objects from the CSD WiNdow............cccceverenvnieiiieieneennn. 3-18
3.16 USING INTEraCtioNScccevveiiirieinierieesie et 3-19
3.17 Running the Debugger on Invoked Methodsc.ccccoevevvrceinnenne. 3-21
3.18 Creating an Instance from the Java Class Librariescccccoeevuenee. 3-21
3.19 Exiting the WOrkBench ... 3-21
3.20 ClOSING @ PIOJECT ..ot e 3-22
3. 21 EXItiNG JGRASP ...t 3-22
3.22 Review of TooIbar BULLONSccccceiveiiienieiesenee e 3-23
323 EXBICISES -.euveeeiteitesie ettt sttt sttt bbbt ee e e 3-24
4 INTEraCtiONSocoviiiieecce e 4-1
4.1 Starting INtEraCtionNSccceiiveiieieieeie e s re e eneas 4-2
4.2 Interactions With Primitives ... 4-3
4.3 Interactions with Reference TYPES.......ccoviriiiiniiiineseeseeis 4-8
4.4 Interactions With Your OWN CIasSeS.......c.cevvrereiinerieienenieese e 4-10
4.5 Working with Reference Types — Important Details.............cc.ccceenenee. 4-10
4.6 Interactions with the DebUGQErcoovieiiii i 4-10
5 The Control Structure Diagram (CSD).................. 5-1
5.1 An Example to [lustrate the CSD........cccccceieviiiiein e 5-2
5.2 CSD Program ComponentS/UNItSccceeirreneienineneeee e 5-4
5.3 CSD CoNtrol CONSIIUCTS.......coveiirieieieiieieieiee e e 5-5
5.4 CSD TeMPIALESevecevereeecie ettt 5-10
5.5 Hints on Working with the CSDccccccoi i 5-11
5.6 Reading Source Code With the CSDccoceviiiiiiiiineeecee e, 5-12
5.7 REFEIENCES ..ottt e 5-18

6 The Integrated Debugger........c.cccccovvvevieiieiincrnnene. 6-1

6.1 Preparing to RUN the DebUGQerccoveiiiiieni et 6-2
6.2 Setting @ Breakpoint.........ccocooviiiiiiiiiiic e 6-3
6.3 Running a Program in Debug MOGEccccevvvvieeeereeresenese e 6-3
6.4 Stepping Through a Program — the Debug BUttonsccccceevveveneen, 6-5
6.5 Stepping Through a Program — without Stepping INn.........cccccccoeviinnene 6-7
6.6 Stepping Through a Program — and Stepping Inccccocerviiiinninennns 6-9
6.7 Opening ODJECt VIBWENS ..o e 6-11
6.8 Debugging a Programcccccceeveieseeieeieeiiesese e sre e saeseesee e sre e 6-13
A (0] [101 € SRS 7-1
7.1 Creating @ ProOjECt......c.coviiiieiesise e 7-2
7.2 Adding files t0 the ProjeCt.......cccciieieiecicecece e 7-4
7.3 Removing files from the Project ... 7-5
7.4 Generating Documentation for the Project (Java only) ..o 7-6
7.5 Jar File Creation and EXtraction...........cccoccvereieneieiiensiene s 7-8
7.6 CloSING @ PrOJECTvvciicicice e 7-8
T.7 EXEICISES .ttt sttt sttt ettt ettt sb ettt e e e e bbb ne e 7-9
8 UML Class Diagrams........cccevvereeerieenieesenseesneeenens 8-1
8.1 0pening the PrOjJECt........cccii i 8-2
8.2 Generating the UML ... it 8-2
8.3 Compiling and Running from the UML Windowcccccccceiiiinennn 8-4
8.4 Determining the Contents of the UML Class Diagram..........c.ccoceevvenae 8-5
8.5 Laying Out the UML Class Diagramccocevevvvnvnieeieerenenieseeseeseens 8-8
8.6 Displaying the Members 0f @ Class.........ccccovvvveiviinnieeieiesec e 8-9
8.7 Displaying Dependencies Between Two Classes........cccoeverererereenne. 8-10
8.8 Navigating to Source Code via the Info Tab.........cccceevvvviiniiicneienn, 8-11
8.9 Finding a Class in the UML Diagramcccocevevvivnvniveieereeseneseeseenens 8-11
8.10 Opening Source Code from UMLc.cccooeveieieinsecce e 8-11
8.11 Saving the UML LayOUL...........cccoiiiireiieieiee e 8-12
8.12 Printing the UML Diagramcccoevireniiininneneiseseese e 8-12
9 The Workbenchccccoovviiiii e 9-1
9.1 Invoking Static Methods from the CSD Windowccccoceieneninnene. 9-2
9.2 Invoking Static Methods from the UML Windowccccccecenirnenn. 9-4
9.3 Creating an Object for the Workbenchcccccooovvivvvviviiviinciecicieins 9-7
9.4 Invoking @ Methodcccoceiiiiiiecieece e 9-9
9.5 Invoking Methods with Parameters Which Are Objects..........cc.cc..... 9-10
9.6 Invoking Methods on Object Fields.........ccccoovineiineniinceeeee 9-10

9.7 Selecting Categories of Methods to INVOKEccccvvvveiererinnieninne. 9-12

9.8 Opening ODJECt VIBWENScccvieieeeeece et 9-15
9.9 Running the Debugger on Invoked Methodscccccceevviiiieieennane. 9-17
9.10 Exiting the WOrKBench ... 9-17
10 Viewers for Data Structures............cccceevveeiveeenen. 10-1
10.1 INErOAUCTION ...ttt 10-2
10.2 OPENING VIBWELS.....cuiiuiiiieiiie ettt etee et sae st snenae 10-2
10.3 Setting the VIeW OPLioNSccoeiiereiininesenese e 10-5
10.4 Selecting AMONG VIBWS.......ciiviveierieieiessse e seseeeesaesie e sre e sneanens 10-7
10.5 Presentation Views for LinkedList, HashMap, and TreeMap............ 10-9
10.6 Presentation Views for Code Understandingcccoceveieiennnnnn 10-14
10.6.1 LinkedLiStEXample.javaccocvvvivrrieeieeeenese e e 10-15
10.6.2 BinaryTreeEXample.java........ccoovvvieeieiieeieereenesesese e 10-19
10.6.3 Configuring Views generated by the Structure Identifier 10-22
10.7 Using the Viewers from the Workbench.............ccccocneiiniinnnn, 10-26
10.8 SUMMANY OF VIBWS.....ccverieiiicie st 10-33
10.9 EXEICISES ..vvviveretiiereatesiesesteseeseste et seese st ee st et sne st neenennenes 10-35

Overview (1.8.7) 9/2/2009

Overview of JGRASP and the Tutorials

JGRASP is a lightweight integrated development environment (IDE), created
specifically to provide visualizations for improving the comprehensibility of
software. JGRASP is implemented in Java, and thus, runs on all platforms with
a Java Virtual Machine. jJGRASP supports Java, C, C++, Objective-C, Ada, and
VHDL, and it comes configured to work with several popular compilers to
provide “point and click” compile and run functions. jGRASP is the latest IDE
from the GRASP (Graphical Representations of Algorithms, Structures, and
Processes) research group at Auburn University.

JGRASP currently provides for the automatic generation of three important
software visualizations: (1) Control Structure Diagrams (Java, C, C++,
Objective-C, Ada, and VHDL) for source code visualization, (2) UML Class
Diagrams (Java) for architectural visualization, and (3) Dynamic Viewers (Java)
which provide runtime views for primitives and objects including traditional
data structures such as linked lists and binary trees. jJGRASP also provides an
innovative Object Workbench, Debugger, and Interactions which are tightly
integrated with these visualizations. Each is briefly described below.

The Control Structure Diagram (CSD) is an algorithmic level diagram
generated for Ada, C, C++, Objective-C, Java and VHDL. The CSD is intended
to improve the comprehensibility of source code by clearly depicting control
constructs, control paths, and the overall structure of each program unit. The
CSD, designed to fit into the space that is normally taken by indentation in
source code, is an alternative to flow charts and other graphical representations
of algorithms. The CSD is a natural extension to architectural diagrams such as
UML class diagrams.

The CSD window in jJGRASP provides complete support for CSD generation as
well as editing, compiling, running, and debugging programs. After editing the
source code, regenerating a CSD is fast, efficient, and non-disruptive. The
source code can be folded based on CSD structure (e.g., methods, loops, if
statements, etc.), then unfolded level-by-level. Standard features for program
editors such as syntax based coloring, cut, copy, paste, and find-and-replace are
also provided.

The UML Class Diagram is currently generated for Java source code from all
Java class files and jar files in the current project. Dependencies among the
classes are depicted with arrows (edges) in the diagram. By selecting a class, its
members can be displayed, and by selecting an arrow between two classes, the
actual dependencies can be displayed. This diagram is a powerful tool for
understanding a major element of object-oriented software - the dependencies
among classes.
1

Overview (1.8.7) 9/2/2009

The Dynamic Viewers for objects and primitives provide visualizations as the
user steps through a program in debug mode or invokes methods for an object
on the workbench. Textbook-like Presentation views are available for instances
of classes that represent traditional data structures. When a viewer is opened, a
structure identifier attempts to automatically recognize linked lists, binary trees,
hash tables, and array wrappers (lists, stacks, queues, etc.) during debugging or
workbench use. When a positive identification is made, an appropriate
presentation view of the object is displayed. The structure identifier is intended
to work for user classes, including textbook examples, as well as the most
commonly used classes in the Java Collections Framework (e.g., ArrayList,
LinkedList, HashMap, and TreeMap). A future Viewer API will allow users to
create custom dynamic views of their own classes.

The Object Workbench, in conjunction with the UML class diagram, CSD
window, and Interactions, allows the user to create instances of classes and
invoke their methods. After an object is placed on the Workbench, the user can
open a viewer to observe changes resulting from the methods that are invoked.
The Workbench paradigm has proven to be extremely useful for teaching and
learning object-oriented concepts, especially for beginning students.

The Integrated Debugger works in conjunction with the CSD window, UML
window, Object Workbench, and Interactions. The Debugger provides a
seamless way for users to examine their programs step by step. The execution
threads, call stack, and local variables are easily viewable during each step. The
JGRASP debugger has been used extensively during lectures as a highly
interactive medium for explaining programs.

The Interactions (new in JGRASP 1.8.7) feature allows users to enter most Java
statements and expressions and then execute or evaluate them immediately.
Interactions can be especially helpful when learning and experimenting with
new elements in the Java language.

The jJGRASP Tutorials provide best results when read while using jGRASP;
however, they are sufficiently detailed to be read in a stand-alone fashion by a
user who has experience with one or more other IDEs. The tutorials are quite
suitable as supplemental assignments during a course. When working with
JGRASP and the tutorials, students can use their own source code, or they can
use the examples shown in the tutorials (.\JGRASP\examples\Tutorials\). Users
should copy the examples folder to their own directories prior to modifying
them. The Tutorials are listed below along with suggestions for their use.

1 Installing JGRASP — Most users will skip this tutorial. However, it does
provide details on the installation process as well as instructions for changing

Overview (1.8.7) 9/2/2009

default startup settings for JGRASP. This tutorial also describes how to set the
system path and the Java classpath from within jJGRASP.

2 Getting Started — This tutorial is a good starting place for those new to
JGRASP. It introduces the process of creating and editing Java source files, then
compiling and running programs. It also introduces interactions, the control
structure diagram, and the debugger.

3 Getting Started with Objects — This tutorial is a good starting place for those
interested in an Objects First approach to learning Java, but it assumes the
reader will refer to the previous tutorial as needed. Projects, UML class
diagrams, the Object Workbench, and Viewers are introduced.

The topics that are introduced in Getting Started and Getting Started with
Obijects are covered in more depth in the following seven tutorials. In most
cases, these tutorials may be read as a topic becomes relevant to a user,
rather than in the order indicated by their numbers.

4 Interactions — Although the Interactions feature is introduced in Getting
Started and Getting Started with Objects, this tutorial provides examples for
several common scenarios, including multi-line interactions and how to copy
and paste interactions.

5 The Control Structure Diagram — This tutorial is perhaps best read as control
structures such as the if, if-else, switch, while, for, and do statements are studied.
However, for those already familiar with the common control structures of
programming languages, the tutorial can be read at any time. The latter part
contains some helpful hints on getting the most out of the CSD.

6 The Integrated Debugger — This tutorial can be done anytime. Students
should be encouraged to begin using the debugger early on so that they can step
through their programs, even if only to observe variables as their values change.

7 Projects — This tutorial discusses the concept of a project file (.gpj) in
JGRASP which stores all information for a specific project. This includes the
names (and paths) of each file in the project, the project settings, and the layout
of the UML diagram. Some users may want to work in projects from the
beginning while others want to deal with projects only when programs have
multiple classes or files.

8 The UML Class Diagram — The focus of this tutorial is on generating a UML
class diagram for a project and then using the diagram as a basis for creating
instances for the workbench. This tutorial assumes the user understands the
concept of a project and is able to create one (Tutorial 4).

Overview (1.8.7) 9/2/2009

9 The Workbench — This tutorial assumes the user is able to create a project
(Tutorial 4) and work with UML class diagrams (Tutorial 5). The workbench
provides an exciting way to approach object-oriented concepts and
programming by allowing the user to create objects and invoke methods
directly.

10 Viewers for Data Structures — This tutorial provides a more in-depth
introduction to using Viewers with linked lists, binary trees, and other traditional
data structures. Examples of presentation views are included for instances of
non-JDK implementations for a linked list and binary tree as well as for
instances of ArrayList, LinkedList, HashMap, and TreeMap.

For additional information and to download jGRASP, please visit our web site
(http://www.jgrasp.org).

http://www.jgrasp.org/�

Installing (1.8.7) 9/2/2009

1 Installing jGRASP

Among all of the JGRASP Tutorials, this one is expected to be the least read.
Most users will download the JGRASP self-install file for their system, double-
click the file, follow the instructions in the dialog, launch JGRASP, and be up
and running. If you have successfully done this, you are ready to go on to the
next chapter.

However, occasionally users need additional information when installing
JGRASP and configuring it for their particular needs. This tutorial includes a
description of the available install files, instructions for installing on Windows,
Mac OS X, and Linux/UNIX, information on compilers, instructions for setting
the system path and Java classpath, a description of the available jGRASP
startup settings, and a list of available plug-ins for JGRASP. Most readers will
need to refer to only a few of the sections below.

Since jJGRASP is written in Java, you must have Java installed on your
machine in order to run jGRASP. To compile and run Java programs, you
will need to install the full Java 2 Platform Standard Edition (J2SE)
Development Kit which is usually referred to as the JDK. See Section 1.5 for
information on the JDK as well compilers for other languages.

Objectives — When you have completed this tutorial, you should be able to
successfully install JGRASP on your computer, change the default compiler
configuration, set paths and classpaths, modify the JGRASP startup settings,
and be familiar with the available plug-ins for JGRASP.

The details of these objectives are captured in the hyperlinked topics listed
below.

1.1 The Install Files

1.2 Installing on Windows 95/98/2000/XP/Vista

1.3 Installing on Mac OS X

1.4 Installing on Other Operating Systems

1.5 Compilers

1.6 Setting PATH and CLASSPATH

1.7 JGRASP Start Up Settings

1.8 Plug-Ins for jJGRASP

1-1

Installing (1.8.7) 9/2/2009
1.1 The Install Files

The current version of jJGRASP is available from http://www.jgrasp.org in
separate install files: one is self-extracting for Microsoft Windows, one is for
Mac OS X (10.4 or higher), and the third is a generic ZIP file primarily
intended for Linux and UNIX systems, although it can be used to install
JGRASP on any system. Each of these is briefly described below. Beginning
with version 1.8.6_02, JGRASP requires Java 1.5 (a.k.a. Java 5.0) or higher. If
you must use an older version of Java, you will need to use JGRASP 1.8.6_01.

JGRASP exe — Windows self-extracting exe file. In order to run
JGRASP and compile and run Java programs, the full JDK (rather
than JRE) must be installed.

JGRASP pkg.tar.gz — Mac OS X 10.4 or_higher (PPC or_Intel)
tarred and gzipped package file (requires admin access to install).
J2SDK is pre-installed on Mac OS X machines, but you may want to
upgrade if a newer version is available.

JGRASP zip — Generic Zip file. After unzipping the file, refer to
README file for installation instructions. The full JDK must be
installed in order to run jGRASP and to compile and run Java
programs.

1.2 Installing on Windows 95/98/2000/XP/Vista

If you plan to compile and run Java programs on a Windows machine, the
JGRASP exe install file is recommended. Prior to running jGRASP, you will
also need to have installed the full JDK on your machine. If you are not
planning to compile and run Java programs (e.g., you plan to compile and run
programs written in C/C++ but not Java) then you will only need the JRE
installed rather than the full JDK.

After you have downloaded the install file, simply double click on it, and you
should see the JGRASP Setup dialog open as shown in Figure 1-1. Click “Next”
to continue the installation process. The script will take you through the steps
for installing JGRASP. If you are uncertain about a step, you should accept the
default by clicking Next and/or pressing the ENTER key.

1-2

http://www.jgrasp.org/�

Installing (1.8.7) 9/2/2009

A JGRASP 1.8.6_03 Setup EEX

Welcome to the JGRASP 1.86_03
Setup Wizard

This program will install JGRASP.
It is recommended that you quit all applications before
instaling. You must quit JGRASP if it is running.

Click Next to continue.

[<Back][next> | [cancel

Figure 1-1. jGRASP Setup dialog

The License Agreement is shown in Figure 1-2. You will need to scroll the
dialog on your screen to see the entire license. After reviewing it, click “I
Agree” to continue.

B jGRASP 1.8.6_03 Setup

License Agreement
Please review the license terms before instaling JGRASP.

Press Page Down to see the rest of the agreement.

IGRASP(TM) License ~
Software License for jJGRASP Version 1.8.6_03
Copyright 1993-2007 Auburn University

Section 1. License Grant

/Auburn University grants to you a non-exdusive and

non-transferable license to use JGRASP and the assodated

documentation provided in jgrasp/help, collectively

"GRASP”, JGRASP may be installed for use on a single

computer or on a local ares network, The "wedge” source

code provided in the jgrasp/src directory is free of v

1f you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install JGRASP.

[<Back][rasee] [cancel

Figure 1-2. License Agreement

The next screen, Figure 1-3, allows you to select the components you want to
install. Most users should simply install the “Standard” group of components,
which is the default. However, if you need to provide common settings for all
users on a network, you should select the “Administrator” group (or “Admin
Items™). When these are included, you will be asked to provide an admin folder
name in a later screen (Figure 1.5).

1-3

Installing (1.8.7) 9/2/2009

& jGRASP 1.8.6_03 Setup

Choose Components
Choose which features of jGRASP you want to install.
Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.
Select the type of install: I
Description
Or, select the optional Core Fles {required) i
mmp”unems you wish to Desktop Shorteut
install:
[] Admin Items

Space required: 5.5MB

[< Back ” Next > I l Cancel]

Figure 1-3. Selecting components to install

The screen in Figure 1-4 allows you to indicate the folder where JGRASP is to
be installed. The Windows default is “Program Files” so most users should just
click “Next” to continue

B jGRASP 1.8.6_03 Setup

Choose Install Location
Choose the folder in which to install jGRASP.

Setup will install JGRASP in the following folder. To installin 2 different folder, dick Browse and
select another folder. Click Next to continue.

Destination Folder

C: Program Files GRASP' Browse...

Space required: 5.5MB
Space available: 47,168

[eos [] [

Figure 1-4. Choosing the Install directory

1-4

Installing (1.8.7) 9/2/2009

The screen in Figure 1-5 will only be displayed if you selected the “Admin
Items” above in Figure 1-3. Most users should not install Admin Items.
However, if you include Admin items, you need to provide a directory for the
common settings for all users on the target network. Use a full path to specify
the directory. This directory must be accessible and readable by all users, and
writable only for the system administrators. You should select a directory
location outside the JGRASP distribution, so that you can continue to use the
settings after upgrading.

Administrators (i.e., anyone with write access in the common settings directory)
will have additional options on the “Settings” menu when they run jGRASP.
These include CSD, Compiler, and Print settings.

B jGRASP 1.8.6_03 Setup

Choose Admin Settings Directory
G Choose the folder in which to store admin settings

Choose a folder in which to store admin settings. This folder must have write access for
administrators only, and read access for all users.

Admin Settings Folder

[eos [] [

Figure 1-5. Choosing the Admin directory
if “Admin Items” are included in Figure 1-3

1-5

Installing (1.8.7) 9/2/2009

The screen in Figure 1.6 allows you to specify the Start Menu folder for the
JGRASP shortcuts. Normally, this folder would be named “jGRASP” as
indicated and you should click “Next” to continue.

B jGRASP 1.8.6_03 Setup

Choose Start Menu Folder
Choose a Start Menu folder for the JGRASP shortcuts,

Select the Start Menu folder in which you would like to create the program's shortcuts. You
can also enter a name to create a new folder,

EnZip A
Games

Google Earth

GraphsSight Junior v.1.0

InterVideo WinDVD Creator 3

Microsoft Office

Mazilla Firefox

Multimedia Center for Think Offerings

Netwaiting b

[[]Do not create shortcuts

(<o [e] [[com]

Figure 1-6. Choosing the Start Menu folder

Figure 1.7 shows the file associations supported in jGRASP. By default
JGRASP includes those file extensions that are not already associated with other
applications. After selecting (or unselecting) as appropriate, click “Install” to
begin the install process.

2 jGRASP 1.8.6_03 Setup

Choose File Associations:
Choose the filename extensions that will open with jGRASP.

Choose the filename extensions for files that you want to open with jGRASP by default.

Extensior Current Assodiation Extensior Current Association
[lijavai jGRASP Java file JGRASP Java file

.m jGRASP CbjectiveC file JGRASP C or C++ file
h JGRASP Cor C++ file JGRASP C or C++ file
hpp JGRASP C or C++ file JGRASP C or C++ file

Jhxx JGRASP C or C++ file s JGRASP C or C++ file
.ada jGRASP Ada file .adb jGRASP Ada file
whdl JGRASP VHDL file .vhd jGRASP VHDL file

.apj JGRASP project

l < Back ” Instal Il Cancel]

Figure 1-7. Choosing File Associations

1-6

Installing (1.8.7) 9/2/2009

Figure 1-8 shows the progress of the installation and Figure 1-9 indicates that
installation is complete. Click “Finish” to close the Install wizard.

B jGRASP 1.8.6_03 Setup

Installing
G Please wait while JGRASP is being installed.

| Show details |

Figure 1-8. Installing JGRASP

2 jGRASP 1.8.6_03 Setup DEx

Completing the JGRASP Setup
Wizard

JGRASP has been installed on your computer.

Click Finish to dlose this wizard,

Figure 1-9. Installation complete

You should find the JGRASP icon on your desktop, and jJGRASP should also be
listed on the Windows Start > All Programs menu.

jGRASP

You can start JGRASP by double clicking the icon on your Windows desktop or
via the Windows Start menu. See “Getting Started” for details.

1-7

Installing (1.8.7) 9/2/2009
1.3 Installing on Mac OS X

To install JGRASP on a Mac OS X machine, an administrator password is
required. When you download jGRASP, the install file (.pkg.tar.gz) should
unzip and untar automatically. If this does not happen, you can use Stuffit
Expander [or from a terminal, use "gunzip jgrasp*.tar.gz" then "tar xf
jgrasp*.tar"]. You should now be able to double click on the .pkg file to
continue the installation.

Figure 1-10 shows the introduction screen of the jGRASP Installer with a
recommendation regarding the folder in which jJGRASP should be installed. In
most cases, you will want to install JGRASP in the /Applications/ folder so that
anyone who has an account on your machine can use JGRASP.

86Cc « Install JGRASP
Welcome to the jGRASP Installer

This program will install JGRASP on your system. We recommend that

& Intreduction youinstallitin /Applications/ if you have root access and want all
users to be able to use |GRASP, otherwise install itin /Users/
your_user_name/Applications/

Continue

Figure 1-10. jGRASP Setup dialog

The software license for jJGRASP is shown in Figure 1-11. After you have
reviewed it, click “Continue”. In the next screen, Figure 1-12, you must agree to
the terms of software license by clicking “Agree” in order to continue the
installation process. If you click “Disagree” the installation will be cancelled.

1-8

Installing (1.8.7) 9/2/2009

86eo w Install JGRASP

Software License Agreement

English I

© Introduction
JGRASP(TM) License

AR Software License for JGRASP Version 1.8.6_01

Select Destinatior Copyright 1989-2007 Auburn University

stallation Type Seclion 1. License Grant

Auburn University grants to you a non-exclusive and non-transferable
nstdy license to use |GRASP and the associaled documentation provided in
jgrasp/help, collectively JGRASP”. [GRASP may be: installed for use
on a single computer or on a local area network. The “wedge” source
code provided in the jgraspisre directory is free of license restrictions
It may be used or modified for any purpose. JGRASP is a Trademark
of Auburn University.

Seclion 2. Restrictions

Distribution of JGRASP is not permitted without written permission

(see Supplements), except that it may be distributed internally within

a single organization. Distribution of components of jGRASP

separately from the whole is not permitted , except that the complete
doct 1 provided in p may be distributed

separately. Reverse engineering of [IGRASP is not permitted. Any

(Print..) (Save..) GoBack) (Continue)

Figure 1-11. License Agreement

Tc continue installing the softwarz, you must agree to the terms of
tha software license agreemert.

Cl ck Agrze to continue or click Disagree to cancel the installation.

Disagree) [Agree)

Figure 1-12. Selecting components to install

The screen in Figure 1-14 allows you to select a destination volume and folder
for the installation. In the example, the defaults are shown.

a6 n « Install JGRASP

Select a Destination

T Select a destination volume to install the JGRASP software.
© Intreduction

O License

e
i

© Select Destination

LNSM HD

h Ug 111GB (66.1GB Free)

You hawe chosen to install this software in the folder “Applications”
on the volume “LNSM HD."

“You can choose the folder to install into.

Destination folder: Applications (Choose...)

~ GoBack) [Continue)

Figure 1-14. jJGRASP Setup dialog

1-9

Installing (1.8.7) 9/2/2009

When you see the screen in Figure 1-15, just click next. Figure 1-16 shows the
“Authenticate” dialog. As indicated above, installing software under Mac OS X

requires administrator privileges so you will need to enter your user name and
password in order to complete the installation process.

@

w= Install JCRASP

Easy Install on “LNSM HD"

O Introduction

O License Click Install to perform a basic installation of this

software package on the volume “LNSM HD."
© Select Destination

@ Installation Type

(GoBack) (Install

Figure 1-15. License Agreement

Authenticate

Installer requires that you type your password.

=t
Name: lUSErname

Password: |
P Details

&)

(Cancel) 0K

Figure 1-16. Selecting components to install

1-10

Installing (1.8.7) 9/2/2009

After the JGRASP installation completes, you should see the dialog below.

8nn W@ Install jGRASP

© Introduction

O License

© Select Destination
@ Installation Type
© Install

. The software was successfully installed
© Finish Up

€ close)

Figure 1-17. Installation is complete

JGRASP should now be available via the Applications folder.

806 * Applications (=
|« » |[8= m|| -] Q
":_,f iDisk iPadRip iSyn¢
9 Network a
L LNSM HD | ﬂ =
§ e i gll'
{[j Desktop | a e
iTunes Web m
| Documents | J .)
& Music | Work '06 JGRASP <
[Pictures =3
= ba :ienu. bb.U/ LB available 7

Figure 1-18. jGRASP start button

The first time you run jGRASP, the CSD font will be installed on your system,
and a soft link to the JGRASP startup script (for command line execution) will
be created in /usr/bin or your SHOME/bin directory.

1-11

Installing (1.8.7) 9/2/2009

1.4 Installing on Other Systems
(including x86 Linux, SPARC Solaris, and NetBSD/i386)

Unzip the distribution (.zip) file in the directory where you wish to install
JGRASP. This will create a jgrasp directory containing all the files. You may
want to add the "bin" subdirectory of this directory to your execution path or
create a soft link to .../jgrasp/bin/jgrasp from a directory on the executable path.

While users will find the .zip installation file suitable for Linux and UNIX
systems, it will also work on Windows Mac OS X systems. Since the
installation file can be unzipped anywhere, the user should note the directory.

1.5 Compilers

Although jGRASP includes settings for a number of popular compilers, it does
not include any compilers. Therefore, if the compiler you need is not already
installed on your machine, it must be installed separately. Since these are
generally rather large files, the download time may be quite long depending on
your connection speed. If a compiler is available to you on a CD (e.g, with a
textbook), you may save yourself time by installing it from the CD rather than
attempting to download it.

Compiler Settings - JGRASP includes settings for the following languages and
compilers. The default compiler settings are underlined. Note that links for
those that can be freely downloaded are included for your convenience.

Ada (GNAT)

http://www.cygwin.com (includes gnatmake)

C, C++ (GNU/Cygnus, Borland, Microsoft)

http://www.cygwin.com

http://www.borland.com/downloads/download cbuilder.html
FORTRAN (GNU/Cygnus)

http://www.cygwin.com (includes g77, i.e., GNU Fortran)

Note that FORTRAN is currently treated as Plain Text so
there is no CSD generation.

Java (J2SE JDK, Jikes)

http://java.sun.com/javase/downloads/index.jsp

1-12

http://www.cygwin.com/�
http://www.cygwin.com/�
http://www.borland.com/downloads/download_cbuilder.html�
http://www.cygwin.com/�
http://java.sun.com/javase/downloads/index.jsp�

Installing (1.8.7) 9/2/2009
Assembler (MASM)

http://www.masm32.com/masmdl.htm

Note that assembler is treated as Plain Text so there is no CSD
generation.

After you have installed the compiler(s) of your choice, you will be ready to
begin working with jJGRASP. If you are not using the default compiler for a
particular language (e.g., JDK for Java), you may need to change the Compiler
Settings by clicking on Settings > Compiler Settings > Workspace. Select the
appropriate language, and then select the environment setting that most nearly
matches the compiler you have installed. Finally, click Use on the right side of
the Settings dialog. For details see Compiler Environment Settings in jGRASP
Help.

1-13

http://www.masm32.com/masmdl.htm�

Installing (1.8.7) 9/2/2009
1.6 Setting PATH and CLASSPATH

If you plan to use Java packages other than the standard Java Libraries, these
will need to be added to your computer’s Java classpath. You may also need to
add the directories containing various compilers and/or tools to the system path
of your machine. If you will not be compiling from the command line, you can
make these changes in jGRASP, and the steps for setting the system path and
classpath are similar. Since most users will be setting the classpath rather than
system path, the steps for doing this are described below.

Go to Settings > PATH/CLASSPATH > Workspace from the control panel
(JGRASP desktop menu).

Select the CLASSPATHS tab in the settings dialog if it is not already selected,
then click the New button.

In the "New CLASSPATH / Doc Path" dialog, click the Browse button for
"Path or JAR File" and navigate to the JAR file or the folder containing the
target Java package root, and click the Choose button.

(Optional) If javadoc documentation is provided and you want to set the
documentation path for the classes in the JAR or package folder, click the
Browse button for "Documentation Path", select the folder containing the
associated javadoc documentation, and click the Choose button.

Finally, click OK on the "New CLASSPATH / Doc Path" dialog, and OK on
the settings dialog.

Once you have one or more classpath entries listed, these can be turned on and
off with the associated check boxes. They can also be re-ordered by dragging an
entry up or down the list. The order of the entries is important since the
classpaths are searched from top to bottom. The same is true for system paths
which are entered in the PATH tab of the dialog.

1-14

Installing (1.8.7) 9/2/2009
1.7 JGRASP Start Up Settings

For Windows and Mac OS X, jGRASP provides a dialog that allows the user to
set JGRASP startup settings. The dialog can be opened from the JGRASP group
in the Window’s Start > All Programs menu or the Mac OS X applications
directory. If JGRASP is already running, you can open the dialog by clicking
Settings > jGRASP Startup Settings on the jJGRASP main menu.

B jGRASP Startup Settings

IF pou are running [GRASP, vou must shut down and restart for these
changes to take effect.

v Antialiaz Fonts [Java 1.5 only)

[v Dizable DirectDraw [fixes graphics problems on zome systems]

[Usze incremental garbage collection

[Skip font check [needed if your system takes a long time to load font:

v Keep working set [don't swap mernom] an minimize

b awirnuirn memory use in megabytes (B4 minimun]. ||

Leave blank for default,

Java executable [for running [GRASP:

By default the zame werzion of Java will be uzed to compile and run
Java programe. [f you will be working with Java, you should select an
SOK rather than a JRE in most cazes.

|[D efault] ﬂ Browse
Cancel

Figure 1-19. JGRASP Startup Settings

Each of the check boxes in the dialog is self-explanatory, and the default
settings, shown in Figure 1-19, should be suitable for most users. The last item
is a drop down list of all the JRE and JDK version that were found on your
machine. This setting is used to indicate which version of Java to use for
JGRASP itself. Unless indicated by other JGRASP settings, the same version of
Java will be used to compile and run Java programs. “[Default]” indicates that
JGRASP should use the most recent version of Java found on your machine. If

1-15

Installing (1.8.7) 9/2/2009

you want to specify a particular version of Java, you may select an entry on the
drop down list. Note that if you plan to compile Java programs, then you should
select a JDK version rather than a JRE. The disadvantage of selecting a specific
JDK is that when a new version of Java is installed, you will have to change the
startup setting if you want JGRASP to use it. Hence, “[Default]” is the entry
that most users will want. After making changes jGRASP will need to be
restarted for the new settings to take effect.

1.8 Plug-Ins for JGRASP

Beginning with version 1.8.7, JGRASP includes “plug-ins” for several useful
tools. In order to use a plug-in, the associated tool must be installed on your
machine. At startup, JGRASP looks for the tools associated with the plug-ins,
and if found, provides access to the tools via the Tools menu on the control
panel. If you install a tool after JGRASP is already running, you will need to
restart JGRASP. If JGRASP does not find the tool or if you want to customize a
tool’s settings, select the associated Configure option. For example, for
Checkstyle, select Tools > Checkstyle > Configure. This will open the
Checkstyle Tool Settings dialog which will allow you to set Checkstyle’s home
directory, select a particular Checks file, set flags, etc. This allows JGRASP to
locate the tool on your machine and then interact with it via the Compile
Messages tab in the lower window of JGRASP. In the case of Checkstyle, after
the tool has been configured, options for Check File and Check Directory will
be available on the Checkstyle menu. Check File checks the file in the CSD
window that has focus, and Check Directory checks all files in the directory
containing the file for the CSD window in focus. If the file in the CSD window
with focus is in an open project, a Check Project Files options will also be
available.

Current plug-ins include the following:

(1) Checkstyle — automates style checking against a specified “check file”.
For best compatibility with jGRASP, you are encouraged to install
Checkstyle 5. See http://checkstyle.sourceforge.net for details.

(2) DCD (Dead Code Detector) — finds never used code in your Java
programs. See https://dcd.dev.java.net for details.

(3) FingBugs — uses static analysis to look for potential bugs in Java code.
http://findbugs.sourceforge.net

1-16

http://checkstyle.sourceforge.net/�
https://dcd.dev.java.net/�
http://findbugs.sourceforge.net/�

Getting Started (1.8.7) 9/2/2009

2 Getting Started

For the examples in this section, Microsoft Windows and Java will be used.
However, much of the information applies to other operating systems and
supported languages for which you have installed a compiler (e.g., Ada, C, C++,
Java) unless noted otherwise. In any of the language specific steps below,
simply select the appropriate language and source code. For example, in the
“Creating a New File” below, you may select C++ as the language instead of
Java, and then enter a C++ example. If you have installed JGRASP on your
personal computer, you should see the JGRASP icon on the Windows desktop.

Objectives — When you have completed this tutorial, you should be comfortable
with editing, compiling, and running Java programs in jGRASP. In addition,
you should be familiar with the pedagogical features provided by the Control
Structure Diagram (CSD) window, including using interactions, generating the
CSD, folding your source code, numbering the lines, and stepping through the
program in the integrated debugger.

The details of these objectives are captured in the hyperlinked topics listed
below.

2.1 Starting JGRASP

2.2 Quick Start - Opening a Program, Compiling, and Running
2.3 Creating a New File

2.4 Saving a File

2.5 Building Java Programs - - Recap

2.6 Interactions (Java only)

2.7 Generating a Control Structure Diagram

2.8 Folding a CSD

2.9 Line Numbers

2.10 Compiling a Program — A Few More Details
2.11 Running a Program - Additional Options
2.12 Using the Debugger (Java only)

2.13 Opening a File — Additional Options

2.14 Closing a File

2.15 Exiting JGRASP

2.16 Review and Preview of What’s Ahead

2.17 Exercises

2-1

Getting Started (1.8.7) 9/2/2009
2.1 Starting [GRASP

If you are working in a Microsoft Windows environment, you can
start JGRASP by double clicking its icon on your Windows desktop.
If you don’t see the JGRASP icon on the desktop, try the following:

JIGRASP (lick Start > All Programs > JGRASP (folder) > JGRASP.

Depending on the speed of your computer, JGRASP may take between 10 and
30 seconds to start up. The jGRASP virtual Desktop, shown below, is
composed of a Control Panel with a menu and toolbar across the top and three
resizable panes. The left pane has tabs for Browse, Debug, Find, and
Workbench (Project tab is combined with the Browse tab beginning in version
1.7). The Browse tab, which is the default when jGRASP is started, lists the
files in the current directory. The large right pane is for UML and CSD
Windows. The lower pane has tabs for JGRASP messages, Compile messages,
Run 1//0. and Interactions. The panes can be resized by moving the horizontal
or vertical partitions that separate them. Select the partition with the mouse
(left-click and hold down) then drag the partition to make a pane larger or

File Edit View Project Settings Tools Window Help

E
4
(Al Files| - [sort .. |+|F
e =
= — Browse CSD and UML
uRASP\EX&I'ITp'ES\1|'| : X
CHello —_—| TabPane Windows
[PersonalLibrary ||
[ViewerExamples ||
ﬂ Hello.class
Hello.java
(] oddEven.class ||’)
OddEvenjava || ™| To Resize Pane_:,_SeIect Messages,
ﬂ OddEven2.class || and Drag Partition or Run 1/0, and
°ddEven2Java . Click Arrowheads to Interactions
—/
S Debug J : open or close Tab Pane
\ Flnd LWorkbench | /

| Complle Messages \]GR_ASP Messages | Run IIO | Interactlons \ /

L /

(4] Il [

I»]

Clear

Help

Em

Figure 2-1. The jGRASP Virtual Desktop
2-2

Getting Started (1.8.7) 9/2/2009

smaller. You can also click the arrowheads on the partition to open and close
the pane.

2.2 Quick Start - Opening a Program, Compiling, and Running

Example programs are available in the JGRASP folder in the directory where it
was installed (e.g., c:\Program Files\jgrasp\examples\Tutorials). You should
copy the tutorial folder to one of your personal folders (e.g., in your My
Documents folder) so that any changes you make will not be lost when a new
version of JGRASP is installed.

Note: If you already have example programs with which you are familiar, you
may prefer to use them rather than the ones included with JGRASP as you work
through this first tutorial.

Clicking the Open File button &3 on the toolbar pops up the Open File dialog.
However, the easiest way to open existing files is to use the Browse tab (below).
The files shown initially in the Browse tab will most likely be in your home
directory. You can navigate to the appropriate directory by double-clicking on a

folder in the list of files or by clicking on B8 as indicated in the figure below.

The refresh button & updates the Browse pane. Below, the Browse tab is
displaying the contents of the Tutorials folder.

File Edit View Project Settings Tools Window Help

=

[All Files |~ SortB... |-])]

pre P To move up in the directory click on ER
P\examples\TutoriaIs!v

MiHello — |7 | To open a folder

[PersonalLibrary :
T ViewerExamples |||
(] oddEven.class i
OddEven.java —|

double-click on the folder

(] oddEven2.class |- i To O.pen afile

e | double-click on the Java
Browse | Find | source file name

\ Debug |Workbench ‘ ;

HE™

Figure 2-2. The JGRASP Virtual Desktop

2-3

Getting Started (1.8.7) 9/2/2009

Double-clicking on the Hello folder, then the Hello.java file, as shown in Step 1
below, opens the program in a CSD window. The CSD window is a full-
featured editor for entering and updating your programs. Notice that opening the
CSD window places additional buttons on the toolbar. Once you have opened a
program or entered a new program (File > New File > Java) and saved it, you
are ready to compile the program and run it. To compile the program, click on
the Build menu then select Compile. Alternatively, you can click on the
Compile button indicated by Step 2 below. After a successful compilation — no
error messages in the Compile Messages tab (the lower pane), you are ready to
run the program by clicking on the Run button as shown in Step 3 below, or you
can click the Build menu and select Run. The standard input and output for
your program will be in the Run I/O tab of the Message pane.

Step 1. Open file Step 2. Compile Step 3. Run

Double-click file program program %

[EFile: Hello.java Progra e RASP\example oria ello RASP CSD m|
File Ediy View Build Project Settin T Window Help _ |JX
EETSEEE R RMNEEE N T) S

i)
13

puklic class Hello
1

pubklic static wvoid main(Stringl[] args)
[L
L : System.out.println({"Hello world!\n"):
Hello.java ;; !
11 e
Browse ~|
Debug | Find [L L)
Workbench | [E]Helio.java

o

| compile Messages | JGRASP Messages | Run l/O | Interactions

Hello world!

LT 1o

Clear

4

(4] I] [

|

=t Line:8 Col:1 Code:0 Top:1 [ovs|

Figure 2-2. After loading file into CSD Window

2-4

Getting Started (1.8.7) 9/2/2009
2.3 Creating a New File

To create a new Java file within the Desktop, click on File > New File > Java.
Note that the list of languages displayed by File > New File will vary with your
use of jJGRASP. If the language you want is not listed, click Other to see the
additional available languages. The languages for the last 25 files opened will
be displayed in the initial list; the remaining available languages will be under
Other.

After you click on File > New File > Java, a CSD window is opened in the right
pane of the Desktop as shown in Figure 2-4 below. Notice the title for the
frame, JGRASP CSD (Java), which indicates that the CSD window is Java
specific. If Java is not the language you intend to use, you should close the
window and then open a CSD window for the correct language. Notice that the
button for each open file appears below the CSD windows in an area called the
windowbar (similar to a taskbar in the Windows OS environment). Later when
you have multiple files open, the windowbar will be quite useful for popping a
particular window to the top. The buttons can be reordered by dragging them
around on the windowbar.

@ File: [Grasp 18] - jGRASP CSD (Java)
File Edit View Build Project Settings Tools Window Help
EEIEIERETE & %2 @& HEHE

1

[»]

public o

. | [Grasp 18] - JGRASP CSD (Jav

publi
{
2

) ! Buttons for Hello.java and L
L Grasp 18 (an unnamed file)
on the Windowbar ;

Browse / \
Debug | Find o] \ ' ol
Workbench

/ \
Hello.java | [Grasp 18] |

fCompiIe Messages “GRASP Messages rRun [[[e] rlnteractions

4]

[T Tv]

Hello world!
Clear

[

[4] Il] [

Slim] Line:1 Col:1 Code:0 Top:1 [ovs]

F

Figure 2-4. After opening a new CSD Window for Java

2-5

Getting Started (1.8.7) 9/2/2009

E
o [In the upper right corner of the CSD window are three buttons that
control its display. The first button minimizes the CSD window; the second
button maximizes the CSD window or if it is already maximized, restores the
CSD window to its previous size. The third button closes the CSD window.
You may also make the Desktop itself full screen by clicking the appropriate
button in the upper corner of it.

Figure 2-5 shows the CSD window maximized within the virtual Desktop. The
“L” shaped cursor in the upper left corner of the empty window indicates where
text will be entered.

TIP: If you want all of your CSD windows to be maximized automatically when
you open them, click Settings > Desktop, and then click Open Desktop
Windows Maximized (a check mark indicates that this option is turned ON).

@ File: [Grasp 18] - JGRASP CSD (Java)

File Edit View Build Project Settings Tools Window Help B X
EEIEIERETE & %2 @& HEHE

1) [

[4]

Browse
1 [v]

Debug | Find |
Workbench | [ElHelio java | [E][Grasp 18] |

Compile Messages “GRASP Messages rRun [[o] rlnteractions

[»]

copy ||, .
E| Line:1 Col:1 Code:0 Top:1 [oveBLK

Figure 2-5. CSD Window maximized in Desktop

2-6

Getting Started (1.8.7) 9/2/2009

Type the following Java program in the CSD window, exactly as it appears.
Remember, Java is case sensitive. Alternatively, you may copy/paste the Hello
program into this window, then change the class name to Hello2 and add the
“Welcome...” line.

public class Hell o2

{
public static void main(String[] args)
{
Systemout.println ("Hello world!'");
Systemout.println ("Welcome to jGRASP! ") ;
}
}

After you have entered the program, your CSD window should look similar to
the program shown in Figure 2-6.

[File: [Grasp 18] * - jGRASP CSD (Java)
File Edit View Build Project Settings Tools Window Help - x
=ESENE R E RIS I Y =

0 =
Sort...|~ 'l public class HelloZ M

HEIEE I
i public static void main(Stringl] args)

dles\Tutorials\H ~ |- q

D Hello.class System.out.println ("Hello world!'");

Hello.java System.out.println ("Welcoms to jGRASP!™): | |
i3
Browse =
Debug | Find 1 L ' 2]
Workbench [E]Hello.java | [El[crasp 18] *

Compile Messages JGRASP Messages rRun [[[=] rlnteractions

[v]

Clear

Copy -]
[« [

= Line:8 Col:1 Code:125 Top:1 [ovsBLK

i
(]
N

Figure 2-6. CSD Window with program entered

2-7

Getting Started (1.8.7) 9/2/2009
2.4 Saving a File

You can save the program as "Hello2.java" by doing any of the following:

(1) Click the Save button B on the toolbar, or
(2) Click File > Save on menu (see Figure 2-7), or
(3) Press Ctrl-S (i.e., while pressing the Ctrl key, press the “s” key).

If the file has not been saved previously, the Save dialog box pops up with the
name of the file set to the name of the class file. Note, in Java, the file name
must match the class name (i.e., class Hello2 must be saved as Hello2.java). Be
sure you are in the correct directory. If you need to create a new directory, click
the folder button on the top row of the Save dialog. When you are in the proper
directory and have the correct file name indicated, click the Save button on the
dialog. After your program has been saved, it should be listed in the Browse tab
(see Figure 2.8 on the next page). If you do not see the program in the Browse
tab, you may need to navigate to the directory where the file was saved or click

@ on the toolbar to change the Browse tab to the directory of the current file.

@ File: [Grasp 18] * - jGRASP CSD (Java) =T
Eile\gdit View Build Project Settings Tools Window Help = X
New i @® 6 NE

Open s Hello2
Sync All
Close ctl-Q
Close All
Save cirks M. out.println ("Hello world!'™);
gaveAs m.out.println ("Welcome to JGRASP!™); L

tatic veid main([Stringl] args)

Backup As Ctri-D
Save All

Print Settings 4
Print » o
Recent Files v ' L]
Workspace [Grasp 18] *
SR e I:?lagram iges r Run /O rlnteractions

Generate Documentation

Show Documentation

Complexity Profile Graph 4
Escape Virtual Desktop

Raijse / Lower F11 =

Exit JGRASP
=g Line:3 Col:1 Code:125 Top:1 |ovs|

D]

Figure 2-7. Saving a file from the CSD Window

2-8

Getting Started (1.8.7) 9/2/2009
2.5 Building Java Programs - - Recap

As seen in the previous sections, Java programs are written in an edit window,
saved, compiled, and run. A somewhat more detailed description of steps for
building software in Java is as follows.

(1) Enter your source code into a CSD window and then save the program in a
file whose name consists of the Java class name and the “.java” extension (e.g.,
MyProgram.java). You should try to enter your program in chunks so that it
will always be compilable.

(2) 5P Compile the source program (e.g., MyProgram.java) to create the byte
code file with a “.class” extension (e.g., MyProgram.class). After attempting to
compile your program, you may need to make corrections via the edit window
(step 1) based on the messages provided by the compiler and then compile the
program again. Note that the .class file is not created until you have a “clean”
compile (i.e., no error messages).

3) % Run your program. In this step, the byte code or .class file produced by
the compiler is executed by the Java Virtual Machine. After you run your
program, you should inspect the output (if any) to make sure the program did
what you intended. At this point, you may need to find and correct mistakes
(bugs). After making the corrections in the edit window (step 1), you will need
to compile your program again (step 2). Later, we will use the debugger to step
through a program so we can see what happens after each individual statement is
executed.

Enter Java Source code

and Save in “.java” file l

A A . .
Jjava file
¢ Nno errors
4k Compile Java Program |
to nroduce “.class” file l
.class file
make corrections ¢

% Run Java Program

'

Done!

Figure 2-8. Steps for building a Java program

2-9

Getting Started (1.8.7) 9/2/2009
2.6 Interactions (Java only)

While all of your Java programs will be built using the steps described above, or
some variation of them, JGRASP provides an Interactions feature which can be
very useful along the way. The Interactions tab, located next to the Run 1/0O
tab in the lower window of the desktop, allows you to enter most Java
statements and expressions and then execute or evaluate them immediately when
you press ENTER. Interactions can be especially helpful when learning and
experimenting with new elements in the Java language.

Consider the following statement that prints a String which includes escape
sequences for newline (\n) and tab (\t).

Systemout.printin(“Hello \n\tfrom\n\t\tinteractions!”);

Of course you could write a short program that includes this statement, save it,
compile it, and run it in order to see the results of executing the statement.
However, it may be more convenient to type this statement into the Interactions
tab, press ENTER, and quickly see the results as shown below in Figure 2-8.

@File: Hello2.java C:\Program Files\jGRASP\examples\Tutorials\Hello - jGRASP CS... [T |[E|X]
File Edit View Build Project Settings Tools Window Help = X
BHEE BED Y imeE disaddEE

P 5
M public class Hello2 §
{
public static void main(Stringl[] args)
| {
L ; | System.out.println ("Hellec world!™); Il
(@] Hello.java mlE System.out.println ("Welcome to jGRASP!
{1 Helln2 class~||’ 3
‘ I vl ||
-~ }
Browse LFind ; =
Debug | 1 T

Workbench | | [E]Hello2.java

o

| compile Messages | [GRASP Messages | Run IO | Interactions |

» System.out.println("Hi\n\tfrom\n\t\tInteracticons"); [
Hi
Interactions ||
» L
B d a
4[] i I [» -
=M status: interactions active Line:9 Col:1 Code:0 Top:1 | |

Figure 2-8. Using Interactions

2-10

Getting Started (1.8.7) 9/2/2009

To find a statement you have already entered, press the UP and DOWN arrow
keys to scroll through the previous statements (history) one by one until you
reach the statement. Then use the LEFT and RIGHT arrow keys or mouse to
move around within the statement in order to make the desired changes. Press
ENTER to execute the statement again.

When you want to continue a statement on the next line, you can delay
execution by pressing Shift-ENTER rather than ENTER. For example, you
would need to press Shift-ENTER after the first line below and ENTER after the
second line.

Systemout.println | Shift-ENTER
(""Hello\n\tfrom\n\t\tilnteractions™™) ;| ENTER

If you simply press ENTER at the end of the first line, Interactions will attempt
to execute the incomplete statement and you will get an error message. Figure
2-9 shows the statements above with delayed execution.

[EFile: Hello2.java Progra e RASP\example orials\Hello
File Edit View Build Project Settings Tools Window Help
= EEEE R E R SEI T T S

[
All Fil{~| Sor... ~ " public class Hello?2
@l mlg] »| i

- X

D]

public static void main(Stringl[] args) =
{

® System.out.println ("Hellc world!™);
System.out.println ("Welcome to JGRASP!

[] Hello.class
Hello.java
ﬂ Hello2.class

[D

Browse Find -
Debug Al Il [»]

Workbench | Hello2.java

e R

fCompiIe Messages “GRASP Messages rRun o rlnteractions \

| »

- System.out.println
|: ("Hello\n\tfrom\n\t\tInteractions");

Clear Hello
from
Interactions E
B d u
4] 1] v
[[]E™ status: interactions active Line:2 Col:5 Code:0 Top:1 | \

Figure 2-9. Multiple line statement with delayed execution

In the next tutorial, Getting Started with Objects, we will see how to use
Interactions to create objects on the workbench and then use them in statements
and expressions. Of course, you can also interact with local variables of a

program running in debug mode after it stops at a breakpoint.
2-11

Getting Started (1.8.7) 9/2/2009
2.7 Generating a Control Structure Diagram

You can generate a Control Structure Diagram in the CSD window whenever
you have a syntactically correct program, such as the Hello2.java program
described above. Note that CSD generation checks only the structure of a
program, so even though the CSD may generate successfully, the program may
not compile. Generate the CSD for the program by doing any of the following:

(1) Click the Generate CSD button , or
(2) Click View > Generate CSD on the menu, or

(3) Press the F2 key.

If your program is syntactically correct, the CSD will be generated as shown for
the Hello2.java program in Figure 2-10. After you are able to successfully
generate a CSD, go on to the next section below.

If a syntax error is detected during the CSD generation, jJGRASP will highlight
the vicinity of the error and describe it in the message window.

@ File: Hello2.java C:\Program Files\jGRASP\examples\Tutorials\Hello - jGRASP CS... ;HE
File Edit View Build Project Settings Tools Window Help B X
Sl IEENEDE %@ ++*80OWE

public class Hello?Z
{

[»

puklic static void main(String[] args)

{

System.out.println ("Hello world!'™);
System.out.println ("Welcome to JGRASP! | |

Hello2.java }

b

-

[«

Browse

Debug | Find |
Workbench :

e,

Compile Messages “GRASP Messages rRun [[o] rlnteractions

Il] L

Hello.java | Helloz.iava |

copy ||, .
E| Line:1 Col:1 Code:207 Top:1 [oveBLK

Figure 2-10. After CSD is generated

2-12

Getting Started (1.8.7) 9/2/2009

If you do not find an error in the highlighted line, be sure to look for the error in
the line just above it. For example in Figure 2-11, the semi-colon was omitted at
the end of the first println statement. As you gain experience, these errors will
become easier to spot.

If you are unable find and correct the error, you should try compiling the
program since the compiler may provide a more detailed error message (see

Compiling below).
You can remove the CSD by doing any of the following:

(1) Click the Remove CSD button , or
(2) Click View > Remove CSD on the menu, or

(3) Press Shift-F2.

Note that it is not necessary to remove the CSD before compiling or saving a
program. Your programs will always be saved as plain text. Many users never
remove the CSD. In fact, many turn on Auto Generate (View > then check ON
Auto Generate CSD) so that they will always have the CSD with their code.

File Edit View Build Project Settings Tools Window Help B X
S EENEE e 428060

M
g public class Hello?Z

{

[»

puklic static void main(String[] args)
1
Syvstem.out.println ("Hello world!™)
System.out.println ("Welcome to JORASP!™);|[|

ﬂ Hello.clas

Hello.javg
[] Hello2.cl
T

[«

Debug

Fina L L ‘]
Workbench ‘ [€]Hello.java |HeII02.'ava*

o

| compile Messages | JGRASP Messages | Run liO | Interactions |

P HelloZ.java:5:10:6:15: parse error at or kefore "S|[|
Svyvstem.out.println ("Welcome to JGRASPL™) |_

: :
i
[4] Il [» =

[HEM Line:6 Col:10 Code:83 Top:1 |[ovs[BLK

Figure 2-11. Syntax error detected

2-13

Getting Started (1.8.7) 9/2/2009

Remember, the purpose of using the CSD is to improve the readability of your
program. While this may not be obvious on a simple program like the example
above, it should become apparent as the size and complexity of your programs
increase.

TIP: As you enter a program, try to enter it in “chunks” that are syntactically
correct. For example, the following is sufficient to generate the CSD.

public class Hello

{
}

As soon as you think you have entered a syntactically correct chunk, you should
generate the CSD. Not only does this update the diagram, it catches your syntax
errors early.

2.8 Folding a CSD

Folding is a CSD feature that becomes increasingly useful as programs get
larger. After you have generated the CSD, you can fold your program based on
its structure. For example, if you double-click on the class symbol in the
program, the entire program is folded (Figure 2-12). Double-clicking on the
class symbol again will unfold the program completely. If you double-click on
the “plus” symbol, the first layer of the program will be unfolded. Large
programs can be unfolded layer by layer as needed. Although the example
program has no loops or conditional statements, these may be folded by double-
clicking the corresponding CSD control constructs. For other folding options,
see the View > Fold menu.

[File: Hello2.java Progra e RASP\example oria ello m]
File Edit View Build Project Settings Tools Window Help _|JX
EEEENEE R RN XL E

f
" i%blic class Hello?2 B

[] Hello.class
Hello.java

Hello2.java

Browse =
Debug | Find L4 L ' D]
Workbench [€] Hello.java | [&] Hello2.java ‘

[HE™ Line:1 Col:3 Code:214 Top:1 [ovs]

Figure 2-12. Folded CSD

2-14

Getting Started (1.8.7) 9/2/2009
2.9 Line Numbers

Line numbers can be very useful when referring to specific lines or regions of a
program. Although not part of the actual program, they are displayed to the left
of the source code as indicated in Figure 2-13.

E Line numbers can be turned on and off by clicking the line numbers toggle
button on the CSD window toolbar or via the View menu.

With Line numbers turned on, if you insert a line in the code, all line numbers
below the new line are incremented.

g You may “freeze” the line numbers to avoid the incrementing by clicking
on the Freeze Line Numbers button. To unfreeze the line numbers, click the
button again. This feature is also available on the View menu.

@File: Hello2.java C:\Program Files\jGRASP\examples\Tutorials\Hello - jGRASP CS... [Z |[BX]
File Edit View Build Project Settings Tools Window Help
== lsiE e T E R I) =

puklic class Hello?Z
{

public static void main(Stringl[] args)

{

=

Hellojava| ;;
Hello2 javi. |
] I |

T

System.out.println ("Hellc world!"™) .
System.out.println ("Welcome to JGRASP!

Browse

Debug =
Find ?4\ il] [»]
Workbench | Hello.java | HeII02.'|ava | ‘

Line:1 Col:5 Code:112 Top:1 [ovs]

Lo e w e B o B e Y B

Figure 2-13. Line numbers in the CSD Window

2.10 Compiling a Program — A Few More Details

When you have a program in the CSD window, either through loading a source
file or typing in the program and saving it, you are ready to compile the
program. When you compile your program, the file is automatically saved if
Auto Save is ON, which it is by default. Auto Save can be turned on/off by
clicking Settings > Auto Save. If you are compiling a program in a language
other than Java, you will typically need to “compile and link” the program.

2-15

Getting Started (1.8.7) 9/2/2009

+ Compile a Java program in JGRASP by clicking the Compile button or by
clicking on the Compiler menu: Build > Compile (Figure 2-14).

Compile and Link the program (if you are compiling in a language other
than Java) by clicking on the Compile and Link button or by clicking on the
Build menu: Build > Compile and Link. Note that this option will not be
visible on the toolbar and menu in a CSD window for a Java program.

In the figure below, also note that Debug Mode is checked ON. This should
always be left on so that the .class file created by the compiler will contain
information about variables in your program that can be displayed by the
debugger and Object Workbench.

@ File: Hello2.java Progra e RASP\example orials\Hello O

File Edit View Build| Project Settings Tools Window Help _ @X

aH|@m & E compile CtilB

) ¥ Debug Mode [4]
Run CtrilR

‘ Run as Applet Stringl[] args) L
Debug

ﬂ Hello.class

Hello.java elcome to jGRASP!'| |
(] Hello2.class |~ Run Arguments

Hello2java “Runin MSDOS Window
-~ “Run Topmost

Browse ¥ Focus to Run I/O Window When Running

Debug as Applet ellc world!"™);

aw

[«

Debug | Find L]
Workbench | | Java Workbench .,

e,

Compile Messages “GRASP Messages rRun o rlnteractions \

[« I I [

=i Line:7 Col:8 Code:0 Top:1

{ --—--JGRASP exec: Javac -g C:\Program Files%jGRASPE|=

————-JGRASP: operation complete.

Lol

Figure 2-14. Compiling a program

The results of the compilation will appear in the Compile Messages tab in the
lower window of the Desktop. If your program compiled successfully, you
should see the message “operation complete” with no errors reported, as
illustrated in Figure 2-14. Now you are ready to "Run" the program (see Section
2.11 Running A Program — Additional Options).

2-16

Getting Started (1.8.7) 9/2/2009

Error Messages — An error message indicating “file not found,” generally
means jJGRASP could not find the compiler. For example, if you are attempting
to compile a Java program and the message indicates that “javac” was not found,
this means the Java compiler (javac) may not have been installed properly. Go
back to Section 1, Installing jJGRASP, and be sure you have followed all the
instructions. Once the Java JDK is properly installed and set up, any errors
reported by the compiler should be about your program.

Figure 2-15 shows a program with a missing “)” in the first println statement.
The error description is highlighted in the Compiler Message tab, and jGRASP
automatically scrolls the CSD window to the line where the error most likely
occurred and highlights it. If multiple errors are indicated, you should correct
all that are obvious and then compile the program again. Sometimes correcting
one error can clear up several error messages.

After you have “fixed” all reported errors, your program will successfully
compile, which means a .class file will be created for your .java file. After this
.class file has been created, you can “Run” the program as described in the next
section.

@File: Hello2.java C:\Program Files\jGRASP\examples\Tutorials\Hello - jGRASP CS... [Z |[BX]
File Edit View Build Project Settings Tools Window Help B X
 EEIEEIEE ENEREEN X X IS

public class Hello2
1

puklic static void main(String[] args)

{

System.out.println ("Hellc world!™)
System.out.println ("Welcome to JERASP!'|[|

Hello2java | }

-

[«

Browse

Debug | Find Al L ‘ L)
Workbench : [E]Hello.java | Helloz.iava |

o

Compile Messages | JGRASP Messages | Run IO | Interactions |

| HelloZ.java:d: ';" expected
System.out.println ("Hello worldl™)

n
1 error

[4] 1 I [

HE™ Line:5 Col:1 Code:207 Top:1 [ovs]

[

Figure 2-15. Compile time error reported

2-17

Getting Started (1.8.7) 9/2/2009
2.11 Running a Program - Additional Options

At this point you should have successfully compiled your program. Two things
indicate this. First, there should be no errors reported in the Compile Messages
window. Second, you should have a Hello2.class file listed in the Browse pane,
assuming the pane is set to list “All Files.”

To run the program, click Build > Run on the toolbar (Figure 2-16). The
options on the Build menu allow you to run your program: as an application
(Run), as an Applet (Run as Applet), as an application in debug mode (Debug),
and as an Applet in debug mode (Debug as Applet). Other options allow you to
pass Run arguments, Run in an MS-DOS window rather than the JGRASP Run
1/0 message pane, and Run Topmost to keep frames and dialogs of the program
on top of JGRASP components.

-i} You can also run the program by clicking the Run button on the tool bar.

[File: Hello2.java Progra e RASP\example oria ello m|
File Edit View 5uild|Eroject Settings Tools Window Help _ |JX
=B =& |[E compile Cirl-B

. @ Debug Mode [l

Run CtilR
les\Tutorials\fs U 88 Applet stringl] args) L
[] Hello.class Debug L
- ello world!™);

a . Debug as Applet
Hello.java 219 PP elcome to jGRASP!'[|

[] Hello2.class | Run Arguments

Hello2java |~ Runin MSDOS Window
== "Run Topmost
Browse ¥ Focus to Run I/0 Window When Running =

Debug | Find| Workspace's Main File [Not Set] ’ =
Workbench Java Workbench y

e

.}

Compile Messages “GRASP Messages rRun o rlnteractions \

D]

-Stop
———-JGRASP exec: javac -g C:\Program Files\jGRASP
!
-—-—--JGRASF: operation complete. |
[a] I] I
CEm™ Line:5 Col:46 Code:0 Top:1 [ovs[BLK

Figure 2-16. Running a program

2-18

Getting Started (1.8.7) 9/2/2009

Output — If a program has any standard input and/or output, the Run 1/O tab in
the lower pane pops to the top of the Desktop. In Figure 2-17, the output from
running the Hello2 program is shown in Run 1/O tab.

[File: Hello2.java Progra e RASP\example oria ello RASP I
File Edit View Build Project Settings Tools Window Help _ 3[X
Bl EENE=E R E R T X =

puklic class Hello?Z
{
puklic static void main(String[] args)

{

System.out.println ("Hellc world!'™) ;L
System.out.println ("Welcoms to JGRASP!!

Hello2java | }

P

Browse

Debug | Find |
Workbench :

[4]

Tl] [v]

[€]Hello.java | [&] Hello2.java |

[Compile Messages “GRASP Messages rRun l[e] rlnteractions

|»

-——-JGRASF exec: Java HelloZ

Welcome to JGRASP!

Hello world! H

————-JGRASP: operation complete.
|

[«

HE™ Line:5 Col:46 Code:0 Top:1 [ovs|

Figure 2-17. Output from running the program

2.12 Using the Debugger (Java only)

JGRASP provides an easy-to-use visual Debugger for Java that allows you to set
one or more breakpoints in your program, run the debugger, then after the
program reaches a breakpoint, step through your program statement by
statement. To set a breakpoint, hover the mouse over the gray column to the left
of the line where you want to set the breakpoint. When you see the red
breakpoint symbol, left-click the mouse to set the breakpoint. You can also set a
breakpoint by left-clicking on the statement where you want your program to
stop, then right-clicking to select Toggle Breakpoint (Figure 2-18).
Alternatively, after left-clicking on the line where you want the breakpoint, click
View > Breakpoints > Toggle Breakpoint. You should see the red octagonal

2-19

Getting Started (1.8.7) 9/2/2009

breakpoint symbol @ appear in the gray area to the left of the line. The
statement you select must be an executable statement (i.e., one that causes the
program to do something). In the Hello2 program below, a breakpoint has been
set on the first of the two System.out.println statements, which are the only
statements in this program that allow a breakpoint.

[File: Hello2.java Progra e RASP\example oria ello RASP I
File Edit View Build Project Settings Tools Window Help _ 3[X
Bl EENE=E R E R T X =

public class HelloZ
1

public static weid main(String[] args)
i =
[] .
Copy 1n ("Hello world_."),L
In ("Welcome to JjGRASP!
} cut L
1 Paste
Edit 4

Toggle Bookmark
Next Bookmark

Browse

Bookmarks 4 \»Il
Toggle Breakpoint

Debug | Find |
Workbench
Breakpoints 4

[Complle Messages [']GRASP Messages [Run /O | Interactlons

[»]

En -——-JGRASF exec: Java HelloZ

Hello world! H

Welcome to JGRASP!

————-JGRASP: operation complete.
|

-

[l 1 I Dl

[HEM Line:5 Col:46 Code:0 Top:1 [ovs[BLK

Figure 2-18. Setting a breakpoint

To start the debugger on an application, click the debug button @ on the
toolbar. Alternatively, you can click Build > Debug. When the debugger starts,
the Debug tab with control buttons (Figure 2-19) should pop up in place of the
Browse tab, and your program should stop at the breakpoint as shown in Figure
2-20 below.

LI m> €D ¢ E
Figure 2-19. Debugger control buttons

Only the “step” button & of the debugger control buttons, located at the top of
the Debug tab, is needed in this section. Each time you click the “step”

2-20

Getting Started (1.8.7) 9/2/2009

button &, your program should advance to the next statement. After stepping all
the way through your program, the Debug tab pane will go blank to signal the
debug session has ended. When a program contains variables, you will be able
to view the values of the variables in the Debug tab as you step through the

program.

@File: Hello2.java C:\Program Files\jGRASP\examples\Tutorials\Hello - jGRASP CS... [T |[E|X]
File Edit View Build Project Settings Tools Window Help - X
= rED ! hayY +i:8e6mS
B 4

4% dEm > apublic class Hella2
| Threads {

[v]

Epublic static veoid main(String[] args)

Call Stack ¢ B
Variables rEvaI ‘ . — System.out.println ("Helloc world!"™) ,
I static : Hello~ — System.out.println ("Welcoms to jGRE

: - [, i

7 [_] Arguments
BWags > (o
»

Browse L Find -
Debug [a] Il D]

Workbench Hello2.java

e

[Compile Messages “GRASP Messages l[Run /0 rlnteractions

-—-—--JGRASF: connected to debugger.
Clear [.

« [l 1

e

Help

Il Ii J I

[[HEM™ status: debugging user program Line:9 Col:1 Code:0 Top:1 |ovsELK

Figure 2-20. Stepping with the Debugger

In the example below, the program has stopped at the first output statement.
When the step button is clicked, this statement will be executed and “Hello
world!” will be output to the Run 1/O tab pane. Clicking the step button again
will output “Welcome to JGRASP!” on the next line. The third click on the step
button will end the program, and the Debug tab pane should go blank as
indicated above. When working with the debugger, remember that the
highlighted statement with the blue arrow pointing to it will be the next
statement to be executed. For a complete description of the other debugger
control buttons, see the tutorial on the Integrated Debugger.

2-21

Getting Started (1.8.7) 9/2/2009
2.13 Opening a File — Additional Options

A file can be opened in a CSD window in a variety of ways. Each of these is
described below.

(1) Browse Tab - If the file is listed in JGRASP Browse tab, you can simply
double click on the file name, and the file will be opened in a new CSD
window. We did this back in section 2.1 Quick Start. You can also drag a
file from the Browse tab and drop it in the CSD window area.

(2) Menu or Toolbar - On the menu, click File > Open or Click the Open File

button &3 on the toolbar. Either of these will bring up the Open File dialog
shown in Figure 2-21.

@ Open File X
C:\Program Files\|{GRASP\examples\Tutorials\Hello
Look In: ‘EIHeIIo M (=) 5] [=) B8l
(| Hello.class =EIElE
Hello.java Format:
("] Hello2.class @® Text
Hello2.java © Binary
Language:

[Default] t

Filter Extensions:

File Name: H

|
Files of Type: Al Files B

| _open | cancel |

Figure 2-21. Open File dialog

(3) Windows File Browser - If you have a Windows file browser open (e.g.,
My Computer, My Documents, etc.), and the file is marked as a JGRASP
file, you can just double click the file name.

(4) Windows File Browser (drag and drop) - If you have a Windows file
browser open (e.g., My Computer, My Documents, etc.), you can drag a
file from the file browser to the JGRASP Desktop and drop it in the area
where the CSD window would normally be displayed.

2-22

Getting Started (1.8.7) 9/2/2009

In all cases above, if a file is already open in jGRASP, the CSD window
containing it will be popped to the top of the Desktop rather than jGRASP
opening a second CSD window with the same file.

Multiple CSD Windows — When you have multiple files open, each is in a
separate CSD window. Each program can be compiled and run from its
respective CSD window. When multiple windows are open, the single menu
and toolbar go with the top window only, which is said to have “focus” in the
desktop. In Figure 2-22, two CSD windows have been opened. One contains
Hello.java and the other contains Hello2.java. If the window in which you want
to work is visible, simply click the mouse on it to bring it to the top. If you have
many windows open, you may need to click the Window menu, then click the
file name in the list of the open files. However, the easiest way to give focus to
a window is to click the window’s button on the windowbar below the CSD
window. As described earlier, these buttons can be reordered by
dragging/dropping them on the windowbar. In the figure below, the windowbar
has buttons for Hello and Hello2. Notice that Hello2.java is underlined both on
the windowbar and in the Browse tab to indicate that it has the current focus.
Hello2.java is also displayed in the desktop’s blue title bar.

When Hello2.java has the current focus
Gl T R ey in the desktop, the file name is indicated
File Edit View Build Project Settin| in JGRASP desktop title above, as well
aH=& B E D " ma{ by underlining in the Browse tab at left

v and on the windowbar below.
|| & Hello.java C:\P
/ 4]

e 3 22 !
i Iiafﬂgzjava C:\Program FiIes\jGRﬂSP\examples\Tuto... v

ﬂ Hello.class

Hello java / public class HelloZ

ﬂ Hello2.class ;, f . . .))

y) A public static yoid main(Stringl] arc
Hello2.java -7 i ¢

¥ |_ System.out.frintln ("Hello world!!
L System.out/println ("Welcomes to J(

Browse
Debug | Find /
Hello.java | Helloz.iava ‘

Workbench
[HE™

Line:5 Col:1 Code:207 Top:1 [ovs]

Figure 2-22. Multiple files open

2-23

Getting Started (1.8.7) 9/2/2009
2.14 Closing a File
The open files in CSD windows can be closed in several ways.

()] IE If the CSD window is maximized, you can close window and file by
clicking the Close button at the right end of the top level Menu.

4
7 o [If the CSD window is not maximized, click the Close button
in the upper right corner of the CSD window itself.

(3) File Menu - Click File > Close or Close All Files.
(4) Window Menu - Click Window > Close All Windows.

@

In each of the scenarios above, if the file has been modified and not saved, you
will be prompted to Save and Exit, Discard Edits, or Cancel before continuing.
After the files are closed, your Desktop should look like the one shown in Figure
2-23, which is essentially how we began this tutorial.

[E jGRASP =

File Edit View Project Settings Tools Window Help

Hello.java
(] Hello2.class ||
Hello2.java

Browse

Debug | Find |

Workbench \

o

| compile Messages | JGRASP Messages | Run l/O | Interactions

| B

End

!

Clear

[

[4] il [»

[EE™

Figure 2-23. Desktop with all CSD Windows closed

2-24

Getting Started (1.8.7) 9/2/2009
2.15 Exiting jGRASP

When you have completed your session with JGRASP, you should always close
(or “exit”) jJGRASP rather than let your computer close it when you log out or
shut down. However, you don’t have to close the files you have been working
on before exiting JGRASP. When you exit JGRASP, it remembers the files you
have open, including their window size and scroll position, before closing them.
If a file was edited during the session, JGRASP prompts you to save or discard
the changes. The next time you start JGRASP, it will open your files, and you
will be ready to begin where you left off. For example, open the Hello.java file
and then exit JGRASP by one of the methods below. After JGRASP closes
down, start it up again and you should see the Hello.java program in a CSD
window. This feature is so convenient that many users tend to leave a few files
open when they exit JGRASP. However, if a file is really not being used, it is
best to go ahead and close the file to reduce the clutter on the windowbar.

Close jGRASP in either of the following ways:

(1) Click the Close button @ in the upper right corner of the desktop;
or

(2) On the File menu, click File > Exit JGRASP.

2.16 Review and Preview of What's Ahead

As a way of review and also to look ahead, let’s take a look at the JGRASP
toolbar. Hovering the mouse over a button on the toolbar provides a “tool hint”
to help identify its function. Also, View > Toolbar Buttons allows you to
display text labels on the buttons. Figure 2-24 provides a brief description of the
each button.

While many of these buttons were introduced in this section, some were
assumed to be self-explanatory (e.g., Print, Cut, Copy, etc.), and several others
will be covered in the next section along with Projects and the Object
Workbench (e.g., Generate UML, Generate Documentation, Create Object, and
Invoke Method). Section 9 provides an in depth look at the CSD, which can be
read at any time, but is most relevant when control structures are studied (e.g., if,
if-else, while, for, try-catch, etc).

2-25

Getting Started (1.8.7) 9/2/2009

TIP: Right-click here to
Open File turn menu groups on or off.

Save File

Set Browse Tab to directory of current file

Print Cut Copy Paste Undo last edit

X]
S XbBa DL {2y +Hs8ddlE

\

Generate CSD Remove CSD Toggle Line Number Freeze line numbers

Generate CPG Generate UML Generate Documentation

EHme XBRa BRD Thiy$iedolE

Compile Run Debug Run Debug Create Invoke
Applet Applet Object Static
Method

Figure 2-24. Toolbar

2-26

Getting Started (1.8.7) 9/2/2009

2.17 Exercises

(1)
2

©)

(4)
()
(6)

(")

(8)

Create your own program then save, compile, and run it.

Enter several statements and expressions in Interactions to immediately
see the results of their execution and/or evaluation.

Generate the CSD for your program. On the View menu, turn on Auto
Generate CSD (Settings > CSD Window Settings — then (checkbox) Auto
Generate CSD).

Display the line numbers for your program.
Fold up your program then unfold it in layers.

On the Build menu, make sure Debug Mode is ON (indicated by a check
box). [Note that Debug Mode should be ON by default, and we recommend
that this be left ON.] Recompile your program.

Set a breakpoint on the first executable line of your program then run it
with the debugger. Step through each statement, checking the Run 1/O
window for output.

If you have other Java programs available, open one or more of them, then
repeat steps (1) through (5) above for each program.

2-27

Getting Started (1.8.7) 9/2/2009

Notes

2-28

Getting Started with Objects (1.8.7) 9/2/2009

3 Getting Started with Objects

If you are an experienced IDE user, you may be able to do this tutorial without
having done the previous tutorial, Getting Started. However, at some point you
should read the previous tutorial and make sure you can do the exercises at the
end. The topics presented in this tutorial are applicable to Java.

Objectives — When you have completed this tutorial, you should be able to use
projects, UML class diagrams, the Object Workbench, Viewers, and Interactions
in JGRASP. These topics are especially relevant for an objects first or objects
early approach to learning Java.

The details of these objectives are captured in the hyperlinked topics listed
below.

3.1 Starting jJGRASP

3.2 Navigating to Our First Example Project

3.3 Opening a Project and UML Window

3.4 Compiling and Running the Program from UML Window
3.5 Exploring the UML Window

3.6 Viewing the Source Code in the CSD Window

3.7 Exploring the Features of the UML and CSD Windows
3.8 Generating Documentation for the Project

3.9 Using the Object Workbench

3.10 Opening a Viewer Window

3.11 Invoking a Method

3.12 Invoking Methods with Parameters That Are Objects
3.13 Invoking Methods on Object Fields

3.14 Showing Categories of Methods

3.15 Creating Objects from the CSD Window

3.16 Using Interactions

3.17 Running the Debugger on Invoked Methods

3.18 Creating an Instance from the Java Class Libraries
3.19 Exiting the Workbench

3.20 Closing a Project

3.21 Exiting JGRASP

3.22 Review of Toolbar Buttons

3.23 Exercises

3-1

Getting Started with Objects (1.8.7) 9/2/2009

3.1 Starting jGRASP

A Java program consists of one or more class files. During the execution of the
program, object instances can be created and then manipulated toward some
useful purpose by invoking the methods provided by their respective classes. In
this tutorial, we’ll examine a simple program called PersonalLibrary that
consists of five Java classes. In jJGRASP, these five Java files are organized as a
project.

If you are working in a Microsoft Windows environment, you can
start JGRASP by double clicking its icon on your Windows desktop.

) If you are working on a PC in a computer lab and you do not see the
JGRASP JGRASP icon on the desktop, try the following: click Start > All
Programs > jGRASP (folder) > jJGRASP. Depending on the speed of your
computer, GRASP may take between 10 and 30 seconds to start up. The
JGRASP virtual Desktop, shown below, is composed of a Control Panel with a
menu across the top and three panes. The left pane has tabs for Browse, Find,

File Edit View Project Settings Tools Window Help

|
4

(Al Fies| - [sort ... |~/

(Gl Rl ==
GRASPlexamples\T~| Browse CsD _and UML
3 Hello ~—__—| TabPane Windows
] PersonalLibrary
[ViewerExamples
ﬂ Hello.class
Hello.java
{] oddEven.class :
OddEvenjava | ™~ 10 Resize Pane, Select Messages,
(] oddEven2.class and Drag Partition or Run 1/0O, and
OddEven2java | 1 Click Arrowheads to Interactions
_—— Corcl gl

Browse | Debug | open or close ab Pane
e — o —

| Compile Messages |jGRASP Messages \ Run /O \ Interactions \ /

|- L / §

Clear

m
-

Hel

|E
Il

™

Figure 3-3. The jGRASP Virtual Desktop

3-2

Getting Started with Objects (1.8.7) 9/2/2009

Debug, and Workbench. The large right pane is for UML and CSD windows.
The lower pane has tabs for JGRASP messages, Compile messages, Run
Input/Output, and Interactions.

3.2 Navigating to Our First Example Project

Example programs are available in the JGRASP folder in the directory where it
was installed (e.g., C:\Program Files\|\GRASP\examples\Tutorials). You should
copy the Tutorials folder to one of your own folders (e.g., in your My
Documents folder) so that any changes you make will not be lost when jGRASP
is upgraded.

The files shown initially in the Browse tab will most likely be in your home
directory. You can navigate to the appropriate directory by double-clicking on a
folder in the Browse tab or by clicking on the up-arrow as indicated in the figure
below. The left-arrow and right-arrow allow you to navigate back and forward
to directories that have already been visited during the session. The refresh
button # updates the Browse pane. In the example below, the Browse tab is
displaying the contents of the Tutorials folder.

File Edit View Project Settings Tools Window Help
&

i

Al Files |~[[sortB... |~ _ _ _
P =N 7 To move up in the directory click on E‘E

Plexamples\Tuto rialsl =

CaHello —— ||| To open a folder

S PersonalLibrary | || |)
ﬂViewerExampILys double-click on the folder

[] oddEven.class
OddEven.java ——.
@l j

(] oddEven2.class |- I Toopena file
| double-click on the Java
Browse | Find source file name

Debug | Workbench \ E

Figure 3-2. The JGRASP Virtual Desktop

3-3

Getting Started with Objects (1.8.7) 9/2/2009
3.3 Opening a Project and UML Window

After double-clicking the PersonalLibraryProject folder, the Java source files in
the project as well as the JGRASP project file are displayed in the Browse tab.
Double-click on the project file (PersonalLibraryProject.gpj) to open the project
as shown in Step 1 below. After the project is opened, the Browse tab is split
into two sections, the upper section for files and the lower section for open
projects, as shown below in Figure 3-3.

We are now ready to open a UML window and generate the class diagram for
the project. As indicated in Step 2 below, simply double-click on the UML
symbol shown beneath the project name in the open projects section of the
Browse tab. Alternatively, on the desktop menu you can click Project >
Generate/Update UML Class Diagram.

After you have opened the UML window, you can compile and run your
program in the traditional way using the toolbar buttons or the Build menu.
However, from an objects first perspective, you can also create objects directly
from your classes, place them on the Workbench, and then invoke their
methods. Both of these approaches are explored below.

(8 jGRASP £EX
File Edit View Project Settings Tools Window Help
=

. |
All Files|~||Sort... |~ "
¢ mglaa,

‘\examples\Tutorial‘\v

Step 1. Open Project

/ Double-click project file name

Step 2. Open UML Window
Double-click UML symbol

Open Projects
? PersonalLibraryP)| |

S& <UML>

Book java

Fiction java e
NonFiction java | Compile Messages \jGR.ASP Messages | Run l/O | Interactions
Novel.java Stop | [=]

PersonalLibrary| | ?
] i Clear
Browse | Debug | | Copy |
| Find | Workbench \ [« [
E| Status: interactions active

Figure 3-3. Opening a project file and UML window

3-4

Getting Started with Objects (1.8.7) 9/2/2009
3.4 Compiling and Running the Program from UML Window

You can compile the files in the UML window by clicking the green plus 9 as
indicated in Step 3 below. Note that the classes in the UML diagram become
crosshatched with red lines when they need to be recompiled. After a successful
compile, the classes should be green again. If at least one the classes in the
diagram has a main method, you can also run the program by clicking the Run

button % as shown by Step 4. When you compile or run the program, the
respective Compile Messages or Run 1/O tab pops open in the lower pane to
show the results.

TIP: Usually the reason for compiling a program is because you have modified
or “added” something, hence the green plus .

Step 3. Compile program Step 4. Run program

5R X

[Project: <PersonallibraryProject> File: UML (Java) for Project: Personallibrar... [Z”E|E\
File Edit View Build Project Settrgs Tools Window Help X
EEEERREEEY T IE

All Files ~||sort ... |+ scale: 1.0
e-wooa | —

'\examp|es\Tutoria|‘|v T e e e o e e e s

oA

PersonalLibrary
{main}

I IDE|EH

Open Projects - N

¢ [m] PersonalLibraryP||. h

& <UML>
Book.java
Fiction.java q
NonFiction. java |
Novel java
PersonalLibrar I:l Project Class ———» Inheritance

] | ——— =3 Other (reference, elc.)

Fiction | |NonFiction|

[
o
=
o
4

Browse

E I L] [»

Debug | UML Info
Workbench

E @<PersonaILibraryProject>|

[LE™ Classes |/ Interfaces: 5

Figure 3-4. After loading file into CSD Window

3-5

Getting Started with Objects (1.8.7) 9/2/2009
3.5 Exploring the UML Window

In the Figure 3-5, a UML window for the PersonalLibraryProject has been
opened and the class diagram has been generated. Below the toolbar is a
panning rectangle which can be used to move around in the UML diagram. A
set of scaling buttons is located to the right of the panning rectangle. Try
clicking each of the scaling buttons one or more times to see the effect on the
UML diagram. Clicking “1” resets the diagram to its original size. The Update
UML button on the toolbar can be used to regenerate the diagram in the event
any of the classes in the project are modified outside of JGRASP (e.g., edited or
compiled). Just below the UML window is the windowbar which contains a
button for each UML or CSD window that is opened. Clicking the button pops
its window to the top. Windowbar buttons can be reordered by dragging them
around on the windowbar.

Windowbar Update UML Panning Rectangle Scaling Buttons

File: UML (Jave) for Project: PersonalLibrar... D@@

[Project: <PersonalLibraiyProject>
File Edit
;f% aH @ &

All Files|~||sbrt... |~ : Scale: 1.0\

& e] 12]1]1.2]2

‘\examp|es\Tut\?ria|“v T T

>

PersonalLibrary | ---=--=-="""" 2] Book
{main} T
T \\\ *'-.,\
Open Projects \ RN
+ (@ PersonalLibrary S| Fition | | NonFietion | |o
& <UML> R, = B
Book.java (| ‘\

Fiction.java —

NonFiction.java ﬁ-ove
Novel.java
PersonalLibrar) [Profect Class ——p> Inheritance

] > — — ——3 Other (reference, efc.)
Browse L Goto
Debug | UML Info
EI Classes / Interfaces: 5

4

\ | T
‘@ <PersonalLibraryProject> ‘

o

Figure 3-5. UML window with PersonalLibraryPorject

3-6

Getting Started with Objects (1.8.7) 9/2/2009
3.6 Viewing the Source Code in the CSD Window

To view the source code for a class in the UML diagram, simply double-click on
the class symbol, or in the Browse tab, double-click the file name in the Files or
Open Projects sections. Each of these will open the Java file in a CSD window,
which is a full-featured editor for entering and updating your program. Notice
that with the CSD window open the toolbar buttons now include Generate CSD,
Remove CSD, Number Lines, Compile, and Run, as well as buttons for Create
Instance and Invoke Method.

Generate a CSD

Remove CSD Compile Create Instance

Number Lines (on/off)

Invoke Method
Generate UML

4 -
All File4~||Sort... ~ " /7 ok ok sk ke sk sk ok sk ok sk sk ok ok sk ok ok ok ok sk ok sk ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok sk ok ok ok ok 5 =)

Ga BmE el » apublic class Personallibrary {L L

\examples\Tutori ~ G

NonFiction.javi*] .
G Novel.class S
Novel.java [P] Epublic static void main(String[] args)

('] PersonalLibra = Book hemingway = new Book("Hemingway'
PersonalLibra - "Green Hills of Africa"™, 234, °©

Wl v e Fiction clancy = new Fiction("Clancy’
Open Projects "The Hunt for Red October™,
¢+ [m| PersonalLibrary 49Q, 39.0, "Sean"):) L
£ <UML> —= Novel grlshaI.u = new Novel ("Grisham'",
a . "The Firm'", 550, 28.0, "Tom", [
Book java

Fiction.java

NonFiction.i @ — System.out.println(hemingway);
y en "'_" on.ja — System.out.println(clancy);
Novel java I System.out.println("\n" + clancy.getl
PersonalLibr L1
] D -
Browse Find |
Debug 4 I] I -
W rl:"”'":" & <PersonalLibraryProject>| [f] PersonalLibrary java * ‘
=M Line:5 Cal:35 Code:0 Top:4 [ovsBLK

Figure 3-6. After the CSD is generated

3-7

Getting Started with Objects (1.8.7) 9/2/2009
3.7 Exploring the Features of the UML and CSD Windows

Once you have a UML window open with your class diagram, you are ready to
do some exploring. The steps below are intended to give you a semi-guided tour
of some of the features available from the UML and CSD windows.

3.7.1 Viewing the source code for a class

(1) In the UML diagram, double-click on the PersonalLibrary class. This
should open the source file in a CSD window. Notice a button for this CSD
window is added to the windowbar. You should also see a button for the
UML window.

(2) Review the source code in the CSD window; generate the CSD; fold and
unfold the CSD; turn line numbers on and off. [See Sections 2.7 - 2.9 in
Getting Started for details.]

(3) On the windowbar, click the button for the UML window to pop it to the
top. Remember to do this anytime you need to view the UML window.

(4) View the source code for the other classes by: (1) double-clicking on the
class in the UML diagram, (2) double-clicking on the class in the Open
Projects section of the Browse tab, or (3) double-clicking on the file name
in the upper section of the Browse tab.

(5) Close one or more of the CSD windows by clicking the X in the upper right
corner of the CSD window.

3.7.2 Displaying class information
(1) Inthe UML window, select the Fiction class by left-clicking on it.

(2) Right-click on it and select Show Class Info. This should pop the UML
Info tab to the top in the left pane of the Desktop, and you should be able to
see the fields, constructors, and methods of the Fiction class.

(3) Inthe UML Info tab, double-click on the getMainCharacter() method. This
should open a CSD window with the first executable line in the method
highlighted.

(4) Close the CSD window by clicking the X in the upper right corner.
3.7.3 Displaying Dependency Information

(1) Inthe UML window, select the arrow between PersonalLibrary and Fiction
by left-clicking on it.

(2) If the UML Info tab is not showing in the left pane of the desktop, right-
click on the arrow and select Show Dependency Info. Alternatively, you
can click the UML Info tab near the bottom of the left pane.

3-8

Getting Started with Objects (1.8.7) 9/2/2009

(3) Review the information listed in the UML tab. As the arrow in the diagram
indicates, PersonalLibrary uses a constructor from Fiction as well as the
getMainCharacter() method.

(4) Double-click on the getMainCharacter method. This should open a CSD
window for PersonalLibrary with the line highlighted where the method is
invoked.

3.8 Generating Documentation for the Project

With your Java files organized as a project, you have the option to generate
project level documentation for your Java source code in a standard format. To
begin the process of generating the documentation, click Project > Generate
Documentation. Alternatively, if the UML window is in focus, click the

Generate Documentation button KE on the toolbar. This will bring up the
“Generate Documentation for Project” dialog, which asks for the directory
where the generated HTML files are to be stored. The default directory name is
the name of the project with “_doc” appended to it. Thus, for the example, the
default will be PersonalLibaryProject_doc. Using the default name is
recommended so that your documentation directories will have a standard
naming convention. However, you are free to use any directory as the target.
Pressing the Default button will get you back to the default directory in the
event a different directory is listed. When you click Generate on the dialog,
JGRASP calls the javadoc utility, included with the JDK, to create a complete
hyper-linked document. The documentation is then opened in a Documentation
Viewer as shown below for PersonalLibaryProject.

& jGRASP Documentation Viewer

File Edit View
@ ZDFiIestGRASF’Jexamples.fTutorialsfF’ersonaILibrarylPersonalLibraryProject_docfindex‘html||
All Classes package Tree Deprecated Index Help 5
Book FRAMES NO FRAMES
L PREV CLASS NEXTCLASS
Fiction All Classes
NonFiction SUMMARY: NESTED | EIELD | CONSTR | METHOD DETAIL: EIELD | CONSTR | METHOD
Novel

PersonallLibrary
Class Book

java.lang.Object
L Book

[4]

[m]

Figure 3-7. After generating documentation for PersonalLibaryProject

3-9

Getting Started with Objects (1.8.7) 9/2/2009
3.9 Using the Object Workbench

Now we are ready to begin exploring the Object Workbench. The figure below
shows the UML window opened for the PersonallibraryProject. Earlier, we

learned how to run the program as an application using the Run button 91‘
Since main is a static method, we can also invoke it directly from the class
diagram by right-clicking on PersonalLibary and selecting Invoke Method.
Alternatively, you can select the PersonalLibrary class, and then click the

Invoke Method button I on the toolbar. When the Invoke Method dialog pops
up, select and invoke main (without parameters). Try this now.

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonalLibrar... [ZHE|E\
File Edit View Build Project Settings Tools Window Help
a8 e &Y ¢ iédéHHE
All File~||Sort ... ~|* B
&= (6| g|eE »|
\examples\Tutori|~| = T
NonFiction.jav|™ | {;;:;a Heelny
D Novel.class =
Novel.java [P] R
[] PersonalLibra N
J] PersonalLibra- - !
o] 1 Fiction | show Class Info
Open Projects i \\ Create New Instance |
¢ [m] PersonalLibrary S— Invoke Method =
& <UML> OVel | Create Array Of
Bookjava || Edit
Fictionjava || Compile
NonFiction‘ja :I Project Class — Compile All
Novel.java _
PersonalLibr Remove From Project
T D : Generate / Show Documentation
Browse | Goto | Layout .H*
& : 4] ‘||\|] =
UML Info :
‘| &l <PersonalLibraryProject> PersonalLibrary.java
E™ Classes / Interfaces: 5

Figure 3-8. Creating an Object for the Workbench

The focus of this and the next several sections is on creating objects and placing
them on the workbench. We begin by right clicking on the Fiction class in the
UML diagram, and then selecting Create New Instance, as shown in Figure 3-
8. Alternatively, select the Fiction class, and then click the Create Instance

button I on the toolbar. A list of constructors will be displayed in a dialog
box.

3-10

Getting Started with Objects (1.8.7) 9/2/2009

Click on “stick-pin” g
to keep dialog open.

[Create New Fiction

Workbench Name
ffiction_1 |

& public Fiction() |
=] public Fiction(String theAuthor, String t

4] I | ID
<init>() declared in Fiction

Parameters:
java.lang.String theAuthor

java.lang.String theTitle

int thePages

java.lang.Double theValue

java.lang.String theMainCharacter

| Create H Show Doc H Close ‘

Figure 3-10. Constructor with
parameters

[Create New Fiction &\

IE Fiction
Workbench Name

[fiction_1 |

= public Fiction() J
& public Fiction(String theAuthor, String t

< I D

Close

Figure 3-9. Selecting a
constructor

If a parameterless constructor is selected
as shown in Figure 3-9, then clicking
Create will immediately place the object
on the workbench. However, if the
constructor requires parameters, the

dialog will expand to display the
individual parameters as shown in
Figure 3-10. The values for the

parameters should be filled in prior to
clicking Create. Be sure to enclose
strings in double quotes. In either case,
the user can set the name of the object
being constructed or accept the default
assigned by jGRASP. Also, the “stick-

pin” ¥ located in the upper left of the
dialog can be used to make the Create
dialog remain open. This is convenient
for creating multiple instances of the
same class. If the project documentation
has been generated, clicking the Show
Doc button on the dialog will display the
documentation for the constructor
selected.

In Figure 3-11, the Workbench tab is
shown after two instances of Fiction and
one of Novel have been created. The

3-11

Getting Started with Objects (1.8.7) 9/2/2009

second object, fiction_2, has been expanded so that the fields (mainCharacter,
author, title, and pages) can be viewed. An object can be expanded or
contracted by clicking on its name. Notice that three fields in fiction_2 are also
objects (i.e., instances of the String class); they too can be expanded.

Notice that objects and object fields have various shapes and colors associated
with them. Objects are represented by squares and primitives are represented by
triangles. Top level objects are indicated by blue square symbols (e.g.,
fiction_2). The symbols for fields declared in an object are either a square for
an object (e.g., author) or a triangle for a primitive type (e.g., pages). A green
symbol indicates the field is declared within the class (e.g., mainCharacter in
fiction_2), and an orange symbol means the field was declared in a superclass
(e.g., author was declared in Book). A red bar on a symbol means the field is
inaccessible from its current context; the object was declared as either private or
protected (e.g., mainCharacter). A gray bar indicates the field is not visible and
that a cast would be required to refer to it. Finally, a red-gray bar means the
field is inaccessible and not visible. These colors/bars also apply to methods.

[Project: <PersonallibraryProject> File: UML (Java) for Project: PersonalLibrar... EWE“X\
File Edit View Build Project Settings Tools Window Help
== EEFEEREIEE I I S

G R

~ Il fiction_1 —> (ob; 348 : Fiction) ‘ : e
+ [l fiction_2 > (obj 375 : Fiction)
~ @ author --> "Dan Brown" (obj 2 PersonalLibrary
- @B title --> "The Da Vinci"... (obj {main}
Bmmpages = 464 : protected int <
- mavalue --> 24.95 (obj 362 : jav .
- @& mainCharacter --> "Dr. Robe .
o [} fiction_3 > (obj 383 : Fiction)

| NonFiction |

[l I | D

I:l Project Class ———> Inheritance
Evaluate Expression — —— =3 Other (reference, etc.)
| - eo | i

4 L] [

Browse | Goto | Debug |
UML Info | Workbench |

[[]JEM™ status: workbench active for project <PersonalLibraryProject> Classes / Interfaces

‘IE|<PersonaILibraryProje... | PersonalLibrary.java H

Figure 3-11. Workbench with three Fiction objects
3-12

Getting Started with Objects (1.8.7) 9/2/2009

3.10 Opening a Viewer Window

A separate Viewer window can
be opened for any object or field
of an object in the Workbench
or Debug tabs. To open a
viewer, left-click on an object in
the Workbench tab and while
holding down the left mouse
button, drag it from the
workbench to the location where
you want the viewer to open.
When you start to drag the
object, a viewer symbol should

[@ Viewer (by name): fiction_2.mainCharacter @
[¥| fiction_2 mainCharacter =

Type java.lang.Strin..|~ Viewer Formatted |~/
Dr. Robert Langdon

Figure 3-12. Viewer on
fiction_2.mainCharacter

appear to indicate a viewer is being opened. At a minimum, a viewer provides
the basic view similar to the one in the Workbench and Debug tabs. However,
some objects will have additional views. For example, the viewer for a String
object will display its text value fully formatted. Figure 3-12 shows a viewer on
the mainCharacter field in fiction_2.

Figure 3-13 shows a viewer opened for Basic view on the “pages” field of

fiction_2, which is an int
primitive type. Figure 3-14
shows the viewer set to Detail
view, which shows the value of
pages in decimal, hexadecimal,
octal, and binary. The Detail
view for float and double values
shows the internal exponent and
mantissa representation used for
floating point numbers. Note
that the last view selected will
be used the next time a Viewer
is opened on the same class or
type. Special presentation
views are provided for instances
of array, ArrayList, LinkedList,
HashMap, and TreeMap. When
running in Debug mode, a
viewer can also be opened on
any variable in the Debug tab.

Select view from
drop-down list.

[Viewer (by name): fiction_2.pages E|
E fiction_2.pages

Type|int [Current] |v| Viewer|Basic H
Accessibility Context Public -

b =464 : int

Figure 3-13 Viewer with Basic View of
Primitive int

[Viewer (by name): fiction_2.pages E|
|£| fiction_2.pages
Type|int [Current]
Decimal: 464
Hex: 0x1D0

Octal: 0720
Binary: 0000

-

|~| viewer Detail

00000 0000 0000 0001 1101 0000

Figure 3-14 Viewer with Detail View of
Primitive int

3-13

Getting Started with Objects (1.8.7) 9/2/2009

Note that the viewer in Figure 3-12, which contains an object, has an Invoke

Method button E; however the viewers for the ints in Figures 3-13 and 3-14 do
not since primitives have no methods associated with them.

3.11 Invoking a Method

To invoke a method on an object in a viewer (see Figure 3-12), click the Invoke

Method button EH. To invoke a method for an object on the workbench, select
the object, right click, and then select Invoke Method. In Figure 3-15, fiction_2
has been selected, followed by a right mouse click, and then Invoke Method has
been selected. A list of visible user methods will be displayed in a dialog box as
shown in Figure 3-16. You can also display all visible methods by selecting the
appropriate option. After one of the methods is selected and the parameters
filled in as necessary, click Invoke. This will execute the method and display
the return value (or void) in a dialog, as well as display any output in the usual
way. If the method updates a field (e.g., setMainCharacter()), the effect of the
invocation is seen in appropriate object field in the Workbench tab. The “stick-
pin” located in the upper left of the dialog can be used to make the Invoke
Method dialog remain open. This is useful when invoking multiple methods for
the same object. The Show Doc button will be enabled if documentation has

[Project: <PersonallibraryProject> File: UML (Java) for Project: PersonalLibrar... EWEWZ\
File Edit View Build Project Settings Tools Window Help
EEEEFRREEIEITT XL E

> [l fiction_1 —> (obj 348 : Fiction) |} —

I -

? . fiction_2 --> (F=====—= I D TR
- @B author - INVOke Method
~ BRtitle —> "Th Add to Workbench

jm pages = 4¢ Create New Instance
~ @@ value --> 2| Create Array Of

o @@ mainChara View by Name Fiction | | NonFiction |
o [} fiction_3 > (View Value S
A
Copy Name
Novel

Create New Instance of Library Class
Create Array of Library Class o ‘ ”3
Invoke Method on Library Class

= i roje... | [E]PersonalLibraryjava |
Delete Selected Item -
Evaluate Expres Clear / Exit Workbench Run /O rlnteractions
‘ |-|| Go | Compile Messages

[Il I

—

amn

: L ---—-jGRasPe: ti
Browse | Goto | Debug . operabion €0

UML Info | Workbench | || Clear || 0

[[]JEM™ status: workbench active for project <PersonalLibraryProject> Classes / Interfaces

Figure 3-15. Workbench with two instances of Fiction
3-14

Getting Started with Objects (1.8.7) 9/2/2009

been generated for the project.

[Invoke Method on fiction_2 X

[¥] fiction_2

Type Fiction [Current]

-

N
Accessibility Context \Public M
=l

Show: |Default

[Tjava.lang.Object [“/Inaccessible SortBy [Natural Order H

i@ setMainCharacter(): public void setMainCharacter(String th
[getMainCharacter(): public String getMainCharacter() : Fict
[toString(): public $tring toString() : Fiction.toString()

@ compareTo(): public int compareTo(Object obj) : Fiction.co

[] | [»
getMainCharacter() declared in Fiction

Returns: java.lang.String

LIDon't Show Result Dialog

Figure 3-16. Selecting a method

As indicated above, perhaps one of the most compelling reasons for using the
workbench approach is that it allows the user to create an object and invoke each
of its methods in isolation. Thus, with an instance of Fiction on the workbench,
each of its four methods: getMainCharacter(), setMainCharacter(), toString(),
and compareTo() can be invoked directly. By carefully reviewing the results of
the method invocations, we can informally test the class without the need for a
driver with a main() method.

3.12 Invoking Methods with Parameters That Are Objects

In the example above, we created three instances of Fiction. Instances of any
class in the UML diagram can be created and placed on the workbench. If the
constructor requires parameters that are primitive types and/or strings, these can
be entered directly, with any strings enclosed in double quotes. However, if a
parameter requires an object, then you must create an object instance on the
workbench first. Then you can simply drag the object from the workbench to
the parameter field in the Invoke Method dialog. You can also use the new
operator to create an instance when entering the value of a parameter.

3-15

Getting Started with Objects (1.8.7) 9/2/2009
3.13 Invoking Methods on Object Fields

If you have an object in the Workbench tab pane, you can expand it to reveal its
fields. Recall, in Figure 3-11, fiction_2 had been expanded to show its fields
(mainCharacter, author, title, pages, and mainCharacter). Since the field
mainCharacter is itself an object of the String class, you can invoke any of the
String methods. For example, right-click on mainCharacter and select Invoke
Method. When the dialog pops up (Figure 3-17), scroll down and select the
first toUpperCase() method and click Invoke. This should pop up the Result
dialog with “ROBERT LANGDON?” as the return value (Figure 3-18). This
method call has no effect on the value of the field for which it was called; it
simply returns the string value converted to uppercase.

[Invoke Method on fiction_2.mainCharacter

@ fiction_2.mainCharacter

Type |java.lang.string [Current]

-

-]
Accessibility Context |Public H
Show: |Default ‘ |

[Cjava.lang.Object ¥Inaccessible Sort By |Natural Order H

I touppercase(): public String toUpperCase() : java. Iang.StE

B trim(): public String trim() : java.lang.String.trim()

E toString(): public String toStrlng() : java.lang.String.toStrir_|
i |1
toUpperCase() declared in java. Iang String

Returns: java.lang.String

[1Don't Show Result Dialog

Figure 3-17. Invoking a toUpperCase() method on
fiction_2.mainCharacter

[Viewer (by value): result of fiction_2.mainCharacte... E|
@ Name value_2

=
Type ‘java.lang.string [|v| Viewer

DR. ROBERT LANGDON

Figure 3-18. Result of
fiction_2. mainCharacter.toUpperCase()

3-16

Getting Started with Objects (1.8.7) 9/2/2009
3.14 Showing Categories of Methods

The methods shown in the Invoke Method dialog based on the category selected
in the “Show:” field. The “Show: Default” category includes the methods
declared in the object’s class and all of its superclasses except the Object class.
A number of other useful categories are also available in the dialog. For
example, Figure 3-19 shows the “Delcared in java.lang.Object” category
selected for fiction_2. These are the methods that fiction_2 inherited from the
Object class. The orange color coding of the method symbols indicates
“inherited” methods. Notice that a toString() method was declared in the Object
class and that it has gray bar on the orange method symbol indicating that the
method is not visible. Since Fiction has its own toString() method, it is
overriding the inherited method. If you invoke the one declared in Object, the
rules of Java are such that the one declared in Fiction is actually executed.
However, JGRASP allows you to invoke Object’s version by turning on (check
box) Invoke Non-virtual. To view categories of methaods, click the Show drop-
down list on the dialog as indicated below.

To view another category of
methods, click here

[Invoke Method on fiction_2

[¥] fiction_2

Type ‘Fiction [Current] \ ‘
Accessibility Context |Public \ \v
|

Show: |Declared in java.lang.Object

O Default

All

E=regigvisible

= getClpeciared in java.lang.Object

= hashpeclared in Book

= equdpeclared in Fiction

ECWJDecIared in java.lang.Comparable

== toString(): public String toString() : java.lang.Object.toStr

[notify(): public final void notify() : java.lang.Object.notify()|_|
= P NP1 Ll £ 1 ial AiE o ALIY H I ~L =

) i I T
Close

Figure 3-19. Showing methods declared in
java.lang.Object

3-17

Getting Started with Objects (1.8.7) 9/2/2009
3.15 Creating Objects from the CSD Window

In addition to creating instances of classes from the UML class diagram,
instances can be created directly from the CSD window after the class has been
compiled. Figure 3-20 shows a CSD window containing class Fiction. From
the menu, select Build > Java Workbench > Create New Instance. Buttons

are also available on the toolbar for Create New Instance N and Invoke Static
Method (remember that only static methods can be invoked from a class).
You can always create instances from the CSD window even if you have not

created a project and UML diagram. This makes it convenient to quickly create
an instance for the workbench and then invoke its methods.

Click . to create an Click E to invoke a static method.

instance of the class in Note that Fiction has no static methods;

the CSD window. try this with PersonalLibrary and you
should see main in the list).

[AProject: <PersonallLibraryProject> File: Fiction.java [P] C:\Program Files\jGR... E\@@
File Edit View Build Project Settings Tools Wi [<IES
BREE BE B T k& 4k 6 H

- M
= [l fiction_1 > (e8] P public class Fiction extends Book implement
¢ [l fiction_2 > (ob*

o {3 author --> "Dz = protected String mainCharacter = new Stri| |
= @B title > "The
Bpages=464 public Fiction() f{ L
- value --> 24. super () ;
¥

= @@ mainCharact
- [fiction_3 > (o

w1 uklic Fiction(String theARuthor, Strin
~ [l fiction_4 —> (o P (g ’ g

int thePages, Doukle theValue, 3Stri
super (theAuthor, theTitle, thePages, t
mainCharacter = theMainCharacter;

}

<[]

Evaluate Expres
mainCharacter = theMainCharacter;

?ublic void gsetMainCharacter (String thel
i

Browse Find

!

Debug I . | .
UML Info : ~ - —
Workbench (&l <PersonalLibrary. | PersonalLibrary.j. | Fiction.java ||

[C1E/™ Status: workbench active for project <PersonalLibraryProject> Line:20 (ovs[50x]

Figure 3-20. Creating an Instance from the CSD Window

3-18

Getting Started with Objects (1.8.7) 9/2/2009
3.16 Using Interactions

The Interactions tab, located next to the Run 1/O tab in the lower window of
the desktop, allows you to enter most Java statements and expressions and then
execute or evaluate them immediately when you press ENTER. Interactions
provide a convenient interface for working with items in the workbench or
debug tabs. In fact, when you enter code that creates an object or primitive, the
item is placed on the workbench where it can be inspected by unfolding and/or
opening a viewer on it. Interactions can be especially helpful when learning and
experimenting with objects and other elements in the Java language.

Consider Figure 3-21 where the context for Interactions is the UML window for
the PersonalLibraryProject. Typing the following statement and pressing
ENTER creates an instance of Novel on the workbench.

Novel n = new Novel ();

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonalLibrar... E\@@
File Edit View Build Project Settings Tools Window Help [<IES

W : = =
: PersonalLibrary
{main}
= ~
S o
Ay =
\\
M Fision | | NonFiction |
\ A
AY
A)
< Ti] \bll
Cj —r— [0 ;|@<PersonalLibraryPr0ject>| ‘
EvaluateExpre.. | —r— e e
;fCOmpiIe Messages ijRASP Messages rRun [[e] rlnteractions
Browse LGoto : End : liovel n = new Novel(); o
Debug || cClear]
UML Info : =
Workbench {_Help |fq i | ns

[LJE™ status: intefactions active for project <PersonalLibraryProject> Classes / Interfaces|

Figure 3-21. Using lteractions

With n on the workbench, we can now type statements or expressions that
reference n and have them executed or evaluated immediately when ENTER is
pressed. For example, typing n (followed by ENTER) is an expression that
evaluates to the value of n, which is the Novel that was just created. For object

3-19

Getting Started with Objects (1.8.7) 9/2/2009

values, the result of invoking toString() on the object is displayed, as shown in
Figure 3-22.

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonallLibrar... |:H§|E\
File Edit View Build Project Settings Tools Window Help X
EHEEe &Y ¢ iéd HlE

T DS
= @ author --> "ng|:

A
3

- @ itie —> "non Pers‘onaIlerary _______ > Book
: {main} A
fmpages =0 : | -
- @ value --> 0.0 T . Ti] D]
> @@ mainCharact §|@ <PersonaILibraryProject>| [€] Fiction.java | ‘
-seque|s=0 e A

E[Compile Messages erRASP Messages rRun [l[e] rlnteractions \

[v]

p» Novel n = new Novel():
P n L
Clear
Author: no title
Title: none

] |

Evaluate Expre... || g4 |§ Pages: 0
: Value: 0.0 u
Main Character: none
Browse | Goto | Number of secquels: O
Debug » |
UML Info | =
Workbench] [4] 1 I |

[LJE™ status: intefactions active for project <PersonalLibraryProject> Classes / Interfaces|

Figure 3-22. Entering and evaluating the expression n

When working with Interactions, mistakes will generate messages similar to
those from the compiler. To correct a statement without retyping it, use the UP
and DOWN arrow keys to scroll through the previous statements (history) one
by one until you find it. Then use the LEFT and RIGHT arrow keys or mouse to
move around within the statement in order to make the desired changes. Finally,
press ENTER to execute the statement again.

When you want to continue a statement on the next line, you can delay
execution by pressing Shift-ENTER rather than ENTER. For example, you
would need to press Shift-ENTER after the first line below and ENTER after the
second line.

Systemout.println | Shift-ENTER

("The current value of n:" + n); ENTER

If you simply press the ENTER at the end of the after the first line, Interactions
will attempt to execute the incomplete statement and you get an error message.

3-20

Getting Started with Objects (1.8.7) 9/2/2009

Interactions in JGRASP can be a very useful tool, especially when learning new
features, and you are encouraged to experiment with it.

3.17 Running the Debugger on Invoked Methods

When objects are on the workbench, the workbench is actually running Java in
debug mode to facilitate the workbench operations. Thus, if you open a class in
the CSD window and set a breakpoint in a method and then invoke the method
from the workbench, the CSD window will pop to the top when the breakpoint
is reached. When this occurs, you can single step through the program,
examining variables in the Debug tab or you can open a separate viewer for a
particular variable as described above in Section 3-10. See the Tutorial entitled
“The Integrated Debugger” for more details.

3.18 Creating an Instance from the Java Class Libraries

You can create an instance of any class that is available fepET—F— X
to your program, which includes the Java class 7
libraries. Find the Workbench menu at the top of the
UML window. Click Workbench > Create New E::T;;Z";;md -
Instance of Class. In the dialog that pops up (Figure i

3-23), enter the name of a class such as java.lang.String | ok || Cancel \
or select a class from the drop-down list, and click OK.
This should pop up a dialog containing the constructors Fi)

.) gure 3-23.
for String. Select an appropriate constructor, enter the
argument(s), and click Create. This places the instance
of the class on the workbench where you can invoke
any of its methods as described earlier.

3.19 Exiting the Workbench

The workbench is running (EprEyRTaNrR T,
whenever you have objects on
it or if you have invoked
main() directly from the class OK to end Workbench and continue with Run?
diagram. If you attempt to do | End Workbench | | Cancel |
an operation that conflicts
with workbench, such as Figyre 3-24. Making sure it is okay to exit
compiling a class, jJGRASP ihe Workbench

will prompt you with a

message indicating that the workbench is active and ask you if it is OK to end
the Workbench (see Figure 3-24). The prompt is to let you know that the
operation you are about to perform will clear the workbench. You can also clear
or exit the workbench by right-clicking in the Workbench tab pane and selecting
Clear/Exit Workbench.

Creating an
instance of String

[2] workbench is active.

3-21

Getting Started with Objects (1.8.7) 9/2/2009
3.20 Closing a Project

If you leave one or more projects open when you exit JGRASP, they will be
opened again when you restart JGRASP. You should close any projects you are
not using to reduce clutter in the Open Projects section of the Browse tab.

Here are two ways to close a project:

(1) From the Desktop menu — Click Project > Close or Close All Projects.

(2) In the Open Projects section of the Browse tab — Right-click on the project
name and select Close or Close All Projects.

All project information is saved when you close the project as well as when you
exit JGRASP.

3.21 Exiting jGRASP

When you have completed your session with jGRASP, you should “exit” (or
close) jJGRASP rather than leaving it open for Windows to close when you log
out or shut down your computer. When you exit jJGRASP, it saves its current
state and closes all open files. If a file was edited during the session, it prompts
you to save or discard the changes. The next time you start jJGRASP, it will
open your files, and you will be ready to begin where you left off.

Close jGRASP in either of the following ways:

(1) Click the Close button in the upper right corner of the
desktop; or

(2) On the File menu, click File > Exit JGRASP.

When you try to exit JGRASP while a process such as the workbench is still
running, you will be prompted (Figure 3-25) to make sure it is okay to quit
JGRASP.

[jGRASP: Exit jGRASP?
[2] workbench is active. Exit JGRASP anyway?

Figure 3-25. Making sure it is okay to
exit JGRASP

3-22

Getting Started with Objects (1.8.7) 9/2/2009
3.22 Review of Toolbar Buttons

Figure 3-26 provides a review of the buttons on the jJGRASP toolbar. If you
forget the function of a button, simply move the mouse over it to display the tool
hint.

TIP: Right-click here to
Open File turn menu groups on or off.

Save File

Set Browse Tab to directory of current file

Print Cut Copy Paste Undo last edit

N
SHzS s Ba BN eV +4+48600 0

Generate CSD Remove CSD Toggle Line Number Freeze line numbers

Generate CPG Generate UML Generate Documentation

EHEs X R« BR0 Ny $see ol=

Compile Run Debug Run Debug Create Invoke
Applet Applet Object Static
Method

Figure 3-26. Toolbar

3-23

Getting Started with Objects (1.8.7) 9/2/2009

3.23 Exercises

(1)

)

©)
(4)

(5)

(6)

Create a new project (Project > New) named PersonalLibraryProject2 in
the same directory folder as the original PersonalLibraryProject. During
the create step, add the file Book.java to the new project.

a. After the new project is created, add the other Java files in the
directory to the project. Do this by dragging each file from the
Files section of the Browse tab and dropping it in
PersonalLibraryProject2 in the open projects section.

a. Remove a file from PersonalLibraryProject2. After verifying the
file was removed, add it back to the project.

Generate the documentation for PersonalLibraryProject2, using the
default name for the documentation folder. After the Documentation
Viewer pops up:

a. Click the Fiction class link in the API (left side).

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.
Close the project.

Open the project by double-clicking on the project file in the files section of
the Browse tab.

Generate the UML class diagram for the project.
a. Display the class information for each class.

b. Display the dependency information between two classes by
selecting the appropriate arrow.

c. Compile + and run & the program using the buttons on the
toolbar.

d. Invoke main() directly from the class diagram.

e. Create three instances of Fiction from the class diagram. Open
Novel in a CSD window, then create two instances of Novel from
the CSD window

f. Invoke some of the methods for one or more of these instances.

g. Open an object viewer for one or more String fields of one of the
instances.

Use Interactions to enter statements and expressions that reference items on
the workbench. Create new objects by entering statements such as:

3-24

Getting Started with Objects (1.8.7) 9/2/2009
Novel myNovel = new Novel ();
(7) Open the CSD window for PersonalLibrary.java.
a. Seta breakpoint on the first executable statement.

b. From the UML window, start the debugger by clicking the Debug
button.

c. Step through the program, watching the objects appear in the
Debug tab as they are created.

d. Restart the debugger. This time click “step in” instead of “step”.
This should take you into the constructors, etc.

(8) If you have other Java programs available, repeat the steps above for each
program.

3-25

Getting Started with Objects (1.8.7) 9/2/2009

Notes

3-26

Interactions (1.8.7) 9/2/2009

4 Interactions

The Interactions feature in JGRASP allows the user to enter Java statements
and expressions and then execute/evaluate them immediately. This feature is
not meant to be a replacement for the traditional edit-compile-run cycle, but
rather a convenient way to experiment with Java statements and expressions.
The Interactions feature is relevant for beginning as well as advanced users who
are programming in Java. The feature was introduced briefly in Getting Started
and Getting Started with Objects. In this tutorial, we provide a more complete
description with detailed examples. If you are not familiar with the basic
features of jGRASP (e.g., compiling, running, and debugging), you are
encouraged to read Getting Started.

Objectives — When you have completed this tutorial, you should be able to use
Interactions with the Object Workbench, Debugger, and Viewers in jJGRASP.
You should be able to declare primitive variables, assign values, and use them in
expressions. You should be able declare reference variables, create instances of
objects, invoke methods on the objects, and use the reference variables in
expressions. You should be able use interactions containing variables from the
workbench and debugger. You should be able to copy interactions and paste
them to a CSD window as source code.

The details of these objectives are captured in the hyperlinked topics listed
below.

4.1 Starting Interactions

4.2 Interactions with Primitives

4.3 Interactions with Reference Types

4.4 Interactions with Your Own Classes

4.5 Working with Reference Types — Important Details
4.6 Interactions with the Debugger

4-1

Interactions (1.8.7) 9/2/2009
4.1 Starting Interactions

Let’s begin by starting JGRASP and then closing any files that had
been left open from the previous session. We need to select the

Interactions tab in the lower window of the JGRASP desktop as
shown in Figure 4-1. As indicated in the figure, an Interactions
session can be terminated by clicking the End button, the window can be
cleared by clicking he Clear button, and the window containing the Interactions
tab can be resized by dragging on the partitions or by clicking on the up/down
arrows at the top or left end of each of the partitions. Many users find it helpful
to switch between a full-width message pane across the bottom of the desktop
and a full-height tab pane on the left. The button (B or B) in the lower left
corner of the desktop provides convenient way to change the layout of the
partitions.

jGRASP

The blue triangle in the Interactions window indicates where we should enter
our first interaction. Click in the window to gain focus, and we are ready to
begin.

File Edit View Project Settings Tools Window Help

lail Files | ~|[sortBy... |

afm g na, ; Interactions
SP\exampIes\Tutorials‘v Tab Pane
LI Hello Resize or

[PersonalLibra
oo o]] close/open

artitions
Browse | _Fimd | P
LDebquench |

\ Compile Messages “GRASP Messages \ Run /O [Interactlons/l

End \L > |
@ \ End a session |
@ Change

X}
Clear the window Iayqu_t of
partitions

AEEDD

[v]

[4]

Figure 4-1. The JGRASP Virtual Desktop
4-2

Interactions (1.8.7) 9/2/2009
4.2 Interactions with Primitives

Our first interactions will explore Java primitive types. Let’s begin by declaring
an integer variable i and assigning it an initial value of 10. After entering the
following statement, press ENTER.

int i = 10;
As soon as you press ENTER, the Interactions session will be started, and the
variable i should appear on the Workbench.
Now enter the code to declare a variable x of type double:

double x = 29.9;
After pressing ENTER, x should appear on the Workbench.

Now let’s enter an expression that uses the two variables i and x. Note that
an expression does not end with a semi-colon (;)

i + X
As soon as ENTER is pressed the expression will be evaluated, and we should
see 29.9 displayed below the expression. Figure 4-2 shows the desktop after the
interactions above have been entered.
(8 jGRASP =1
File Edit View Project Settings Tools Window Help
=

B i=10 :int i
A x=29.9 : double|

b

E[Compile Messages | jGRASP Messages | Run /O InteractionsL

| End > int i = 10; g
: » double x = 29, 9;
fll L I Clear » i+ x i
. 4 39.49
Evaluate E‘xﬂpresm... . L
‘: -m | 1 |8 u
Browse | Find |
. Debug =
Workbench \ ff [T i

[L]JE™ status: interactions active

Figure 4-2. Our first interactions

Interactions (1.8.7) 9/2/2009
Now let’s try a few more interactions that use i and x.
i = 10;
i =i + 10;
X =X + 3.5;

As you enter each of these, be sure to observe the changes to the variables on the
Workbench.

Errors — If a statement contains an error, a message similar to a compiler error
message will be displayed.

Repeating a statement — To find a statement you have already entered, press
the UP and DOWN arrow keys to scroll through the previous statements
(history) one by one until you reach the statement. Then use the LEFT and
RIGHT arrow keys or mouse to move around within the statement in order to
make the desired changes. Press ENTER to execute the statement again.

Splitting a statement over two lines — When you want to continue a statement
on the next line, you can delay execution by pressing Shift-ENTER rather than
ENTER. For example, you would need to press Shift-ENTER after the first line
below and ENTER after the second line.

Systemout. println | Shift-ENTER
("1 ="+ i +™and x =" + x); ENTER

If you simply press ENTER at the end of the first line, Interactions will attempt
to execute the incomplete statement and you will get an error message. Below is
the result you should see after the statements above are entered with delayed
execution.

Systemout.println
("t ="+1i + " and x =" + Xx);
i = 10 and x = 22.89

Compound statements — When entering statements such as i f, i f- el se,
whi | e, f or, and block statements { } , execution is delayed until the “normal”
end of the statement is reached. To enter the following while statement on two
lines, you can press ENTER at the end of the each line (i.e., there is no need to
press SHIFT-ENTER after the first line).

while (i > 0)
=i - 1

4-4

Interactions (1.8.7) 9/2/2009

Copying Interactions — After you have entered one or more statements in
Interactions, you may find it useful to copy and then paste them back into
Interactions in order to execute them again or perhaps paste them into a CSD
window to make them part of a program. To copy statements, first use the
mouse to select the range of statements. Next, right-click the mouse to bring up
the context menu and then select “Copy Interactions Code” as shown in Figure
4-3. When you do the “paste”, it will not include the “x” that was output when
System out . println("x"); was executed.

(8 jGRASP L EX
File Edit View Project Settings Tools Window Help

=

Evaluate Expression [{

| Lo ||

Browse L Find |
Debug | Workbench |

[compile Messages | JGRASP Messages | Run l/O | Interactions

int i = 10; Clear
double x = 2.25; Save As Text File

= * -
iy e cut Cliix
System.out.println('x . L
Copy ctic
= i * 99; Select All and Copy
Copy Interactions Code
Paste Ctrkv
Print Settings 4
Print Contents 4

Clear

Yyvyvy

- EIE

vy

[

Find Selection 4

7 Disable Access Checking =
[a] I i Disable stdin Input [¥]
[HE™ status: interactions active

Figure 4-3. Selecting and copying interactions

4-5

Interactions (1.8.7) 9/2/2009

Viewers — Now let’s take a quick side trip and open viewers on i and x to
explore their details. The easiest way to open a viewer on a variable is to simply
drag it from the Workbench (i.e., left-click on the item and while holding down
on the button, “drag” the item and release the mouse anywhere). Alternatively,

you can open a viewer by right-clicking on the item and then selecting “View by
Name.”

Figures 4-4 and 4-5 show viewers for each of i and x. Note that Viewer is set
to Basic. This is similar to the view in the Workbench.

[Viewer (by name): i X [Viewer (by name): x X

(#] i [#] x
Type|int [Curre...|~| Viewer |Basic || Type double [C... ~ Viewer Basic |~
Accessibility Context Accessibility Context
A =10 :int I =29.9 : double

Figure 4-4. Viewer (Basic) of 1 Figure 4-5. Viewer (Basic) of x

Using the drop-down menu on the viewer, we can change the setting for Viewer
from Basic to Detail. Figure 4-6 shows the Detail view for i with its value in
decimal, hexadecimal, octal, and binary. If you change Viewer to Detail in the
viewer for x, you will see the IEEE floating point representation (sign, exponent,
and mantissa) for its value as well as the details for how the computation was
done. See Figure 4-7.

Change Viewer from
Basic to Detail

[Viewer (by name): i
¥ i
Type|int [Current] Viewer

Decimal: 10

Hex: 0xA

Octal: 012

Binary: 0000 0000 0000 0000 0000 0000 0000 1010

Figure 4-6. Viewer (Detail) of i

4-6

Interactions (1.8.7) 9/2/2009

[Viewer (by name): x E|
(¥ x
Type|double [Current] |v| Viewer|DetaiI |v|
value = 29.9 B
Sign| Exponent Mantissa
0 100 0000 0011|1101 1110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 011
0 0x403 0xde6666666666
0 1027 391250217627811
sign =+ T

exponent = 1027 - bias of 1023 =4

mantissa = assumed 1 + 3912502176278118 / 2252
= (approximately) 1.86875

value = (sign) mantissa * 2 * exponent
=+1.86875*2 "4
=29.9

« I I IC

4]

Figure 4-7. Viewer (Detail) of x

Exploring the increment operator — Many beginning programmers find the
increment and decrement operators confusing. We finish up this section by
taking a look at the two forms of the increment operator. Let’s enter the
following expressions and observe the result returned in Interactions versus the
result shown on the Workbench or in the viewer.

++i

i ++
The difference between these two expressions is significant. If you do not see a
difference at first, enter each expression again (use UP arrow) and carefully

observe the result in Interactions and the result on the Workbench. If you still
do not see the difference, see the explanation below.

++i and i++

++1 : the ++ before the i causes i to be incremented by 1
and the new value to be used in the expression. Thus, the
value in Interactions will match the value on the Workbench.

i++ : the ++ after the i causes the current value of i to be
used in the expression and then i is incremented by 1. Thus,
the value in Interactions will be the old value, and the value
on the Workbench will be the new incremented value.

4-7

Interactions (1.8.7) 9/2/2009
4.3 Interactions with Reference Types

Now let’s enter statements in Interactions that involve reference types and
instances of objects and primitive types. We begin by entering a statement that
declares a reference s1 of type String and assigns a String literal to it.

String s1 = "Interactions are fun"

After ENTER is pressed, you should see an instance of String called s1 on the
Workbench.

Now let’s enter a statement that declares an integer variable | en and sets its
value by invoking the length() method on s1.

int len = sl.length();

After ENTER is pressed, you should see | en on the Workbench with a value of
20 as shown in Figure 4-9. Notice the difference in the notation used for the
reference variable Il s1 versus the primitive variable i | en. We see that s1
is “pointing to” an object of type String whereas | en is an int whose value is
simply “equal to” 20. This notation is intended to visually remind us that the
underlying representations of primitive and reference variables are quite
different.

(8 jGRASP EE&X
File Edit View Project Settings Tools Window Help
=

=] s1 —> "Interactions"... (obj 355 : java.lang.String)

I len=20 : int

.)

] Il I v

Evaluate EXxpression

[Jlee]|

| Browse | Find | Debug | Workbench 35

\ Complle Messages ‘jGRASF' Messages | Run /O \ Interactions

» BString sl = "Interactions are fun™;
» int len = sl.length(); =
Clear > L

DIE

Help

w7 (4] il I»

[HJE™ status: interactions active

Figure 4-9. Interactions with results on the Workbench

4-8

Interactions (1.8.7) 9/2/2009

Import statements in interactions work in the same way they do in a Java
program. For example, to create an instance of the Scanner class, we could
enter the following import statement at some point during the Interactions
session prior to entering a statement that references the Scanner. Suppose we
want to use the Scanner class to input a double and assign it to the variable y.
Let’s enter the four statements below.

i mport java.util.Scanner;

Scanner scan = new Scanner (Systemin);
doubl e v;

y = scan. next Doubl e()

When the last statement is entered and executed to read in a double, an input box
is opened in Interactions to allow you to enter the value. Figure 4-10 shows the
desktop after 23.7 has been entered in the input box but before ENTER has been
pressed. When ENTER is pressed, the input box will disappear, and y will be
updated on the Workbench.

(8 jGRASP EEX

File Edit View Project Settings Tools Window Help

E

= [scan —-> (obj
b y=00 : dol

> a

I [»
Evaluate Expr...
Go

Browse | Find
Debug

Workbench

e R R T e

(Compile Messages \’jGRASP Messages | Run /O flnteractions |

» impeort Java.util.Scanner; B

P» Scanner scan = new Scanner (System.in); ¥ |

Clear » double y; I
» v = scan.nextDouble();

‘:He'p » 23] -

B d

(4] i]]
[HEM™ status: interactions active [waiting for input]

Figure 4-10. Interactions to input and assign a double

4-9

Interactions (1.8.7) 9/2/2009
4.4 Interactions with Your Own Classes

If you want to reference one or more of your own classes in Interactions, the
classes need to be visible from Interactions. The easiest way to accomplish this
is to open the file containing the class. If you start Interactions while the file has
focus (assuming it has been compiled), this class as well as others in the same
directory will be available to Interactions. Your file has focus if it is underlined
in the Browse tab and/or on the window bar. The name of the file in focus will
also be displayed in the title of the JGRASP desktop. If your class is not
recognized in Interactions, click the END button and try it again, making sure
your file has focus.

4.5 Working with Reference Types — Important Details

Performing interactions with reference types and instances of objects is similar
to working with primitives. That is, after you enter a statement or expression, it
is executed/evaluated when you press ENTER. The only significant difference
is that while primitives are always available, you must ensure that any class
which you are referencing is available to Interactions.

If you want to reference one of your own classes that you have opened in a CSD
window, you should start Interactions after the file as been opened and while it
has focus. Your file has focus if it is underlined in Browse tab and on the
window bar, and it is displayed in the title of the jGRASP desktop. If
Interactions does not recognize your class, click the END button and try it again,
making sure your file has focus. When you start Interactions, all classes in the
same directory as the file with focus will also be available to Interactions.

4.6 Interactions with the Debugger

When variables are declared in Interactions they are placed on the Workbench as
seen in the examples above. You can also interact with variables in the Debug
tab. When you run your program in debug mode and the program stops at a
breakpoint, the Debug tab will contain the variables that have been declared and
initialized. You can enter statements and expressions in Interactions that use
these variables. That is, the variables in the Debug tab are available to
Interactions. You may find this useful in debugging. For example, to find the
length of the 10,000 element in an array of Strings named stringArray, you
could simply enter stringArray[10000].length() in Interactions.

4-10

Control Structure Diagram (1.8.7) 9/2/2009

5 The Control Structure Diagram (CSD)

The Control Structure Diagram (CSD) is an algorithmic level diagram intended
to improve the comprehensibility of source code by clearly depicting control
constructs, control paths, and the overall structure of each program unit. The
CSD is an alternative to flow charts and other graphical representations of
algorithms. The major goal behind its creation was that it be an intuitive and
compact graphical notation that is easy to use manually and relatively
straightforward to automate. The CSD is a natural extension to architectural
diagrams, such as data flow diagrams, structure charts, module diagrams, and
class diagrams.

Objectives — When you have completed this tutorial, you should be able to use
and understand the graphical notations used in the CSD for basic control
constructs of modern programming languages, including sequence, selection,
iteration, exits, and exception handling.

The details of these objectives are captured in the hyperlinked topics listed
below.

5.1 An Example to Illustrate the CSD
5.2 CSD Program Components/Units
5.3 CSD Control Constructs

5.4 CSD Templates

5.5 Hints on Working with the CSD
5.6 Reading Source Code with the CSD
5.7 References

5-1

Control Structure Diagram (1.8.7) 9/2/2009
5.1 An Example to Illustrate the CSD

Figure 5-1 shows the source code for a Java method called binarySearch. The
method implements a binary search algorithm by using a while loop with an
if..else..if statement nested within the loop. Even though this is a simple
method, displayed with colored keywords and traditional indentation, its
readability can be improved by adding the CSD. In addition to the while and if
statements, we see that the method includes the declaration of primitive data
(int) and two points of exit. The CSD provides visual cues for each of these
constructs.

FA BinarySearchExample1.java * C:\Documents and SettingsicrossjhiMy Doc... g@‘g|
File Edit View Build Settings Help

[»

public static int binaryiearch (int key, int[] intarray)
{
int low, middle, high:
low = 0:
high = intArray.length - 1;
while (low <= high)
{
widdle = (low + high) / 2:
if (key « intdrray[middle])
high = middle - 1;
else if (kevy » intdrrav[middle]) =
low = middle + 1:
else
return middle;

}

return -1;

+

[4]

4] | Il | [

#0 Line:30 Col:5 Code:d Top:i2

Figure 5-1. binarySearch method without CSD

Figure 5-2 shows the binarySearch method after the CSD has been generated.
Although all necessary control information is in the source text, the CSD
provides additional visual cues by highlighting the sequence, selection, and
iteration in the code. The CSD notation begins with symbol for the method

itself followed by the individual statements branching off the stem as it
extends downward. The declaration of primitive data is highlighted with the
symbol appended to the statement stem. The CSD construct for the while

statement is represented by the double line “loop” (with break at the top), and
5-2

Control Structure Diagram (1.8.7) 9/2/2009

the if statement uses the familiar diamond symbol from traditional flowcharts.
Finally, the two ways to exit from this method are shown explicitly with an
arrow drawn from inside the method through the method stem to the outside.

I BinarySearchExamplel. java * C:\Documents and Settings\crossjhiMy Doc... E‘@|E|
File Edit Wiew Build Settings Help

|»

ipuhlil: static int binary3earch (int key, int[] intdrray)

= int low, widdle, high;

— low = 0O;

— high = intdérray.length - 1;

—iwhile (low <= hidgh)

{

— middle = {(low + high) / 2:
if (key < intdrrav[mwiddle])

: high = middle - 1:

{)-Ie_lse if (key > intdrray[middle]) —

: low = wmiddle + 1;:

—else

-—|— return niddle;

f

}
4—— return -1;

L}

4] Il | [¢

O Line:30 Col:5 Code:d Top:12

Figure 5-2. binarySearch with CSD

While this is a small piece of code, it does illustrate the basic CSD constructs.
However, the true utility of the CSD can be realized best when reading or
writing larger, more complex programs, especially when control constructs
become deeply nested. A number of studies involving the CSD have been done
and others are in progress. In one of these, the CSD was shown to be preferred
significantly over four other notations: flowchart, Nasi-Schneiderman chart,
Warnier-Orr diagram, and the action diagram [Cross 1998]. In a several later
studies, empirical experiments were done in which source code with the CSD
was compared to source code without the CSD. In each of these studies, the
CSD was shown to provide significant advantages in numerous code reading
activities [Hendrix 2002]. In the following sections, the CSD notation is
described in more detail.

Control Structure Diagram (1.8.7) 9/2/2009
5.2 CSD Program Components/Units

The CSD includes graphical constructs for the following components or
program units: class, abstract class, method, and abstract method. The construct
for each component includes a unit symbol, a box notation, and a combination
of the symbol and box notation. The symbol notation provides a visual cue as to
the specific type of program component. It has the most compact vertical
spacing in that it retains the line spacing of source code without the CSD. The
box notation provides a useful amount of vertical separation similar to skipping
lines between components. The symbol and box notation is simply a
combination of the first two. Most of the examples in this handbook use the
symbol notation because of its compactness. CSD notation for program
components is illustrated in the table below.

Symbol Box Notation Symbol and Box

Component |\ tion Notation

class
or
Ada {

package } ‘ (
} }

abstract
class

method
or {
function
or
procedure

abstract
method Eﬂ

5-4

Control Structure Diagram (1.8.7) 9/2/2009
5.3 CSD Control Constructs

The basic CSD control constructs for Java are grouped in the following
categories: sequence, selection, iteration, and exception handling, as described
in the table below. The semi-colons in the examples are placeholders for
statements in the language.

Sequential flow is represented
7 in the CSD by a vertical stem
Sequence ; with a small horizontal stem for
; each individual statement on a
particular level of control.
For selection statements, the
. . True/False condition itself is
Selection C | if (cond) marked with a small diamond,
if - i just as in a flow chart. The
statements to be executed if the
condition is true are marked by
a solid line leading from the
right of the decision diamond.
_Q]E (cond) The control path for a false
if..else : . condition is marked with a
: els;} dotted line leading from the
—|_] bottom of the diamond to
h ’ another decision diamond, an
else clause, a default clause, or
the end of the decision
statement.
—OE (cond) By placing the second if on the
if..else..if : ; same line with the first else, the
().le_lse if (cond) unnecessary indentation of
: ; nested if statements is avoided.
: else However, if the deep nesting
—| . effect is desired, the second if
' can be placed on the line after
the else.

5-5

Control Structure Diagram (1.8.7) 9/2/2009

Selection
(cont’d)

switch

switch

when
break is
omitted

switch (item)

{

case a:
< break;
O——}éése b:
< break;

O—lffault:

:}

—| switch (expr)
{

<>_
-
<_>— case 2:
{—
{—

The semantics of the switch
statement are different from
those of if statements. The
expression (of integral or enum
type) is evaluated, and then
control is transferred to the case
label matching the result or to
the default label if there is no
match. If a break statement is
placed at the end of the
sequence within a case, control
passes “out” (as indicated by
the arrow) and to the end of the
switch statement after the
sequence is executed. Notice
the similarity of the CSD
notation for the switch and if
statements when the break is
used in this conventional way.
The reason for this is that,
although different semantically,
we humans tend to process
them the same way (e.g., if expr
is not equal to case 1, then take
the false path to case 2 and see
if they are equal, and so on).
However, the break statement
can be omitted as illustrated
next.

When the break statement is
omitted from end of the
sequence within a case, control
falls through to the next case.
In the example at left, case 1
has a break statement at the end
of its sequence, which will pass
control to the end of the switch
(as indicated by the arrow).
However, case 2, case 3, and
case 4 do not use the break
statement. The CSD notation
clearly indicates that once the
flow of control reaches case 2,
it will also execute the
seguences in case 3 and case 4.

5-6

Control Structure Diagram (1.8.7) 9/2/2009

The diamonds in front of case 3
and case 4 have arrows pointing
to each case to remind the user
that these are entry points for
the switch. When the break
statement precedes the next
case (as in case 1), the arrows
are unnecessary.

Iteration

while loop

(pre-test)

for loop

(discrete)

do loop
(post-test)

while (cond)

{

for (i=0;1i<j;i++)
{

do

}

while (cond) ;

The CSD notation for the while
statement is a loop construct
represented by the double line,
which is continuous except for
the small gap on the line with
the while. The gap indicates
the control flow can exit the
loop at that point or continue,
depending on the value of the
boolean condition. The
sequence within the while will
be executed zero or more times.

The for statement is
represented in a similar way.
The for statement is designed to
iterate a discrete number of
times based on an index, test
expression, and index
increment. In the example at
left, the for index is initialized
to 0, the condition is i < j, and
the index increment is i++. The
sequence within the for will be
executed zero or more times.

The do statement is similar to
the while except that the loop
condition is at the end of the
loop instead of the beginning.
Thus, the body of the loop is
guaranteed to execute at least
once.

5-7

Control Structure Diagram (1.8.7) 9/2/2009

break in
loop

Iteration
(cont’d)

continue

—{jwhile

(cond)

{

.
r

_QE (cond)

A

B break;

U }

.
r

| do
{

if (cond)
.

}

Lwhile (cond);

continue;

r

The break statement can be
used to transfer control flow out
of any loop (while, for, do)
body, as indicated by the arrow,
and down to the statement past
the end of the loop. Typically,
this would be done in
conjunction with an if
statement. If the break is used
alone (e.g., without the if
statement), the statements in the
loop body beyond the break
will never by executed.

The continue statement is
similar to the break statement,
but the loop condition is
evaluated and if true, the body
of the loop body is executed
again. Hence, as indicated by
the arrow, control is not
transferred out of the loop, but
rather to top or bottom of the
loop (while, for, do).

Exception
Handling

catch (E)
{

}
finally

In Java, the control construct
for exception handling is the
try..catch statement with
optional finally clause. In the
example at left, if stmtl
generates an exception E, then
control is transferred to the
corresponding catch clause.
After the catch body is
executed, the finally clause (if
present) is executed. If no
exception occurs in the try
block, when it completes, the
finally clause (if present) is
executed.

5-8

Control Structure Diagram (1.8.7) 9/2/2009

With a
return

44— return;
: }
catch (E)
{

; }
{finally

The try..catch statement can
have multiple catch clauses,
one for each exception to be
handled.

By definition, the finally clause
is always executed no matter
how the try block is exited. In
the example at left, a return
statement causes flow of
control to leave the try block.
The CSD indicates that flow of
control passes to the finally
clause, which is executed prior
to leaving the try block. The
CSD uses this same convention
for break and continue when
these cause a try block to be
exited.

When try blocks are nested and
break, continue, and return
statements occur at the different
levels of the nesting, the actual
control flow can become quite
counterintuitive. The CSD can
be used to clarify the control
flow.

Control Structure Diagram (1.8.7) 9/2/2009

5.4 CSD Templates

In Figure 5-3, the basic CSD control constructs, described above, are shown in
the CSD window. These are generated automatically based on the text in the
window. In addition to being typed or read from a file, the text can be inserted
from a list of templates by selecting Templates on the CSD window tool bar.

FA ConstructsOfCSD2. java C:\Documents and Settings\crossjh\My Documents. .. |Z| |E| fz|

File Edit View Build Settings Help
£/ Sequence: defaulr | ff Tteration: while E
— : | —iwhile {cond)
— : —: i
}
FF Selection: if _:
—Q]E {cond) ml: /¢ Iteration: for
B : — for (index=0;index<) ;index++)
: {
// Selection: if..else 1 :
oL (eond) : }
_else Ff Iteration: do
: {
£ Selection: if..else. . 3if] :
—O]E {cond) }
: : while (cond) ; 5
Q—l_lse if {cond)
: : : /f Exception Handling
—_else : /f try..catch. . finally| L
= : : —try
: {
Selectieon: swilch i H
switchiiten) 2 }
{ : catch(ETYPE EXCEPTH)
O—Ese a: {
— hreak; +
()—Ese I*H finally
: ; i {
- break; : :
()—lffault: : L
) Bl =
4 Ii | Dl JilaLd Il [¥]
[OpvspLeLine:s3 cok31 Code:n Top:e TopB:63

Figure 5-3. CSD Control Constructs generated in CSD Window

5-10

Control Structure Diagram (1.8.7) 9/2/2009
5.5 Hints on Working with the CSD

The CSD is generated based on the source code text in the CSD window. When
you click View > Generate CSD (or press F2), JGRASP parses the source code
based on a grammar or syntax that is slightly more forgiving than the Java
compiler. If your program will compile successfully, the CSD should generate
successfully as well. However, the CSD may generate successfully even if your
program will not compile. Your program may be syntactically correct, but not
necessarily semantically correct. For the most part, CSD generation is based on
the syntax of your program only.

Enter code in syntactically correct chunks - To reap the most benefit from
using the CSD when entering a program, you should take care to enter code in
syntactically correct chunks, and then regenerate the CSD often. If an error is
reported, it should be fixed before you move on. If the error message from the
generate step is not sufficient to understand the problem, compile your program
and you will get a more complete error message.

“Growing a program” is described it the table below. Although the program
being “grown” does nothing useful, it is both syntactically and semantically
correct. More importantly, it illustrates the incremental steps that should be
used to write your programs. After the code is entered in each step, click the
Generate CSD button Bor press F2 to generate the CSD.

Step Code to Enter After CSD is generated
1 public class WO ass public class MyClass
{ {
} }
2 public class Myd ass public class Hello
{
nmyMet hod() myMethod ()
| (
} }
}

5-11

Control Structure Diagram (1.8.7) 9/2/2009

3 public class Myd ass :‘apublic class MyClass
{ {
myMet hod() EmyMethod()
. {
?hl le (true) while (true)
: {
} ;
} }
} L)
L}

5.6 Reading Source Code with the CSD

The CSD notation for each of the control constructs has been carefully designed
to aid in reading and scanning source code. While the notation is meant to be
intuitive, there are several reading strategies worth pointing out, especially for
deeply nested code.

Reading Sequence

The visualization of sequential
control flow is as follows. After

statement s(1) is executed, the next s(1);
statement is found by scanning s(2);
down and to the left along the solid s(3);

CSD stem. While this seems
trivial, its importance becomes
clearer with the if statement and
deeper nesting.

Reading Selection

Now combining the sequence with S (1)
selection (if.. else), after s(1), we C if (cond)
enter the if statement marked by : s(2);
the diamond. If the condition is —Ie_lse

true, we follow the solid line to - s(3);
s(2). After s(2), we read down and — =(4);

to the left (passing through the
dotted line) until we reach the next
statement on the vertical stem

5-12

Control Structure Diagram (1.8.7) 9/2/2009

which is s(4). If the condition is
false, we read down the dotted line
(the false path) to the else and then
on to s(3). After s(3), again we
read down and to the left until we
reach the next statement on the
stem which is s(4).

Reading Selection with Nesting

As above, after s(1), we enter the if
statement and if cond1 and cond?2
are true, we follow the solid lines
to s(2). After s(2), we read down
and to the left (passing through
both dotted lines) until we reach
the next statement on the stem
which is s(4). If condl is false, we
read down the dotted line (the false
path) to s(4). If cond2 is false, we
read down the dotted line to the
else and then on to s(3). After
s(3), again we read down and to
the left until we reach to the next
statement on the stem which is
s(4).

— s(1);

if (condl)
: if (cond?)
S 5(2) ;

“else
‘—l— 5(3);

— s (4):

Reading Selection with
Even Deeper Nesting

If condl, cond2, and cond3 are
true, we follow the solid lines to
s(2). Using the strategy above, we
immediately see the next statement
to be executed will be s(7).

If condl is true but cond?2 is false,
we can easily follow the flow to
either s(4) or s(5) depending on
cond4.

If s(4) is executed, we can see
immediately that s(7) follows.

In fact, from any statement,
regardless of the level of nesting,
the CSD makes it easy to see
which statement is executed next.

— s(1);

if (condl)

if (cond2)

if (cond3)
s(2);

1
- 5(3);
—else
-—|—<)E(cond4)
C s (4);
- - s(5);
1
- s(6);

— s(7);

5-13

Control Structure Diagram (1.8.7) 9/2/2009

Reading without the CSD

It should be clear from the code at
right that following the flow of
control without the CSD is
somewhat more difficult.

For example, after s(3) is executed,
s(7) is next. With the CSD in the
previous example, the reader can
tell this at a glance. However,
without the CSD, the reader may
have to read and reread to ensure
that he/she is seeing the
indentation correctly.

While this is a simple example, as
the nesting becomes deeper, the
CSD becomes even more useful.

In addition to saving time in the
reading process, the CSD aids in
interpreting the source code
correctly, as seen in the examples
that follow.

s(1);
it (condl)
if (cond2)
it (cond3)
s(2);
else
s(3);
else
it (cond4)
s(4);
else
s(95);
else
s(6);
s(7);

5-14

Control Structure Diagram (1.8.7) 9/2/2009

Reading Correctly with the CSD

Consider the fragment at right with
s(1) and s(2) in the body of the if
statement.

After the CSD is generated, the
reader can see how the compiler
will interpret the code, and add the

s(1);

it (cond)
s(2);
s(3);

s(1):
if (cond)

. s(2);

missing braces. 5 (3) ;

Here is another common mistake

made obvious by the CSD. if (cond);
s(2);
s(3);

The semi-colon after the condition

was almost certainly unintended. if (cond);

However, the CSD shows what is s (2);

there rather than what was s (3);

intended.

Similarly, the CSD provides the
correct interpretation of the while
statement.

Missing braces . . .

while (cond)
s(2);
s(3);

while (cond)
s(2);
5(3);

Similarly, the CSD provides the
correct interpretation of the while
statement.

Unintended semi-colon . . .

while (cond);
s(2);
s(3);

while (cond):;
s(2);
s(3);

Control Structure Diagram (1.8.7) 9/2/2009

As a final example of reading source code with the CSD, consider the following
program, which is shown with and without the CSD. FinallyTest illustrates
control flow when a break, continue, and return are used within try blocks that
each have a finally clause. Although the flow of control may seem somewhat
counterintuitive, the CSD should make it easier to interpret this source code
correctly. First read the source code without the CSD. Recall that by definition,
the finally clause is always executed not matter how the try block is exited.

Try-Finally with break, continue, and return statements with no CSD

public class FinallyTest {

public static void main(String[] args) {
b:

try {
break b;
}
finally {
Systemout. println("finally 1);
}
try {
for(int i = 0; i < 2; i++) {
Systemout.println(™i ™ + i);
try {
if(i == 0) {
continue;
}
if(i < 0)
continue;
return;
}
finally {
Systemout. println("finally 2");
}
}
finally {

System out. println("finally 3");

5-16

Control Structure Diagram (1.8.7) 9/2/2009

Try-Finally with break, continue, and return statements with CSD

apublic class FinallyTest {
Epublic static void main(Stringl[] args) {
b:
try {
- break b;
|
1£finally {

— System.out.println("finally 1");
L}

try {
—for{int i = 0; 1 < 2; i++) {
—— System.out.println("i " + i);

try {

*}E‘i == 0) {
—

continue;
-}

if(i < 0)
-— continue;

o+ *ll— return;

: |

1 finally {

—— System.out.println("finally 2");
L}

|}
1finally {

— System.out.println("finally 3"):
L}

5-17

Control Structure Diagram (1.8.7) 9/2/2009

In our experience, this code is often misinterpreted when read without the CSD,
but understood correctly when read with the CSD. Refer to the output if you
need a hint. The output for FinallyTest is as follows:

finally 1
i 0
finally 2
i 1
finally 2
finally 3

5.7 References

[Cross 1998] J. H. Cross, S. Maghsoodloo, and T. D. Hendrix, "Control
Structure Diagrams: Overview and Initial Evaluation," Journal of Empirical
Software Engineering, Vol. 3, No. 2, 1998, 131-158.

[Hendrix 2002] T. D. Hendrix, J. H. Cross, S. Maghsoodloo, and K. H. Chang,
“Empirically Evaluating Scaleable Software Visualizations: An Experimental
Framework,” IEEE Transactions on Software Engineering, VVol. 28, No. 5, May
2002, 463-477.

5-18

Debugger (1.8.7) 9/2/2009

6 The Integrated Debugger

Your skill set for writing programs would not be complete without knowing how
to use a debugger. While a debugger is traditionally associated with finding
bugs, it can also be used as a general aid for understanding your program as you
develop it. JGRASP provides a highly visual debugger for Java, which is tightly
integrated with the CSD and UML windows, the Workbench, Viewers, and
Interactions. The jJGRASP debugger includes all of the traditional features
expected in a debugger.

If the example program used in this section is not available to you, or if you do
not understand it, simply substitute your own program in the discussion.

Objectives — When you have completed this tutorial, you should be able to set
breakpoints and step through the program, either by single stepping or auto
stepping. You should also be able to display the dynamic state of objects
created by the program using the appropriate Object Viewer.

The details of these objectives are captured in the hyperlinked topics listed
below.

6.1 Preparing to Run the Debugger

6.2 Setting a Breakpoint

6.3 Running a Program in Debug Mode

6.4 Stepping Through a Program — the Debug Buttons
6.5 Stepping Through a Program — without Stepping In
6.6 Stepping Through a Program — and Stepping In

6.7 Opening Object Viewers

6.8 Debugging a Program

6-1

Debugger (1.8.7) 9/2/2009
6.1 Preparing to Run the Debugger

In preparation for using the debugger, we need to make sure that programs are
being compiled in debug mode. This is the default, so this option is probably
already turned on. With a CSD or UML window in focus, click Build on the
menu and make sure Debug Mode is checked. If the box in front of Debug
Mode is not checked, click on the box. When you click on Build again, you
should see that Debug Mode is checked. When you compile your program in
Debug Mode, information about the program is included in the .class file that
would normally be omitted. This allows the debugger to display useful details
as you execute the program. If your program has not been compiled with Debug
Mode checked, you should recompile it before proceeding.

[A Project: <PersonallLibraryProject> File: Personallibrary.java [P] C:\Program F...
File Edit View Build Project Settings Tools Window Help
BAdng READ ThEY Fi8é 6=

9 (=]
Source Fi|vHS(:r‘t By |v " = public class Personallibrary { B
e EHEEN S e L
y N : S/ TInastantiates a derived class and 1;
torials\PersonalLibrary|~
y - I’y|A i A7 Jocal methods
Book.java [P] alE N
Fiction java [P] H E public stat:l.c void mainisString[] a: I
NonFiction java [P] = Book| Book ("Hemin
Novel.java [P] QOPV £ Africa”, 2|/
PersonalLibrary.jave = Ficti Cut Fiction("cl:
g PersonalLibrary Prg-| Paste Red October",
[1l I] | Edit ran'™) ;
Open Projects —= Novel yoagie Bookmark Novel("Grish:
¢ [m] PersonalLibraryProjed Next Bookmark 0, 28.0, "Teor
& <UML> : o
Book java ;5 L gyste Bookmarks - » emingway) ;
o Toggle Breakpoint B
Fiction.java T 5
o i »
NonFiction.java ' BICakpomIS

|IE| <PersonalL|brarmeJect>|

Novel java PersonaIlerary java ‘

PersonalLibrary.jav [icRASP Messages rRun 1o rlnteractlons |
' Compile Messages

] |k

Browse L Find End L ————JGRASP: process aborted b- =
Debug | UMLInfo | (el » | E
Workbench : Clear ||] Dl
L= Line:11 Col:14 Code:32 Top:5 [ovsBLK

Figure 6-1. Setting a breakpoint

6-2

Debugger (1.8.7) 9/2/2009
6.2 Setting a Breakpoint

In order to examine the state of your program at a particular statement, you need
to set a breakpoint. The statement you select must be “executable” rather than a
simple declaration. To set a breakpoint in a program, move the mouse to the
line of code and left-click the mouse to move the cursor there. Now right-click
on the line to display a set of options that includes Toggle Breakpoint. For
example, in Figure 6-1 the cursor is on the first executable line in main (which
declares Book hemingway ...), and after Toggle Breakpoint is selected in the
options popup menu, a small red stop sign symbol @ appears in the left margin
of the line to indicate that a breakpoint has been set. To remove a breakpoint,
you repeat the process since this is a toggle action. You may set as many
breakpoints as needed.

You can also set a breakpoint by hovering the mouse over the leftmost column
of the line where you want to set the breakpoint. When you see the red
octagonal breakpoint symbol @, you just left-click the mouse to set the
breakpoint. You can remove a breakpoint by clicking on the red octagon. This
second approach is the one most commonly used for setting and removing
breakpoints.

6.3 Running a Program in Debug Mode

After compiling your program in Debug Mode and setting one or more
breakpoints, you are ready to run your program with the debugger. You can
start the debugger in one of two ways:

(1) Click Build — Debug on the CSD window menu, or
(2) Click the Debug button @ on the toolbar.

After you start the debug session, several things happen. In the Run window
near the bottom of the Desktop, you should see a message indicating that the
debugger has been launched. In the CSD window, the line with the breakpoint
set is eventually highlighted, indicating that the program will execute this
statement next. On the left side of the JGRASP desktop, the Debug tab is
popped to the top. Each of these can be seen in Figure 6-2. Notice the Debug
tab pane is further divided into three sub-panes or sections labeled Threads,
Call Stack, and Variables/Eval. Each of these sections can be resized by
selecting and dragging one of the horizontal partitions.

The Threads section lists all of the active threads running in the program. In
the example, the red thread symbol E indicates the program is stopped in main,
while the green symbols indicate that the other threads are running. Advanced
users should find this feature useful for starting and stopping individual threads
in their programs. However, since beginners and intermediate users rarely use

6-3

Debugger (1.8.7) 9/2/2009

multi-threading, the thread section is closed when the debugger is initially
started. Once the Threads section is dragged open, it remains open for the
duration of the JGRASP session or until it is closed.

The Call Stack section is useful to all levels of users since it shows the current
call stack and allows the user to switch from one level to another in the call
stack. When this occurs, the CSD window that contains the source code
associated with a particular call is popped to the top of the desktop.

The Variables/Eval section shows the details of the current state of the program
in the Variables tab and provides an easy way to evaluate expressions involving
these variables in the Eval tab. Most of your attention will be focused on the
Variables tab where you can monitor all current values in the program. From
the Variables tab, you can also launch separate viewers on any primitives or
objects as well as fields of objects.

Threads Section (folded) Variables/Eval Section

Call Stack Section Highlighted Line When Stopped

at Breakpoint

[@ Project: <Personall_ibraryProject> File: PersonallLibrary.java [P] C:\Program F... E\E\E\

Vi Build Project Septings Tooly Window Help X

mE BRD &P o % Ge 6=

@ 1')(9& [D » »:; //******* dA A A A A A A A AN A A A A A A A A A A A A A A A A A A

‘ Threads apubl ¢ class Personallibrary { H
. ca" Sta(:k R |

[1] PersonalLibrary.mai |

4] i I Dk

aw

: ipublic static veid maini(String[] arc
Variables vaaI\ / . /) = Book hemingway = new Book("Heming:

[l static : PersonAlLil "Green Hills of Africa™, 23«
¢ DArguments —e= Fiction clancy = new Fiction("Cla:
W args > (obj 352]|| The Hunt for Red October”,
: 490, 39.0, "Sean™);
DLocals]

—e= Novel grisham new Novel ("Grishar
"The Firm™, 550, 28.0, "Tom

— S8ysten.out.println(hemingway)
— Systen.out.println{clancy)
— System.out.println(™\n" + clancy.c|

N Il] D

Browse L Find | . - - i i ‘
| FirstProgram1.java PersonalLibrary.java

[L]E™ status: debugging user program Line:20 Col:37 Code:0 Top:4

Figure 6-2. Desktop after debugger is started
6-4

Debugger (1.8.7) 9/2/2009

6.4 Stepping Through a Program — the Debug Buttons

1L ED> 8§D ¢ E

After the program stops at the breakpoint (Figure 6-2), you can use the buttons
at the top of the Debug tab to step, step into a method call, step out of a method,
run to the cursor, pause the current thread, resume, turn on/off auto step mode,
turn on/off auto resume mode, and suspend new threads. The sequence of
statements that is executed when you run your program is called the control path
(or simply path). If your program includes statements with conditions (e.g., if or
while statements), the control path will reflect the true or false state of the
conditions in these statements.

ﬂ Clicking the Step button will single step to the next statement. The
highlighted line in the CSD window indicates the statement that’s about to
be executed. When the Step button is clicked, that statement is executed
and the “highlighting” is moved to the next statement along the control
path.

EF Clicking the Step in button for a statement with a method call that’s part of
the user’s source code will open the new file, if it’s not already open, and
pop its CSD window to the top with the current statement highlighted. The
top entry in the Call Stack indicates where you are in the program. Note
that clicking the Step in button for a statement without a method call is
equivalent to clicking Step.

dj Clicking the Step out button will take the debugger back to the point where
the current method was called (i.e., it will step out of the current method).
The Call Stack will be updated accordingly.

IE Clicking the Run to Cursor button will cause your program to step
automatically until the statement with the cursor L is reached. If the cursor
is not on a statement along the control path, the program will stop at the
next breakpoint it encounters or at the end of the program. The Run to
Cursor button is convenient since placing the cursor on a statement is like
setting “temporary” breakpoint.

[Clicking the Pause button will suspend the program running in debug
mode. Note that if you didn’t have a breakpoint set in your code, you may
have to select the main thread in the Threads section before the Pause
button is available. After the program has halted, refer to the Call Stack and
select the last method in your source code that was invoked. This should

6-5

Debugger (1.8.7) 9/2/2009

open the CSD window containing the method with the current line
highlighted. Click the step # button to advance through the code.

W

Clicking the Resume button advances the program along the control path to
the next breakpoint or to the end of the program. If you have set a
breakpoint in a CSD window containing another file and this breakpoint is
on the control path (i.e., in a method that gets called), then this CSD
window will pop to the top when the breakpoint is reached.

* The Auto Step button is used to toggle off and on a mode which allows you
to step repeatedly after clicking the step L button only once. This is an
extremely useful feature in that it essentially let’s you watch your program
run. Notice that with this feature turned on, a Delay slider bar appears
beneath the Debug controls. This allows you to set the delay between steps
from 0 to 26 seconds (default is .5 seconds). While the program is auto
stepping, you can stop the program by clicking the Pause H button.
Clicking the Step & button again continues the auto stepping. Remember

after turning on Auto Step ¥, you always have to click the step & button
once to get things rolling.

i The Auto Resume button is used to toggle off and on a mode which allows
you to resume repeatedly after clicking the Resume 2 button only once.
The effect is that your program moves from breakpoint to breakpoint using
the delay indicated on the delay slider bar. As with auto step above, you
can click the Pause M button to interrupt the auto resume; then click the

Resume 2 button again to continue the auto resume.

¥ The Use Byte Code Size Steps button toggles on and off the mode that
allows you to step through a program in the smallest increments possible.
With this feature off, the step size is approximately one source code
statement, which is what most users want to see. This feature is seldom
needed by beginning and intermediate programmers.

| | The Suspend New Threads button toggles on and off the mode that will
immediately suspend any new threads that start. With this feature on when
the debugging process is started, all startup threads are suspended as soon as
is possible. Unless you are writing programs with multiple threads, you
should leave the feature turned off.

As you move through the program, you can watch the call stack and contents of
variables change dynamically with each step. The integrated debugger is

6-6

Debugger (1.8.7) 9/2/2009

especially useful for watching the creation of objects as the user steps through
various levels of constructors. The jGRASP debugger can be used very
effectively to explain programs, since a major part of understanding a program
is keeping track (mentally or otherwise) of the state of the program as one reads
from line to line. We will make two passes through the example program as we
explain it. During the first pass, we will “step” through the program without
“stepping into” any of the method calls, so we can concentrate on the Variables
section.

6.5 Stepping Through a Program — without Stepping In

After initially arriving at the breakpoint in Figure 6-2, the Variables/ Settings
section indicates that no local variables exist. Figure 6-3 shows the results of

clicking the Step & putton to move to the next statement. Notice that under
Locals in the Variables/Eval section, we now have an instance of Book called
hemingway. Objects, represented by a colored square, can be opened and closed
by clicking the “handle” in front of the square object. Primitives, like the
integer pages, are represented by colored triangles. In Figure 6-3, hemingway
has been opened to show the author, title, and pages fields. Each of the String
instances (e.g., author) can be opened to show the details of a String object,
including the character array that holds the actual value of the string.

Since hemingway is an instance of Book, the fields in hemingway are marked
with green object or primitive symbols to indicate that they were declared in
Book. Notice that the symbols for author and title have red borders since they
were declared to be private in Book. This indicates that they are inaccessible
from the current context of main in PersonalLibrary. The field pages, which
was declared to be protected in Book, has a symbol without a red border. The
reason for this is somewhat subtle. The protected field pages is accessible in all
subclasses of Book as well as in any class contained in the Java package
containing Book. Since the PersonalLibrary program is not in a package, it is
considered to be in the “default package”. Thus, since Book is also in the
default package, the protected field pages is accessible to PersonalLibrary.

After executing the statement indicated in Figure 6-3, an instance of the Fiction
class called clancy is created as shown in Figure 6-4. In the figure, clancy has
been opened to reveal its fields. The field “mainCharacter” is green, indicating
that it is defined in Fiction. The other fields (author, title, and pages) are orange,
which indicates that these fields were inherited from Book.

6-7

Debugger (1.8.7) 9/2/2009

[Project: <PersonalLibraryProject> File: PersonallLibrary.java [P] C:\Program F... ::_
File Edit View Build Project Settings Tools Window Help

 BlEEENEE A EEEEEY I 1=

3 I8 (m[>] »
| Threads apublic class PersonalLibrary { H
| ~ calstack

A

//*************************************** ml

/7S Instantiates a derived class and 1i

[1] PersonalLibrary.main ! /7 lecal methods.

[l Il [D //______-_______._____._____‘______._ _______ T
o Epubllc static void main(String[] a:
= Book hemingway = new Book ("Hemin:

W aos — (obj352] | | . "Grclaen Hills of Africa”, i—
? DLocaIs L * = Fiction clancy = new Fiction("Cl

; .hemingway @ "The Hunt for Red October”,
. ; 490, 39.0, "Sean');

=@ author --> Herz : = Novel grisham = new Novel ("Grish:

~ @Btitle > "Green |- "The Firm", 550, 28.0, "Ta

b pages =234 | ||

- .value ->50.0

o []

[«]

System.out.println{hemingway)
— System.out.println{clancy);
] — System.out.println("\n" + clancy ||
Browse | Find | | .] RN
Debug | UML Info
Workbench =
[LJE ™ status: debugglng user program Line:5 Col 28 Code 98 Top 4 \OVS|BLK

‘ Variables | Eval i

§§|IE|<PersonalL|brarmeJect>| PersonaIlerary]ava ‘ ‘

Figure 6-3. Desktop after hemingway (book) is created

As you continue to step though your program, you should see output of the
program displayed in the Run I/O window in the lower half of the Desktop.
Eventually, you should reach the end of the program and see it terminate. When
this occurs, the Debug tab should become blank, indicating that the program is
no longer running.

6-8

Debugger (1.8.7) 9/2/2009

aHEE BRI Tk &E & 6e o m=

N —
i & E} 49 & D]) > K //)l’){’)l’){')l’*){’)l’){'>l’>l'){')l’>{’>l’>l’>{'**************:{’****:{'** =
| Threads apublic class PersonalLibrary { L
2T i e
Call Stack
1P ILib el S/ Instantiates a derived class and Ii
[1] PersonalLibrary.main : S/ lecal methods.
[l I D A e
e ublic statie void mAin(Strin all
Variables | Eval Ep . _ (g[]. T
: = Book hemingway = new Book("Hemin:
+ [l hemingway —> (¢ - "Green Hills of Africa", 2.
*.author-->"Her = Fiction clancy = new Fiction("Cl:
- @ title --> "Green | "The Hunt for Red October",
b pages =234 | 490, 39.0, "Sean"); |
= [l value --> 50.0 + = Novel grisham = new Novel ("Grish:
?.clancy-->(obj3€ "The Firm™, 550, 28.0, "To
@B author -> "Clal_| |- . ‘
*Etitle —="The HI | F— System.out.println(hemingway);
Ilpages=490 : . — System. out.prj:_ntln(clancy);
— System.out.println("\n" + clancy
- [value -->39.0{ |||’ !
= [l mainCharacter.| - .
o] I -
Browse | Find I 0 I s
Debug | UML Info

| ®<PersonalLibraryProject>| [E]PersonalLibraryjava | ‘

Workbench ._
[CJE™ status: debugging

-

user program Line:5 Col:28 Code:98 Top:4 [ovelEik

Figure 6-4. After next step and "clancy' created

6.6 Stepping Through a Program — and Stepping In

Now we are ready to make a second pass and “step in” to the methods called.
Tracing through a program by following the calls to methods can be quite
instructive in the obvious way. In the object-oriented paradigm, it is quite useful
for illustrating the concept of constructors. As before, we need to run the
example program in the debugger by clicking Build — Debug on the CSD
window menu or by clicking the debug button @ on the toolbar. After arriving
at the breakpoint, we click the Step in button © and the constructor for class
Book pops up in the CSD window (Figure 6-5). Notice that the Call Stack in the
Debug tab indicates that you have moved into Book from PersonalLibrary (i.e.,
the entry for Book is listed above PersonalLibrary in the call stack). If you click
on the PersonalLibrary entry in the call stack, the associated CSD window will
pop to the top and you will see the variables associated with it. If you then click
the Book entry, its CSD window will pop to the top and you will see the

6-9

Debugger (1.8.7) 9/2/2009

variables associated with the call to Book’s constructor. In Figure 6-5, the entry
for this has been expanded in the Variables section. The this object represents
the object that is being constructed. Notice that none of the fields have a red
border since we are inside the Book class. As you step through the constructor,
you should see the fields in this get initialized to the values passed in as
arguments. Also, note the id for this (it is 356 in our example debug session; it
may be a different number in your session). You can then step through the
constructor in the usual way, eventually returning to the statement in the main
program that called the constructor. One more step should finally get you to the
next statement, and you should see hemingway in the Variables section with the
same id as you saw in the constructor as it was being built. If you expand
hemingway, you should see that the red borders are back on author and title
since we’re no longer in the Book class.

[Project: <PersonalLibraryProject> File: Book.java [P] C:\Program Files\jGRAS... \;Hﬁl@
File Edit View Build Project Settings Tools Window Help
aHEE BER % haY i éd 6

: & &dj & ED » »% //>l'>l'>l'>l'>{'>{'>{'){'9{'9{'){')l':vl':vl'>l'************************ Z
‘ Threads a public elass PersonallLibrary | H
Call Stack Ee — —_—
[2] Book.<init> (Book javé ; ; Book java [P] C:\Program Files\iGR... ™ @ |/
[1] PersonalLibrary.main||. oo 13 ? public Book() [
<] Il [[» E 14 ¥
Variables | Eval 16
- [this —> (obj 356 : Bod - 17 public Book(String 1 1
¢+ [_] Arguments *18 Doukble thevValu
I . theAuthor —> "Her 19 author = theAfutho:
*.theTitIe —> "Green| | - 20 title = theTitle;
A thePages = 234 : a1 pages = thePages;
~ [l thevalue > 50.0 (|| =

[]Locals [I] Dl
[& <PersonalLibrar... | PersonalLibrar... | Book.java H

| jeRASP Messages | Run I/ | Interactions |
Compile Messages

Browse L Find ||| End | -—--3JGRASPE: connected to debud|
Debug | UMLInfo | » | &
Workbench [«] i] T |

[L]EM™ status: debugging user program Line:24 Col:4 Code:0 Top:13 |oveELK

Figure 6-5. After next stepping into the Book constructor

There are many other scenarios where this approach of tracing through the
process of object construction is useful and instructive. For example, consider

6-10

Debugger (1.8.7) 9/2/2009

the case where the Fiction constructor for “clancy” is called and it in turn calls
the super constructor located in Book. By stepping into each call, you can see
not only how the program proceeds through the constructor’s code, but also how
fields are initialized.

Another even more common example is when the toString method of an object
is invoked indirectly in a print statement (System.out.println). The debugger
actually takes the user to the object’s respective toString method.

6.7 Opening Object Viewers

A separate Viewer window can be opened for any primitive or object (or field of
an object) displayed in Variables section of the Debug tab. All objects have a
basic view which is similar to the view shown in the Debug tab. However,
when a separate viewer window is opened for an entry, some objects will have
additional views.

The easiest way to open a viewer is to left-click on an object and drag it from
the workbench to the location where you want the viewer to open. This will
open a “view by name” viewer. You can also open a viewer by right-clicking on
the object and selecting either View by Value or View by Name.

Figure 6-6 shows an object viewer for the title field of hemingway in Figure 6-4,
which is a String object in an instance of Book. Formatted is the default “view”
for a String object which is especially useful when viewing a String object with
a large value (e.g., a page of text). In Figure 6-7, the Basic view has been
selected and expanded to show the details of the String object. Notice that the
first field is value[21] which is a character array holding the actual value of the
string. If we open a separate viewer on value, we have a Presentation view of
the array as shown in Figure 6-8. Notice that the first element (‘G’) in the array
has been selected and this opened a subview of type character. The subview
displays the ‘G’ and its integral value of 71. If our example had been an array of
strings (e.g., a list of words) then selecting an array element would have
displayed the formatted view of a String object in the subview. Presentation
view is the default for arrays. There is also a view called Array Elements which
is quite useful for large arrays.

[Viewer (by name): hemingway.title
@ hemingway.title

=
Type ‘java.lang.String [... H Viewer

Green Hills of Africa

Figure 6-6. Viewing a String Object
6-11

Debugger (1.8.7) 9/2/2009

[Viewer (by name): hemingway.title E|
E hemingway.title

Type ‘java lang.String [... | ‘ Vlewer .

Accessibility Context |PersonalL|brary [Current] H

o] --> "Green Hills ... (obj 358 : java.lang.String) java.lang.S

*.)value --> (obj 363 : char[21]) private final char[] : java.la

fmmoffset =0 : private final int : java.lang. String.offset

fmmcount =271 : private final int : java.lang.String.count
#m=hash =0 : private int: java.lang.String.hash

i serialVersionUID = -6849794470754667710 : private

& serialPersistentFields —-> (obj 361 : java.io.ObjectStrea

ks . CASE_INSENSITIVE_ORDER --> (obj 362 : java. Iang
[l Il |

Figure 6-7. Basic view of a string (expanded to
see fields)

[Viewer (by name): hemingway.title

E hemingway title =
Type‘java.lang.string [Current] H Viewer‘Presentation H
M width = 4.0 |Scale L 1.0/ Elements: 21

Lelrfefeln] [wleJoJo]s] Jofr]-
0 1 2 3 4 5 6 7 8 9 0 11 12 13
:L i] [v]
Type|char [Current] H Viewer‘Basic H
Accessibility Context |PersonalLibrary [Current] -
b ='G:71: char

Figure 6-8. Presentation View of hemingway.title.value

You are encouraged to open separate viewers for any of the primitives and
objects in the Variables section of the Debug tab. In addition to providing

multiple views of the object, each viewer includes an Invoke Method button =

for the object being viewed.

6-12

Debugger (1.8.7) 9/2/2009

In the tutorial Viewers for Data Structures, many other examples are presented
along with a more detailed description of viewers in general. The "Structure
Identifier" viewer is also introduced. This viewer attempts to automatically
recognize and display linked lists, binary trees, and array wrappers (lists, stacks,
queues, etc.) when opened on an object during debugging or workbench use.

6.8 Debugging a Program

You have, no doubt, noticed that the previous discussion was only indirectly
related to the activity of finding and removing bugs from your program. It was
intended to show you how to set and unset breakpoints and how to step through
your program. Typically, to find a bug in your program, you need to have an
idea where in the program things are going wrong. The strategy is to set a
breakpoint on a line of code prior to the line where you think the problem
occurs. When the program gets to the breakpoint, you can inspect the variables
of interest to ensure that they have the correct values. Assuming the values are
okay, you can begin stepping through the program, watching for the error to
occur. Of course, if the value of one or more of the variables was wrong at the
breakpoint, you will need to set the breakpoint earlier in the program.

You can also set several types of “watches” on a field of an object. In Figure 6-
9, a Watch for Access has been set on the title in hemingway just after it was
created. If you click the Resume button D at this point, with no breakpoints set
before the end of the program, the next place the program should stop is in the
toString method of Book in conjunction with the printin statement for
hemingway. This is because the title field of hemingway is accessed in the
statement:

return(""“\nAuthor: ' + author +
"\nTitle: " + title +
"\nPages: " + pages);

Note that setting Watch All for Access on the title field of hemingway sets the
watch on all occurrences of the title field (i.e., in all instances of Book, Fiction,
and Novel).

As your programs become more complex, the debugger can be an extremely
useful for both understanding your program and isolating bugs. For additional
details, see Integrated Java Debugger in JGRASP Help.

6-13

Debugger (1.8.7) 9/2/2009

[Viewer (by name): hemingway |'z|
E hemingway =
Type‘Book [Current] H Viewer
Accessibility Context |PersonaILibrary [Current] H

¢+] --> (obj 356 : Book) Book
o {8 author --> "Hemingway" (obj 357 : java.lang.String) priv

°_.tltle =" IR T TR R W ’:l-n - i~
A _ 1P Watch for Modification
pages =

o [l value —> ® Watch for Access
O Watch All for Modification
= Watch All for Access
Add to Workbench
Invoke Method
Create New Instance

Figure 6-9. Setting a Watch for Access

[Project: <PersonalLibraryProject> File: Book.java [P] C:\Program Files\jGRAS... |:HE”'X|
File Edit View Build Project Settings Tools Window Help
EHmé RPODInEY +16600E
: 4 B
@@ 2 a public class Personallibrary { N
| Threads : A ||
Call Stack i; Ins tanf-:iates A derived- cl.ass f.(n; élj
[4] Book.toString (Boo : i e [¢] Book.java [P] C:\Program Files\iGR... -
[3] java.lang.String.valu | = 55 s
! i v i0.Pri I'IZ ® L 28] i public String toStrinc =
o i | » 27 [€1— return ("\nAuthor: '
Variables rEvaI | : 28 + "\nPages: "
« [l this > (obj 356 : Boc|| 29 L
[] Arguments S0 Ly] b
[]Locals : = 31 -
j\«l I Il I D
| ‘ — System.out.println("\n" + clancy
4] r
L}
E L} L]
Browse | Find | 0 I I os
Debug | UML info | & <PersonalLibrar... | [§] PersonalLibrar... | [&] Book.java |
Workbench —
[JE™ status: debugging user program Line:18 Col:11 Code:111 Top:25 [ovs[BLK

Figure 6-10. Stopping at a Watch for Access to hemingway.title

6-14

Projects (1.8.7) 9/2/2009

7 Projects

A project in jJGRASP is essentially one or more files which may be located in
the same or different directories. When a “project” is created, all information
about the project, including project settings and file locations, is stored in a
project file with the .gpj extension.

Although projects are not required to do simple operations such as Compile and
Run, to generate UML class diagrams and to use many of the Object Workbench
features, you must organize your Java files in a Project. UML Class Diagrams
and the Object Workbench are discussed in Sections 5 and 6. Many users will
find projects useful independent of the UML and Object Workbench features.

Before doing this tutorial, be sure you have read the tutorial entitled Getting
Started with Objects since the concept of a JGRASP project is first introduced
there.

Objectives — When you have completed this tutorial, you should be able to
create projects, add files to them, remove files from them, generate
documentation, and close projects.

The details of these objectives are captured in the hyperlinked topics listed
below.

7.1 Creating a Project

7.2 Adding files to the Project

7.3 Removing files from the Project

7.4 Generating Documentation for the Project (Java only)
7.5 Jar File Creation and Extraction

7.6 Closing a Project

7.7 Exercises

7-1

Projects (1.8.7) 9/2/2009
7.1 Creating a Project

On the Desktop menu, click Project > New > New Standard Project (Figure 7-
1) to open the New Project dialog. Note that the “New J2ME Project” option
should only be selected if you have installed the Java Wireless Took Kit (WTK)
and you plan to develop a project based on the Java 2 Micro Edition (J2ME).

Within the New Project dialog (Figure 7-2), notice the two check boxes (Add
Files Now and Open UML Window). Normally, you would want to have the
Add Files Now checked ON so that as soon as you click the Create button, the
Add Files dialog will pop up. If you are working in Java, you may also want to
turn ON the Open UML Window option. This will generate the UML class
diagram and open the UML window (see Section 5 for details).

[jGRASP EEX
File Edit View Project Settings Tools Window Help

e Files|~ | Sort ... ~ :’

R EEREY

.amples\Tutorials|~ |
[CJHello :
[PersonalLibrary|
5 ViewerExamples|
OddEven.java |

D

| compile Messages | JGRASP Messages | Run I/ | Interactions

[»]

1l I [T :‘ Stop |

Browse | Debug | || Clear
Find ; L
Workbench | i [s

CE®

Figure 7-1. Creating a Project

7-2

Projects (1.8.7) 9/2/2009

[New Project @

C:\Program Files\{GRASP\examples\Tutorials

Look In: | Tutorials BEEEE R
I Hello 22

] PersonalLibrary Default Extension:

[ViewerExamples m v|

¥IAdd Files Now

¥Open UML Window,

Filter Extensions:

File Name: |

|
Files of Type: |IGRASP Projects (*.gpj) -]

‘ Create || Cancel |

Figure 7-2. New Project dialog

Navigate to the directory where you want the project to reside and enter the
project file name. It is recommended that the project file be stored in the same
directory as the file containing main. A useful naming convention for a project
is ClassnameProject where Classname is the name of the class that contains
main. For example, since the PersonallLibrary class contains main, an
appropriate name for the project file would be PersonalLibaryProject.

After entering the project file name, click Create to save the project file. Notice
the new project file with .gpj extension is listed in the Files section of the
Browse tab. The project is also listed in the Open Projects section of Browse
tab. If Add Files Now was checked ON when you created the project, the Add
Files dialog will pop up. As files are added to the project, they will appear
under the project name in the Open Projects section of the Browse tab. When
you have finished adding files, click the Close button on the dialog. You can
always add more files to a project later.

Note that when you have multiple projects open, these are all listed in the Open
Projects section of the Browse tab. If you open a UML window for one or more
projects and/or if you open one or more CSD windows for files in projects, then
the UML or CSD window with focus will determine which open project has
focus. The project with focus will have a black square in the project symbol and
the project name will be displayed in the title bar of the JGRASP desktop.

7-3

Projects (1.8.7) 9/2/2009

7.2 Adding files to the Project

The Browse tab is split to show the current file directory in the top part and the
open projects in the lower part as shown in Figure 7-3. After a project has been
created and/or opened, there are several ways to add Java files to the project.

)

From Browse Tab - Drag the file (left click and hold) from the Files

section to the project in the Open Projects section below.

(2)
Window.

3)
7-3).

(4)

From Browse Tab - Drag the file from the Files section to the UML
In Browse Tab - Right click on the file and select Add to Project. (Figure

From CSD window > Click Project > Add files.

You can also select multiple files (holding down the control or shift key), and
add or drag the highlighted files all at once. The files in the project are shown
beneath the project name in the Open Projects section of the Browse tab.
Double-clicking on the project name (or single-clicking on the “handle” in front
of the project name) will open or close the list of files in the project.

E

8 jGRASP CEX)

File Edit View Project Settings Tools Window Help

@ 2t

e Files|~ | Sort ... ~ :’

»
\PersonalLibrary ~ _,/

NonFictio .javﬂ

Files Section
of Browse Tab

PersonalLib
PersonalLib

Novel.java [F

Edit
Edit Binary

T

Add To Project

ax

Open Project
¢ PersonalLi

Delete
Properties

& <UML>

. —
Book java \

Fiction.java
Novel java
PersonalLibn|-

I

Add Novel.java to an
open project by right-
clicking on file name
in the File section
then selecting

Add To Project

s

|| compilg

Stop

|

Tl

Open Projects
Section of
Browse Tab

tssages Run l/O | Interactions |

[»]

Browse | Debug

‘ Clear |

Find
Workbench |

41

B

Figure 7-3. Adding a file to the Project

7-4

Projects (1.8.7) 9/2/2009
7.3 Removing files from the Project

You can remove files from the project by selecting one or more files in the Open
Projects section of the Browse tab, then right clicking and selecting Remove
from Project(s) as shown in Figure 7-4. You can also remove the selected
file(s) by pressing Delete on the keyboard. Note that removing a file from a
project does not delete the file from its directory, only from the project.
However, you can delete a file by selecting it in the Files section of the Browse
tab, then right-clicking and selecting Delete from the pop-up menu or by
pressing the Delete key.

8 jGRASP =1t
File Edit View Project Settings Tools Window Help
B

e Files|~| Sort ... ~ "
&= 2k »
\PersonalLibrary ~ |
NonFiction.javi~
Noveljava[P]| ||
PersonalLibra—|:
PersonalLibral= |

1 1 v

Open Projects |

¢ (] PersonalLibrar|
& <UML> :
Book java :
Fictior, 9pen
Novel| Remove From Project(s) ﬂ IGRASP Messages \ Run /O | Interactions
Perso| Make Paths Relative
(L] Make Paths Absolute
Browse | Debug || Clear |

Find |
Workbench | ol D

B

[»]

Figure 7-4. Removing a file from the Project

7-5

Projects (1.8.7) 9/2/2009
7.4 Generating Documentation for the Project (Java only)

Now that you have established a project, you have the option to generate project
level documentation for your Java source code, i.e., application programmer
interface (API) documentation. To generate the documentation for our example
project, PersonalLibaryProject, select Project > Generate Documentation >
<PersonalLibaryProject> as shown in the Figure 7-5. This will bring up the
“Generate Documentation for Project” dialog which asks for the directory in
which the generated HTML files are to be stored. The default directory name is
the project name with “_doc” appended to it (e.g., PersonalLibaryProject_doc).
Using the default name is recommended so that your documentation directories
will have a standard naming convention. If the default directory is not indicated,
click the Default button in the dialog. However, you are free to use any
directory as the target. Click the Generate button on the dialog to start the
process. jGRASP calls the javadoc utility, which is included with the JDK, to
create a complete hyper-linked document.

[@ jGRASP
File Edit View
L=

Eroject|§ettings Tools Window Help

New »
Open

Close

Close All

Save

Save As

e FiIes|vHSort.
@ =men
\PersonalLibrar
NonFiction.jg

Novel.java [F
PersonalLib

Recent Projects

PersonalLib

4] I |
A

Add Files
Remove Selected Files From Project(s)

Open Project:
¥ PersonalLib

Generate | Update UML Class Diagram
Generate Documentation

& <UML>

Show Documentation

Book jave

Fiction.ja

Create JAR File For Project
JAR | Zip Extractor

Novel jav

PersonalLibr,

B [el sk

g [T

ages | Run /O | Interactions

w

L]

o0
| ¥]

Browse | Debug

‘ Cleariri

Find
Workbench |

4]

=S

Figure 7-5. Generating Documentation for the Project

7-6

Projects (1.8.7) 9/2/2009

The documentation generated for PersonalLibaryProject is shown below in
Figure 7-6. Note that in this example, even though no JavaDoc comments were
included in the source file, the generated documentation is still quite useful.
However, for even better documentation, JavaDoc formal comments should be
included in the source code. When generated for a project, the documentation
files are stored in a directory that becomes part of the project and, therefore,
persists from one jJGRASP session to the next. Project > Show Documentation
can be used to display the documentation without regenerating it. However, if
any changes have been made to a project source file and the file has been saved,
JGRASP will indicate that the documentation needs to be regenerated. You may
choose to view the documentation anyway or to regenerate the documentation.

& jGRASP Documentation Viewer
Eile Edit View
G D [file:/C:/Program%20FilesjGRASP/examples/Tutorials/PersonalLibrary/PersonalLibrary_Project_doc/index.html
All Classes
Book
Eiction Package Tree Deprecated Index Help
Novel ERAMES NOFRAMES
PersonalLibrary FREV CLASS NEXTCLASS All €I
SUMMARY. NESTED | FIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD
Class Book
Java.lang.Object
LBook
Direct Known Subclasses:
public class Bookextends java.lang.Object -
4 »
(=]

Figure 7-6. Project documentation

Documentation generated for an individual file is stored in a temporary directory
for the duration of the JGRASP session unless the individual file is part of a
project for which documentation has already been generated. In this case,
Generate Documentation displays the existing documentation rather than
generating a temporary documentation file.

7-7

Projects (1.8.7) 9/2/2009
7.5 Jar File Creation and Extraction

JGRASP provides a utility for the creation of and extraction of files from a Java
Archive file (JAR) for your project. To create a JAR file, click Project >
Create Jar File for Project. This will allow you to create a single compressed
file containing your entire project.

The Project > Jar/Zip Extractor option enables you to extract the contents of a
JAR or ZIP archive file.

These topics are described in more detail in JGRASP Help (find using the Index
tab).

7.6 Closing a Project

When you exit JGRASP, the projects and files that are currently open on the
desktop are remembered so that the next time you start JGRASP, you can pick
up where you left off. However, to prevent clutter you should close the ones
you are no longer using.

(1) From the Desktop toolbar - Click Project > Close All Projects.

(2) From the Desktop toolbar - Click Project > Close (if more than one project
is open, select the one you want to close, e.g., <PersonalLibraryProject>.

(3) From the Browse Tab — Right-click on the project file name in the Open
Projects section of the Browse tab and select Close.

All project information is saved when you close the project as well as when you
exit JGRASP. Note that closing a project does not close the files that are
currently open. You can close these individually or all at once with File — Close
All Files.

7-8

Projects (1.8.7) 9/2/2009

7.7 Exercises

(1)

()

3)

(4)

Q)
(6)

Create a new project called PersonalLibraryProject2 in the same directory
folder as the original PersonalLibraryProject. During the create step, add
the file Book.java to the new project. Close the Add Files dialog.

Add the other Java files in the directory to the project by dragging each file
from the Files section of the Browse tab and dropping the files in
PersonalLibraryProject? in the open projects section.

Remove a file from PersonalLibraryProject2. After verifying that the file
was removed, add it back to the project.

Generate the documentation for PersonalLibraryProject2. After the
Documentation Viewer pops up:

a. Click the Fiction class link in the API documentation (left side).

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.
Close the project.

Open the project by double-clicking on the project file in the files section of
the Browse tab.

7-9

Projects (1.8.7) 9/2/2009

Notes

7-10

UML Class Diagrams (1.8.7) 9/2/2009

8 UML Class Diagrams

Java programs usually involve multiple classes, and there can be many
dependencies among these classes. To fully understand a multiple class
program, it is necessary to understand the interclass dependencies. Although
this can be done mentally for small programs, it is usually helpful to see these
dependencies in a class diagram. jGRASP automatically generates a class
diagram based on the Unified Modeling Language (UML). In addition to
providing an architectural view of your program, the UML class diagram is also
the basis for the Object Workbench which is described in a separate section.

Objectives — When you have completed this tutorial, you should be able to
generate the UML class diagram for your project, display the members of a class
as well as the dependencies between two classes, and navigate to the associated
source code.

The details of these objectives are captured in the hyperlinked topics listed
below.

8.1 Opening the Project

8.2 Generating the UML

8.3 Compiling and Running from the UML Window
8.4 Determining the Contents of the UML Class Diagram
8.5 Laying Out the UML Class Diagram

8.6 Displaying the Members of a Class

8.7 Displaying Dependencies Between Two Classes
8.8 Navigating to Source Code via the Info Tab

8.9 Finding a Class in the UML Diagram

8.10 Opening Source Code from UML

8.11 Saving the UML Layout

8.12 Printing the UML Diagram

8-1

UML Class Diagrams (1.8.7) 9/2/2009
8.1 Opening the Project

The jJGRASP project file is used to determine which user classes to include in
the UML class diagram. The project should include all of your source files
(java), and you may optionally include other files (e.g., .class, .dat, .txt, etc.).
You may create a new project file, then drag and drop files from the Browse tab
pane to the UML window.

To generate the UML, jGRASP uses information from both the source (.java)
and byte code (.class) files. Recall, .class files are generated when you compile
your Java program files. Hence, you must compile your .java files in order to
see the dependencies among the classes in the UML diagram. Note that the
.class files do not have to be in the project file.

If your project is not currently open, you need to open it by doing one of the
following:

(1) On the Desktop tool bar, click Project > Open Project, and then select the
project from the list of project files displayed in the Open Project dialog and
click the Open button.

(2) Alternatively, in the files section of the Browse tab, double-click the project
file.

When opened, the project and its contents appear in the open projects section of
the Browse tab, and the project name is displayed at the top of the Desktop. If
you need additional help with opening a project, review the previous tutorial on
Projects.

The remainder of this section assumes you have created your own project file or
that you will use PersonalLibraryProject from the examples that are included
with JGRASP.

TIP: Remember that your Java files must be compiled before you can see the
dependencies among your classes in the UML diagram. When you recompile
any file in a project, the UML diagram is automatically updated.

8.2 Generating the UML

In Figure 8-1, PersonalLibraryProject is shown in the Open Projects section of
the Browse tab along with a UML symbol =& and the list of files in the project.
To generate the UML class diagram, double-click the UML symbol o,

Alternatively, on the Desktop menu, click on Project > Generate/Update UML
Class Diagram.

The UML window should open with a diagram of all class files in the project as
shown below. You can select one or more of the class symbols and drag them
around in the diagram. In the figure, the class containing main has been dragged

8-2

UML Class Diagrams (1.8.7) 9/2/2009

to the upper left of the diagram and the legend has been dragged to the lower
center.

[@ Project: <PersonallLibraryProject> File: UML (Java) for Project: PersonalLibrar... E\@@
File Edit View Build Project Settings Tools Window Help
== REFEEREIEIE T T S

:e Files|~|Sort ... |~ : Scale: 1.0
domlel »|] i2)i12]1]1.2]2
WPersonalLibrary~ |l b i i i e oo o o o e e e e e e e e e e
Fiction.java [P~ | i
NonFiction.jav| ||

Novel.java [P]
PersonalLibra

5 PersonalLibrary

{main}
e —————— | \\\\
Open Projects | *
+ @ PersonalLibrar] M Fiion | [NonFiction |
& <UML> A =
Bookjava || A

NenFiction.jg|:
Noveljava ||
PersonalLibr| [Profect Ciass ———p> Inhertance

— — == Other (reference, etc.)

] D

Browse | Goto |
& « L] [=
UML Info |

Workbench |@ <PersonalLibraryProject>

LE™ Classes / Interfaces: 5

Figure 8-1. Generating the UML

The UML window is divided into three panes. The top pane contains a panning
rectangle that allows you to reposition the entire UML diagram by dragging the
panning rectangle around. To the right of the panning rectangle are buttons for
scaling the UML.: divide by 2 (/2), divide by 1.2 (/1.2), no scaling (1), multiply
by 1.2 (*1.2), and multiply by 2 (*2). In general, the class diagram is
automatically updated as required; however, the user can force an update by
clicking the Update UML diagram button &% on the desktop menu.

If your project includes class inheritance hierarchies and/or other dependencies
as in the example, then you should see the appropriate red dashed and solid
black dependency lines. The meaning of these lines is annotated in the legend
as appropriate.

UML Class Diagrams (1.8.7) 9/2/2009
8.3 Compiling and Running from the UML Window

The Build menu and buttons on the toolbar for the UML window are essentially
the same as the ones for the CSD window. For example, clicking the Compile

button P compiles all classes in the project (Figure 8-2). When a class needs to
be recompiled due to edits, the class symbol in the UML diagram is marked with
red crosshatches (double diagonal lines). During compilation, the files are
marked and then unmarked when done. Single red diagonal lines in a class
symbol indicate that another class upon which the first class depends has been

modified. Clicking the Run button 2 on the toolbar will launch the program as
an application if there is a main() method in one of the classes. Clicking on the

Run as Applet button @ will launch the program as an applet if one of the
classes is an applet. Similarly, clicking the Debug button @ or the Debug

Applet button ® will launch the program in debug mode. Note that for running
in debug mode, you should have a breakpoint set somewhere in the program so
that the debugger will stop.

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonalLibrar... [ZHE|E\
File Edit View Build Project Settings Tools Window Help X
e =S e &Y |E s e e s EE

G- mea » PersonalLibrary
\PersonalLibrary ~ | {main}

PersonalLibra ™| R
PersonalLibra| |
PersonalLibra |
PersonalLibral- |
PersonalLibral. |’

Open Projects
[4] PersonalLil=]|:
? PersonalLibrg ||
&& <UML>]
Book java |/
Fiction.java || | mi OB
NaonFiction
Novel.java | || == = =

o Personalhilz || Compile Messages erRASP Messages rRun [} rlnteractions \
KT Y |

Browse | Goto
Debug E
UML Info ! --—--JGRASF: operation complete.

Workbench \ [copv ||a—i—1 I
LE™ Classes / Interfaces: 5

I:l Project Class ———> Inheritance

————>3 Other (reference, efc.)

|@ <PersonaILibraryProject>| ‘

[v]

La [T

Figure 8-2. Compiling Your Program

8-4

UML Class Diagrams (1.8.7) 9/2/2009
8.4 Determining the Contents of the UML Class Diagram

JGRASP provides one group of options to control the contents of your UML
diagram, and another group to determine which elements in the diagram are
actually displayed. Settings > UML Generation Settings allows you to control
the contents of the diagram by excluding certain categories of classes (e.g.,
external superclasses, external interfaces, and all other external references). The
View menu allows you to make visible (or hide) certain categories of classes
and dependencies that are actually in the UML diagram. Both options are
described below.

Most programs depend on one or more JDK classes. Suppose you want to
include these JDK classes in your UML diagram (the default is to exclude
them). You will need to change the UML generation settings in order to not
exclude these items from the diagram. Also, if you do not see the red and black
dependency lines expected, then you may need to change the View settings.
These are described below.

Excluding (or not) items from the diagram -

On the UML window menu, click on Settings Exclude By Type of Use:

> UML Generation Settings, which will [|External Superclasses

bring up the UML Settings dialog. Generally [1External Interfaces

you should leave the top three items [1Other External References
unchecked so that they are not excluded from Exclude By Type of Class:

the UML diagram. Now for our example of [1JDK Classes

not excluding the JDK classes, under Exclude java.lang.Object

by Type of Class, uncheck (turn OFF) the I Synthetic Classes
checkbox that excludes JDK Classes, as New Node Layout
shown in Figure 8-3. Note that synthetic
classes are created by the Java compiler and
are usually not included in the UML diagram.
After checking (or unchecking) the items so
that your dialog looks like the one in the
figure, click the OK button. This should close
the dialog and update the UML diagram. All JDK classes used by the project
classes should now be visible in the diagram as gray boxes. This is shown in
Figure 8-4 after the JDK classes have been dragged around. To remove them
from the diagram, you will need to turn on the exclude option. If you want to
leave them in the diagram but not always display them, see the next paragraph.
For more information see UML Settings in jJGRASP Help.

Figure 8-3. Changing the
UML Settings

Making objects in the diagram visible (or not) - On the UML window menu,
click on View > Visible Objects, then check or uncheck the items on the list as
appropriate. In general, you will want all of the items on the list in View >

8-5

UML Class Diagrams (1.8.7) 9/2/2009

Visible Objects checked ON as shown in Figure 8-4. For example, for the JIDK
classes and/or other classes outside the project to be visible, External
References must be checked ON. Clicking (checking) ON or OFF any of the
items on the Visible Objects list simply displays them or not, and their previous
layout is retained when they are redisplayed. Note that if items have been
excluded from the diagram via Settings > UML Generation Settings, as
described above, then making them visible will have no effect since they are not
part of the diagram. For more information see View Menu in jJGRASP Help.

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonalLibrar... E\@@

File Edit !iew|§ui|d Project Settings Tools Window Help | X
- |=|d| & visible Objects Y ¥ Classes
{F=""""" visible Dependencies | ¥ Interfaces e
Hide / Show ¥ ¢ Public i

Info * ® Non-public

Legend Y ¥ Anonymous

Appearance * ® Inner :I

Toolbars » # External References

Systt Toolbar Buttons
java) Messagebars
Menus | NonFiction |
B 1
_Print.Stream .: Comparable =
javaio | java.lang
v
String StringBuilder Double
java.lang java.lang java.lang
I:l Project Class ——1> Inheritance
I:l JDK Class or Interface = — —=p> Interface Implementaticn
———=23 Other (reference, elc.)

A [} [»

|@ <PersonalLibraryProject> |

Classes / Interfaces: 11

Figure 8-4. Making objects visible

Making dependencies visible - On the UML window menu, click on View >
Visible Dependencies, then check or uncheck the items on the list as
appropriate. The only two categories of dependencies in the example project are
Inheritance and Other. Inheritance dependencies are indicated by black lines
with closed arrowheads that point from a child to a parent to form an is-a
relationship. Red dashed lines with open arrowheads indicate other
dependencies. These include has-a relationships that indicate that a class uses
fields, methods, or constructors of another class. The red dashed arrow is drawn

8-6

UML Class Diagrams (1.8.7) 9/2/2009

from the class where an object is declared or referenced to the class where the
item is actually defined. In general, you probably want to make all dependencies
visible as indicated in Figure 8-5.

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonallLibrar... Q@@

Eile Edit View| Build Project Settings Tools Window Help X

Visible Objects 1=

Visible Dependencies * ¥ Inheritance =

Hide / Show ' ¥ Interface Implementation

Info * @ Inner / Quter

Legend ¥ Qther (reference etc.)

Appearance v

Toolbars

Systt Toolbar Buttons
j2va. Messagebars
Menus
L 1
: I =
Pl e | Comparable B
java.io I .
I java.lang
o
String StringBuilder Double
java.lang java.lang java.lang
I:I Project Class ——1> Inheritance
I:I JDK Class orInterface ———=[> Interface Implementation
=== =2 Other (reference, etc.)

4| | [r =
: IE!<PersonaILibraryProject>|
L= Classes / Interfaces: 11

Figure 8-5. Making dependencies visible

Displaying the Legend - The legend has been visible in each of the UML
diagrams (figures) in this tutorial. To set the options for displaying the legend,
click View > Legend. Typically, you will want the following options checked
ON: Show Legend, Visible Items Only, and Small Font. Notice that if “Visible
Items Only” is checked ON, then an entry for JDK classes appears in the legend
only if JDK classes are visible in the UML diagram. Experiment by turning
on/off the options in View > Legend. When you initially generate your UML
diagram, you may have to pan around it to locate the legend. Scaling the UML
down (e.g., dividing by 2) may help. Once you locate it, just select it and drag
to the location where you want it as described in the next section.

8-7

UML Class Diagrams (1.8.7) 9/2/2009
8.5 Laying Out the UML Class Diagram

Currently, the JGRASP UML diagram has limited automatic layout capabilities.
However, manually arranging the class symbols in the diagram is
straightforward, and once this is done, JGRASP remembers your layout from
one generate/update to the next.

To begin, locate the class symbol that contains main. In our example, this
would be the PersonalLibrary class. Remember that the project name should
reflect the name of this class. Generally, you want this class near the top of the
diagram. Left click on the class symbol and then, while holding down the left
mouse button, drag the symbol to the area of the diagram where you want it, and
then release the mouse button. Now repeat this for the other class symbols until
you have the diagram looking like you want it. Keep in mind that class—
subclass relationships are indicated by the inheritance arrow and that these
should be laid out in a tree-down fashion. You can do this automatically by
selecting all classes for a particular class—subclass hierarchy (hold down SHIFT
and left-click each class). Then click Edit > Layout > Tree Down to perform
the operation; alternatively, you can right-click on a selected class or group of
classes, then on the pop up menu select Layout > Tree Down. Finally, right-
clicking in the background of the UML window with no classes selected will
allow you to lay out the entire diagram.

With a two or more classes selected, you can move them as a group. Figure 8-5
shows the UML diagram after the PersonalLibrary class has been repositioned to
the top left and the JDK classes have been dragged as a group to the lower part
of the diagram. You can experiment with making these external classes visible
by going to View > Visible Objects > then uncheck External References.

Here are several heuristics for laying out your UML diagrams:

(1) The class symbol that contains main should go near the top of the
diagram.

(2) Classes in an inheritance hierarchy should be laid out tree-down, and
then moved as group.

(3) Other dependencies should be laid out with the red dashed line pointing
downward.

(4) JDK classes, when included, should be toward the bottom of the
diagram.

(5) Line crossings should be minimized.

(6) The legend is usually below the diagram.

8-8

UML Class Diagrams (1.8.7) 9/2/2009
8.6 Displaying the Members of a Class

To display the fields, constructors, and methods of a class, right-click on the
class, then select Show Class Info which will pop the UML Info tab to the top
in the left tab pane. Also, in the left tab pane, you can click on the UML Info
tab to pop it to the top. Once the Info tab is on top, each time you select a class
its members will be displayed.

In Figure 8-6, external classes are not visible (View > Visible Objects > then
uncheck External References). Class Fiction has been selected and its fields,
constructors, and methods are displayed in the left pane. This information is
only available when the source code for a class is in the project. In the previous
example, the System class from package java.lang is an external class, so
selecting it would result in a “no data” message. If the only field you are seeing
is mainCharacter, click View > Info > Show Inheritance within Project. You
should now see the fields that are inherited by Fiction (i.e., author, pages, and
title).

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonallLibrar... EHE|@\
File Edit View Build Project Settings Tools Window Help - X

aH= S8 &Y i 8é o lE

I[==

Project: |Pers... ~| "
Fiction |
FIELDS: : PersonalLibrary

& author: private {main} —

[» pages: protecte|. NN Ty
E=title: private javi AN
[[]value: protecteq NN

[mainCharacter: | Nl

CONSTRUCTORS: | | rFiion | | NonFiction |
[l Fiction(): public|_ "\ | Show Class Info

Fiction(): public|: b
- i p : Ij Create New Instance
: N

METHODS: | S
@ toString(): publi|: L isl e e
q Create Array Of

il compareTo(): p:

I3

[getMainCharact|- Edit
fml setMainCharacty. [Poectinss — COMPIlE
[tostring(): publi _| Compile All
EINN| D
Browse | Goto | Remove From Project
Debug / I : Generate / Show Documentation ~
1 K il
; Layout 3
UML Info ;|@ <PersonaILibraryProject>|
Workbench _s,——--—
LHE™ Classes / Interfaces: 5

Figure 8-6. Displaying class members

8-9

UML Class Diagrams (1.8.7) 9/2/2009
8.7 Displaying Dependencies Between Two Classes

Let’s reduce the number of classes in our UML diagram by not displaying the
JDK classes. Click View > Visible Objects and uncheck External References.
Now to display the dependencies between two classes, right-click on the arrow,
then select Show Dependency Info. You can also click on the UML Info tab to
pop it to the top. Once the Info tab is on top, each time you select an arrow, the
associated dependencies will be displayed.

In Figure 8-7, the edge drawn from PersonalLibrary to Fiction has been selected
as indicated by the large arrowhead. The list of dependencies in the Info tab
includes one constructor (Fiction) and one method (getMainCharacter). These
are the resources that PersonalLibrary uses from Fiction. Understanding the
dependencies among the classes in your program should provide you with a
more in-depth comprehension of the source code. Note that clicking on the
arrow between PersonalLibary and the PrintStream class in Figure 8-6 would
show that PersonalLibary is using two printin() methods from the PrintStream
class. Make the External References visible again and try this.

[Project: <PersonalLibraryProject> File: UML (Java) for Project: PersonalLibrar... E\@@
File Edit View Build Project Settings Tools Window Help
a8 e &Y ¢ iédéHHE

A e

Project: Pers...|~ ’ P [y =
PersonalLibrary -...|: {main} L
FIELDS: o T
CONSTRUCTORS: | N Book
I Fiction(): Fictior| NN T
METHODS: R
i getMainCharacty . s F Show Dependency Info
| . | Compile All E
| Generate / Show Documentation
Layout 4

Q= I I:I Project Class ~=———> Inheritance

Browse Goto — = = =3 Other (reference, etc.)

Debug
UML Info 5|@ <PersonaILibraryProject>|
Workbench —_—-—

LE™ Classes / Interfaces: 5

s | [} [»

Figure 8-7. Displaying the dependencies between two classes

8-10

UML Class Diagrams (1.8.7) 9/2/2009
8.8 Navigating to Source Code via the Info Tab

In the Info tab, a green symbol indicates that the item is defined or used in the
class rather than inherited from a parent class. Double-clicking on a green item
will take you to its definition or use in the source code. For example, clicking on
getMainCharacer() in Figure 8-7 above will open PersonallLibrary in a CSD
window with the line containing getMainCharacter() highlighted as shown in
Figure 8-8 below.

8.9 Finding a Class in the UML Diagram

Since a UML diagram can contain many classes, it may be difficult to locate a
particular class. In fact, the class may be off the screen. The Goto tab in the left
pane provides the list of classes in the project. Clicking on a class in the list
brings it to the center of the UML window.

8.10 Opening Source Code from UML

The UML diagram provides a convenient way to open source code files. Simply
double-click on a class symbol, and the source code for the class is opened in a
CSD window.

[Project: <PersonalLibrary_Project1> File: Personallibrary.java [P] C:\Progra... EHE|E\
File Edit View Build Project Settings Tools Window Help X
EHzg BRAD T hEY Fieé 6N

Project: : it B

/4 Instantiates a derived class and invokes 1

PersonalLibrary ... S/ local methods. L
FIELDS: 2
CONSTRUCTORS: Epuglii satic veid main(Stiingl] aros) {

i e —= BooO emingway = new Boo emingway",

Fiction(): Fictig L
MiETHODSo' : "Green Hills of Afrieca™, 234, 50.0 |7

= : —= Fiction clancy = new Fiction("Clancy'™,
EgetMamCharaci "The Hunt for Red October™,
: 4580, 3%.0, "Sean™):
—= Novel grisham = new Novel ("Grisham",

"The Firm', 550, 28.0, "Tom", 0);

— System.out.println(hemingway);
— System.out.println(clancy);
— System.out.println(”\n" + clancy.getMain

] I

Browse | Find | | |}

Debug | K -] D =
UML Info ;
||[& <PersonalLibraryProject> PersonalLibrary.java ‘
CE™ Line:21 _Col:1_ Code:207 Top:6 _ [OVS]

Figure 8-8. Navigating to where getMainCharacer is used in the CSD
Window

8-11

UML Class Diagrams (1.8.7) 9/2/2009
8.11 Saving the UML Layout

When you close a project, change to another project, or simply exit JGRASP,
your UML layout is automatically saved in the project file (.gpj). The next time
you start JGRASP, open the project, and open the UML window, you should
find your layout intact.

If the project file is created in the same directory as your program files (.java
and .class files), and if you added the source files with relative paths, then you
should be able to move, copy, or send the project and program files as a group
(e.g., email them to your instructor) without losing any of your layout.

8.12 Printing the UML Diagram

With a UML window open, click on File > UML Print Preview to see how
your diagram will look on the printed page. If okay, click the Print button in
the lower left corner of the Print Preview window. Otherwise, if the diagram is
too small or too large, you may want to go back and scale it using the scale
factors near the top right of the UML window, and then preview it again.

For additional details see UML Class Diagrams in JGRASP Help.

8-12

Workbench (1.8.7) 9/2/2009

9 The Workbench

The JGRASP Workbench is tightly integrated with the CSD and UML windows,
as well as the Debugger and Interactions. The workbench provides a useful
approach for learning the fundamental concepts of classes and objects. The user
can create instances of any class in the CSD window, the UML window, or the
Java class libraries. When an object is created, it appears on the workbench
where the user can select it and invoke any of its methods. The user can also
invoke static (or class) methods directly from the class without creating an
instance of the class. One of the most compelling reasons for using the
workbench approach is that it allows the user to create an object and invoke each
of its methods in isolation. That is, the user can invoke the methods without the
need for a driver program. Some of the examples in this section were also
presented in the section on Getting Started with Objects; however, more detail is
included in this section.

Objectives — When you have completed this tutorial, you should be able to
create objects for the workbench from classes in CSD or UML windows as well
as directly from the Java libraries, invoke the methods for each of these objects,
and display the dynamic states of these objects by opening object viewers for
them.

The details of these objectives are captured in the hyperlinked topics listed
below.

9.1 Invoking Static Methods from the CSD Window

9.2 Invoking Static Methods from the UML Window

9.3 Creating an Object for the Workbench

9.4 Invoking a Method

9.5 Invoking Methods with Parameters Which Are Objects
9.6 Invoking Methods on Object Fields

9.7 Selecting Categories of Methods to Invoke

9.8 Opening Object Viewers

9.9 Running the Debugger on Invoked Methods

9.10 Exiting the Workbench

9-1

Workbench (1.8.7) 9/2/2009
9.1 Invoking Static Methods from the CSD Window

In the tutorial Getting Started, we ran the Hello program in Figure 9-1 as an

application by clicking the Run button :‘a'i Now let’s see how we can invoke its
main method directly by using the workbench. Since main is a static method, it
is associated with the Hello class rather than an instance of the Hello class;
therefore, we don’t have to create an instance for the workbench. There are two
ways to invoke a static method from the CSD window:

a. Click Build > Java Workbench > Invoke Static Method.
b. Click the Invoke Static Method button = on the toolbar.

The latter is the easiest way, so click the Invoke Static Method = button now.
This pops up the Invoke Method dialog which lists the static method main.
After selecting main, the dialog expands to show the available parameters
(Figure 9-2). We can leave the java.lang.String[] args blank since our main
method is not expecting command line arguments to be passed into it.

@ File: Hello.java C:\Program Files\jGRASP\examples\Tutorials\Hello - jGRASP CSD... Q@@
File Edit View Build Project Settings Tools Window Help X
BHEsg BED ey i 8ol

f =
eFiIes ’ Eublic class Hello { M

FEEEEE

|5\Tutorials\HeIIOvE ?ubllc static void main(Stringl] args) { |=
1

3 - System.out.println("Hello world!\n");
Hello.java
Hello2.java : 1

Al Il [»

Hello.java ‘

e = =

/|| Compile Messages erRASP Messages rRun lle] rlnteractions |

D]

Browse E
Debug Find =
Workbench | [Helo | |4] 1 I I
LE™ Line:1 Col:5 Code:112 Top:1

Figure 9-1. Invoking a static method from the Workbench

In Figure 9-2, notice the two check boxes below the String[] args field. The
first, Don’t Show Result Dialog, will be useful when you want to repeatedly
invoke a method that has a void return type or one that you do not care about.
When checked ON, all result dialogs (e.g., Figure 9-3) will be suppressed. The

9-2

Workbench (1.8.7) 9/2/2009

second check box, Run Without Clearing the Workbench, is a special case option
for running a main. Normally it is okay to invoke a main method without
clearing the workbench if you are sure this won’t interfere with objects you
previously placed on the workbench.

Finally, notice the “stick-pin” 4 in the upper left corner which is used to keep
the dialog open until you close it. This will allow you to click the Invoke button
multiple times.

Now you are ready to invoke the main method by clicking the Invoke button in
the lower left corner of the dialog. Figure 9-3 shows the desktop and the dialog
that pops up with the result: “Method invocation successful (void return type).”
Recall that main has a “void” return type. The standard output from the
program, “Hello World!” appears in the Run I/O tab pane. When the return type
for a method is not void, the dialog in Figure 9-3 will contain the value of the
return type.

@ Invoke Method on Hello 3

[¥] Hello

Type ‘Hello [Current]

-]
Accessibility Context \Public M
-]

Show: |Default

[java.lang.Object [Inaccessible SortBy [Natural Order H

[main(): public static void main(String[] args) : Hello.main()

main() declared in Hello
Returns: void
Parameters:
java.lang.String[] args
CDon't Show Result Dialog
[JRun Without Clearing Workbench

Invoke Close

Figure 9-2. Invoking main

9-3

Workbench (1.8.7) 9/2/2009

@ Project: <Hello_Project> File: Hello.java [P] C:\Program Files\jGRASP\exampl... |
File Edit View Build Project Settings Tools Window Help X
EHEe BRED T kY |dE L se HHE

b =
eFiIes' public class Hello { B

& lmeana »

IS\TutoriaIs\HeIIov public static void main(String[] args) .{ L

- System.out.println("Hellc world!\n");
Hello.java [P]

J
(] Hello2 java) esu't of Helo.main(new java.lang.>tr X L
Hello_Project.gq L Method invocation successful (void return type).

(4] I] [

4

i 0 B ‘@<Hello_Project>| Hello.iava | ‘
“Browse | Fina | | Compile Messages | JGRASP Messages | RunliO | Interactions |
% End | Hello world! é
Wen;]oy— Clear ||y i] Ib\v
E| Line:7 Col:1 Code:d0 Top:1 Jovs|BLK

Figure 9-3. The Result dialog from invoking a method

9.2 Invoking Static Methods from the UML Window

Figure 9-4 shows that we have created a project file, Hello_Project, added
Hello.java to the project, and then generated the UML class diagram. To make
the class diagram more interesting, we have elected to display the Java library
classes used by the Hello class. We did this by selecting Settings > UML
Generation Settings — then in the dialog, we unchecked JDK classes under the
Exclude by Type section. As always, feel free to substitute your own examples
in the discussion below.

9-4

Workbench (1.8.7) 9/2/2009

[Project: <Hello_Project> File: UML (Java) for Project: Hello_Project C:\Progr... |_ E@
File Edit View Build Project Settings Tools Window Help X
EEEEe &Y +iédHH=
e Files|~||Sort .../~ : - B
@l=|meim »| Hello
Im {main
[4] Hello.java [P][~] - ™| Show Class Info
Hello2 java |- -~ v | Create New Instance
Hello_Project. . System String | Invoke Method
e | java.lang java.lan Create Array Of
pen Projects . ; Edit
? Hello_Projed— Complle
:::}’l::vag i] Project Ciass --| compile Al
T Dl | [sk chssoriniefece | Aqd To Project
Browse | Goto Remove From Project
Debug 7 o Generate | Show Documentation
UML Info ; . —| Layout ’
HE™ Classes / Interfaces: 4

Figure 9-4. Invoking a static method from a class

Since main is a static method associated with the class rather than an instance of
the class, it can be invoked by selecting the Hello class in the UML diagram,
then right-clicking and selecting Invoke Method. This pops up the Invoke
Method dialog which lists the static method main as described in the section
above. After selecting main, leave the parameters blank, and then click the
Invoke button. The “Result” dialog should pop up and you should see the
output “Hello World!” in the Run 1/O tab as shown in Figure 9-5.

You can also invoke the static methods of a class in the UML window by using

the Workbench menu or by clicking the Invoke Static method button = on the
toolbar.

9-5

Workbench (1.8.7) 9/2/2009

@ Project: <Hello_Project> File: UML (Java) for Project: Hello_Project C:\Progr... [

X

File Edit View Build Project Settings Tools Window Help
admse a2y +12806 0N

Source F~ |SortBy... ~ Scale: 1.0
EBECECN B i2]inafi[az]2)
ASP\exampIes\Tutoria‘v R R
Hello.java [P] B

>

Hello2.java Hellf:
. . {main}
. Hello_Project.gpj L .
:'/ \if T
System String PrintStream
java.lang java.lang java.io i

aw.

Result of Hello.main(new java.lang.Stri... E|

Open Projects
? . Hello_Project C:\Prd Method invocation successful (void return type).

& <UML>
Hello.java

4 [Im| |»

& <Hello_Project> |

o2

JGRASP Messages rRun o flnteractions
Compile Messages |

[v]

End

[l I D -—--JGRASP: workbench active f

Hello world!

Browse L Goto
Debug UML Info

« [T

il

Workbench [] o]
LE™ Classes / Interfaces: 4

Figure 9-5. Invoking a static method from a class

9-6

Workbench (1.8.7) 9/2/2009
9.3 Creating an Object for the Workbench

Now we move to a more interesting example which contains multiple classes.
Figure 9-5 shows the PersonalLibraryProject loaded in the UML window. In
this section we want to create objects and place them on the workbench. In the
next section, we’ll see how to invoke the instance (or non-static) methods of the
objects we’ve placed on the workbench.

We begin by right clicking on the Fiction class in the UML diagram, and then
selecting Create New Instance, as shown in Figure 9-6. A list of constructors
will be displayed in a dialog box.

[@ Project: <PersonallLibraryProject> File: UML (Java) for Project: PersonalLibrar... E\@@
File Edit View Build Project Settings Tools Window Help
SIETEFIEN R R I (IS

- Files H : — e ———
@ misim ») PersonalLibrary
|PersonalLibrary|~ | {main} i
Noveljava [P]~ AN “"H-._s
PersonalLibri= - N\ Book
PersonalLibriz||’ NN A
T D f AN ‘\\
Open Projects p_— 1 I . L
+ [m] PersonalLib] Fict show Class Info I
‘\ Create New Instance
X Invoke Method
Nol create Array Of
Edit
; [Projectclass —— Compile
i ---{ compile All
Browse | Goto |
U;ef:]gfo 4l : : lil] Remove From Project
Workbench : |l£|, <PersonalL|braryProject>| Generate / Show Documentation J
EI Layout 4y

Figure 9-6. Creating an Object for the Workbench

Note: On any CSD or UML window, you can create an instance by clicking the
Create Instance I button on the tool bar (or Build > Java Workbench >
Create New Instance on the main menu). Using the Create Instance Il button
from the CSD window is an easy way to create instances without the necessity of
having a project or UML diagram.

9-7

Workbench (1.8.7) 9/2/2009

If a parameterless constructor is
selected as shown in Figure 9-7, then
clicking Create will immediately
place the object on the workbench.
However, if the constructor requires
parameters, the dialog will expand to
display the individual parameters as
shown in Figure 9-8. The arguments
(values of the parameters) should be
filled in prior to clicking Create.
Remember to enclose String
arguments in double quotes.

In either case above, the user can set
the name of the object being
constructed or accept the default
assigned by,jGRASP. Also, the

“stick-pin” 4* located in the upper
left of the dialog can be used to
make the Create dialog “stay up”
after you create an instance. This is
handy for creating multiple instances
of the same class. Click on the

“stick-pin” ¥ (it should turn
darker), then click the Create button
three times and you should see three
new instances appear on the
workbench.

In Figure 9-9, the Workbench tab is
shown after two instances (objects)
of Fiction have been created. Notice
that fiction_2 has been expanded so
that its fields can be viewed:
theAuthor, theTitle, thePages,
theValue, theMainCharacter. Since
the first three fields are instances of
the String class, they too can be
expanded. You should also note that
mainCharacter is color coded green
since it is the only field actually
declared in Fiction. The other fields

[@ Create New Fiction ﬁ\

E Fiction
Workbench Name

ffiction_1 |

|= public Fictiony) |
i@ public Fiction(String theAuthor, String tt

4]] I ID
<init>() declared in Fiction

Close

| Create || Show Doc H

Figure 9-7. Selecting a constructor

[Create New Fiction @|

@ Fiction
Workbench Name
[fiction_2 |

i public Fiction() J
& public Fiction(String theAuthor, String t

4] 1I | D
<init>() declared in Fiction

Parameters:

java.lang.String theAuthor
‘“Rowling" H

java.lang.String theTitle
"Harry Potter and the Philosopher’s Stof ~|

int thePages
766 -

java.lang.Double theValue
21.95 -

java.lang.String theMainCharacter
‘“Harry" H

| Create H Show Doc || Close ‘

Figure 9-8. Constructor with
parameters

9-8

Workbench (1.8.7) 9/2/2009

are color coded orange to indicate they are inherited from a parent, which in this
case is Book. The placement of these fields in Book vs. Fiction was a design
decision. Since not all books have a mainCharacter (e.g., a math book) but
works of fiction almost certainly do, mainCharacter was defined in Fiction.
Notice that Nowvel, a subclass (or child) of Fiction, appropriately inherits
mainCharacter.

[Project: <PersonallibraryProject> File: UML (Java) for Project: Personallibrar... E|[E|E\
File Edit View Build Project Settings Tools Window Help X
aHEE e &Y i 8é 6=

e

o
3

o [} fiction_1 --> (obj 352 : Fiction
? .|fiction_2 --> (obj 382 : Fiction |

@ author --> "Rowling" (obj 3¢ PersonalLibrary
- @& title --> "Harry Potter"... (ob sl |
fmmpages = 766 : protected i \\\\ T
> @@value --> 21.95 (obj 369 : j{ NN Baek
- @& mainCharacter --> "Harry" (- \\ . -
: * ‘l\\
Fiction | NonFiction | =
—2

<] I D I:l Project Class ———> Inheritance

Evaluate Expression | == = =3 Other (reference, eic.)
| Lo]| E
|l [[»

= <PersonalLibraryProject> \

Browse | Goto | Debug |
UML Info | Workbench | 1=
E.@ Status: workbench active for prOjECt <PersonalL|braryPrOJect> Classesilnterfaces

Figure 9-9. Workbench with two instances of Fiction

9.4 Invoking a Method

To invoke a method for an object on the workbench, select the object, right
click, and then select Invoke Method. In Figure 9-9, fiction_2 has been
selected, followed by a right mouse click, and then Invoke Method has been
selected. A list of user methods visible from Fiction will be displayed in a
dialog box as shown in Figure 9-10. After one of the methods is selected and
the parameters filled in as necessary, click Invoke. This will execute the
method and display the return value (or void) in a dialog. Other output, if any,
is handled in the usual way. If a method updates a field, as in the case of

9-9

Workbench (1.8.7) 9/2/2009

setMainCharacter(), the effect of the invocation is seen in the appropriate object

field in the Workbench tab. The “stick-pin” %1" located in the upper left of the
dialog can be used to make the Invoke Method dialog stay up. This is useful for
invoking multiple methods for the same object. For example, in a graphics
program a “move” method could be clicked repeatedly to see an object move
across the display.

[Invoke Method on fiction_2 E|

[¥] fiction_2

Type ‘Fiction [Current]

-

-]
Accessibility Context |Public H
Show: ‘Default | ‘

Cjava.lang.Object [Inaccessible Sort By Natural Order H

@ setMainCharacter(): public void setMainCharacter(String th
i getMainCharacter(): public String getMainCharacter() : Fict
il tostring(): public String toString() : Fiction.toString()

il compareTo(): public int compareTo(Object obj) : Fiction.co

[Il [»

Close

Figure 9-10. Selecting a method

As indicated above, perhaps one of the most compelling reasons for using the
workbench approach is that it allows the user to create an object and invoke each
of its methods in isolation. Thus, with an instance of Fiction on the workbench,
we can invoke each of its methods: setMainCharacter(), getMainCharacter(),
toString(), and compareTo(). By reviewing the results of the method calls, we
are essentially testing our class without a driver program.

9.5 Invoking Methods with Parameters Which Are Objects

If a method (or constructor) requires parameters that are primitive types and/or
strings, these can be entered directly. However, if a parameter requires an
object, then you must create an object instance for the workbench first. Then
you can simply drag the object from the workbench to the parameter field in the
Invoke Method dialog.

9.6 Invoking Methods on Object Fields

If you have an object in the Workbench tab, you can expand it to reveal its
fields. In Figure 9-9, fiction_2 is expanded to show its fields (author, title,

9-10

Workbench (1.8.7) 9/2/2009

pages, value, and mainCharacter). Since the field mainCharacter is itself an
object of the class String, any of the String methods can be invoked on it. For
example, right-click on mainCharacter in fiction_2, then select Invoke Method.
When the dialog pops up (Figure 9-11), you’ll see a rather lengthy list of all the
methods visible to String objects. Scroll down the list and select the first
toUpperCase() method, and then click Invoke. This should pop up the Result
dialog with “HARRY™ as the return value (Figure 9-12). This method call has
no effect on the value of the field for which it was called; it simply returns the
string value converted to uppercase.

[Invoke Method on fiction_2.mainCharacter

|£| fiction_2.mainCharacter

Type ‘java.lang.string [Current]

N
Accessibility Context |Public M
N

Show: |Default

[Jjava.lang.Object [Inaccessible Sort By [Natural Order H

@ toLowerCase(): public String toLowerCase(Locale) : java
[toLowerCase(): public $tring toLowerCase() : java.lang.$
@ toUpperCase(): public String toUpperCase(Locale) : java.
[toupperCase(): public String toUpperCase() : java.lang.St
i trim(): public String trim() : java.lang.String.trim()

[toString(): public String toString() : java.lang.String.toStri
[toCharArray(): public charf] toCharArray() : java.lang.Stri
- s ettt etk . A
|1 i] >
toUpperCase() declared in java.lang.String

D

|4

Returns: java.lang.String

LIDon't Show Result Dialog

Figure 9-11. Invoking a String method

[Viewer (by value): result of fiction_2.mainCharacte... E|

E Name value_1

=
Type ‘java.lang.string [--- H Viewer

HARRY

Figure 9-12. Result of invoking
fiction_2.mainCharacter.toUpperCase()

9-11

Workbench (1.8.7) 9/2/2009
9.7 Selecting Categories of Methods to Invoke

The Invoke Method dialog provides a list of categories of methods on a drop-
down list. The “default” category list includes methods defined in the object’s
class as well as those inherited from superclasses other than the Object class.
This category was selected as the default so that all user defined methods could
be conveniently viewed. In this section, we’ll explore the various categories of
methods.

Let’s create an instance of Novel by right-clicking on Novel in the UML
window and then selecting Create New Instance. On the Create dialog, choose
the parameterless constructor and click Create. Now you should see novel_1 on
the workbench. Right-clicking on novel 1 and then selecting the Invoke
Method will open the Invoke Method dialog as shown in Figure 9-13. Notice
that the first two methods are inherited (gold method symbols) and the third is
defined in Novel (green method symbol). Now look back at the Invoke Method
dialog for fiction_2 in Figure 9-10. The same methods are listed, but all are
marked with green method symbols since those are defined in the Fiction class.
One should surmise from this that both Fiction and Novel must have their own
toString method.

Click pull-down list to select a
category of methods.

[Invoke Method on novel_1

IE novel_1

Type ‘Novel [Current] /

Accessibility Context Public /

/
’ ‘

Show: |Defaut

[java.lang.Object [¥Inaccessible SortBy [Natural Order H

& setmainCharacter(): public void setMainCharacter(String th
= getMainCharacter(): public String getMainCharacter() : Fict
[compareTo(): public int compareTo(Object obj) : Fiction.co
[toString(): public String toString() : Novel.toString()

4 11 [»

Close

Figure 9-13. Invoking a method for novel_1
9-12

Workbench (1.8.7) 9/2/2009

Now let’s look at another category of method on the Invoke Method dialog for
novel_1. Click the drop-down list on the dialog (see info box for Figure 9-13)
and select “Declared in Fiction”. Notice that the toString method in Figure 9-14
has a gray bar through its gold method symbol to indicate that it has been
overridden by the toString() method defined for Novel. This means that if you
select and invoke the toString method listed in Figure 9-14, the toString defined
in Novel will be the one that gets called. Remember, it is the object itself that
determines which method is called. In your Java program, if you wanted to call
an overridden method for an object, you would need to call the method non-
virtually. jGRASP provides a short cut for doing this on the workbench with the
“Invoke Non-virtual” check box on the dialog. In the example in Figure 9-14, if
you invoke the toString method without checking the box for Invoke Non-
virtual, Novel’s toString method is called, and you get the result shown in
Figure 9-15. However, if you invoke the method with the box checked,
Fiction’s toString method is called, and you get the result in Figure 9-16. Notice
that the only difference is that Novel’s toString method includes one more line
of text (“Number of sequels: 0”") than Fiction’s toString method.

@ Invoke Method on novel_1 E|

IE novel_1

Type ‘Novel [Current]

-

B
Accessibility Context |Public H
-]

Show: ‘Declared in Fiction

[Cjava.lang.Object ¥ Inaccessible SortBy Natural Order H

[setMainCharacter(): public void setMainCharacter(String th
=] getMainCharacter(): public $tring getMainCharacter{) : Fict
=itoString(): public S$tring toString() : Fiction.toString()
=] compareTo(): public int compareTo(Object obj) : Fiction.co

ll Il | [»
toString() declared in Fiction

Returns: java.lang.String

[IDon't Show Result Dialog
LInvoke Non-virtual

Figure 9-14 Methods declared in superclass Fiction

9-13

Workbench (1.8.7) 9/2/2009

[Viewer (by value): result of novel_1.toString() [X\
|£| Name value_3

=
Type |java.lang.3tring [..- |v| Viewer

\Author: no title
Title: none
Pages: 0
alue: 0.0
\Main Character: none
Number of sequels: 0

Figure 9-15. Viewing superclasses for novel_1

[Viewer (by value): result of novel_1.toString() [non... [Z\
@ Name value_4

=
Type |java.lang.String [..- |v| Viewer

\Author: no title
Title: none
Pages: 0
alue: 0.0
Main Character: none

Figure 9-16. Viewing superclasses for novel 1

Two other check boxes (“java.lang.Object” and “Inaccessible Methods”) are
located below Show and above the method list. The first includes the methods
inherited from the Object class along with the other methods in the selected

category. The second can be used to display inaccessible methods such as
inherited private methods.

To wrap up this section, you are invited to select among the other categories of
methods that can be displayed on the Invoke Method dialog for novel 1:
Default, All, Visible, Declared in java.lang.Object, Delcared in Book,
Declared in Fiction, Declared in Novel, Declared in java.lang.Comparable.

9-14

Workbench (1.8.7) 9/2/2009

Notice that novel_1 inherits a large number of methods from java.lang.Object.
The most inclusive category is “All” which includes all available methods.
Perhaps now you see why the default category does not show all methods.

9.8 Opening Object Viewers

A separate Viewer window can be opened for any object (or field of an object)
on the workbench. All objects have a basic view which is similar to the view
shown in the workbench and debug tabs. However, some objects will have
additional views.

The easiest way to open a viewer is to left-click on an object and drag it from
the workbench to the location where you want the viewer to open. This will
open a “view by name” viewer. You can also open a viewer by right-clicking on
the object and selecting either View by Value or View by Name.

Figure 9-17 shows an object viewer for the title field of fiction_2 which is a
String object in an instance of Novel. Formatted is the default “view” for a
String object which is especially useful when viewing a String object with a
large value (e.g., a page of text). In Figure 9-18, the Basic view has been
selected and expanded to show the gory details of the String object. Notice that
the first field is value which is a character array (char[40]) holding the actual
value of the string. If we open a separate viewer on value, we have a nice
Presentation view of the character array. This is the same view you get when a
Presentation view for String title is opened as shown in Figure 9-19. In the
Viewers for Data Structures tutorial, additional Presentation views will be
discussed. You are encouraged to open separate viewers for the objects on the
workbench. In addition to providing multiple views of the object, each viewer

includes an Invoke Method button I for the object being viewed.

[Viewer (by name): ((Book)fiction_2).title
IE‘ ((Book)fiction_2).title

Type |java lang.String [... | | Vlewerw .

Harry Potter and the Philosopher's Stone

Figure 9-17. Viewing a String Object

9-15

Workbench (1.8.7) 9/2/2009

[Viewer (by name): ((Book)fiction_2).title
[¥] ((Bookfiction_2)title

X
=
Type javalang string [... || viewerBasic |-

Accessibility Context \Public H

o] --> "Harry Potter"... (obj 365 : java.lang.String) java.lang.S
o [value --> (obj 436 : char[40]) private final char]] : java.la
fmmoffset=0 : private final int : java.lang. String.offset
*count =40 : private final int : java.lang.String.count
Bmmhash =0 : private int : java.lang.String.hash
i serialVersionUID = -6849794470754667710 : private
&= serialPersistentFields —> (obj 431 : java.io.ObjectStrea

= [l CASE_INSENSITIVE_ORDER --> (obj 432 : java.lang
[l i | D

Figure 9-18. Basic view of a string (expanded to
see fields)

[Viewer (by name): ((Book)fiction_2).title

[E| ((Book)fiction_2).title =

Type java.lang.String [Current] |~ Viewer Presentation E

M width = 4.0 [scale - 0 1.0, Elements: 40
[Flalr[rlv] [Plolt[t]e]r]

=] .-
0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 il

Figure 9-19. Presentation view of fiction_2.title

9-16

Workbench (1.8.7) 9/2/2009
9.9 Running the Debugger on Invoked Methods

When objects are on the workbench, the workbench is actually running the Java
Virtual Machine (JVM) in debug mode. Thus, if you have a class open in a
CSD window and set a breakpoint in one of its methods and then invoke the
method from the workbench, the CSD window will pop to the top when the
breakpoint is reached. At this time, you can single step through the program,
examine fields, resume, etc. in the usual way. See the tutorial on “The
Integrated Debugger” for more details.

9.10 Exiting the Workbench

The workbench is running whenever you have objects on it. If you attempt to
do an operation that conflicts with workbench (e.g., recompile a class, switch
projects, etc., JGRASP will prompt you with a message indicating that the
workbench process is active and ask you if it is OK to end the process (Figure
9-20). When you try to exit JGRASP, you will get a similar message (Figure 9-
21). These prompts are to let you know that the operation you are about to
perform will clear the workbench. You can also clear or exit the workbench by
right-clicking in the Workbench tab pane and selecting Clear/Exit Workbench.

[jGRASP: End Workbench?
[2] wWorkbenchis active.

OK to end Workbench and continue with Run?

| End Workbench | | Cancel |

Figure 9-20. Making sure it is okay to exit
the Workbench

[jGRASP: Exit jGRASP?
E Workbench is active. Exit JGRASP anyway?

Figure 9-21. Making sure it is okay to
exit

9-17

Workbench (1.8.7) 9/2/2009

Notes

9-18

Viewers (1.8.7) 9/2/2009

10 Viewers for Data Structures

Viewers for objects and primitives are briefly introduced in Getting Started with
Objects, The Workbench, and The Integrated Debugger. In this tutorial, we
introduce a family of “Presentation” views for data structures. A presentation
view is a conceptual view similar to what one might find in a textbook but with
the added benefit of being dynamically updated as the user steps through the
program.

Objectives — When you have completed this tutorial, you should be able to open
a viewer for any data structure object displayed in the Debug or Workbench
tabs, set the view options in the viewer window, and select among the views
provided by the viewer.

The details of these objectives are captured in the hyperlinked topics listed
below.

10.1 Introduction
10.2 Opening Viewers
10.3 Setting the View Options
10.4 Selecting Among Views
10.5 Presentation Views for LinkedList, HashMap, and TreeMap
10.6 Presentation Views for Code Understanding
10.6.1 LinkedListExample.java
10.6.2 BinaryTreeExample.java
10.6.3 Configuring Views generated by the Structure Identifier
10.7 Using the Viewers from the Workbench
10.8 Summary of Views
10.9 Exercises

10-1

Viewers (1.8.7) 9/2/2009
10.1 Introduction

JGRASP viewers are tightly integrated with the workbench and debugger. They
can be opened for any primitive, object, or field of an object in the Debug or
Workbench tabs. To use viewers with the debugger, (1) set a breakpoint in your
program, (2) run Debug (@), (3) after a local variable has been created, drag it
from the Debug tab, (4) step through program and observe the object in the
viewer. To use viewers with the workbench, (1) create an instance from the
UML window, the CSD window (), or Interactions tab, (2) drag the instance
from the Workbench tab, (3) invoke methods on the instance and observe the
object in the viewer.

Note that once an instance is in the workbench tab or debug tab, its methods can
be invoked via the Invoke Method dialog or by entering Java statements and/or
expressions in the Interaction tab. When methods are invoked on the instance,
any open viewers on it are updated as appropriate.

JGRASP includes a general view for data structures called Presentation —
Structure Identifier (SI) which automatically detects linked lists, binary trees,
and array wrappers (lists, stacks, queues, etc.) when a viewer is opened on one
of these during debugging or workbench use. For linked structures, this is an
animated view that shows nodes being added and deleted from the data
structure. This view is also configurable with respect to the structure mappings
and the fields to display. jJGRASP also includes custom Presentation views for
many of the classes in the Java Collections Framework (e.g., ArrayList, Stack,
LinkedList, TreeMap, and HashMap). These non-animated views are optimized
for large numbers of elements.

10.2 Opening Viewers

Let’s begin by opening one of the example programs that comes with the
JGRASP installation. After you have started jGRASP, use the Browse tab to
navigate to the JGRASP\examples\Tutorials folder. If you have been working
with the examples in the “Hello” or “PersonalLibrary” folders, you’ll need to go
up one level in the Browse tab by clicking the up arrow. [Note that you should
copy this folder to a personal directory. This will need to be done using a file
browser rather than jJGRASP.] In the Tutorials folder you should find a folder
called ViewerExamples. Open this folder by double-clicking on the folder
name, and you should see a file called ArrayListExamplel.java. Open this file
by double-clicking the file name (Figure 10-1).

10-2

Viewers (1.8.7) 9/2/2009

@ File: ArrayListExamplei.java C:\Program Files\jGRASP\examples\Tutorials\View... Q@@
File Edit View Build Project Settings Tools Window Help X
 EEEENEEBERIMNEEEEEY =
BB A ») E
| Threads E public statie woid main(String[] args) |
Call Stack | - ;ii;n;ﬁt;trm%ist _ {vcatn, ndogh,
I —— list = new ArrayList(); B
= ol 3 | for (int i = 0; i < stringList.length;
T 1ist. add (stringList [l]) : =]
H }
Variables — list.remove(3):
I static : Arra — list.add(3 , "rat");
¢+ [_]Arguments ||| L}
Moos (0 5
+ []Locals A ! ' D
+ [stringList -|||. |ArrayListExampIe1.java‘ ‘
= [l list > (obj|| ==
[compile Messages | [GRASP Messages | Run /O | Interactions |
I T S End | -—--JGRAESP: connected to debugger.
fi » |
Browse | Clear |

Debug | Find | I m | .

Workbench]
[[]JE™ status: debugging user program Line:1 Col:4 Code:105 Top:13 |ovs]

Figure 10-1. ArrayListExamplel.java

A quick review of the program shows that it creates an ArrayList called list and
adds strings to it from an array called stringList. Compile the program by
clicking the green plus 4F. Since the viewers are for visualizing objects and
primitives as the program executes, let’s set a breakpoint on the first line of the
for statement. To do this, move the mouse over the left margin next to the
statement until you see the breakpoint symbol @ and then left-click. You
should see the @ in the margin if you have successfully set the breakpoint. Now
start the debugger by clicking @ on the toolbar. Figure 10-1 shows the program
stopped at the for statement. At this point in the program, the list object has
been created, and it is shown in the Debug Variables tab. However, no elements
have been added to list.

A separate Viewer window can be opened for any object (or field of an object)
in the debug tab (or on the workbench). The easiest way to open a viewer is to
left-click on an object and drag it from the debug tab (or workbench) to the
location where you want the viewer to open. When you start to drag the object,
a viewer symbol should appear to indicate a viewer is being opened. [Note: You
can also open a viewer by right-clicking on the list object and selecting either

10-3

Viewers (1.8.7) 9/2/2009

View by Name or View Value.] Let’s left click on list and drag it from the
Debug tab. When you release the left mouse button, the viewer should open.

Figure 10-2 shows a viewer opened on list before any elements have been
added. Note that the default View for an instance of ArrayList is Presentation —
Structure Identifier. This view shows the fields for size and modCount along
with the underlying array with its default size of 10.

To add elements to list, step through the program by clicking the “Step” button
& on the Debug tab. Since the viewer is updated on each step, you should see
the elements being added to the list. Red text indicates a change or, in this case,
a new element. Figure 10-3 shows the view of list after going through the loop
three times. As you continue to step through the program, notice that when
elements are removed, the value stays in the array but the size is decremented.

[Viewer (by name): list E|

[¥] st =

Type java.util List (java.utilLArray... || Viewer Presentation - Structu...|~|
|I| @ O|g” |Width =()——— 4.0 Scale ————— 1.0

size II' modCount II'

Figure 10-2. View of list with no elements

Each jJGRASP Presentation viewer provides one or more subviews. When an
element is selected as indicated by a red border, a view of the element itself is
shown in the subview. Figure 10-3 shows “ant” selected in the ArrayList view.
Since “ant” is a String, the subview is a String viewer for which the formatted
view is the default.

10-4

Viewers (1.8.7) 9/2/2009

@ Viewer (by name): list X
[E] st =

Type |java.utiI.List (java.util.Array... |v| Viewer|Presentation - Structu... |v|
[B0 & Width =——————— 4.0 Scale ————L_——— 1.0

size IZ' modCount IZ'

4 5 6 7 8 9
Type |java.lang.string [Current] |v| Viewer|Basic H
Accessibility Context |ArrayListExample1 [Current] |v|

=] > "ant" (obj 372 : java.lang.String) java.lang.String

Figure 10-3. View of list with 3 elements

10.3 Setting the View Options

For most Presentation views in jGRASP, several view options are available
which provide personal choices to users.

Horizontal vs. Vertical — sets the orientation of the display.

Non-Embedded/Embedded — shows the elements outside or inside the
structure.

Normal vs. Simple — shows node pointer from inside or from edge of
structure.

Configure View — opens dialog to configure the structure-to-view
mapping as well as which fields to display in the viewer (discussed in
Section 9.5).

Width of Elements (slider) — sets the width of the boxes containing the
elements.

Scale of View (slider) — scales the entire view.

Figure 10-4 indicates the location of the buttons and sliders for each view
option. Click on each of these and notice the change in the view. The ArrayList
is shown vertically after the display orientation is changed. The location of the
View drop down list and the Information button is also indicated below.

10-5

Viewers (1.8.7) 9/2/2009

Horizontal
vs. Vertical.

Non-Embedded
vs. Embedded

Normal
vs. Simple

[Viewer (by name): list

/E/
pe java.utilList(java.... | ~| Viewer Presentation.” -
A0 =P Width — 10 |Scale —0-<< 1.0

modCount | 5 |

)

monkey

flea

2
3
4
5

4]

-

Type javalang.string [.. -] Viewer Basic

[

Accessibility Context |ArrayListExample1 [Current] |~

= [l --> "monkey" (obj 375 : java.lang.String) java.lang.String

4] 1 D

x [

To Change
Views

\

Info about
the View

Scale
(.0251t0 4.0)

Width of
Elements
(1 to 25 char)

.
I
S\

Configure
Viewer

Figure 10-4. View of list in vertical mode, width

set to 8, Scale set to 1.2, monkey selected and
shown in subview

10-6

Viewers (1.8.7) 9/2/2009
10.4 Selecting Among Views

Each viewer and subviewer provides one or more views among which you may
select from the respective View drop down lists. Let’s take a closer look at our
ArrayList of Strings example. The Presentation — Structure Identifier view is
the default for ArrayList and the other classes in the Java Collections
Framework. Other views include Basic, toString(), Presentation, and Collection
Elements.

Figure 10-5 shows the view options for ArrayList on the drop-down list (combo
box) with Presentation — Structure ldentifier view selected. When monkey is
selected in the ArrayList, a String subview is opened. When this view is set to
Presentation view, the character array for monkey is displayed. Selecting the
first element in the array opens a subview for character m in monkey which is
set to the default Basic view.

Select view from drop-down list.

[Viewer (by name): list

[F st =
Type java.util List (java.util Arrayush\ .|+ Viewer Pigsentation - Structure Id... ~|
ME o)+ width - ! \ 10 SBas\N\
toStri
size El modCount Presentation - Structure Identifier
Monitor
Presentatiyn
| cat | | dog | | ant Mor . lection
i 1 i
l i] .] i 1\ 0
0 1 2 \ 3 5
= L _ N[N
Type |java Iang Strmg [Current] | ‘ Vlewer}eresematlon \ M
[width =0————————— 4.0 Scale " ¥ £ 1.0/ Elements: 6
\
Lmfofnfx]e\v]
0 1 2 3 4
Type [char [Current] |~ Viewer |Basic | \.
Accessibility Context ArrayListExample1 [Current] ‘ ‘
A ='m':109 : char

Figure 10-5. Selecting the Collection Elements
10-7

Viewers (1.8.7) 9/2/2009

Figure 10-6 shows the viewer after the Collection Elements view is selected. If
list has many elements, this may be a more appropriate view than the
Presentation view. The Collection Elements view was specifically designed to
handle larger numbers of elements efficiently. As the number of elements
increases, additional navigational controls appear on the viewer for moving
about in the ArrayList. Notice that two subviews are also shown in Figure 10-6.
When element 0 (indicated by “<0> = cat”) is selected in the Collection
Elements view, a subview for String opens below the main view. Notice that he
view for String has been set to Presentation in the figure; the default for String
is Formatted. When the ‘c’ in “cat” is selected, a second subview is opened for
the primitive type char, for which Basic is the default view. However, in the
figure, the view has been set to Detail, which displays additional information
about ‘¢’ including its value in hexadecimal, octal, and binary.

[Viewer (by name): list [‘S]
[F] st B
Type java.util.List (java.utilArrayList) ...|~ Viewer|Collection Elements -
H [»4 Elements: 5
<0> = cat =
<i{>= dog
<2> = ant
<3> = monkey
<4> =flea
Type |java.|ang.string [Current] H Viewer|Presentation M
[width = 4.0 Scale" 0 1.0/ Elements: 3
0 1 2
Typechar [Current] |~ Viewer Detail -

Character: c

Source format: 'c'

Decimal: 89

Hex: 0x63

Octal: 0143

Binary: 0000 0000 0110 0011

Figure 10-6. The Collection Elements view of list with two subviews:
Presentation view for String “cat” and Detail view for char ‘¢’

10-8

Viewers (1.8.7) 9/2/2009
10.5 Presentation Views for LinkedList, HashMap, and TreeMap

The ViewerExamples folder contains a program, CollectionsExample.java,
which creates instances of classes from the Java Collections Framework,
including Vector, ArrayList, LinkedList, Stack, TreeMap, and HashMap. In this
section, we’ll take a look at Presentation views for several of these.

In the Browse tab, locate CollectionsExample.java, and double-click on it to
open it in the CSD window. Compile the program by clicking the green plus o,
Set a breakpoint on any executable statement in the program. Now start the
debugger by clicking . Figure 10-7 shows the program stopped at a
breakpoint on the line in the inner loop that adds an element to myVector.
Notice that prior to the breakpoint, the variables myVector, myArrayList,
myLinkedList, myStack, myHashMap, and myTreeMap were declared and their
respective instances were created. With the program stopped at the breakpoint,
we can open viewers for each of the variables listed in the Debug tab.

0) 1|

[File: CollectionsExample.java C:\Program Files\jGRASP\examples\Tutorials\Vie... E\@@
File Edit View Build Project Settings Tools Window Help _ @
 ElEEEN=E RN Y T =
= 1 "
A |d I m[>| »p = int[] myint = new int[10]; m
| Threads = List myVector = new Vector();
Call Stack - L}st myAl‘“rayLlét = new Ar]l:ayLls“c()

1] CollectionsExam ‘. —= Lizt myLinkedList = new LinkedList
[‘|] \Eﬁ‘ —= Stack myStack = new Stack():;

2= —= Map myHashMap = new HashMap (7, 1.:%
Variables | Eval = Map myHashtable = new Hashtable(7

— {

- [l integerList --> (= myHashMap.put (null, new Integer

o [stringList --> (g Map myTreeMap = new TreeMap();

+ |l compList —> (q_| ite (b - L

« [l myint --> (obj 3 —{while (true) ‘ . |

b.myVector__>(. F—{ for (int 1 = 0O; i <.1nt(‘eger]l_,3_5t.7
. — myVector.add(stringList[i]):

- [l myArrayList —>
-] myLinkedList -

— myArraylList.add(stringList[i
— myLinkedList.add(stringList|
- Il myStack > (0 H— myStack.push(stringList[i]};
T . myHashMap -- — myHashMap.put (stringlList[i],
T . myHashtable = — myHashtakle.put (stringList[i
— myTreeMap.put (stringlist[i], ||

il i] o]

‘ ArrayListExampIe1.java | CDIIectionsExampIe.java‘ ‘

Find | Workbench
[[JE™ status: debugging user program Line:53 Col:25 Code:108 Top:36 |ovs|

Figure 10-7. CollectionsExample.java stopped at a breakpoint

10-9

Viewers (1.8.7) 9/2/2009

Figure 10-8 shows a viewer set to Presentation - Structure ldentifier view
opened on myLinkedList after three elements have been added to it. Notice that
myLinkedList is a doubly-linked list with a header node. Width has been set to
8.0, and the element mouse is selected in the main view and shown in the
subview in Presentation view for the String Class. In this view, the m in mouse
is selected, and the character subview is shown set to the Basic view.

[Viewer (by name): myLinkedList &\
[E| myLinkedList |
Type ‘java.utiI.List (java.util.LinkedList) [... H Viewer‘Presentation - Structure Identi...‘v|
M= 0= | Wwidth LA 8.0 |Scale - L 1.0
Animation Time v 1.0sec.
| cat | | dog | I mouse I
| - 0 1 2 |
Type|java.lang.string [Current] H Viewer‘Presentation H
M width = 4.0 |Scale £ 1.0/ Elements: 5
I m I o | u | s | e |
0 1 2 3 4
Type|char [Current] H Viewer‘Basic M
Accessibility Context [CollectionsExample [Current] -
B ='m':109 : char

Figure 10-8. View of myLinkedList after three elements have been added

10-10

Viewers (1.8.7) 9/2/2009

Figure 10-9 shows a viewer set to Presentation - Structure ldentifier view
opened on the variable myHashMap after three elements have been added. A
hashmap entry is selected, as indicated by the red border, and its Basic view is
shown in the subview with fields: key, value, hash, and next. As elements are
added to the HashMap, it is useful to use the Scale slider to zoom in and out on
the structure so that the “topology” of its elements can be seen.

[Viewer (by name): myHashMap E‘
@ myHashMap

=
Type ‘java.utiI.Map (java....|v‘ Viewer

HO &= | width =——— 11 Scale —}— 1.0

—

Animation Time ° 1.0sec.

of | L2 |

aw =

Type|1avau“ma5hmap H V,ewer

Accessibility Context ‘CollectionsExample [Current] M

+ [l (obj 1058 : java.util. HashMap$Entry) java.util. HashMs
-~ @ key --> "cat" (obj 395 : java.lang.String) final K:* (eras

o @@ value > 1 (obj 408 : java.lang.Integer) V:* (erasure is
& next = null : java.util. HashMap$Entry<K:* V:*> : java.l

== hash = 92866 : final int : java.util.HashMap$Entry.has

<] I I D

Figure 10-9. View of myHashMap after three
elements have been added

10-11

Viewers (1.8.7) 9/2/2009

Figure 10-10 shows a viewer opened on myTreeMap after seven elements have
been added. TreeMap uses a Red-Black tree as its underlying storage structure,
and the default Presentation — Structure Identifier view indicates the red and
black nodes by coloring their borders light red and dark gray respectively. As
you step through the program and put items in the TreeMap, you should see the
red-black node rotations.

In the figure, width has been set to 11.0, and in the red node containing “ant”,
the key field “ant” has been selected as indicated by an additional dark red
border. The String subview for ant is set to Presentation.

[Viewer (by name): myTreeMap @
(%] myTreeMap =
Type|java.util.Map (java.util.Tree... |~| Viewer |Presentation - Structu... |~/
HEm= § # width=——0—— 11| |Scale =———L—— 1.0
Animation Time . 1.0sec.

root

Type java.lang.String [Current] |~ Viewer|Presentation -
[0 width =———— 4.0 Scale =L —— 1.0 Elements: 3

0 1 2

aw

Figure 10-10. Presentation - Structure Identifier View of
myTreeMap with six elements

10-12

Viewers (1.8.7) 9/2/2009

Figure 10-11 shows a second viewer opened on myTreeMap with the view set to
Key/Value. The node for dog has been selected and two subviews have been
opened: one for the key and one for the value. In the figure below, the node with
key = “dog” and value = 2 has been selected.

In the left subview for String key, the view is set to Presentation as it was in the
previous figure. In the right subview, we have the Basic view of value which is
an object; specifically, it is an instance of java.lang.Integer, the wrapper class for
the Java primitive int.

[Viewer (by name): myTreeMap E‘
E myTreeMap =
Type‘java.util.Map (java.util. TreeMap) [C... H Viewer‘KeyNalue H
H [»4] Elements: 7
0=ant:7 E
1=cat:1
[2_=dog: 2
3_=flea: 8
4_=gnu:10 =
5_=monkey: 4

s

Type]avala . _ V,ewer . : Type‘lava |ang|meger‘-|v,ewer

[0 widthT- 4.0 'Scale <7 1.0 El Accessibility Context |CollectionsExample [Curre... |+

||l -> 2 (obj 408 : java.lang.Integer) java.lang.Integer

0 1 2

aw

Figure 10-11. Key/Value view of myTreeMap with seven elements

10-13

Viewers (1.8.7) 9/2/2009
10.6 Presentation Views for Code Understanding

Now we turn our attention to the details of the Presentation - Structure Identifier
viewer when it is used in conjunction with user classes for data structures
including most textbook examples. When this viewer is opened on an object, it
automatically attempts to determine if the object represents a common data
structure; if so, it verifies relevant links, displays nodes referenced by local
variables, and provides animation for the insertion and deletion of nodes. The
structure mappings that are determined by the viewer and the fields that are
displayed in the view can be configured by the user while the viewer is open on
the object.

Custom Presentation views (as opposed to the more general Presentation -
Structure Identifier view) are available for many of the Java Collections
Framework classes. Each of these views is generated by a non-verifying viewer
implemented specifically for the respective class. Because these viewers
assume that the JDK Java code for each data structure is correct, no verification
is done. As a result, these viewers can efficiently display data structures with
large numbers of elements. In contrast, the Presentation — Structure Identifier
view is less efficient but provides link verification and animation. It is
extremely useful when viewing a data structure with a relatively small number
of elements (e.g., less than 100) while attempting to understand the source code
itself. For example, when stepping through the insert method, this view shows
links being set for a local node instance and then shows the node sliding up into
the data structure. Seeing a link set as a result of a particular assignment
statement helps the user make a mental connection between the source code and
the actual behavior of the program during execution.

When a viewer is opened on an object, the Structure Identifier attempts to
determine if the underlying structure of the object is a linked list, binary tree, or
array wrapper (lists, stacks, queues, etc.). The object’s fields and methods are
examined for references to nodes that themselves reference the same type of
node. If a positive identification is made, the data structure is displayed;
otherwise, the user is given the opportunity to configure the view. The
Presentation — Structure ldentifier view works for all of the Collections
Framework Classes used in the examples above, and it should work for most
user classes that represent data structures. During the generation of the
visualization, relevant links are verified and then displayed in a specific color to
denote the following: black — part of structure; — local reference or not
part of the formal data structure; red — in transition or probably incorrect for
specified structure. The most distinguishing aspect of this presentation view is
the animation of node insertions and deletions. The control buttons and sliders

10-14

Viewers (1.8.7) 9/2/2009

on the viewer are similar to ones discussed above with the addition of a slider to
set the animation time.

Now let’s look at several example programs that use non-JDK data structures
similar to what you might find in a textbook. In the Tutorials\ViewerExamples
directory, we have LinkedListExample.java, DoublyLinkedListExample.java,
and BinaryTreeExample. The actual data structure classes used by these
examples are in the folder jgraspvex, which is a Java package containing
LinkedList.java, DoublyLinkedList.java, BinaryTree.java, LinkedNode.java,
and BinaryTreeNode.java.

10.6.1 LinkedListExample.java

In the Browse tab, navigate to the ViewerExamples directory and open the file
LinkedListExample.java by double-clicking on it. Generate the CSD, and then
compile the program by clicking 9 on the toolbar. Set a breakpoint @ in the
left margin on a line inside the inner loop (e.g., on the line where list is declared
and a new LinkedList object is created). Now click the Debug button @ on the
toolbar. Figure 10-11 shows the program after it has stopped at the breakpoint
prior to creating an instance of LinkedList called list. Click Step ¥ on the
controls at the top of the Debug tab. When list is created, you should see it in
the Variables tab of the Debug window.

[File: LinkedListExample.java C:\Program Files\jGRASP\examples\Tutorials\View... EJ@]@\
File Edit View Build Project Settings Tools Window Help
aHwa BED T hay ¢ @e oS

::: q
(3 |IE m[>| ») apublic class LinkedListExample { m
| Threads

Epublic static wveoid main(String[] arc| |

—{while (true) {

“Call Stack
| 1] LmkedL:stExamplL‘

« []

; = LinkedList list = new LinkedLis
Variables | Eval & for (int 1 = 0; 1 < 3; i++) { |
[l static : LinkedList W» list.add(String.valueQf (i) ;
[_] Arguments }
Il args > (obj 352 — list.addinull);
[JLocals

for (int i = 3; 1 >= 0; i--) {
I list.insert("=" + 1, 1i); L

4 i | [»

‘ LlnkedLlstExampIe java| ‘

Find | Workbench
[LJEM™ status: debugglng user program Llne 22 Col 23 Code 115 Top 10 \ |

Figure 10-11. LinkedListExample.java stopped at a breakpoint

10-15

Viewers (1.8.7) 9/2/2009

Now open a viewer on list by selecting and dragging list from the Debug
window. Figure 10-12 shows a view of list before any elements have been
added. Add two elements to the linked list by stepping (¥) through the inner
loop twice. Figure 10-13 shows a view of list after two elements have been
added. Note that the viewer is set to Presentation — Structure ldentifier view,
which is the default. Basic and Monitor views are also available. The latter
view displays any Java owning or waiting threads for the monitor associated
with the object. This is used for multi-threading and synchronization. After
experimenting with the other views, change the View to Presentation - Structure
Identifier by selecting this on the drop down list as shown in Figure 10-13.

@ Viewer (by name): list X
[F list [
Type‘jgraspvex.Linked... H Viewer H
[O =& Width <) 4.0 |Scale ——— 1.0
Animation Time L 1.0sec.
see[T]
head
Figure 10-12. View of list with no
elementsadded
@ Viewer (by name): list X
[F] list =

Type jgraspvex.Linked... |~ Viewer|Presentation... -
MG O = 4 wWidth L ——— 4Basic
Animation Time :O:Presentation - Structure

Monitor Info
size El
EAg KN

head e []n]

HETH|

Figure 10-13. View of list with two elements

10-16

Viewers (1.8.7) 9/2/2009

Now you are ready to see the animation of a local node being added to the
linked list. You need to step into the add() method by clicking the Step in
button % at the top of the debug tab. Each time you click %, the program will
either step into the method indicated or step to the next statement if there is no
method call in the statement. Figure 10-14 shows list after node.next for the
new node has been set to head. Figure 10-15a shows list after head has been set
to node, and the new node begins to move into list. Figure 10-15b shows list
after the new node has been inserted. As you repeatedly step in, you should see
added and inserted nodes “slide” up into list and removed nodes slide out of list.
Note that the Call Stack in the Debug tab indicates the methods into which you
have stepped.

[Viewer (by name): list E|
[F list =
Type‘jgraspvex.Linked... H Viewer

B 0= width &——— 4.0 |Scale =—>— 1.0
Animation Time ° L}

1.0sec.

see[2]

head DE g 110

Local Variable Node References

Status: Out of scope.
Previous value is shown.

[T

Figure 10-14. Node about to be added to list

10-17

Viewers (1.8.7) 9/2/2009
[Viewer (by name): list E|
[F] list =
Type‘jgraspvex.Linked... H Viewer

[@ O ==& Width &> ——— 4.0 Scale —— 1.0
Animation Time L 3.0sec.

a

we[T]

head \ (4] = [4]n]

Variable Node References

node

HEIN

Status: Out of scope.
Previous value is shown.

Figure 10-15a. As node is it is being added to list

[Viewer (by name): list E|
[F st =
Type‘jgraspvex.Linked... H Viewer

[[E 0= # width &——— 4.0 |Scale =—=— 1.0
Animation Time L 1.0sec.

wee[2]

ocal Variable Node References

node

Status: Out of scope.
Previous value is shown.

N

Figure 10-15b. After node has been added to list

10-18

Viewers (1.8.7) 9/2/2009
10.6.2 BinaryTreeExample.java

Now let’s take a look at an example of another common data structure, the
binary tree. In the Browse tab, navigate to the ViewerExamples directory and
open the file BinaryTreeExample.java by double-clicking on it. After compiling
it, set a breakpoint @ in the left margin on a line inside the inner loop (e.g., on
the line where bt.add(..) is called). Now click the Debug button @ on the
toolbar. Figure 10-16 shows the program after it has stopped at the breakpoint
prior to adding any nodes to bt. Now open a viewer on bt by selecting and
dragging it from the Debug window. The Structure Identifier automatically
determines that the object is a binary tree and provides an appropriate view for
bt. Add two elements to bt by stepping () through the inner loop twice.

File Edit View Build Project Settings Tools Window Help
ECEEEERRNEBEEEREY L=
13 % |9 1E » ¥|Run Arguments:| |

L,Thﬂ = int[] i1a = new int[] { 3, &, 0, -1, —j_‘:
Call Stack | . 7, -1, -1, 5, -1, -1, 10 };
[1] BinaryTreeEs | — ia = new int(] { 3, &, 0, -1, -1, 1, 1t
; v, -1, -1, 5, -1, -1, 10 }:
; ——while (true) {
‘__ SR : —= BinaryTree kt = new BinaryTree();
e i for (int 1 - 07 1 < values.longths
= . — bt.add(new Integer (values[i])); !
Variables | ; L
> Ml static : Bin| | 1 for {(int 1 = 0; 1 < sortedvValues.le:
? DArguments —— bt.remove (nhew Integer (sortedvValue| |
Wargs > (| I
[]Locals ; U
«lia > (obj L
= Il bt > (ob) |- L} i
A i=0:in Al il I |’:
|[EcoectionsExample java | [§] Binary TreeExample javal |
;(Complle Messages [/]GRASP Messages rRun lle] rlnteractlons |
[N v : End ----JGRASF exec: java -Xnoagent -Dj: B
; -——-]JGRASF: connected to debugger.

4] Il] [»

Workbench :
[LIE™ status: debugging user program Line:38 Col:8 Code:0 Top:25 [ovs[ELK

Figure 10-16. BinaryTreeExample.java stopped at a breakpoint

10-19

Viewers (1.8.7) 9/2/2009

Now you are ready to see the animation of a local node being added to the
binary tree. You need to step into the add method by clicking the Step in button
% at the top of the debug tab. Each time you click %, the program will either
step into the method indicated or step to the next statement if there is no method
call in the statement. The Call Stack in the Debug tab indicates the methods into
which you have stepped. Figure 10-17 shows bt after root has been passed into
the add() method as branch, and Figure 10-18 shows bt after branch.left has
been set to node. As you repeatedly step in, you should see added and inserted
nodes “slide” up into bt and removed nodes slide out of bt. Note that since bt is
a local variable declared in the main method, when you step in to a method as
we done in this example, bt is no longer in scope. This is indicated by the
message at the bottom of the viewer. Because bt is a reference variable, the
previous value still points to the instance of BinaryTree that we are viewing.

@ Viewer (by name): bt X
[E] bt =
Type ‘jgraspvex.Binary... H Viewer
=] ? = 8| |Width O—— 4.0 |Scale == 1.0

—

Animation Time
s[5

root

1.0sec.

/ Local Variable Node References
branch

node

Status: Out of scope.
Previous value is shown.

Figure 10-17. Binary tree example as node is
about to be added to bt
10-20

Viewers (1.8.7) 9/2/2009

[Viewer (by name): bt E‘

[¥] bt =

Type |jgraspvex.Binary... |v| Viewer
= 2= B |4## Width O—— 4.0 Scale =0~ 1.0

Animation Time {2 1.0sec.
size El

root

/ Local Variable Node References
branch

node

e

Status: Out of scope.
Previous value is shown.

Figure 10-18. Binary tree example after node is
added to bt

This is a good time to do some experimenting on your own with this example.
For example, click the Debug button @ to start the program. Click step (¥)
until bt is created, then open a viewer on it. Now, as you step () through the

code, try to understand exactly what is happening in the program with respect to
the diagram in the viewer.

Now repeat the process above, but this time click step in (%) repeatedly. The
viewer will show the relationship between the data structure and local nodes in

its methods, and the animation should help you understand the code in these
methods.

10-21

Viewers (1.8.7) 9/2/2009
10.6.3 Configuring Views generated by the Structure Identifier

The Structure Identifier uses a set of heuristics in its attempt to determine if the
object for which a view is being opened is a linked list, binary tree, etc. Since
the view it provides is only a best guess, some additional configuration may be
needed in order to attain an appropriate Presentation view. Consider the viewer
in Figure 10-19. Figure 10-20 shows the result of (1) clicking the Configure
button «* (located to the left of the Width slider). Figure 10-21 shows the dialog
after modifying Value Expression by inserting " Value: " + (don’t forget to
enter the plus sign). Figure 10-22 shows the binary tree after clicking OK or
Apply on the Configure dialog. Note that Width has been changed to 8.0 to
accommodate the new node value.

[Viewer (by name): bt X
[¥] bt =
Type ‘jgraspvex.Binary... H Viewer
H 7 = B |# Width U— 4.0 Scale —[= 1.0

—

Animation Time

root

1.0sec.

Figure 10-19. Binary tree example

10-22

Viewers (1.8.7) 9/2/2009

[Presentation View Configuration: bt E|

[structure | Fields Display |

Structure
|wrapper for binary tree, _tree_.root is root node _... ‘v

stucture Type [Bmary Tree - 7

"_tree_" is the tree in these expressions.
"_node_" is the node (where present).
"_value_" is the node value (where present).

Root Node Expression
Leave blank if target class is a node.

|_tree_.root

|
[

Left Node Expression
|_node_.left |v|

Right Node Expression

|_node_.right |v|
Value Expressions (separate with #)
|_n0de_.value |v|_
1 I] \'Il

| OK H Apply H Reset || Cancel H Help ‘

Figure 10-20. Configuration dialog (+*)

[Presentation View Configuration: bt

Structure rFieIds Display |

Structure
|wrapper for binary tree, _tree_.root is root node _... M

|_tree_.root | hd |

Left Node Expression M
|_n0de_.left

L
i

Right Node Expression

|_node_.right |v|
Value Expressions (separate with #)
"value: " +|_node_.value |v|,
4] I] \»I:
| oK | Apply || Reset || cancel = Hep |

Figure 10-21. Configuration dialog with Value
Expression modified

10-23

Viewers (1.8.7) 9/2/2009

[Viewer (by name): bt X
[¥] bt =
Type‘jgraspvex.Binary... H Viewer
= £ = | B |s# Width =— 8.0 |Scale =2~ 1.0

—

Animation Time ° 1.0sec.

root

Figure 10-22. Binary tree example after OK (or
Apply) on Configuration dialog

The Structure tab in the Configuration dialog includes: (1) Structure with a drop
down list for the possible structure mappings identified by the Structure
Identifier, (2) Structure Type with a drop down list containing Binary Tree,
Linked List, Hashtable, and Array Wrapper, and (3) entries describing the
structure itself. Currently, modifications made via the Configuration dialog are
not saved from one jGRASP session to another.

Continuing with the binary tree example, Figure 10-23 shows the Structure Type
for bt after it has been changed from Binary Tree to Linked List. Figure 10-24
shows the data structure after the configuration change has been applied (i.e.,
OK or Apply clicked). Notice that transparent red arrows represent links that
are not correct for a linked list.

The Structure tab is intended primarily for advanced users, and structure
changes are rarely needed to view most common data structures. After
experimenting with these settings, be sure to set the configuration back to its
defaults by clicking the Reset button, then Apply or OK.

10-24

Viewers (1.8.7) 9/2/2009

The Fields Display tab provides some options with respect to which of the
object’s fields should be displayed. This is the most common configuration
operation to perform on the view provided by the Structure Identifier. For some
data structures one (or more) of the fields is treated as a formal part of the
conceptual diagram itself. For example, the binary tree example has two fields,
size and root, and the viewer treats root as part of the diagram, but considers size
to be optional (however, it is included by default). Only the fields that are not
part of the diagram are listed on the Fields Display tab.

[E Presentation View Configuration: bt @

Structure fFieIds Display |

Structure
|wrapper for binary tree, _tree_.root is root node _... M

)

Structure Type |Linked List ‘v B
Linked List 1
"_list_"is theli Binary Tree sions. -
"_node_" is the Y sent).
Hashtable
Head Node ExFArray Wrapper

Leave blank if tatget crass rsanode.
| list_.root

4] 1]]

[4]

| ©OK | Apply | Reset || cancel = Help |

Figure 10-23. Changing structure type of bt
from Binary Tree to Linked List

[@ Viewer (by name): bt X

¥ bt =
Type‘jgraspvex.Binary... H Viewer

ME O =+ width &——— 4.0 |Scale —>— 1.0
Animation Time L}

1.0sec.

sizelIl B
L] [a] [of [2]

oo g @

a

Figure 10-24. bt shown as a linked list with red
translucent links indicating it is not a linked list

10-25

Viewers (1.8.7) 9/2/2009
10.7 Using the Viewers from the Workbench

Thus far, we have concentrated on opening viewers from the Debug tab while a
program is being run in debug mode. In this section, we’ll see how to use
viewers from the Workbench tab. Objects can be created and placed on the
workbench from the CSD window, the UML window, and/or by entering
appropriate source code in the Interactions tab. After an object is placed on the
workbench tab, a viewer can be opened by selecting the object and dragging it
from the Workbench tab.

Let’s begin by opening the project for the BinaryTreeExample we used in the
previous section. In the Browse tab, navigate to the ViewerExamples directory
and open the file BinaryTreeExample_ Project.gpj by double-clicking on it.
After this file is opened, you should see the project listed in the “Open Projects”
section of the Browse tab. If the UML diagram is not displayed, double-click on
the UML diagram symbol (€& <UML>) which should be the first entry under
the project in the Browse tab. Figure 10-25 shows the UML diagram with three
classes: BinaryTreeExample, BinaryTree, and BinaryTreeNode. Notice that the
labels for BinaryTree and and BinaryTreeNode indicate they are contained in
package jgraspvex (see the jgraspvex folder in the current directory).

If you are still running a program in jGRASP (e.g., in debug mode from the
previous section), you should end it before you start the workbench.

[Project: <BinaryTreeExample_Project> File: UML (Java) for Project: BinaryTre... Q@@
File Edit View Build Project Settings Tools Window Help X
=S RETEN T X S

-

urce Fi Sort... |~ B

>

=62t » BinaryTreeExample

orials\ViewerExg ~ {main}

Binary TreeE;= =Y

BinaryTreeE
JE0 T I L)

Il

BinaryTree
jgraspvex

[« [Tl

<y

Opeh P rolects -
? BinaryTreeE ™| .BI:ZWJ;?NME
&, <UML> S0

BinaryTre

[]

| I:' Project Class —— — —» Other (reference, efc.)

40 [
Browse Goto |
_ Debug | I oI oB
WD:‘:(“S:;::’ \‘ Collecti... |[ElBinaryT... | [BinaryT...| [E]BinaryT... B <BinaryT... ”l

HE™ Classes / Interfaces: 3|

Figure 10-25. UML Class Diagram for BinaryTreeExample_Project

10-26

Viewers (1.8.7) 9/2/2009

For more information on creating projects and generating UML class diagrams,
see Getting Started with Objects, Projects, and/or UML Class Diagrams.

Now we are ready to create an instance of BinaryTree. Right-click on the
BinaryTree class in the UML diagram as shown in Figure 10-26, then select the
second entry on the pop-up list, Create New Instance. This brings up the Create
New Instance dialog which lists the available constructors for BinaryTree.
Figure 10-27 indicates that we are about to create an instance called
“jgraspvex_BinaryTree_1” using BinaryTree’s only constructor. When the
Create button is clicked, the new object is placed on the workbench and listed in
the Workbench tab as shown in Figure 10-28. Now let’s open a viewer, as
we’ve done before, by selecting and dragging the object from the Workbench
tab. Figure 10-29 shows the BinaryTree object in the viewer with size 0. To
add elements to the instance, we need to invoke its public add() method.
Clicking on the Invoke Method button = located in the upper right corner of the
viewer brings up the dialog shown in Figure 10-30. To make the dialog stay up
so that we can add multiple objects, click on the stick pin ¥ in the upper left
corner.

[Project: <BinaryTreeExample_Project> File: UML (Java) for Project: BinaryTre... E\@@
File Edit View Build Project Settings Tools Window Help X
gHE S e &Y |k Ee s EE

Jurce F ~||Sort... |~ " =i

@ B 2|5 » BinaryTreeExample

orials\ViewerExg~ {main}

BinaryTreeE}~ ":}‘—|
BinaryTreeE ? ?maryTree
T 19ra% show Class Info

e

OpEnProjects il Create New Instance
¢ [m] BinaryTreeE™ Invoke Method
& <UML> |= Create Array Of
BinaryTre Edit

N [+l [Project Class -~ Compile

Browse | Goto Compile All

Debug m
Remove From Project

4]
UML Info . . .
Workbencn | | Solect | [1sinaryT.. | 6183 Generate show bocumentaton

LE™ Layout ,

[« [

[4]

o [

Figure 10-26. BinaryTree class selected to create new instance for
workbench

10-27

Viewers (1.8.7) 9/2/2009

[Create New jgraspvex.BinaryTree E|
|£| jgraspvex.BinaryTree
Workbench Name

|jgraspvex_BinaryTree_1 |

& public BinaryTree()

<init>() declared in jgraspvex.Binary Tree

[create || showpoc ||

Close |

Figure 10-27. Create New Instance
dialog for the BinaryTree class

[E Project: <BinaryTreeExample_Project> File: UML (Java) for Project: BinaryTre... =)
File Edit View Build Project Settings Tools Window Help
== REFIEEREIEE T I =
bsize =0 : ¢ BinaryTreeExample
& root = null : {main}
RN
BinaryTree
jgraspvex
~y L
BinaryTreeNode B
A D jgraspvex
Evaluate Expr...
| I:l Project Class - —— =3 Other reference, efc.)
Browse | Goto
Debug Il T[] \»ll
UNIL Inf
Workben::h" [Ecoliecti... | [@BinaryT... |[EBinaryT... | ElBinaryT... B <BinaryT... Hl
[L]E™ status: workbench active for project <Binary TreeExample_Project> Classes / Inter‘fi

Figure 10-28. BinaryTree object on the workbench (unfolded to show
fields)

10-28

Viewers (1.8.7) 9/2/2009

[Viewer (by name): jeraspvex_BinaryTree_1

IE jgraspvex_BinaryTree_1 =

Type‘jgraspvex.Binary... H Viewer

Hi &= B |&# width ©—— 4.0 Scale —— 1.0

—

Animation Time °
w7]

root
Locals not available: Workbench context

1.0sec.

Figure 10-29. Viewer opened on the object
jgraspvex_BinaryTree_1 with 0 elements

[Invoke Method on jgraspvex_BinaryTree_1 S
@ jgraspvex_BinaryTree_1

Type ‘jgraspvex.BinaryTree [Current]

Accessibility Context ‘Public

Show: |Default

[java.lang.Object Inaccessible Sort By Natural Order H

[add(): public void add(Comparable value) : jgraspvex.Bina
E=add(): private void add(BinaryTreeNode branch, BinaryTreg
i remove(): public boolean remove{Comparable value) : jgra
== remove(): private boolean remove(Binary TreeNode parentE
@ size(): public int size() : jgraspvex.BinaryTree.size()

[Il [D
add() declared in jgraspvex.BinaryTree

Returns: void

Parameters:

java.lang.Comparable value
10 [

LIDon't Show Result Dialog

Figure 10-30. Invoke Method dialog for
jgraspvex_BinaryTree_1 to add element 10

10-29

Viewers (1.8.7) 9/2/2009

Let’s add the value 10 to the binary tree by selecting the public add() method. If
you are using Java 1.5 or higher, you can enter 10 (without quotes) in the
parameter box labeled java.lang.Comparable value as shown in Figure 10-30.
Java’s autoboxing feature will convert this to an Integer object. Otherwise enter
“10” (with quotes) to make the value a string. Clicking the Invoke button will
cause the object to be inserted into the binary tree. Notice that the Result dialog
pops up indicating the invocation was successful.

To prevent the Result dialog from popping up after each invocation,
you can check the Don’t Show Result Dialog option located above the
Invoke button.

Now let’s add each of the following elements using the same steps we used
above to add the element 10 to the tree: 8,12,6,9

As you add each element, you should see the tree adjust to accept the new node.
You can increase or decrease the animation time using the slider provided on the
viewer. Decreasing the animation time speeds up the movement of the nodes.
After adding these elements, your viewer should look similar to the one in
Figure 10-31 with five elements.

Now let’s remove the node containing 8. On the Invoke Method dialog for bt,
select the public remove() method and enter 8 as the parameter then click the
Invoke button (see Figure 10-32). The node with value 8 is removed and the tree
is adjusted accordingly. Now try adding 8 back to the tree and notice where it
ends up.

In workbench mode, local nodes are not available, as indicated by the
message in the viewer. However, if you set a breakpoint in the add()
method and then invoke it, the desktop switches to debug mode and
allows you to step through the method, at which time local nodes are
displayed as appropriate. As soon as you step to the end of the method,
the desktop returns to workbench mode. If you do set a breakpoint in a
method that you are invoking from the workbench, remember to remove
the breakpoint when you are done. Otherwise, each time you invoke
the method in the future, you will have to step through it in debug
mode.

In the example above, we created the instance of BinaryTree by right-clicking
on a class in the UML diagram. This approach assumes that the classes are in a
JGRASP project and that a UML class diagram has been generated for it. Since
most users spend much of their time reading and writing code in the CSD
window, jJGRASP provides a convenient way to create instances of a class for
the workbench from the CSD window. The section concludes with an example
using this method.

10-30

Viewers (1.8.7) 9/2/2009

[Viewer (by name): jgraspvex_BinaryTree_1
IE jgraspvex_BinaryTree_1 =
Type‘jgraspvex.Binary... H Viewer H

H £y == B |42 Width O—— 4.0 |Scale == 1.0
Animation Time - 2

w5

root

1.0sec.

Locals not available: Workbench context

o

Figure 10-31. Viewer opened on the object
jgraspvex_BinaryTree_1 with 5 elements

[Invoke Method on jgraspvex_BinaryTree_1 FX
|£| jgraspvex_BinaryTree_1

Type ‘jgraspvex.BinaryTree [Current]

B
Accessibility Context ‘Public M
[

Show: |Default

[java.lang.Object [¥Inaccessible SortBy [Natural Order H

&= add(): private void add(BinaryTreeNode branch, BinaryTr{"~,
[remove(): public boolean remove(Comparable value) : jg
== remove(): private boolean remove(Binary TreeNode parenjZ
[« I I vl |
remove() declared in jgraspvex.BinaryTree

Returns: boolean

Parameters:

‘iava.lang.Comparable value | |
8 -

Don't Show Result Dialog

Figure 10-32. Removing element 8

10-31

Viewers (1.8.7) 9/2/2009

In the Browse tab, navigate to the ViewerExamples directory if you are not
already there. In this directory, you should see the directory graspvex which
contains the data structure classes for this tutorial. Find BinaryTree.java and
double-click on it to open it in a CSD window. Figure 10-33 indicates the
location of the Create Instance Il button on the CSD window tool bar. Clicking
this opens the Create New Instance dialog which lists the available constructors
for BinaryTree as shown above in Figure 10-27.

You can find also create an instance from the menu by clicking Build > Java
Workbench > Create New Instance. This is illustrated in Figure 10-34.

Regardless of the way you choose to create instances, the workbench provides a
convenient way to test a class and its methods without the necessity of a driver
program. When a viewer is opened for an instance of a data structure on the
workbench, the opportunity for understanding the software is even greater.

Create Instance l button

[@ Project: <BinaryTreeExample_Project> File: BinaryTree.java * [P] C:\Program... Q@@
File Edit View Build Project Settings Tools Wi
EBH®S BAD I ey HieddlE B3wE

¢ =
urce F|~||Sort... [~ " package jgraspvex; B

@oEm gz » T

W abublic class BinarvTree { =
AVLTree.java
AVLTreeNod
BinaryTree.je = private BinaryTreeMNode root;
BinaryTreeN
BinaryTreeR«

1 Il [vl

. 6pen P rojé.cts
? BinaryTreeEx
& <UML>

= private int size;

[4]

? public BinaryTreel) {
}

public void add(Comparable value) {
BinaryTreelNode node = nsew BinaryTreelNoc

(4] BinaryTree. if (root == null) {
BinaryTree root = node;
BinaryTree : sizett;
L] | | elee | |
DEBBU':WST:ind = - ‘ v =
Workbench “BLWYTT_EE-& | ‘
5 Line:3 Col:3 Code:214 Top:1 ‘ |

Figure 10-33. CSD window with BinaryTree.java

10-32

File Edit View

Viewers (1.8.7) 9/2/2009

TreeExample_Project>

File: BinaryTree.java * [P] C:\Program... Q@@
guild\Eroject Settings Tools Window Help

Bl m& E compile crlB | B |8
urce F|~ [sort...|“ Rebug Mode [
@4%\@? Run CtrR L
m Run as Applet L]
AVLTree.jav Debug
AVLTreeNo Debug as Applet
BinaryTree.j| - Run Arguments Lot
BinaryTreeN ” Run in MSDOS Window
BinaryTreeR ¥ Run Topmost
L I [YwEgcus to Run /0 Window When Running
Open Projects project's Main File [Not Set] L r
! gr:mr:ie Java Workbench ¥ Create New Instance
BinaryTree. if (root == null) { Invoke Static Method
BinaryTree rgot = node; Create Array
BinaryTree slzett; Create New Instance of Libr
el 5 : ;155 {L Invoke Static Method on Lit
Browse i Create Array of Library Clas
(4] I I [T
Debug | Find inaryTree.ja... ‘
Workbench -_—
HE™ Line:18 Col:16 Code:0 Top:1 [ovs]

Figure 10-34. Using the Build menu to an create instance

10.8 Summary of Views

During execution, Java programs usually create a variety of objects from both
user and library classes. Since these objects only exist during execution, being
able to visualize them in a meaningful way can be an important element of
program comprehension. Although this can be done mentally for simple
objects, most programmers can benefit from seeing visual representations of
complex objects while the program is running. The purpose of a viewer is to
provide one or more views of a particular instance of an object during execution,
and multiple viewers can be opened on the same object to observe different
structural properties of the object. These viewers are tightly integrated with the
workbench and debugger and can be opened for any primitive, object, or field of
an object in the Debug or Workbench tabs. Below is a summary of current
views.

General Description of Views

Basic — An object can be unfolded to reveal its fields; if a field is an object, it
too can be unfolded to see its fields. This view is used in the debug and
workbench tabs, and it is available for all classes.

10-33

Viewers (1.8.7) 9/2/2009

Detail — For integer (byte, short, int, long) and character (char) types, the value
in decimal, hexadecimal, octal, and binary is displayed. For floating point
(float, double), the value is represented using the IEEE standard for mantissa
and exponent. The detail view also works for each associated wrapper class.

Presentation — A conceptual view similar to what one might find in a textbook
is provided by a viewer written for a specific class; typically handles very large
number of elements efficiently. Currently supported classes include:

array, String, ArrayList, Vector, Stack, LinkedList

Presentation - Structure ldentifier — A conceptual view is provided when a
structure is automatically detected; typically handles a moderate number of
elements efficiently. This view is listed on the View drop down list for many
objects and if selected, the user has the opportunity to configure the viewer for a
linked list or binary tree even if neither was automatically identified. The
following structures are currently supported in JGRASP 1.8.7:

linked lists, binary trees (including binary heap, red black trees, AVL
trees), hashtables, and array wrappers (lists, stacks, queues, etc.)

10-34

Viewers (1.8.7) 9/2/2009

10.9 Exercises

(1)

()

3)

(4)

Q)
(6)

Open CollectionsExample.java, set an appropriate breakpoint, and run it in
debug mode. After the program stops at the breakpoint, open a viewer on
instances of one or more of the following, then step through the program:

a. array
b. ArrayList
c. LinkedList
d. TreeMap
e. HashMap

Continuing with the program from above, let’s use the Auto-Step feature of
the JGRASP Debugger. With the program stopped at a breakpoint and one

or more viewers open, select Auto Step gon the debug control panel and

click the Step J}. You can control the speed of the steps with the slider bar
beneath the step controls.

Open QueueExample.java, set an appropriate breakpoint, and run it in
debug mode. After the program stops the breakpoint, open a viewer on

queue. Select Auto Step @on the debug control panel. Now click the Step

button {L. You can control the speed of the steps with the slider bar
beneath the step controls on the debug control panel. You can control the
speed of the animation with the slider bar on the viewer. By watching the
queue in the viewer as the program executes, what can you learn about the
implementation of the queue?

Open LinkedListExample.java, set an appropriate breakpoint, and run it in
debug mode. After the program stops at the breakpoint, open a viewer on

list. Select Auto Step @on the debug control panel. Now click the Step in
button E?'

Open BinaryTreeExample.java and repeat the task described in (4).

Although float and double are primitive data types rather than data

structures, the IEEE standard representation for floating point types is quite

interesting.

Create floating point variable in your program by adding the statement:
doubl e myDoubl e = 4096. 0;

After compiling the program, set an appropriate breakpoint, and run the
program in Debug mode. Open a viewer on my Doubl e and set the view to

10-35

Viewers (1.8.7) 9/2/2009

Detail. The Detail view for float and double values shows the exponent and
mantissa representation used for floating point numbers and how these are
calculated.

Change the value of myDoubl e by right-clicking on it in the Debug tab
and selecting “Change Value” from the list of options.

Notes

10-36

	1 Installing jGRASP
	1.1 The Install Files
	1.2 Installing on Windows 95/98/2000/XP/Vista
	1.3 Installing on Mac OS X
	1.4 Installing on Other Systems (including x86 Linux, SPARC Solaris, and NetBSD/i386)
	1.5 Compilers
	1.6 Setting PATH and CLASSPATH
	1.7 jGRASP Start Up Settings
	1.8 Plug-Ins for jGRASP

	2 Getting Started
	2.1 Starting jGRASP
	2.2 Quick Start - Opening a Program, Compiling, and Running
	2.3 Creating a New File
	2.4 Saving a File
	2.5 Building Java Programs - - Recap
	2.6 Interactions (Java only)
	2.7 Generating a Control Structure Diagram
	2.8 Folding a CSD
	2.9 Line Numbers
	2.10 Compiling a Program – A Few More Details
	2.11 Running a Program - Additional Options
	2.12 Using the Debugger (Java only)
	2.13 Opening a File – Additional Options
	2.14 Closing a File
	2.15 Exiting jGRASP
	2.16 Review and Preview of What’s Ahead
	Exercises

	3 Getting Started with Objects
	3.1 Starting jGRASP
	3.2 Navigating to Our First Example Project
	3.3 Opening a Project and UML Window
	3.4 Compiling and Running the Program from UML Window
	3.5 Exploring the UML Window
	3.6 Viewing the Source Code in the CSD Window
	3.7 Exploring the Features of the UML and CSD Windows
	3.7.1 Viewing the source code for a class
	3.7.2 Displaying class information
	3.7.3 Displaying Dependency Information

	3.8 Generating Documentation for the Project
	3.9 Using the Object Workbench
	3.10 Opening a Viewer Window
	3.11 Invoking a Method
	3.12 Invoking Methods with Parameters That Are Objects
	3.13 Invoking Methods on Object Fields
	3.14 Showing Categories of Methods
	3.15 Creating Objects from the CSD Window
	3.16 Using Interactions
	3.17 Running the Debugger on Invoked Methods
	3.18 Creating an Instance from the Java Class Libraries
	3.19 Exiting the Workbench
	3.20 Closing a Project
	3.21 Exiting jGRASP
	3.22 Review of Toolbar Buttons
	3.23 Exercises

	4 Interactions
	4.1 Starting Interactions
	4.2 Interactions with Primitives
	4.3 Interactions with Reference Types
	4.4 Interactions with Your Own Classes
	4.5 Working with Reference Types – Important Details
	4.6 Interactions with the Debugger

	5 The Control Structure Diagram (CSD)
	 An Example to Illustrate the CSD
	5.2 CSD Program Components/Units
	5.3 CSD Control Constructs
	5.4 CSD Templates
	5.5 Hints on Working with the CSD
	5.6 Reading Source Code with the CSD
	5.7 References

	6 The Integrated Debugger
	6.1 Preparing to Run the Debugger
	6.2 Setting a Breakpoint
	6.3 Running a Program in Debug Mode
	6.4 Stepping Through a Program – the Debug Buttons
	6.5 Stepping Through a Program – without Stepping In
	6.6 Stepping Through a Program – and Stepping In
	6.7 Opening Object Viewers
	6.8 Debugging a Program

	7 Projects
	7.1 Creating a Project
	7.2 Adding files to the Project
	7.3 Removing files from the Project
	7.4 Generating Documentation for the Project (Java only)
	7.5 Jar File Creation and Extraction
	7.6 Closing a Project
	7.7 Exercises

	8 UML Class Diagrams
	8.1 Opening the Project
	8.2 Generating the UML
	8.3 Compiling and Running from the UML Window
	8.4 Determining the Contents of the UML Class Diagram
	8.5 Laying Out the UML Class Diagram
	8.6 Displaying the Members of a Class
	8.7 Displaying Dependencies Between Two Classes
	8.8 Navigating to Source Code via the Info Tab
	8.9 Finding a Class in the UML Diagram
	8.10 Opening Source Code from UML
	8.11 Saving the UML Layout
	8.12 Printing the UML Diagram

	9 The Workbench
	9.1 Invoking Static Methods from the CSD Window
	9.2 Invoking Static Methods from the UML Window
	9.3 Creating an Object for the Workbench
	9.4 Invoking a Method
	9.5 Invoking Methods with Parameters Which Are Objects
	9.6 Invoking Methods on Object Fields
	9.7 Selecting Categories of Methods to Invoke
	9.8 Opening Object Viewers
	9.9 Running the Debugger on Invoked Methods
	9.10 Exiting the Workbench

	10 Viewers for Data Structures
	10.1 Introduction
	10.2 Opening Viewers
	10.3 Setting the View Options
	10.4 Selecting Among Views
	10.5 Presentation Views for LinkedList, HashMap, and TreeMap
	10.6 Presentation Views for Code Understanding
	10.6.1 LinkedListExample.java
	10.6.2 BinaryTreeExample.java
	10.6.3 Configuring Views generated by the Structure Identifier

	10.7 Using the Viewers from the Workbench
	10.8 Summary of Views
	10.9 Exercises

