Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
or write assembly/machine code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.
= Examples: cache sizes and core frequency.
m Code Forms:

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Example ISAs:
= |ntel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Assembly/Machine Code View

CPU Memor
Addresses S y
Registers
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory
= Address of next instruction = Byte addressable array
« Called “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

Bryant and O’Hallaron, C.Jorrl%ustg’gys %E:Egrgg%mgrrs\ gelrsper(':lgvgq:ft’i]r!jrg&ion 12

Turning C into Object Code

" Codeinfiles pl.c p2.c

= Compile with command: gcc -Og pl.c p2.c -o p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

A 4

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg Srbx
void sumstore(long x, long y, movq srdx, 3%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popq $rbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcec -Og -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Object Code

Code for sumstore
m Assembler

0x0400595: i
|
0%53 Translates . s into .o
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
0xd3 ..)))
Ozee = Missing linkages between code in different
Ox£2 files
Ox£ff m Linker
Oxff)
= Resolves references between files
Oxff

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 ° Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g., code formalloc, printf
= Some libraries are dynamically linked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly

" Move 8-byte value to memory

movqg %rax, (%rbx)

= Quad words in x86-64 parlance
" Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%rbx]

m Object Code
= 3-byte instruction
= Stored at address 0x40059e

0x40059%9e: 48 89 03

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 £f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%$rbx)
4005al: 5b pop $rbx
4005a2: 3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can be run on either a.out (complete executable) or . o file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Alternate Disassembly

. Disassembled
Object
0x0400595: -
0x53 Dump of assembler code for function sumstore:
0x48 0x0000000000400595 <+0>: push Srbx
0x89 0x0000000000400596 <+1>: mov $rdx, $rbx
0xd3 0x0000000000400599 <+4>: callg 0x400590 <plus>
Oxe8 0x000000000040059e <+9>: mov $rax, (%$rbx)
O0xf2 0x00000000004005a1 <+12>:pop Srbx
Oxff 0x00000000004005a2 <+13>:retq
Oxff
Oxff
0x48 m Within gdb Debugger
0x89 gdb sum
0x03 _
0x5b disassemble sumstore
Oxc3 = Disassemble procedure

x/14xb sumstore
= Examine the 14 bytes starting at sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD .EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001: : _ .

30001003 : .Reverse engineering forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

