
Copyright © 2010 Intel Corporation 1

Microprocessor Endian Architecture

ABSTRACT: Endianness describes how multi-byte data is represented by a
computer system and is dictated by the CPU architecture of the system.
Unfortunately not all computer systems are designed with the same endian
architecture. The difference in endian architecture is an issue when software
or data is shared between computer systems. An analysis of the computer
system and its interfaces will determine the requirements of the endian
implementation of the software. This article explains endianness and its
effect on code portability.

Endian-Neutral Software

Software is sometimes designed with a specific endian architecture in mind,
limiting the portability of the code to other processor architectures. This type
of implementation is considered to be endian-specific. However, endian-
neutral software can be developed, allowing the code to be ported easily
between processors of different endian architectures, and without rewriting
any code. Endian-neutral software is developed by identifying system
memory and external data interfaces, and using endian-neutral coding
practices to implement the interfaces. Platform migration requires
consideration of the endian architecture of the current and target platforms,
as well as the endian architecture of the code.

Endian-specific code assumes the endianness of the underlying hardware. In
a nutshell, the code is endian-specific if it contains the use of unions and
type casting pointers to change the size of the data access, or does not use
endian-neutral macros to access binary multi-byte data.

For architecture migrations to Intel Atom processors, no endian updates are
required if the source code involved in the architecture migration is designed
as little-endian or endian-neutral. In fact, designing software that abstracts
the OS and hardware is common practice in modern code bases. On the
other hand, for the edge cases where the software design doesn’t provide
the abstraction layers and is hardcoded as big-endian the code will need
some amount of endian updates.

This remainder of this section establishes a set of fundamental guidelines for
software developers who wish to develop endian-neutral code or convert
endian-specific code. These guidelines describe the software interface
information that should be considered and how to convert endian-specific
code to endian-neutral code.

Copyright © 2010 Intel Corporation 2

Note: The examples in this section are based on 32-bit processor
architecture.

Analysis

There are two main areas where endianness must be considered. One area
pertains to code portability. The second area pertains to sharing data
between platforms.

Code Portability

It is not uncommon for software to be designed and implemented for the
endian architecture of a specific processor platform, without allowing for
ease of portability to other platforms.

Endian-neutral code provides flexibility for software implementations to be
compiled for and operate seamlessly on processors of different endian
architectures.

Shared Data

Computer systems are made up of multiple components, including
computers, interfaces, data storage, and shared memory. Any time file data
or memory is shared between computers, the potential for an endian
architecture conflict exists. Data can be stored in ways that are not tied to
endian architecture and also in ways that define the endianness of the data.

Definition of Endianness

Endianness is the byte order in which multi-byte data is stored in computer
memory. It describes the location of the most significant byte (MSB) and
least significant byte (LSB) of an address in memory. Endianness is dictated
by the CPU architecture implementation of the system. The operating
system does not dictate the endian model implemented; the endian model of
the CPU architecture instead dictates how the operating system is
implemented.

Representing these two storage formats are two types of endian
architecture, big-endian and little-endian. There are benefits to both of these
endian architectures. See the section “Merits of Endian Architectures.” Big-
endian architecture stores the MSB at the lowest memory address. Little-
endian architecture stores the LSB at the lowest memory address. The
lowest memory address of multi-byte data is considered the starting address

Copyright © 2010 Intel Corporation 3

of the data. Table 1 depicts how the 32-bit hex value 0x12345678 is stored
in memory for big-endian and little-endian architectures. The lowest memory
address is represented in the leftmost position, byte 00.

Table 1 Example of Memory Addressing for Big- and Little-endian

Endian Order Byte 00 Byte 01 Byte 02 Byte 03

Big-endian 12 34 56 78 (LSB)
Little-endian 78 (LSB) 56 34 12

As you can see in Table 1, the value of the stored multi-byte data field is the
same for both types of endianness as long as the data is referenced in its
native data type, in this case a long value. If this data field is referenced as
individual bytes, the endianness of the data must be known. An unexpected
difference in endianness will cause a computer system to interpret the data
in the opposite direction, resulting in the wrong value. The difference can be
correctly handled by implementing code that is aware of the endian
architecture of the computer system as well as the endianness of the stored
data. The details of handling the endian difference in code are thoroughly
discussed in the section “Byte Swapping.”

Merits of Endian Architectures

You may see a lot of discussion about the relative merits of the two formats,
mostly based on the relative merits of the PC. Both formats have their
advantages and disadvantages.

In little-endian form, assembly language instructions for picking up a 1, 2, 4,
or longer byte number proceed in exactly the same way for all formats: first
pick up the lowest order byte at offset 0. Also, because of the 1:1
relationship between the address off set and byte number, offset 0 is byte 0,
multiple precision math routines are correspondingly easy to write.

In big-endian form, by having the high-order byte come first, you can
always test whether the number is positive or negative by looking at the
byte at off set zero. You don’t have to know how long the number is, nor do
you have to skip over any bytes to find the byte containing the sign
information. The numbers are also stored in the order in which they are
printed out, so binary to decimal routines are particularly efficient.

In the past embedded communication processors and custom solutions
associated with the data plane have been designed on big-endian
architectures. Because of this, legacy code on these processors is often
written specifically for network byte order, which is big-endian format.

Copyright © 2010 Intel Corporation 4

Table 2 lists several popular computer systems and their endian
architectures. Note that some CPUs can be either big- or little-endian,
referred to as bi-endian, by setting a processor register to the desired
endian architecture.

Table 2 Computer System Endianness

Platform Endian Architecture

ARM† Bi-endian
DEC Alpha† Bi-endian
HP PA-RISC 8000† Bi-endian
IBM PowerPC† Bi-endian
Intel® architecture Little-endian
Intel® IXP network processors Bi-endian
Intel® Itanium® processor family Bi-endian
Java Virtual Machine† Big-endian
MIPS† Bi-endian
Motorola 68k† Big-endian
Sun SPARC† Big-endian
Sun SPARC V9† Bi-endian

Relevance of Endian Order

Endian order means that any time a computer accesses a stream, such as a
network tap, local file, audio, video, or multimedia stream, the software
needs to understand how the file is constructed. For example: if a graphics
file, such as a .BMP file, which is little-endian format, is written out to a big-
endian machine, the byte order of each integer must first be reversed.
Otherwise another standardized program will not be able to read the file.

How can the opposing endian data be efficiently processed? A hardware
solution doesn’t allow for variability in data since it expects either big-endian
or little-endian formats. Also, hard-wired endian swapping typically won’t
suffice for a large range of networks and protocols and many of these file
formats are endian specific. Software byte swapping seems to be a viable
method. Several different methods are available, and are described in the
following sections.

Byte Swapping

Basically, anytime multi-byte data is imported or exported between
computer systems, the format of the data must be standardized. If the data
format is binary, the endianness of the data must be known by both
computer systems. With this knowledge, the computer systems can decide,
based on their own endian architecture, whether byte swapping must be
performed on the data. Byte swap methods are developed to standardize the

Copyright © 2010 Intel Corporation 5

access to the data. The byte swap methods of endian-neutral code use byte
swap controls to determine whether a byte swap must be performed.

Byte Swapping Methods

Several methods are available for byte swapping. These methods perform
the actual byte swapping of the given data.

 Byte swapping macros provided by an operating system’s networking
libraries include ntohl and ntohs, short for network-to-host long and
network-to-host short.

 Optimized custom byte swap macros.
 Inline bswap macros.
 Assembly language instructions such as rotate operand right (ror) or

rotate operand left (rol).
 Standard C library function swab can be used to swap two adjacent

bytes.
 A generic assembly language function implementing the same

algorithm as the ntohl and ntohs macros.

Network Input/Output Macros

All communication protocols must define the endianness of the protocol so
that there is a predefined agreement on how nodes at opposite ends know
how to communicate. In the Transmission Control Protocol/Internet Protocol
(TCP/IP) stack, each network host is identified by its 32-bit IP address,
which is ordinarily displayed in the four numeric octets referred to as
network byte order. TCP/IP defines the network byte order as big-endian
and the IP header of a TCP/IP packet contains several multi-byte fields.
Computers having little-endian architecture must reorder the bytes in the
TCP/IP header information into big-endian format before transmitting the
data and likewise need to reorder the TCP/IP information received into little-
endian format.

Computers having big-endian architecture need to do nothing since their
endian architecture is the same as TCP/IP.

Network input/output (I/O) macros are standardized popular macros
commonly available in network libraries and are commonly used to
import/export TCP/IP packet header data, which is described below, in an
endian-neutral manner.

 Length: 2 bytes
 ID: 2 bytes
 Off set: 2 bytes

Copyright © 2010 Intel Corporation 6

 Source: 4 bytes
 Destination: 4 bytes

Table 3 describes network I/O macros. The term host is used to refer to the
processor’s endian architecture and the term network is used to refer to the
TCP/IP endian architecture. Using these macros allows for the same code to
work on a big-endian or little-endian processor.

Table 3 Network I/O Macros

Macro
Name

Translation
(Can be read as…)

Meaning

htons() host to network short Converts the unsigned short integer hostshort
from host byte order to network byte order.

htonl() host to network long Converts the unsigned integer hostlong from
host byte order to network byte order.

ntohs() network to host short Converts the unsigned short integer netshort
from network byte order to host byte order.

ntohl() network to host long Converts the unsigned integer netlong from
network byte order to host byte order.

The byte swap performed for TCP/IP communication on little-endian
processors adds performance overhead. However, this overhead can be
recovered as the processor speed increases. See the section “Recovering
Byte Swap Overhead.”

Custom Byte Swap Macros

Custom byte swap macros are used to wrap and standardize the code for
accessing each data type. Table 4 shows examples of byte swap macros for
each data size.

Copyright © 2010 Intel Corporation 7

Table 4 Custom Byte Swap Macros

Access
Size

Example Macro
Name

Macro Code

16 bits

SwapTwoBytes #include <stdio.h>

#define SwapTwoBytes(data) \
((((data) >> 8) & 0x00FF) | (((data) << 8) &
0xFF00))

32 bits

SwapFourBytes #include <stdio.h>

#define SwapFourBytes(data) \
((((data) >> 24) & 0x000000FF) | (((data) >> 8)
& 0x0000FF00) | \
 (((data) << 8) & 0x00FF0000) | (((data) << 24)
& 0xFF000000))

64 bits

SwapEightBytes #include <stdio.h>

#define SwapEightBytes(data) \
((((data) >> 56) & 0x00000000000000FF) |
(((data) >> 40) & 0x000000000000FF00) | \
 (((data) >> 24) & 0x0000000000FF0000) |
(((data) >> 8) & 0x00000000FF000000) | \
 (((data) << 8) & 0x000000FF00000000) |
(((data) << 24) & 0x0000FF0000000000) | \
 (((data) << 40) & 0x00FF000000000000) |
(((data) << 56) & 0xFF00000000000000))

Byte Swap Controls

Byte swap controls are used within byte swap methods to determine when
byte swapping should be performed. In normal usage, the controls add byte
swap code if byte swapping is required. If byte swapping is not required the
control adds no code and thus, does nothing. Byte swapping can be
controlled with the following mechanisms:

 Compile-time controls
 Runtime controls

Compile-Time Controls

Table 5 is an example of how the compiler preprocessor is used within data
access wrappers to control whether or not byte swapping should be
performed. Note that different code is compiled in based on the preprocessor
definition. This example is defined by the compiler to work for both little-
endian and big-endian processors.

Copyright © 2010 Intel Corporation 8

Table 5 Preprocessor Control

Access Size Example Macro Names Macro Code

16-bit big-
endian data

MY_RD_BE_SHORT
MY_WRT_BE_SHORT

#if CPU_ARCHITECTURE == BIG_ENDIAN
/* Do nothing */
#else
SwapTwoBytes (data)
#endif

16-bit little-
endian data

MY_RD_LE_SHORT
MY_WRT_LE_SHORT

#if CPU_ARCHITECTURE == BIG_ENDIAN
SwapTwoBytes (data)
#else
/* Do nothing */
#endif

32-bit big-
endian data

MY_RD_BE_LONG
MY_WRT_BE_LONG

#if CPU_ARCHITECTURE == BIG_ENDIAN
/* Do nothing */
#else
SwapFourBytes (data)
#endif

32-bit little-
endian data

MY_RD_LE_LONG
MY_WRT_LE_LONG

#if CPU_ARCHITECTURE == BIG_ENDIAN
SwapFourBytes (data)
#else
/* Do nothing */
#endif

64-bit big-
endian data

MY_RD_BE_DOUBLE
MY_WRT_BE_DOUBLE

#if CPU_ARCHITECTURE == BIG_ENDIAN
/* Do nothing */
#else
SwapEightBytes (data)
#endif

64-bit little-
endian data

MY_RD_LE_DOUBLE
MY_WRT_LE_DOUBLE

#if CPU_ARCHITECTURE == BIG_ENDIAN
SwapEightBytes (data)
#else
/* Do nothing */
#endif

Runtime Controls

It is possible to detect the endian architecture of a processor using runtime
code. Figure 1 shows an example of code that performs a runtime test that
checks whether the code is running on a little- or big-endian system. This
allows runtime code to dynamically perform endianness processing.

union
{
 char Array[4];
 long Chars;
} TestUnion;

char c = 'a';

/* Test platform Endianness */
for(x = 0; x < 4; x++)

Copyright © 2010 Intel Corporation 9

 TestUnion.Array[x] = c++;

if (TestUnion.Chars == 0x61626364)
 /* It’s big endian */

Figure 1 Run-Time Byte Order Test (Source code example courtesy of Mark Sullivan,
2004. Intel Corporation.)

Recovering Byte Swap Overhead

Overhead associated with byte swapping the fields in the IP header are
miniscule compared to the actual propagation delay associated with even the
fastest network transmission speeds available today. The byte-swapping
overhead, though it undeniably exists, can be readily recovered, especially
with the latest performance capabilities of today’s processors. Figure 2
depicts a time exaggerated example of the overhead required for byte
swapping, as well as the reduced processing time of current little-endian
processors that recover the time.

Figure 2 Example of Byte Swap Overhead and Recovery

Figure 2 shows that some overhead is associated with swapping the bytes in
the network headers. However, given a substantial increase in processor
performance, the time associated with processing the byte swap required on
the little-endian processor is recovered.

Copyright © 2010 Intel Corporation 10

Platform Porting Considerations

If the target application is currently running on a big-endian platform and
the goal is to port to a little-endian platform, or vice versa, byte ordering
may become an issue. For the most part, the byte ordering within a system
is self-contained and therefore not affected by endianness. However, a few
cases can result in porting problems, including the use of:

 Data storage and shared memory
 Data transfer
 Data types: unions, byte arrays, bit fields and bit masks, pointer casts

Data Storage and Shared Memory

File system data and shared memory create a unique problem, because
depending on the system design this type of data is accessible between
platforms.

Problem 1: The endian architecture of the platforms that access the data
could be different. The format in which data is written to a file or shared
memory must be understood by the reading application or the content will
be misinterpreted by opposite endian architecture platforms.

Example 1: Accessing data across platforms
The big endian system writes the value 0x11223344. The little-endian
system reads the value as 0x44332211.

Solution 1.A: Store the data in an endian-neutral format
For example: use text files with string data format, or the External Data
Representation4 (XDR) protocol. XDR is a protocol governed by standards
and formalizes a platform-independent way for computers to send data to
each other.

Solution 1.B: Specify the endian format
Specify one endian format for the stored data and always write the data in
that format. Then wrap the data access with macros that are aware of the
endian format of the stored data as well as the native endian format of the
host processor. The macros will perform byte swapping based on a
difference in formats.

Data Transfer

Data transfer is the movement of data from one system to another across a
specified transmission medium.

Copyright © 2010 Intel Corporation 11

Problem 2: When transferring multi-byte data between big- and little-
endian systems, the data has to be manipulated to ensure the preservation
of the true meaning of the data on both systems. When transferring multi-
byte data from a big-endian machine, the most significant byte will be in the
leftmost position. When a little-endian system receives the data, however,
the most significant byte will be in the rightmost position unless the bytes
are swapped.

Example 2: Transferring data between big-endian and little-endian
systems
The big-endian system transmits the value 0x11223344. The little-endian
system receives the value as 0x44332211.

Solution 2: Byte swap the data
Whenever multi-byte data is transferred between big and little-endian
systems, the bytes must be swapped in order to preserve the true meaning
of the values. Use functions that swap the bytes like the network I/O macros
to ensure the preservation of data in its true form on both big and little-
endian systems.

Data Types

The use of certain data types, such as unions, byte arrays, bit fields, bit
masks, pointer casts, can create porting problems.

Unions

A union is a data type that may hold objects of different types and sizes,
with the compiler keeping track of the size and alignment requirements.
Objects of dissimilar types and sizes can only be held at different times. A
union provides a way to manipulate different kinds of data in a single area of
storage.

Problem 3: Unions work fine for using the same memory to access different
data. The key is to know what type of data exists in the memory before it is
accessed.

Example 3: Accessing the same data with different types
Accessing the same data with different data types is not a valid use of
unions and can cause endian issues. Although the code in Figure 1 suits the
purpose for the runtime byte order test to check for the endianness of the
machine, it is an example of an improper use of a union. Also, if data types

Copyright © 2010 Intel Corporation 12

longer than 8 bits are united with a byte array, the data becomes byte order
dependent.

Solution 3: Always access the same data with the same data type
Only use unions for their purpose of conserving space. Ensure that unions
are not used to access the same data with different data types.

Byte Arrays

A byte array is a character array that is used to hold a specified number of
bytes. The size of array is always equal to the number of bytes to hold.

Problem 4: If data in the byte array is accessed outside of its native data
type, the data becomes byte order dependent.

Example 4: Array initialized as a list of characters
An array that is initialized with a list of characters will be read as different
values between little-endian and big-endian platforms. A byte array is
initialized as “abcd”. Accessing this array as a long data type on a little-
endian platform results in the value 0x64636261. On a big-endian platform
it results in the value 0x61626364.

Solution 4: Avoid accessing byte arrays outside of the byte data
type.
Accessing data outside of its natural data type breaks endian neutral code.
Always access byte arrays as byte values.

Bit Fields and Bit Masks

Bit operations are endian sensitive. Even a bit field defined within a single
byte is endian sensitive. Code that defines bit fields is subject to endianness
conflicts when porting the code to an opposite endian platform.

Problem 5: In the following example, the network protocol IP header
contains a bit field defined within a single byte. There are two fields within
the definition, each four bits long, which is a bit length also referred to as
nibbles. Code that sets the value of these nibbles, iphdr.ver = 4, and
iphdr.ihl = 7, will get different results if the bit field data is accessed as a
byte. The result of the data read as a byte on the big-endian machine is
0x47, whereas the result of the data read as a byte on the little-endian
machine is 0x74.

Also, if the data is set as a byte value, say 0x74, on the little-endian
machine, the result of the data read as nibbles on the little-endian machine

Copyright © 2010 Intel Corporation 13

is a value of 4 for iphdr.ver field, and a value of 7 for iphdr.ihl field. On
the big-endian machine the results would be a value of 7 for the iphdr.ver
field, and a value of 4 for the iphdr.ihl field.

Example 5: IP Header Bit Fields
The code in Figure 3 illustrates how bit fields are susceptible to endian
issues. The code purposefully incorrectly sets the value for the IP header
version using bit fields, and then reads the data as a byte. Th e value of the
IP header version will be 0x47 on a big-endian machine, or 0x74 on a little-
endian machine.

struct
{
 char ver:4,
 ihl:4;
} iphdr;

/*
 * A packet header may utilize bit fields. Bit order
 * within a byte is determined by the byte order of the
 * processor. In this example we modify two nibbles of an
 * IP header and then access later as a byte.
*/
char ipbyte;
iphdr.ver = 0x4;
iphdr.ihl = 0x7;
ipbyte = *(char *)&iphdr;

if (ipbyte == 0x47)
{
 printf (“Big Endian\n”);
}
else if (ipbyte == 0x74)
{
 printf (“Little Endian\n”);
}

Figure 3 IP Header Bit Fields (Source code courtesy of Bob Huff.)

Solution 5: Access the entire 8-bit value in its native char data type.
Access the value as a char data type and use a mask to access the bits of
each field. Table 6 shows how the bit mask and hex values are represented
for the four bits of the version field, V, and the 4 bits of the header length
field, L.

Copyright © 2010 Intel Corporation 14

Table 6 IP Header Bit Masks

Data Name and Bits Mask Value

Version field (V) bit mask 1111 0000
Version bit mask hex value 0xF0
Header Length field (L) bit mask 0000 1111
Header Length bit mask hex value 0x0F

Pointer Casts

Casting pointers changes the native meaning of the original data. Doing so
will affect which data is addressed.

Problem 6: If the native data pointer is a 32-bit pointer and is cast to a
byte pointer, depending on the endian architecture of the host, either the
first byte or the last byte will be pointed to.

Example 6: Casting pointers
Casting a pointer that stores the 32-bit value 0x11223344 to a byte pointer,
the big-endian system points to 0x11. The little-endian system points to
0x44.

Solution 6: Never change the native type of a pointer
Instead, get the data in its native data type format and use byte swapping
macros to access the bytes individually.

Native Data Types

Whenever data is accessed outside of its native data type, conflicts can
occur. It is important to note that this is true whether the size accessed is
smaller or larger than the native data type.

If data is read or written outside of its native format, then the endian format
of the shared data must be known and static. For example: if a big-endian
computer stores data to a file in big-endian format, a little-endian computer
must account for the endian difference and perform byte-swapping in order
to read the data correctly. Conversely, whenever the little-endian computer
writes data to that same file, it must perform byte-swapping to convert the
data back to big-endian format.

Table 7 shows the conversion action that is required when accessing data
outside of its native data type and on opposite endian architectures.

Copyright © 2010 Intel Corporation 15

Table 7 Data Type Conversion Actions

Native Data
Type Size

Size
Accessed

Conversion

short char Swap both bytes
long short Swap both shorts end for end
long char Swap bytes 0 and 3

Swap bytes 1 and 2
double long Swap both longs end for end
double short Swap bytes 0, 1 with 7, 6

Swap bytes 2, 3 with 5, 4
char short Never. Although this may be efficient for copies, it is not

a good programming practice.
short long Never. Although this may be efficient for copies, it is not

a good programming practice.
long double Never. Although this may be efficient for copies, it is not

a good programming practice.

Endian-Neutral Code

The goal of endian-neutral code is to provide one software source-set of files
that will work correctly no matter which processor endian architecture the
code is executed on, eliminating the need to rewrite the code. The way to
effectively achieve this goal is by identifying the memory and external data
interfaces of the system and then implementing the use of processor-
independent macros to perform the interface operations. These macros
automatically compile the appropriate code for the respective endian
architecture.

Endian-neutral code makes no assumptions of the underlying platform in its
implementation. Instead, it funnels all data and memory accesses through
wrappers that decide how the accesses should be made. The decision is
based on information that is defined during code compilation and specifies
which endian architecture the code is being compiled to support.

To convert endian-specific code to endian-neutral code, external interfaces
that use endian-specific code will need to be re-implemented using the
Endian-Neutral Coding Guidelines in the following section.

Endian-Neutral Coding Guidelines

Endian-neutral code can be achieved by identifying the external software
interfaces and following these endian-neutral coding practices to access the
interfaces.

Copyright © 2010 Intel Corporation 16

1. Data Storage and Shared Memory
Store data in a format that is not tied to endian architecture. Choices
include:

 Using a format that works for all architectures, such as text files
and strings, or XDR protocol.

 Specifying one endian format for the stored data and always
write the data in that format, or using a header that specifies the
endian format.

 Wrapping the data access with macros that understand the
endian format of the stored data as well as the native endian
format of the host processor. The macros will perform byte
swapping based on a difference in formats.

2. Byte Swap Macros
Use macros that serve as wrappers around all binary multi-byte data
interfaces.

3. Data Transfer
Use network I/O macros to read/write data from the network. The
macros will determine when byte swapping should occur based on
whether the format of the transferred data is in the native endian
format of the processor.

4. Data Types
Never access data outside of its native data type. Always read/write an
int as an int type as opposed to reading/writing four bytes. An
alternative is to use custom endian-neutral macros to access specific
bytes within a multi-byte data type. Lack of conformance to this
guideline will cause code compatibility problems between endian
architectures. Examples of data type usages that can cause issues
include:

 Unions
Never use unions to access the same data with dissimilar types.
See Platform Porting considerations.

 Byte Arrays
Never access multi-byte data as a byte array. See Platform
Porting considerations.

 Pointer and Variable Typecasts
Never use type casting to change the size of a pointer or
variable. See Platform Porting considerations.

5. Bit Fields
Never define bit fields across byte boundaries or smaller than 8 bits. If
it is necessary to access bit data that is not a full byte or on byte
boundaries, access the entire bit field in its native data type and use a
bit mask for the bits of each fields.

6. Bit Shifts

Copyright © 2010 Intel Corporation 17

Use the C language << and >> constructs to move byte positions of
binary multi-byte data.

7. Pointer Casts
Never cast pointers to change the size of the data pointed to.

8. Compiler Directives
Be careful when using compiler directives, such as those affecting
storage. Example; align and pack. Directives are not always portable
between compilers. The C language defined directives, such as
#include and #define, are okay. Use the #define directive to define
the platform endian architecture of the compiled code compilers.

For more information about endian architecture and migration issues, please
refer to the book Break Away with Intel® Atom™ Processors: A Guide to
Architecture Migration by Lori Matassa and Max Domeika.

About the Authors
Lori Matassa is a Sr. Staff Platform Software Architect in Intel’s Embedded
and Communications Division and holds a BS in Information Technology. She
has over 25 years experience as an embedded software engineer developing
software for platforms including mainframe and midrange computer system
peripherals, as well as security, storage, and embedded communication
devices. In recent years at Intel she has contributed to driver hardening
standards for Carrier Grade Linux, and has led the software enablement of
multi-core adoption and architecture migration for embedded and
communication applications. Lori is a key contributor to Intel’s Embedded
Design Center, with numerous whitepapers, blogs, and industry
contributions on a variety of topics critical to embedded migration.

Max Domeika is an embedded software technologist in the Developer
Products Division at Intel, creating tools targeting the Intel architecture
market. Over the past 14 years, Max has held several positions at Intel in
compiler development, which include project lead for the C++ front end and
developer on the optimizer and IA-32 code generator. Max currently
provides embedded tools consulting for customers migrating to Intel
architecture. In addition, he sets strategy and product plans for future
embedded tools. Max earned a BS in Computer Science from the University
of Puget Sound, an MS in Computer Science from Clemson University, and a
MS in Management in Science & Technology from Oregon Graduate
Institute. Max is the author of Software Development for Embedded Multi-
core Systems from Elsevier. In 2008, Max was awarded an Intel
Achievement Award for innovative compiler technology that aids in
architecture migrations.

Copyright © 2010 Intel Corporation 18

Copyright © 2010 Intel Corporation. All rights reserved.

This article is based on material found in book Break Away with Intel®
Atom™ Processors: A Guide to Architecture Migration by Lori Matassa and
Max Domeika. Visit the Intel Press web site to learn more about this book:
http://www.intel.com/intelpress/sum_ms2a.htm

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests
to the Publisher for permission should be addressed to the Publisher,
Intel Press, Intel Corporation, 2111 NE 25 Avenue, JF3-330, Hillsboro,
OR 97124-5961. E-mail: intelpress@intel.com .

