Carnegie Mellon

Today: Bits, Bytes, and Integers

|
|
m Integers

m Representations in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Machine Words

m Any given computer has a “Word Size”
®" Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" Increasingly, machines have 64-bit word size
= Potentially, could have 18 PB (petabytes) of addressable memory
= That’s 18.4 X 10%°

" Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit

. Bytes Addr.
m Addresses Specify Byte Words Words 7
Locations 0000
]) Addr

= Address of first byte in word = 0001
. . 0000 0002

" Addresses of successive words differ Addr
by 4 (32-bit) or 8 (64-bit) = 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = = 10/16
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
® Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
o7 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Decimal: 15213

Representing Integers [Binary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
1A32, x86-64 Sun
1A32 x86-64 Sun
6D [¢
3B |
00 ¢
00 ¢

int B = -15213;
I1A32, x86-64 Sun

T~

Two’s complement representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t len) {
size t i;
for (1 = 0; 1 < len; i++)
printf (“%$p\t0x%.2x\n" ,start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X : Print Hexadecimal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun I1A32 x86-64
EF AC 3C
FF 28 1B
FB F'5 FE
2C FF 82
FD
7F
00
00

Different compilers & machines assign different locations to objects

+Even get different results each time run program o

Carnegie Mellon

Representing Strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
® Each character encoded in ASCIl format I1A32 Sun
= Standard 7-bit encoding of character set 31 | | 31
= Character “0” has code 0x30 38 | | 38
— Digit i has code 0x30+i 32 | SIEY
= String should be null-terminated 31 | o 31
= Final character =0 33 1 J 33
m Compatibility 00 I J 00

= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Integer C Puzzles

- x <0 = ((x*2) < 0)
cux >= 0
X &7 =17 = (x<<30) < 0
c ux > -1
* X >y = -X < -y
X * x>0
Initialization *x>0688y>0 = x+y>0
- + x >= 0 = -x <=0
int x = foo(); . x <= 0 o —x >= 0
int y = bar(); « (x|-x)>>31 == -1
unsigned ux = x; * ux >> 3 == ux/8
unsigned uy = y; * x >> 3 == x/8

x & (x-1) '=0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

