Carnegie Mellon

Today

m Arrays
" One-dimensional
= Multi-dimensional (nested)
= Multi-level

m Structures
= Allocation
= Access
= Alignment

m Floating Point

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Structure Representation

r
struct rec {
int a[4];
size t i; a i next
struct rec *next;
}; 0 16 24 32

m Structure represented as block of memory
= Big enough to hold all of the fields

m Fields ordered according to declaration

= Even if another ordering could yield a more compact
representation

m Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the structures
in the source code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Generating Pointer to Structure Member

r r+4*idx
struct rec {
int a[4];
size t i; a i next
% :
. struct rec *next; 0 16 24 39
m Generating Pointer to int *get ap
(struct rec *r, size t idx)
Array Element { -
= Offset of each structure return &r->al[idx];
member determined at }
compile time
" Computeasr + 4*idx # r in %rdi, idx in %rsi

leaq $rdi, %rsi,4), %Srax
ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

struct rec {

Following Linked List int a[3];

int 1i;
struct rec *next;
m CCode . “ *
r 14
void set val M !
(struct rec *r, int wval) a i next
{
while (£) { 0 [16 24 32
int i = r->i; Element i
r->a[i] = val;
r = r->next;
} } $rdi r
srsi val
.L11: # loop:
movslg 16(%rdi), %$rax # i = M[r+16]
movl %esi, (%rdi,%rax,4) # M[r+4*i] = wval
movq 24 (%rdi), %$rdi # r = M[r+24]
testqg $rdi, %$rdi # Test r
jne .L11 # if '=0 goto loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Structures & Alignment

m Unaligned Data struct S1 {
: : char c;
c| i[O0] i[1] e int i[2];
p p+l p+5 p+9 p+17 double v;
} *p;

m Aligned Data

" Primitive data type requires K bytes
= Address must be multiple of K

Cc 1[0] i[1] v
p+0 pt+4 p+8 p+16 pt+24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Alignment Principles

m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
" Required on some machines; advised on x86-64

m Motivation for Aligning Data

= Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)

= |nefficient to load or store datum that spans quad word
boundaries

= Virtual memory trickier when datum spans 2 pages

m Compiler
" |nserts gaps in structure to ensure correct alignment of fields

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Specific Cases of Alignment (x86-64)

m 1byte: char, ..
® no restrictions on address

m 2 bytes: short, ...

= |owest 1 bit of address must be 0>

m 4 bytes: int, float, ..

= |owest 2 bits of address must be 00>

m 8 bytes: double, long, char *,..
= |owest 3 bits of address must be 000>

m 16 bytes: long double (GCC on Linux)
= Jowest 4 bits of address must be 0000;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Satisfying Alignment with Structures

m Within structure: I
= Must satisfy each element’s alighment requirement char c;
m Overall structure placement ;ntbi [2];
ou e v,
= Each structure has alignment requirement K } *p;

= K = Largest alignment of any element
" |nitial address & structure length must be multiples of K

m Example:

" K=8, due to double element

o] i[0] i[1] v
p+0 pt+4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Meeting Overall Alighment Requirement

m For largest alighment requirement K struct S2 {
. doubl ;
m Overall structure must be multiple of K ouRe v
int i[2];
char c;
} *p

v i[0] i[1] C
p+0 pt+8 pt+16 pt24

/

Multiple of K=8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Arrays of Structures

struct S2 {
m Overall structure length double v;

multiple of K int i[2];
char c;
m Satisfy alignment requirement } a[10];
for every element
a[0] a[l] a[2] o o o
a+0 a+24 a+48 a+72

v i[0] i[1] C
a+24 a+32 a+40 a+48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Accessing Array Elements struct S3 {
short 1i;
float v;
m Compute array offset 12*idx short j;
" sizeof (S3), including alignment spacers b a[l0];
m Element j is at offset 8 within structure
m Assembler gives offset a+8
= Resolved during linking
alo] e S I .. e
a+0 a+12 a+l2*idx
i v]
a+12*idx a+12*idx+8

short get j(int idx) # srdi = idx

{ t L dxc] 4 leaqg (%rdi,%rdi,2) ,%rax # 3*idx
) return a[idx].j; movzwl a+8(,%rax,4),%eax

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Saving Space

m Put large data types first

struct S4 { struct S5 {
char c; int i;
int i; char c;

char d; char d;
} *p; } *ps

m Effect (K=4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

