An Introduction to C
Through Annotated Examples

by
Henry M. Walker
Grinnell College, Grinnell, TA

(©1998 by Henry M. Walker

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice.

Use of all or part of this work for other purposes is prohibited.

C through Examples August 16, 2014 Page 1

Program 1: quarts-1.c

The first program converts a number of quarts to liters, from the keyboard using the stdio.h

/* A simple program to convert a number of quarts to liters
Version 1: global variables only

*/
#include <stdio.h> /* reference to standard I/0 library */
int quarts; /* declarations */
double liters; /* double = real */
main () /* beginning of main program */
{ printf ("Enter volume in quarts: "); /* input prompt */
scanf ("%d", &quarts); /* read */
liters = quarts / 1.056710 ; /* arithemtic, assignment */

printf ("%d quarts = %1f liters\n", quarts, liters);

/* write text and new line */

Annotations for quarts-1.c:

Comments in C begin anywhere with the symbols /*, continuing until the symbols */,
on the same or later lines.

C makes use of libraries for many common operations. The statement
#include <stdio.h>
instructs the machine how to use the stdio operations.

Each C program contains a driver function/program, called main. Here, main uses no
input parameters (hence the parentheses with nothing between them following main).

Variables may be declared globally or at the start of a C function. Here, quarts and
liters are declared globally as integer and real variables, respectively. The term double
specifies a real number, stored using double precision. (The term float may be used for
single precision, real numbers.)

Braces { and } are used in C to mark the beginning and ending of blocks. In this case,
the braces indicate the statements for the main program.

Semicolons (;) are used to terminate every statement in C.

The equal sign (=) is used for assignment. (We will see later that == is used for the
comparison operator.)

Arithmetic operations include +, —, * and / for addition, subtraction, multiplication,

and division. For integers, the division operation / yields the integer quotient, while the
modulus operation % gives the remainder.

C through Examples August 16, 2014 Page 2

Sample Program 1: quarts-1.c, continued

e scanf and printf are used for input and output, respectively. In each case, the first
parameter is a string, which indicates how input or output will be formatted.

§ When printing text only, as in the first output line in this program, the text of the
string is enclosed in double quotes " ", and the characters are printed exactly as
given.

¢ Within a format string, some symbols are used for special symbols. For example,
’\n’ stands for a new-line character,

’\t’ stands for a tab character,
’\"’ stands for a double quote character, and
’\\’ stands for the backslash character itself.

§ When printing the value of a variable, the format string for printf gives the type

of data to be read:

"%d" stands for a (decimal) integer,

"%f" stands for a (floating point) real number,

"%1f" stands for a double precision (long) real number,
"%c" stands for a (single) character,

"%s" stands for a character string.

¢ When reading a value, the scanf procedure uses the same formatting conventions
as printf.

§ When using scanf, one must pass the address of variables, rather than their values.
That is, scanf must know the address in memory into which a value is to be placed.
The ampersand & before quarts in the scanf statement specifies “the address of
quarts”.

Sample Run of quarts-1.c:

babbage’, gcc -o quarts-1 quarts-1.c
babbage’, quarts-1

Enter volume in quarts: 4

4 quarts = 3.785334 liters

babbage’, quarts-1

Enter volume in quarts: 1

1 quarts = 0.946333 liters

babbage’, quarts-1

Enter volume in quarts: 3.5

3 quarts = 2.839000 liters

In this sample run (run on the machine babbage), the program (called quarts-1.c) is
compiled and run using the gcc compiler.

Since the program reads quarts as an integer, the input 3.5 is read as the integer 3 in
the third run of the program. If additional input were requested within the program, the
next characters read would be .5 .

C through Examples August 16, 2014 Page 3

Sample Program 2: quarts-2.c, continued

Program 2: quarts-2.c

Another program to convert a number of quarts to liters.

/* A simple program to convert a number of quarts to liters *
* Version 2: using local variables and simple error checking */

#include <stdio.h>
#include <assert.h>

int main (void) /* explicitly state main has no parameters */
{ int quarts; /* variables declared */
double liters; /* at the start of main */

printf ("Enter volume in quarts: ");
scanf ("%d", &quarts);

assert (quarts >= 0); /* abort if quarts < 0 */

liters = quarts / 1.056710 ;
printf ("%d quarts = %1f liters\n", quarts, liters);

return O; /* tell 0S no errors occurred */

Annotations for quarts-2.c:

In declaring the main header, the addition of void states explicitly that main is a pro-
cedure of no parameters.

main may return an integer error code to the operating system by declaring; thus, the
declaration int main and the concluding statement return 0 to indicate no errors.

Variables can be declared within a function at the start of a block (i.e., immediately
after a left brace {. Here, variables are declared at the beginning of the function main,
so they can be used any time within that function.

The assert statement checks the validity of a Boolean expression. If the statement
is true, program execution continues without interruption. If the condition is false,
however, the program is terminated, with an appropriate error message printed.

The assert statement provides a simple mechanism to verify pre-conditions and post-
conditions, although more sophisticated approaches are needed if the program is to
resolve the problem and resume processing. (This latter approach is accomplished by
exception handlers, to be discussed at a later time.)

Sample Run of quarts-2.c:

babbage’, gcc -o quarts-2 quarts-2.c

babbage’, quarts-2

Enter volume in quarts: 4

4 quarts = 3.785334 liters

babbage’, quarts-2

Enter volume in quarts: -3

quarts-2.c:15: failed assertion ‘quarts >= 0’
I0T trap (core dumped)

C through Examples August 16, 2014 Page 4

Program 3: quarts-3.c

Program illustrating variable declaration and initialization, together with simple error check-
ing.

/* A simple program to convert a number of quarts to liters *
* Version 3: declaring local variables just as needed */

#include <stdio.h>

int main (void)

{ int quarts;
printf ("Enter volume in quarts: ");
scanf ("%d", &quarts);

/* if value of quarts is invalid, ask user again */

while (quarts < 0) {
printf ("Value of quarts must be nonnegative; enter value again: ");
scanf ("%d", &quarts);

}

{ double liters = quarts / 1.056710 ;/* declaring and initializing liters
in a new block, just as needed */

printf ("%d quarts = %1f liters\n", quarts, liters);
} /*end of block with liters */

return O;

Annotations for quarts-3.c:

e C allows variables to be declared at the start of any block. Thus, in this program, 1iters
is declared in a new block, after the value of quarts has been entered successfully.

e C also allows a variable to be initialized when it is declared by specifying the variable’s
initial value as part of the declaration. If this initial value were not given as part of the
declaration, then the declaration line for 1iters would be replaced by the two lines:
double liters;
liters = quarts / 1.056710;

e Experienced C programmers disagree upon whether variable declarations should nor-
mally be placed at the start of a function or whether variables should be declared just
before they are needed at the start of interior blocks.

§ Variables declared at the start of a function often are easier for a programmer to find
and check.

¢ When variables are declared as needed, memory allocation may not be needed if a
section of code is skipped during specific runs of a program.

e For clarity in the following examples, variables normally are declared at the start of
functions, unless there are special reasons to proceed otherwise.

e The while loop continues as long as the condition specified is maintained. The general
syntax is:
while (condition) statement ; where condition is any Boolean condition and the
statement is any single statement. When several statements are to be executed in the
body of a loop, they are enclosed in braces { }, as shown in the example.

C through Examples August 16, 2014 Page 5

Sample Program 3: quarts-3.c, continued

Sample Run of quarts-3.c:

babbage’, gcc -o quarts-3 quarts-3.c && quarts-3

Enter volume in quarts: 4

4 quarts = 3.785334 liters

babbage), quarts-3

Enter volume in quarts: -5

Value of quarts must be nonnegative; enter value again: -2
Value of quarts must be nonnegative; enter value again: 1
1 quarts = 0.946333 liters

In this work, the steps for compiling and running this program were combined on one
line with the conjunction &&. This conditional conjunction && states that the first com-
mand (gcc -o quarts-3 quarts-3.c) should be done first. However, the second command
(running quarts-3) will occur only if the first step is successful.

C through Examples August 16, 2014 Page 6

Program 4: smallest3-1.c

Simplistic program to find the smallest of three integers.

/* A simple program to find the smallest of three numbers *
* Version 1: using simple if-then statements */

#include <stdio.h>

int main (void)
{ int i1, i2, i3;

printf ("Program to determine the smallest of three integers\n");
printf ("Enter three integer values: ");
scanf ("%d %d %d", &i1l, &i2, &i3);

if

if

if

((i1 <= i2) && (i1 <= i3))
printf ("The smallest value is %d\n", il);

((i2 < i1) && (i2 <= i3))
printf ("The smallest value is %d\n", i2);

((i3 < i1) && (i3 < i2))
printf ("The smallest value is %d\n", i3);

return O;

Annotations for smallest3-1.c:

The simple if statement has the form:

if (condition) statement

Here, the “condition” is evaluated, and the “statement” is executed if the “condition” is
true. Otherwise, the “statement” is skipped.

Simple comparisons may use the relations: <, <=, >, >=, == and '=. Here ! means
“not”, so !'= means “not equal”.

Technically, C has no separate Boolean type, and Boolean results are considered integers.
Further, in C, a zero value is considered as false, while any nonzero value is true.

Caution: Programmers who may have programmed in other languages sometimes mis-
takenly write = for ==. In C, the compiler will interpret the = as an assignment. Thus,
the statement

if (1 = j) printf ("Equal") ;

will assign the value of j to i. If the value of j was 0, then the result of the assignment
is considered false, and nothing will be printed. On the other hand, if j had a nonzero
value, then the assignment to i returns a true (i.e., nonzero) value, and output is gener-
ated.

Be careful in writing comparisons to use == rather than =.

Comparisons may be combined with && and || for “and” and “or”, respectively. The

precedence of such operations follows the familiar rules of Boolean algebra. However,
when in doubt, it is always safer to use parentheses to clarify meaning.

C through Examples August 16, 2014 Page 7

Sample Program 4: smallest3-1.c, continued

¢ In reading multiple values with scanf, the format string must contain a specification for

each variable to be read. Thus, this program contains

scanf ("%d %d %d", &il, &i2, &i3);

In addition, scanf interprets the characters between the variable specifications as follows:
§ Blanks or tabs are ignored (as is the case here).
§ Ordinary characers (not %) are expected to match the next non-white space charac-

ters of the input stream exactly.

§ Conversion specifications begin with %, as shown here for (decimal) integers.

Sample Run of smallest3-1.c:

babbage’, gcc -o smallest3-1 smallest3-1.c && smallest3-1
Program to determine the smallest of three integers
Enter three integer values: 1 2 3

The smallest value is 1

babbage), smallest3-1

Program to determine the smallest of three integers
Enter three integer values: 111

The smallest value is 1

babbage), smallest3-1

Program to determine the smallest of three integers
Enter three integer values: 2 1 0

The smallest value is O

babbage), smallest3-1

Program to determine the smallest of three integers
Enter three integer values: 0 2 0O

The smallest value is O

C through Examples August 16, 2014 Page 8

Sample Program 5: smallest3-2.c, continued

Program 5: smallest3-2.c

Program to find the smallest of three integers, using two steps.

/* A simple program to find the smallest of three numbers *
* Version 2: using if-then-else statements with intermediate steps */

#include <stdio.h>

int main (void)
{ int i1, i2, i3;
int smaller, smallest;

printf ("Program to determine the smallest of three integers\n");
printf ("Enter three integer values: ");
scanf ("%d %d %d", &il, &i2, &i3);

if (i1 <= i2)
smaller = il;
else smaller i2;

if (smaller <= i3)
smallest smaller;
else smallest i3;

printf ("The smallest value is %d\n", smallest);

return O;

Annotations for smallest3-2.c:

e The compound if statement has the form:
if (condition) statementil
else statement 2
As with the simple if statement, the “condition” is evaluated and “statementl” is
executed if the “condition” is true. In this compound statement, however, “statement2”
is executed if the “condition” is false.

e Note that both “statementl” and “statement2” end with semicolons (as with all C
statements.

This program produces the same output as smallest3-1.c.

C through Examples August 16, 2014 Page 9

Sample Program 6: smallest3-3.c, continued

Program 6: smallest3-3.c

Program to find the smallest of three integers, using nested if statements.

/* A simple program to find the smallest of three numbers *
* Version 3: using nested if-then-else statements */

#include <stdio.h>

int main (void)
{ int i1, i2, i3;
int smallest;

printf ("Program to determine the smallest of three integers\n");
printf ("Enter three integer values: ");
scanf ("%d %d %d", &il, &i2, &i3);

if (11 <= i2)
/* compare il and i3; i2 cannot be smallest */
if (i1 <= i3)
smallest = il;
else smallest = i3;
else
/* compare i2 and i3; il cannot be smallest */
if (i2 <= i3)
smallest = i2;
else smallest = i3;

printf ("The smallest value is %d\n", smallest);

return O;

}

Annotations for smallest3-3.c:

e if statements can be nested as desired. Since each if statement is considered a single
entity, such statements may be used in either the “then” or “else” clauses of other if
statements.

This program also produces the same output as smallest3-1.c

C through Examples August 16, 2014 Page 10

Sample Program 7: smallest3-4.c, continued

Program 7: smallest3-4.c

Program to find the smallest of three integers, using nested if statements with brackets for
clarity.

/* A simple program to find the smallest of three numbers *
* Version 4: using nested if-then-else statements */

#include <stdio.h>

int main (void)
{ int i1, i2, i3;
int smallest;

printf ("Program to determine the smallest of three integers\n");
printf ("Enter three integer values: ");
scanf ("%d %d %d", &il, &i2, &i3);

if (i1 <= i2)
/* compare il and i3; i2 cannot be smallest */
{if (i1 <= i3)
smallest = il;
else smallest = i3;
}
else
/* compare i2 and i3; il cannot be smallest */
{if (i2 <= i3)
smallest = i2;
else smallest = i3;

}
printf ("The smallest value is %d\n", smallest);

return O;

}

Annotations for smallest3-4.c:

e When several statements are to be used within “then” or “else” clauses, braces { } are
used to group the statements. Such braces also can be used around single statements
for clarity.

This program again produces the same output as smallest3-1.c.

C through Examples August 16, 2014 Page 11

Program 8: quarts-for-1.c

A program to compute the number of liters for several values of quarts.

/* A program to compute the number of liters for 1, 2, ..., 12 quarts *
* Version 1: simple table without formatting */

#include <stdio.h>
int main (void)
{ int quarts;

double liters;

printf (" Table of quart and liter equivalents\n\n");
/* two \n’s to skip an extra line */

printf ("Quarts Liters\n");

for (quarts = 1; quarts <= 12; quarts++)

{ liters = quarts / 1.056710 ;
printf (" %d %f\n", quarts, liters);
+
return O;

Annotations for quarts-for-1.c:

e The for statement follows the syntax:

for (initialization; condition; updates) statement;

Here, “initialization” (if any) is performed at the start, before any Boolean expressions
are evaluated. The Boolean “condition” is evaluated at the top of each loop iteration.
If the condition is true, the “statement” is executed. Otherwise, execution of the for
statement terminates, and processing continues with the statement following the for.
The “updates” allow any variables or other work to be done after a loop iteration, before
the “condition” is evaluated again.

e The ++ operation associated with a variable increments the variable by 1. Thus, i++ is
the same as the statement i = i + 1. (Technically, i++ is a post-increment operation,
while ++i is a pre-increment operation. Here, the incrementing of i takes place in a
statement by itself, and either operation has the same effect. Further consideration of
such subtleties is left to a later time.)

e Note that the for statement is more general than in some other languages, as any initial-
ization and updating are possible. For example, the while loop is a special case of the
for, with empty initialization and updating sections: for (;condition;) statement;
That is, while (condition) statement; is equivalent to
for (; condition;) statement;

e In order to arrange the values approximately in columns, the printf format string
contains several spaces: " d %f\n". The amount of space allocated for
each number depends upon the size and accuracy of the number.

C through Examples August 16, 2014 Page 12

Sample Program 8: quarts-for-1.c, continued

Sample Run of quarts-for-1.c:

babbage’, gcc -o quarts-for-1 quarts-for-1.c &% quarts-for-1
Table of quart and liter equivalents

Quarts Liters

OO NOOTPWN -
O~NOYOT P> WN O

.946333
.892667
.839000
. 785334
. 731667
.678001
.624334
.570667
.517001
10 9.463334
11 10.409668
12 11.356001

C through Examples

August 16, 2014

Page 13

Program 9: quarts-for-2.c

A table of quart and liter values, using formatted output.

/* A program to compute the number of liters for 1, 2, ..., 12 quarts *
* Version 2: simple table with formatting of integers and reals */

#include <stdio.h>

int main (void)
{ int quarts;
double liters;

printf (" Table of quart and liter equivalents\n\n");
printf ("Quarts Liters\n");

for (quarts = 1; quarts <= 12; quarts++)
{ liters quarts / 1.056710 ;
printf ("%4d%16.4f\n", quarts, liters);
/* use 4-character width for printing the integer quarts,
use 16-character width, with 4 places after the decimal point,
for printing floating point number liters */

3

return O;

Annotations for quarts-for-2.c:

e Formatting of integers in C is relatively simple: Only a width must be given in the

output specification, and by default integers are right justified in the width given. (If
the integer requires more space than given by the width, then the width in expanded as
needed.) The width is specified as part of the number format, as shown in the program.

Similarly, formatting of real numbers in C requires a specification of both the overall
width for the number and the number of decimal places to be printed. Both of these val-
ues are illustrated in the program; the specification %16.4f indicates that 16 characters
will be allocated to the overall number, and the number will be printed with four digits
to the right of the decimal point.

Note that space characters in a printf format string are printed as specified. Thus, the
following lines would yield the same results shown in this output:

printf ("%4d%16.4f\n", quarts, liters);

printf ("%4d %15.4f\n", quarts, liters);

printf ("%4d %14.4f\n", quarts, liters);

C through Examples August 16, 2014 Page 14

Sample Program 9: quarts-for-2.c, continued

Sample Run of quarts-for-2.c:

babbage’), gcc -o quarts-for-2 quarts-for-2.c && quarts-for-2
Table of quart and liter equivalents

Quarts Liters
.9463
.8927
.8390
.7853
L1317
.6780
.6243
.5707
.5170
.4633
.4097
.3560

PO OONOOIPWNFO

[N
N
e

C through Examples August 16, 2014 Page 15

Program 10: quarts-for-3.c

Another table of quart and liter equivalents — this time including half quarts as well.

/* A program to compute the number of liters for 0.5, 1, ..., 5.5, 6.0 quarts
Version 3: table expanded to half values for quarts */

#include <stdio.h>
int main (void)
{ const double conversion_factor = 1.056710; /* declaration of constant */

double quarts, liters;

printf (" Table of quart and liter equivalents\n\n");
printf ("Quarts Liters\n");

for (quarts = 0.5; quarts <= 6.0; quarts += 0.5)

{ liters = quarts / conversion_factor ;
printf ("%5.1£%15.4f\n", quarts, liters);

return O;

Annotations for quarts-for-3.c:

e This program illustrates that the for statement is quite general. Here the control variable
quarts is real, rather than integer. While this seems reasonable in this context, note
that roundoff error for real numbers sometimes can provide unanticipated or incorrect
results within such loops.

e In C, the assignment quarts += 0.5 is shorthand for quarts = quarts + 0.5. More
generally, the operator += adds the value on the right-hand side of the operator to the
variable on the left-hand side.

o Constants are declared within a program by specifying the type of the variable, the initial
value, and designating the variable as being a constant, const. Thus, the declaration
const double conversion factor = 1.056710;
indicates that the variable conversion_factor will be a double precision, real number
with value 1.056710, and this value is not allowed to change within the main program
where this constant is defined.

C through Examples August 16, 2014 Page 16

Sample Program 10: quarts-for-3.c, continued

Sample Run of quarts-for-3.c:

babbage’), gcc -o quarts-for-3 quarts-for-3.c && quarts-for-3
Table of quart and liter equivalents

Quarts
0.

OO O PWWNNRE -
QU1 O U O 01O 01O 01O O

Liters
L4732
.9463
.4195
.8927
.3658
.8390
.3122
.7853
.2585
L7317
.2048
.6780

GO PWWNNRFR, P, OO

C through Examples

August 16, 2014

Page 17

Sample Program 11: quarts-for-4.c, continued

Program 11: quarts-for-4.c

This program illustrates the nesting of for loops to produce a table of liter equivalents.

[/ okskskeskokok sk sk ok ok sk ok skt sk sk koo ok ok ok ok kok ok skok sk ok ok ok sk ok sk sk sk sk sk sk sk ok
* A program to compute the number of liters for gallons and quarts *
* Version 4: table of liters for quarts and gallons *
skok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk ok sk sk sk sk sk sk stk sk sk ko ko k stk skt ok ok ok skokskok sk sk ok /

#define conversion_factor 1.05671
#include <stdio.h>

int main (void)
{ int gals, quarts;
double liters;
printf ("Table of liter equivalents for gallons and quarts\n\n");

printf (" Quarts\n");
printf ("Gallons 0 1 2 3\n");
for (gals = 0; gals <= 5; gals++)

{ printf ("%4d ", gals);

for (quarts = 0; quarts <= 3; quarts++)
{ liters = (4.0%gals + quarts) / conversion_factor ;
printf ("%12.4f", liters);

printf ("\n");
}

return O;

Annotations for quarts-for-4.c:

e This program also illustrates another common approach to defining constants within C.
Historically, #define statements were used to indicate constants well before the const
modifier was introduced. Thus, most old programs and most experienced C programmers
are likely to use the #define construct. (In contrast, experienced C++ programmers
are more likely to use const.)

Sample Run of quarts-for-4.c:

babbage), gcc -o quarts-for-4 quarts-for-4.c && quarts-for-4
Table of liter equivalents for gallons and quarts

Quarts
Gallons 0 1 2 3
0 0.0000 0.9463 1.8927 2.8390
1 3.7853 4.7317 5.6780 6.6243
2 7.5707 8.5170 9.4633 10.4097
3 11.3560 12.3023 13.2487 14.1950
4 15.1413 16.0877 17.0340 17.9803
5 18.9267 19.8730 20.8193 21.7657

C through Examples August 16, 2014 Page 18

/

*
*

Program 12: darts.c

A Monte Carlo simulation to approximate Pi. More precisely, consider a circle C' of radius
1 in the plane, centered at the origin. Also, consider the square S of side 2, centered at the
origin, so that the corners of the square are at (+1,+1). If we pick a point P at random in
S or in the first quadrant of S. Then the probability that P is also in C' is 7/4.

This program approximates Pi by picking a points in a sqaure and *
and determining how often they are also in an appropriate circle. x*/

#include <stdio.h>

/* libraries for the random number generator */
#include <stdlib.h>
#include <time.h>

/* Within the stdlib.h library,

* time returns a value based upon the time of day

* on some machines, rand returns a random integer between O and 2731 - 1
* although on some machines rand gives values between O and 2732 - 1
* and on other machines rand gives values between 0 and 2715 - 1

* MaxRandInt is this maximum integer minus 1

* (Note: 2732 = 2147483648, 2731 = 1073741824 and 2715 = 32768)

* Use 2732-1 for SparkStations

* Use RAND_MAX for Linux machines,

* Use 2715-1 for IBM Xstation 140s and HP 712/60s

*/

const int MaxRandInt = RAND_MAX; /* declaration of program constants*/

const int NumberOfTrials = 5000;

int main (void)

{

int 1i;
int counter = 0; /* declare and initialize counter */
double x, y;

double MaxRandReal = (double) MaxRandInt; /* make MaxRandInt a real */

printf ("This program approximates Pi by picking %d points in a square\n",
NumberOfTrials);
printf ("and counting the number in an appropriate circle.\n\n");

// initialize random number generator
// change the seed to the random number generator, based on the time of day
srand (time ((time_t x*) 0));

// pick points in first quadrant with coordinates between O and 1
// determine how many are in the circle of radius 1
for (i = 1; i <= NumberOfTrials; i++) {

x = rand() / MaxRandReal;

y = rand() / MaxRandReal;

if (xxx + y*y <= 1) counter++;

}

printf ("%d points were inside the circle, and\n", counter);
printf ("the approximate value of Pi is %.5f .\n",

4.0 * counter / NumberOfTrials);
return O;

C through Examples August 16, 2014 Page 19

Sample Program 12: darts.c, continued

Annotations for darts.c:

e This program illustrates the use of the random number generator rand, which is based
upon a seed value kept internally. rand returns pseudo-random positive integers. srand
is used to set the initial seed value, based upon the built-in time function. The range of
the integer value returned by rand depends upon the local machine executing the code.
Some choices are noted in the program.

The const statements before the main specify global constants (and other expressions)
for use throughout all functions.

The expression (double) MaxRandInt performs type conversions. In the definitions from
this program, MaxRandInt represents an integer value. The prefix (double) converts this
to a real value for MaxRandReal.

The function rand () returns a random integer value from the uniform distribution
from 0 to MaxRandInt. Since the program divides this by a real value (MaxRandReal),
C converts the integer to a real before the division takes place. If we had not declared
MaxRandReal as a real, but used MaxRandInt instead, then we would need to convert
both rand () and MaxRandInt to integers before performing the division (otherwise we
would obtain an integer result, in contrast to what was intended). This alternative
conversion could be performed with the revised statements

x = (double) rand () / (double) MaxRandReal;
y = (double) rand () / (double) MaxRandReal;

Sample Run of darts.c:

babbage), gcc -o darts darts.c &% darts
This program approximates Pi by picking 5000 points
and counting the number in an appropriate circle.

3942 points were inside the circle, and

the approximate value of Pi is 3.15360 .

babbage’, darts

This program approximates Pi by picking 5000 points
and counting the number in an appropriate circle.

3924 points were inside the circle, and

the approximate value of Pi is 3.13920 .

babbage’, darts

This program approximates Pi by picking 5000 points
and counting the number in an appropriate circle.

3854 points were inside the circle, and

the approximate value of Pi is 3.08320 .

babbage’, darts

This program approximates Pi by picking 5000 points
and counting the number in an appropriate circle.

3905 points were inside the circle, and
the approximate value of Pi is 3.12400 .

in

in

in

in

square

square

square

square

C through Examples August 16, 2014

Page 20

Program 13: max-min.c

This following program computes the maximum, minimum, and average of n real numbers.

/* A program to read n numbers, compute their maximum, minimum, and average,
* and to print a specified jth item.

* This code illustrates built-in C-style arrays.

*/

#include <stdio.h>

int main (void)
{ int j, n;
double max, min, sum;

printf ("Program to process real numbers.\n");
printf ("Enter number of reals: ");
scanf ("%d", &n);

{ /* start new block, where new array may be declared */
double aln]; /* declare array of n values, with subscripts O,
While ANSI C allows only constant array sizes,
some compilers allow variables in the specification
of array size, as shown here */

., n-1

printf ("Enter %d numbers: ", n);
for (j = 0; j < m; j++)
scanf ("%1f", &aljl); /* subscripts given in brackets [] */

sum = max = min = a[0]; /* right to left assignment operator */

for (j = 1; j < n; j++)
{ if (aljl > max)
max = aljl;
if (alj] < min)
min = aljl;
sum += al[j];
}
printf ("Maximum: %5.2f\n", max);
printf ("Minimum: %5.2f\n", min);
printf ("Average: %5.2f\n\n", sum/n);

printf ("Enter the index (1..n) of the number to be printed: ");
scanf ("%d", &j);
printf ("The %d th number is %.2f\n", j, alj-11);

} /* end of array block */

return O;

Annotations for max-min.c:

e Arrays within C are declared by indicating the number of array elements in square brack-
ets [], as in the statement double a[n]. The ANSI C Standard indicates that, unlike
this example, the size of the array must be an integer constant. However, this example
also shows that some compilers, such as the Gnu compilers from the Free Software Foun-
dation, allow variables to be used in specifying array size. In such cases, an array size
could be read first and then used within a new block as part of an array declaration.

C through Examples August 16, 2014 Page 21

Sample Program 13: max-min.c, continued
e Individual array elements are accessed by placing a subscript in brackets, such as a[0]
or al[j].

e Reading of individual array elements requires the “address of” operator &, just as is
used for reading other values.

¢ As noted previously, reading of a double-precision real number is accomplished using the
scanf format "%1f".

Sample Run of max-min.c:

babbage’, gcc -o max-min max-min.c && max-min
Program to process real numbers.

Enter number of reals: 6

Enter 6 numbers: 1 2 4 6 8 9

Maximum: 9.00

Minimum: 1.00

Average: 5.00

Enter the index (1..n) of the number to be printed: 5
The 5 th number is 8.00

babbage’, max-min

Program to process real numbers.

Enter number of reals: 5

Enter 5 numbers: 4 2 1 3 5

Maximum: 5.00

Minimum: 1.00

Average: 3.00

Enter the index (1..n) of the number to be printed: -3

The -3 th number is 36572433906665087000
00
00
000. 00

e C does not perform bounds checking when accessing array elements. Thus, nonsense is
printed for a[-3] when only a[0] through a[5] are declared and given values. Note
especially that no Subscript Out Of Range error message is generated for the attempt
to access a[-3].

C through Examples August 16, 2014 Page 22

Program 14: trap-1.c

This program approximates Pi as the area of one-fourth of a circle of radius 2.

/

*

A program for approximating the area under a function y = f(x)
between a and b using the Trapezoidal Rule.

The Trapezoidal Rule divides [a, b] into n evenly spaced intervals

of width W = (b-a)/n. The approximate area is

Wk (f (a) /2+f (a+W)+f (a+2W)+ ... +f(at+(n-2)W)+f (a+(n-1)W)+£f(b)/2)
Version 1: Approximating area under sqrt(4-x~2) on [0, 2].

As this is 1/4 of circle of radius 2, result should be Pi.

* X ¥ X ¥ X
* ¥ ¥ X ¥ *x

*
~

#include <stdio.h>
#include <math.h>

#define a 0.0 /* limits for the area under y = f(x) */
#define b 2.0 /* area will be computed under f(x) on [a,b] */

double f(double x)

/* function to be used in the area approximation */
{ return (sqrt(4.0 - x*x));

+

int main (void)
{ int n;
double width, sum, xvalue, area;

printf ("Program approximates the area under a function using the ");
printf ("Trapezoidal Rule.\n");
printf ("Enter number of subintervals to be used: ");
scanf ("%d", &n);
width = (b - a) / n;
/* compute the sum in the area approximation */
sum = (f(a) + £f(b)) / 2.0; /* first and last terms in sum */
for (xvalue = a + width; xvalue < b; xvalue += width)
sum += f(xvalue);
area = sum * width;

printf ("The approximate area is %7.4f\n", area);

return O;

Annotations for trap-1.c:

e The main program uses the Trapezoidal Rule to approximate the area under a function
y = f(x) on the interval [a, b].

e The function f(z) is defined as a separate function. Specifically, double f indicates
that the function f will return a double-precisions, floating-point number, and the header
(double x) specifies that f will have a single, double-precision, floating-point parameter.

e The format of function f is similar to that of main. Both contain a header (with possible
parameters), followed by a function body in braces, { }.

C through Examples August 16, 2014 Page 23

Sample Program 14: trap-1.c, continued

e Here, the entire function is declared first, before the main program.

e A function computes and returns a value, and this value is designated using a return
statement. Here, the value returned is (sqrt(4.0 - x*x)).

e The math.h library of C contains many common mathematics functions, including sin(z),
cos(x), tan(z), exp(x), log(x), loglO(z), pow(z,y), and sqrt(z). Here, exp(z) computes
e”, log(z) computes the natural log, log10(x) computes the common log, and pow(x,y)
computes zv.

e In the computation of the Trapezoidal Rule, the constants a and b are specified as
constants using #define statements in this program.

Sample Run of trap-1.c:

babbage’), gcc -o trap-1 trap-1.c -1m

babbage’, trap-1

Program approximates the area under a function using the Trapezoidal Rule.
Enter number of subintervals to be used: 100

The approximate area is 3.1404

e In compiling programs involving functions in math.h, some compilers require the use of
the -1m option, as shown.

C through Examples August 16, 2014 Page 24

Sample Program 15: trap-2.c, continued

Program 15: trap-2.c

This program uses a function for computations involving the Trapezoidal Rule.

/* Approximating area under sqrt(4-x~2) on [0, 2] using the Trapezoidal Rule.*
* Version 2: A function performs the area computation. x/

#include <stdio.h>
#include <math.h>

double f(double x);
/* function to be used in the area approximation */

double area(double a, double b, int n);
/* Approximation of area under f(x) on [a, b] using the Trapezoidal Rule */

int main (void)

{ int n;
printf ("Program approximates the area under a function using the ");
printf ("Trapezoidal Rule.\n");
printf ("Enter number of subintervals to be used: ");
scanf ("%d", &n);
printf ("The approximate area is %7.4f\n", area (0.0, 2.0, n));
return O;

b

double f(double x)

/* function to be used in the area approximation */
{ return (sqrt(4.0 - x*x));

+

double area (double a, double b, int n)

/* Finding area via the Trapezoidal Rule */

{ double width = (b - a) / n;
double sum = (f(a) + f(b)) / 2.0; /* first and last terms in sum */
double xvalue;

for (xvalue = a + width; xvalue < b; xvalue += width)
sum += f(xvalue);
return (sum * width);

Annotations for trap-2.c:

o Functions either may be declared in full before a main program or a header may be defined
at the start with details given later. This program illustrates the second approach. At
the start, functions f and area are identified with a header, which is terminated by a
semicolon to indicate that details are forthcoming later. This header, called a function
prototype, contains information about the type of value returned by the function (double
in each case here) and about the number and type of the function parameters.

e When function details are given later, the header information is repeated, followed by
the specific code elements.

e Within a function, variables may be declared and initialized, following the same rules
illustrated in previous examples for the main program.

e This program produces the same output as the previous program.

C through Examples August 16, 2014 Page 25

Program 16: trap-3.c

This program computes the Trapezoidal Rule using a procedure.

/* Approximating the area under sqrt(4-x"2) on [0, 2] *
* using the Trapezoidal Rule. *
* Version 3: A procedure performs the area computation. */

#include <stdio.h>
#include <math.h>

double f(double x);
/* function to be used in the area approximation */

void compute_area(double a, double b, int n, double *area);
/* Approximation of area under f(x) on [a, b] using the Trapezoidal Rule */

int main (void)
{ int n;
double new_area;
printf ("Program approximates the area under a function using the ");
printf ("Trapezoidal Rule.\n");
printf ("Enter number of subintervals to be used: ");
scanf ("%d", &n);

compute_area(0.0, 2.0, n, &new_area);
printf ("The approximate area is %7.4f\n", new_area);

return O;

}

double f(double x)

/* function to be used in the area approximation */
{ return (sqrt(4.0 - x*x));

}

void compute_area (double a, double b, int n, double *area)

/* Finding area via the Trapezoidal Rule */

{ double width = (b - a) / (double) n;
double sum = (f(a) + f(b)) / 2.0; /* first and last terms in sum */
double xvalue;

for (xvalue = a + width; xvalue < b; xvalue += width)
sum += f(xvalue);

*xarea = sum * width;

Annotations for trap-3.c:
e A function returning no value (a void result) is a procedure.

e In C, all parameters are passed by value (at least for simple variables). Thus, in declar-
ing double f(double x) and calling f(a), the value of a is copied to z before the
computation of f proceeds.

C through Examples August 16, 2014 Page 26

Sample Program 16: trap-3.c, continued

e If a value is to be returned in a parameter (e.g., as an area), then the address of the
actual parameter must be given in the function call. As with the use of scanf, this is
accomplished by adding an ampersand & before the actual parameter (new_area) in the
function call.

This use of an address as parameter is prescribed in the function header by adding a
star * before the actual parameter. Then, within the function, the variable itself refers
to the address of the actual parameter, while * variable refers to the value at that
address. Thus, in this example, the assignment, *area = sum * width;, indicates that
the value of sum * width will be stored in the memory location whose address is given
by the area parameter.

e Once again, this program produces the same output as trap-1.c.

C through Examples August 16, 2014 Page 27

Sample Program 17: trap-4.c, continued

Program 17: trap-4.c

Another area computation, involving a home-grown square-root function which tests that
square roots are taken of non-negative numbers only.

/* Approximating area under y = f(x) on [a, b] using the Trapezoidal Rule. *
* Version 4: Approximating area under sqrt(4-x~2) on [0, 2]. *
* Here sqrt is computed via Newton’s Method, rather than through math.h. */

#include <stdio.h>
#include <assert.h>

const double a = 0.0; /* alternative constant definitions */
const double b = 2.0; /* [a, b] gives interval for area */
const double root_accuracy = 0.00005; /* sqrt computes to this accuracy */

double sqrt(double r)
/* function to compute square root of r using Newton’s Method */
{ double change = 1.0;

double x; /* current approximation for sqrt(r) x/
if (r == 0.0)

return 0.0; /* the square root of 0.0 is a special case */
assert (r > 0.0); /* negative square roots are not defined */
X =r; /* r is used as a first approximation to sqrt(r) */

while ((change > root_accuracy)||(change < - root_accuracy))
{ change = (xxx - r) / (2%x);
x —= change; }
return Xx;

3

double f(double x) /* function to be used in the area approximation */
{ return sqrt(4.0 - x*x); }

int main (void)
{ int n;
double width, sum, xvalue, area;

printf ("Program approximates the area under a function using the ");
printf ("Trapezoidal Rule.\n");

printf ("Enter number of subintervals to be used: ");

scanf ("%d", &n);

width = (b - a) / n;

/* compute the sum in the area approximation */
sum = (f(a) + f(b)) / 2.0; /* first and last terms in sum */
for (xvalue = a + width; xvalue < b; xvalue += width)

sum += f(xvalue);

area = sum * width;
printf ("The approximate area is %7.4f\n", area);
return O;

Annotations for trap-4.c:

e This program again produces the same output as trap-1.c.

C through Examples August 16, 2014 Page 28

Program 18: trap-5.c

Using the same area function for the computation of areas under two functions.

/* Approximating the area under several functions *
* using the Trapezoidal Rule. *
* Version 5: An area function has numeric and functional parameters. */

#include <stdio.h>
#include <math.h>

double circle(double x);
/* function for a circle of radius 2, centered at the origin */

double parabola(double x);
/* function for the standard parabola y = x"2 */

double area(double a, double b, int n, double f (double));
/* Approximation of area under f(x) on [a, b] using the Trapezoidal Rule */

int main (void)
{ int number;
printf ("Program approximates the area under a function using the ");
printf ("Trapezoidal Rule.\n");
printf ("Enter number of subintervals to be used: ");
scanf ("%d", &number);

printf ("\n");;

printf ("Approximation of 1/4 area of circle of radius 2 is %7.5f .\n\n",
area (0.0, 2.0, number, circle));

printf ("Approximation of area under y = x"2 between 1 and 3 is%8.5f .\n\n",
area (1.0, 3.0, number, parabola));

return O;

}

double circle(double x)

/* function for a circle of radius 2, centered at the origin */
{ return (sqrt(4.0 - x*x));

b

double parabola(double x)
/* function for the standard parabola y = x"2 */
{ return xx*x;

}

double area (double a, double b, int n, double f (double))

/* Finding area via the Trapezoidal Rule */

{ double width = (b - a) / n;
double sum = (f(a) + f(b)) / 2.0; /* first and last terms in sum */
double xvalue;

for (xvalue = a + width; xvalue < b; xvalue += width)
sum += f(xvalue);
return (sum * width);

C through Examples August 16, 2014 Page 29

Sample Program 18: trap-5.c, continued

Annotations for trap-5.c:

e This program represents a variation of program trap-2.c. Here, area computes the area

under y = f(z) on [a,b], using n trapezoids, and all of these elements (a, b, n, f) are
passed as parameters.

To declare a function parameter, the function is given a formal name (e.g.,), and
information concerning its parameters and return type are specified. In the example, the
header of area contains the information

double f (double)

which indicates that a function will be passed to area. This function will take one double
precision, real parameter and will return a double precision, real number. Further, when
the details of area are defined, this function will be referred to as £ (just as the numbers
a, b and n will be used within area).

When area is called, an appropriate function name is specified for £, just as numbers
are specified for a, b and n. Thus, in the call

area (0.0, 2.0, number, circle)

a is given the value 0.0, b is given the value 2.0, n is given the value number, and f will
refer to the function circle. Whenever f is mentioned within area during the execution
of this call, the function circle will be used. Similarly, for the call

area (1.0, 3.0, number, parabola)

the function parabola will be used whenever f appears.

In using function parameters, the actual functions (circle or parabola) must be of the
type as the formal parameter (f). In this case, the functions use one double-precision
parameter, and they returned a double.

Sample Run of trap-5.c:

Program approximates the area under a function using the Trapezoidal Rule.
Enter number of subintervals to be used: 100

Approximation of 1/4 area of circle of radius 2 is 3.14042 .

Approximation of area under y = x"2 between 1 and 3 is 8.66680

C through Examples August 16, 2014

Page 30

Program 19: genfile.c

This program illustrates the creation and printing of files.

/* program to write 10 random integers to "integer.file" *
* and 10 random real numbers to "real.file" */
#include <stdio.h> /* library for both keyboard and keyboard I/0 */

#include <stdlib.h> /* libraries for the random number generator */
#include <time.h>

/* time, from time.h, returns a value based upon the time of day *
* rand , from stdlib.h, returns a random integer between O and MaxRandIntx*
* the value of MaxRandInt is machine dependent: *
* 2732-1 = 2147483647 for SparkStations, *
* 2°15-1 = 32767 for IBM Xstation 140s and HP 712/60s */

#define MaxRandInt 32767

int main (void)
{ FILE xfilel, *file2; /x output files */
int 1i;
int ival;
double rval;
double MaxRandReal = (double) MaxRandInt; /* make MaxRandInt a real */

/* initialize random number generator *
* change seed to the random number generator, based on time of day */

printf ("initializing random number generator\n");

srand (time ((time_t *) 0));

/* place integer values on first file */
printf ("generating file of integers\n");
filel = fopen ("integer.file", "w"); /* open file for writing */

for (i = 1; i <= 10; i++)
{ ival = rand Q; /* two lines could be abbreviated */
fprintf (filel, "%d\n", ival);}
fclose (filel);

/* place real values on second file x/
printf ("generating file of reals\n");
file2 = fopen ("real.file", "w");

for (i = 1; i <= 10; i++)
{ fprintf (file2, "%f\n", rand() / MaxRandReal);}
fclose (file2);

printf ("writing of files completed\n");
return O;

Annotations for genfile.c:

e File I/0 is analogous to keyboard /0, except for the initial steps of opening and closing
the file.

C through Examples August 16, 2014 Page 31

Sample Program 19: genfile.c, continued

e Output files are declared as pointer variables to elements of type FILE.

e Once a file f is declared, it is opened or closed with the statements
<variable> = fopen (<file-name>, <mode>) and fclose (<file-variable>),
respectively. The <file-name> is any string enclosed in double quotes; the <mode> is
§ "w” for writing to a file,
¢ 7a” for appending additional information to an existing file, and
§ "1r” for reading from a file (as in the next example).

e Output to a file uses fprintf operator, which works the same as printf with a file
variable added.

Sample Run of genfile.c:

babbage’, gcc -o genfile genfile.c
babbage’, genfile

initializing random number generator
generating file of integers
generating file of reals

writing of files completed
babbage’, cat integer.file

16434

28836

18114

7586

11166

5920

6577

7990

17474

5539

babbage’, cat real.file

[cNeoNoNoRoNoNoNoNoNe]

.432630
.043611
. 737999
. 732139
.254158
.067476
.830164
.044099
.038179
.009583

C through Examples August 16, 2014 Page 32

Program 20: readfiles.c

This program shows how to read numbers from files.

/* program to read 10 integers from "integer.file" *
* and 10 real numbers from "real.file" */

#include <stdio.h>

int main (void)
{ FILE *intfile, *realfile;

int 1i;
double r;

/* read integer values from "integer.file" */
printf ("The integers from ’integer.file’ follow:\n");
intfile = fopen ("integer.file", "r"); /* open file for reading */
while (fscanf (intfile, "%d", &i) !'= EOF)
/* continue until scanf returns EOF */
{ printf ("%10d\n", 1i);
}
fclose (intfile);
printf ("Integer file processed\n");

/* read real values from "real.file" x*/
printf ("The real numbers from ’real.file’ follow:\n");

realfile = fopen ("real.file", "r");

while(fscanf (realfile, "%1f", &r) !'= EQOF) {
printf ("%10.5f\n", r);

fclose (realfile);

printf ("Real file processed\n");

return O;

Annotations for readfiles.c:
e Input files are declared of type FILE *.

e As with files for output, input files £ are opened and closed with the statements
<variable> = fopen (<file-name>, "r") and fclose (<file-variable>), respec-
tively. (This format is exactly the same as for output files, except that the mode used
in the fopen statement is "r").

e Similarly, input from a file may use the fscanf procedure, which is analogous to reading
keyboard input with scanf.

C through Examples August 16, 2014 Page 33

Sample Program 20: readfiles.c, continued

e When using fscanf for reading, the procedure returns an integer as follows:
¢ When values are read successfully according to the format string, fscanf returns the
number of variables actually read.
¢ When fscanf encounters the end of a file, fscanf returns the special value EOF,
which is defined in stdio.

Thus, testing (fscanf (...) != EQOF) provides a natural way to continue processing
until the end of a file is encountered.

Sample Run of readfiles.c:

babbage’, gcc -o readfiles readfiles.c && readfiles
The integers from ’integer.file’ follow:
16434
28836
18114
7586
11166
5920
6577
7990
17474
5539
Integer file processed
The real numbers from ’real.file’ follow:
.43263
.04361
. 73800
.73214
.25416
.06748
.83016
.04410
.03818
.00958
file processed

HOOOOOOOOOO

Rea

C through Examples August 16, 2014 Page 34

Code Segment 21: fileletters-1.c

A program that reads a file name and counts the letters and other characters in that file.

/* Program to count the number of times each letter in a file occurs *

* Version 1: reading file name within program, all work in main */
#define MAX 20 /* maximum length of file name */
#include <stdio.h> /* library for file and keyboard I/0 */
#include <ctype.h> /* library for testing character data */

int main (void)
{ FILE x*file_var;

char file_name[MAX]; /* string array for file name */

int counts[26]; /* counts[0]..counts[25] for individual letters. */
int non_letters = 0; /* counter for non-letters */

int control_chars = 0; /* counter for control characters (e.g., eol) */
int i; /* loop index */

char ch; /* character read from file */

printf ("This program counts letter frequencies in a file\n");

/* initialization */
for (i=0; i<26; i++)
counts[i] = 0;

printf ("Enter file name: ");
scanf ("%s", file_name);
file_var = fopen (file_name, "r");

/* processing the file */
while ((ch = getc (file_var)) != EOF)
{ if (islower(ch))

counts[ch - ’a’]++;
else if (isupper(ch))
counts[ch - ’A’]++;

else if (iscntrl(ch))
control_chars++;
else non_letters++;

by

fclose (file_var); /* finish up file */

/* printing results */
printf ("Frequency counts of letters in %s.\n\n", file_name);

for (i=’a’; i<= ’z’; i++) /* integer i takes character values */
printf (" Y%c", i); /* print integer value in integer format */
printf ("\n");

for (i=0; i < 26; i++)
printf ("%3d", counts[i]);

printf ("\nNon-letters: J%d\n", non_letters);
printf ("Control characters: ¥%d\n", control_chars);

C through Examples August 16, 2014 Page 35

Annotations for fileletters-1.c:

Technically, a string is an array of characters, and the declaration of any array requires a
specification of a maximum length. Within C, however, strings are treated as a sequence
of characters ending with a null character *\0’. Thus, the string is considered to stop
with the first null, regardless of how large the array is declared. To be safe, one must be
sure to declare the array to be sufficiently large.

Printing and reading of strings utilizes ” %s” format within scanf and printf.

Whereas all simple types (e.g., int, double, and char) are passed by value in C, all
structured types (e.g., arrays) are passed by reference. That is, the base address of the
structure is passed as the parameter.

§ At a technical level, the passing of the base address requires little copying, whereas
passage by value would require the considerable overhead of copying an entire struc-
ture. For efficiency, C uses just the address of the structure, so structured variables
are passed by reference.

§ At a practical level, use of the address operator & is rarely needed in passing struc-
tures as variables. Thus, here file_name is used as parameter to scanf, without the

&.

While fscanf could be used to read character data using ”format, white space would
be omitted. With this option for this program, processing would give correct results
for letter frequencies, but counts of non-letters and control characters would not include
spaces, tabs, returns, and other white space characters.

The function getc from stdio.h returns the next character in a file. In this reading,
the end-of-file character EOF is considered to be just another characer. putc is the
corresponding function to print a character to a file.

The condition for the while statement combines reading, assignment, and comparison
within a single step. First, getc(file_var returns a character, and that character is
assigned to variable ch. This value then is compared with EQF within the while condition.

The library ctype.h contains several functions that are useful in working with characters
in C. In the following table, parameter c is considered to be a character (type char):

“boolean” functions

isupper(c) upper case letter

islower(c) lower case letter

isalpha(c) upper or lower case letter

isdigit(c) decimal digit

isalnum(c) upper or lower case letter or a digit

isspace(c) space, formfeed, newline, carriage return, tab, vertical tab

ispunct(c) printing character except space, letter, or digit
“conversion functions

tolower(c) convert upper case to lower case; no effect on other chars

toupper (c) convert lower case to upper case; no effect on other chars

In C, characters are stored as coded integers. Thus, characters may be used within
integer expressions, and the expression ch - ’a’ subtracts the code for the letter ’a’
from the letter code read into ch.

When an integer appears with printfor fprintf using "format, the character with that
code is printed.

C through Examples August 16, 2014 Page 36

Sample Run of fileletters-1.c:

babbage’, cat character.file
&ABCDEFGHIJKLMNOPQRSTUVWXYZ
A&BCDEFGHI JKLMNOPQRSTUVWXY
AB&CDEFGHI JKLMNOPQRSTUVWX
ABC&DEFGHI JKLMNOPQRSTUVW
ABCD&EFGHIJKLMNOPQRSTUV
ABCDE&FGHIJKLMNOPQRSTU
ABCDEF ; GHIJKLMNOPQRST
ABCDEFG ; HIJKLMNOPQRS
ABCDEFGH ; IJKLMNOPQR
ABCDEFGHI ; JKLMNOPQ
ABCDEFGHIJ-KLMNQOP
ABCDEFGHIJK-LMNO
ABCDEFGHIJKL-MN
ABCDEFGHIJKLM-

ABCDEFGHIJKL

ABCDEFGHIJK

ABCDEFGHIJ

ABCDEFGHI

ABCDEFGH

ABCDEFG

ABCDEF

ABCDE

ABCD

ABC

AB

A

?

&abcdefghi jklmnopqrstuvwxyz
a&bcdefghijklmnopgrstuvwxy
ab&cdefghijklmnopqrstuvwx
abc&defghijklmnopgrstuvw
abcd&efghijklmnopqrstuv
abcde&fghijklmnopgrstu
abcdef ; ghijklmnopqgrst
abcdefg;hijklmnopqgrs
abcdefgh;ijklmnopqr
abcdefghi; jklmnopq
abcdefghij-klmnop
abcdefghijk-1mno
abcdefghijkl-mn
abcdefghijklm-

abcdefghijkl

abcdefghijk?

babbage), gcc -o fileletters-1 fileletters-1.c && fileletters-1
This program counts letter frequencies in a file
Enter file name: character.file
Frequency counts of letters in character.file.

a b cde f g h i j k¥ 1 m n o p qgqor s t u v w X
42 41 40 39 38 37 36 35 34 33 32 30 28 26 24 22 20 18 16 14 12 10 8 6
Non-letters: 30
Control characters: 43

y z
4 2

C through Examples August 16, 2014 Page 37

Sample Program 21: fileletters-1.c, continued

e Processing counts the letters in file character.file. This file was created to make
testing easy: subsequent lines remove one line from the alphabetic listing, both upper
and lower case letters are included, the lower case listing contains 10 fewer lines than the
upper case listing, and exactly 30 non-letters are included (plus <return> characters at
the end of each of the 43 lines).

C through Examples August 16, 2014 Page 38

Program 22: fileletters-2.c

A program, organized by procedures, to count letter frequencies in a file.

/* Program to count the number of times each letter in a file occurs *

* Version 2: with main organized into procedures */
#define MAX 20 /* maximum length of file name */
#include <stdio.h> /* library for file and keyboard I/0 */
#include <ctype.h> /* library for testing character data */

void initialize (int counts[], char file_name[], FILE *xfilev);
/* procedure to initialize all program variables */

void process_file (FILE **filev, int counts[], int *others, int *control);
/* procedure to read file and determine character frequency counts */

void print_results (char name[], int counts [], int others, int control);
/* procedure to print the frequency counts in various categories */

int main (void)
{ FILE x*file_var;

char file_name [MAX]; /* string array for file name */
int counts[26]; /* counts[0]..counts[25] for individual letters. */

int non_letters = 0; /* counter for non-letters =*/
int control_chars = 0; /* counter for control characters (e.g., eol) */

printf ("This program counts letter frequencies in a file\n");
initialize (counts, file_name, &file_var);

process_file (&file_var, counts, &non_letters, &control_chars);
print_results (file_name, counts, non_letters, control_chars);

b

void initialize (int counts[], char file_name[], FILE *xfilev)
/* procedure to initialize all program variables */
{ int 1i;

for (i=0; i<26; i++)

counts[i] = 0;

printf ("Enter file name: ");

scanf ("%s", file_name);

(x*filev) = fopen (file_name, "r");

3

void process_file (FILE =**xfilev, int counts[], int *others, int *control)
/* procedure to read file and determine character frequency counts */
{ char ch;
while ((ch = getc (*xfilev)) != EOF)
{ if (islower(ch))
counts[ch - ’a’]++;
else if (isupper(ch))
counts[ch - ’A’]++;
else if (iscntrl(ch))
(*control)++;
else (*xothers)++;
}
fclose (xfilev); /* finish up file */

C through Examples August 16, 2014

Page 39

Sample Program 22: fileletters-2.c, continued

void print_results (char name[], int counts[], int others, int control)
/* procedure to print the frequency counts in various categories */
{ int 1i;

printf ("Frequency counts of letters in %s.\n\n", name);

for (i=’a’; i<= ’z’; i++) /* integer i takes character values */

printf (" Y%c", i); /* print integer value in integer format */
printf ("\n");

for (i=0; i < 26; i++)
printf ("%3d", counts[i]);

printf ("\nNon-letters: J%d\n", others);
printf ("Control characters: ¥%d\n", control);

Annotations for fileletters-2.c:

e This program organizes the file processing of fileletters-1.c into three stages, each coor-
dinated by a separate procedure. The steps for each stage follows those in the earlier

version.

e As in previous examples using procedures, no global variables are used here, parameters
are used consistently to move values in and out of procedures, and function prototypes

appear at the program’s start.

e The print_results procedure takes values and prints them, without changing any val-

ues. Thus, the procedure uses default parameter passing throughtout.

¢ For arrays name and counts, C will pass the array’s base address, while C will copy

values of the individual values for others and control.

¢ When declaring array parameters, the size of the array is omitted from the procedure
header. Since only the base address is passed, the procedure only knows the start
of the array, not its size. (Further, the same procedure could be called for arrays of

different size, although that possibility is not needed in this application.)

e The initialize procedure must place the correct first values into the counts array and
the file pointer file_var. Since arrays are structures, C passes counts by reference, so
any initialization made within the procedure will be stored directly within the array. In
contrast, file_var is a pointer to a file, and initialization must provide this pointer with
the address of a newly created file buffer. Thus, we must pass the pointer file_var by

reference:

§ Since file_var was declared as type FILE *, passage by reference must give the
address of this pointer. Thus, the header specifies type FILE ** as a pointer to the

file pointer.

¢ The address of file_var is needed as the actual parameter, so an ampersand & is

used in the call: initialize (counts, file name, &file var);.

¢ In opening the file, we store the buffer address in the pointer variable (*filev).

e The process_file procedure changes the status of the file buffer (FILE *file_var) as
well as the frequency array counts and frequencies non_letters and control_chars.
Thus, parameters are passed for process_file in the same way as for initialize.

e This program again produces the same output as fileletters-1.c.

C through Examples August 16, 2014

Page 40

Code Segment 23: fileletters-3.c

The following variation allows the file name to be included on the command line.
program also utilizes C’s string.h library for strings.

/* Program to count the number of times each letter in a file occurs *

* Version 3: with the possibility of command-line input */
#define MAX 20 /* maximum length of file name */
#include <stdio.h> /* library for file and keyboard I/0 */
#include <ctype.h> /* library for testing character data */
#include <string.h> /* library for common string functions */

void process_file (FILE **filev, int counts[], int *others, int *control);
/* procedure to read file and determine character frequency counts */

void process_char(char ch, int counts[], int *others_var, int *cntl_var);
/* procedure to increment frequency counts for the given character */

void print_results (char name[], int counts [], int others, int control);
/* procedure to print the frequency counts in various categories */

int main (int argc, char *argv[])
{ FILE x*file_var;
char file_name[MAX]; /* string array for file name */
int counts[26] /* counts[0]..counts[25] for individual letters.
= {0, 0, 0, 0, 0, O, O, O, O, O, O, O, O,

o0, o, 0, 0, 0, 0, O, O, O, O, O, O, O}; /*initialize array with 0’s
int non_letters = 0; /* counter for non-letters =*/
int control_chars = 0; /* counter for control characters (e.g., eol) */

printf ("This program counts letter frequencies in a file\n");

/* determine file name from command line, if present, or ask user */
if (argc > 1)

strcpy (file_name, argv[1]);/* copy command-line string to file_name *
else {

printf ("Enter file name: ");

scanf ("%s", file_name);}

/* work with file and file data */

file_var = fopen (file_name, "r");

process_file (&file_var, counts, &non_letters, &control_chars);
fclose (file_var); /* finish up file */

/* report frequencies */
print_results (file_name, counts, non_letters, control_chars);

by

void process_file (FILE =*xfilev, int counts[], int *others, int *control)
/* procedure to read file and determine character frequency counts */
{ char ch;
while ((ch = getc (xfilev)) != EOF)
process_char (ch, counts, others, control);

C through Examples August 16, 2014

The

*/
*/

/

Page 41

void process_char (char ch, int counts[], int *others_var, int *cntl_var)
/* procedure to increment frequency counts for the given character */
{ if (islower(ch))

counts[ch - ’a’]++;
else if (isupper(ch))
counts[ch - ’A’]++;

else if (iscntrl(ch))
(xcntl_var)++;
else (*others_var)++;

3

void print_results (char name[], int counts[], int others, int control)
/* procedure to print the frequency counts in various categories */
{ int 1i;

printf ("Frequency counts of letters in %s.\n\n", name);

for (i=’a’; i<= ’z’; i++) /* integer i takes character values */

printf (" %c", i); /* print integer value in integer format */
printf ("\n");

for (i=0; i < 26; i++)
printf ("%3d", counts[i]);

printf ("\nNon-letters: J%d\n", others);
printf ("Control characters: ¥%d\n", control);

Annotations for fileletters-3.c:

e This program provides the user with the option of supplying the file name on the com-

mand line, when first running the program (see the sample output that follows).

e Arguments on the command line are passed to the main program from the operating

system as parameters. When using parameters:

¢ The first parameter is an integer which indicates how many parameters are passed
to the program. Hence, the integer argc will indicate how many parameters are
supplied on the command line.

§ The second parameter argv is a pointer to an array of command line arguments.

§ Since the program name is always the first command-line parameter, argc always is
at least 1, and argv[0] is the program name in string form.

§ Any arguments after the program name appear as strings in argv [1] and subsequent
array elements. Here, argv[1] contains the file name from the command line, if given
by the user.

e Library string.h provides many useful procedures for working with strings. This program
uses strcpy to copy the second string to the first.

e At declaration, arrays may be initialized by listing appropriate values in braces { }, with
individual values separated by commas.

e In this program, procedure process_file calls process_char to handle processing of a
specific character. Here, ch is supplied, and frequency counts are updated as needed.

§ As frequency variables must be updated, all parameters must be passed by reference:
process_char’s header shows that array counts is passed as a base address, while
addresses are passed for both otherss_var and cntl_var.

§ In the header of process_file, others and control are already declared as ad-
dresses. Thus, no additional address operator is needed in the call to process_char;
others and control may be passed directly.

C through Examples August 16, 2014

Page 42

Sample Run of fileletters-3.c:

babbage), fileletters-3

This program counts letter frequencies in a file
Enter file name: character.file

Frequency counts of letters in character.file.

a b cde f gh i j k¥ 1 m n o p qgqor s t u v w x y zZ
42 41 40 39 38 37 36 35 34 33 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Non-letters: 30
Control characters: 43
babbage’, fileletters-3 character.file
This program counts letter frequencies in a file
Frequency counts of letters in character.file.

a b cde f gh i j k1 m n o p qgqor s t u v w x y 2z
42 41 40 39 38 37 36 35 34 33 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Non-letters: 30
Control characters: 43

e When the program is run as before (with no file name on the command line), the program
prompts for the file name as in past runs.

e When a file name is provided on the command line, that file is opened and processed.
The program does not ask for an additional file name.

C through Examples August 16, 2014 Page 43

