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Microprocessor Endian Architecture 
 
ABSTRACT: Endianness describes how multi-byte data is represented by a 
computer system and is dictated by the CPU architecture of the system. 
Unfortunately not all computer systems are designed with the same endian 
architecture. The difference in endian architecture is an issue when software 
or data is shared between computer systems. An analysis of the computer 
system and its interfaces will determine the requirements of the endian 
implementation of the software. This article explains endianness and its 
effect on code portability.  
 
 
Endian-Neutral Software 
 
Software is sometimes designed with a specific endian architecture in mind, 
limiting the portability of the code to other processor architectures. This type 
of implementation is considered to be endian-specific. However, endian-
neutral software can be developed, allowing the code to be ported easily 
between processors of different endian architectures, and without rewriting 
any code. Endian-neutral software is developed by identifying system 
memory and external data interfaces, and using endian-neutral coding 
practices to implement the interfaces. Platform migration requires 
consideration of the endian architecture of the current and target platforms, 
as well as the endian architecture of the code. 
 
Endian-specific code assumes the endianness of the underlying hardware. In 
a nutshell, the code is endian-specific if it contains the use of unions and 
type casting pointers to change the size of the data access, or does not use 
endian-neutral macros to access binary multi-byte data. 
 
For architecture migrations to Intel Atom processors, no endian updates are 
required if the source code involved in the architecture migration is designed 
as little-endian or endian-neutral. In fact, designing software that abstracts 
the OS and hardware is common practice in modern code bases. On the 
other hand, for the edge cases where the software design doesn’t provide 
the abstraction layers and is hardcoded as big-endian the code will need 
some amount of endian updates. 
 
This remainder of this section establishes a set of fundamental guidelines for 
software developers who wish to develop endian-neutral code or convert 
endian-specific code. These guidelines describe the software interface 
information that should be considered and how to convert endian-specific 
code to endian-neutral code. 
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Note: The examples in this section are based on 32-bit processor 
architecture. 
 
Analysis 
 
There are two main areas where endianness must be considered. One area 
pertains to code portability. The second area pertains to sharing data 
between platforms. 
 
Code Portability 
 
It is not uncommon for software to be designed and implemented for the 
endian architecture of a specific processor platform, without allowing for 
ease of portability to other platforms. 
 
Endian-neutral code provides flexibility for software implementations to be 
compiled for and operate seamlessly on processors of different endian 
architectures. 
 
Shared Data 
 
Computer systems are made up of multiple components, including 
computers, interfaces, data storage, and shared memory. Any time file data 
or memory is shared between computers, the potential for an endian 
architecture conflict exists. Data can be stored in ways that are not tied to 
endian architecture and also in ways that define the endianness of the data. 
 
Definition of Endianness 
 
Endianness is the byte order in which multi-byte data is stored in computer 
memory. It describes the location of the most significant byte (MSB) and 
least significant byte (LSB) of an address in memory. Endianness is dictated 
by the CPU architecture implementation of the system. The operating 
system does not dictate the endian model implemented; the endian model of 
the CPU architecture instead dictates how the operating system is 
implemented. 
 
Representing these two storage formats are two types of endian 
architecture, big-endian and little-endian. There are benefits to both of these 
endian architectures. See the section “Merits of Endian Architectures.” Big-
endian architecture stores the MSB at the lowest memory address. Little-
endian architecture stores the LSB at the lowest memory address. The 
lowest memory address of multi-byte data is considered the starting address 
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of the data. Table 1 depicts how the 32-bit hex value 0x12345678 is stored 
in memory for big-endian and little-endian architectures. The lowest memory 
address is represented in the leftmost position, byte 00. 
 
Table 1 Example of Memory Addressing for Big- and Little-endian 

Endian Order Byte 00 Byte 01 Byte 02 Byte 03 

Big-endian 12 34 56 78 (LSB) 
Little-endian 78 (LSB) 56 34 12 
 
As you can see in Table 1, the value of the stored multi-byte data field is the 
same for both types of endianness as long as the data is referenced in its 
native data type, in this case a long value. If this data field is referenced as 
individual bytes, the endianness of the data must be known. An unexpected 
difference in endianness will cause a computer system to interpret the data 
in the opposite direction, resulting in the wrong value. The difference can be 
correctly handled by implementing code that is aware of the endian 
architecture of the computer system as well as the endianness of the stored 
data. The details of handling the endian difference in code are thoroughly 
discussed in the section “Byte Swapping.” 
 
Merits of Endian Architectures 
 
You may see a lot of discussion about the relative merits of the two formats, 
mostly based on the relative merits of the PC. Both formats have their 
advantages and disadvantages. 
 
In little-endian form, assembly language instructions for picking up a 1, 2, 4, 
or longer byte number proceed in exactly the same way for all formats: first 
pick up the lowest order byte at offset 0. Also, because of the 1:1 
relationship between the address off set and byte number, offset 0 is byte 0, 
multiple precision math routines are correspondingly easy to write. 
 
In big-endian form, by having the high-order byte come first, you can 
always test whether the number is positive or negative by looking at the 
byte at off set zero. You don’t have to know how long the number is, nor do 
you have to skip over any bytes to find the byte containing the sign 
information. The numbers are also stored in the order in which they are 
printed out, so binary to decimal routines are particularly efficient. 
 
In the past embedded communication processors and custom solutions 
associated with the data plane have been designed on big-endian 
architectures. Because of this, legacy code on these processors is often 
written specifically for network byte order, which is big-endian format. 
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Table 2 lists several popular computer systems and their endian 
architectures. Note that some CPUs can be either big- or little-endian, 
referred to as bi-endian, by setting a processor register to the desired 
endian architecture. 
 
Table 2 Computer System Endianness 

Platform Endian Architecture 

ARM† Bi-endian 
DEC Alpha† Bi-endian 
HP PA-RISC 8000† Bi-endian 
IBM PowerPC† Bi-endian 
Intel® architecture Little-endian 
Intel® IXP network processors Bi-endian 
Intel® Itanium® processor family Bi-endian 
Java Virtual Machine† Big-endian 
MIPS† Bi-endian 
Motorola 68k† Big-endian 
Sun SPARC† Big-endian 
Sun SPARC V9† Bi-endian 

 
Relevance of Endian Order 
 
Endian order means that any time a computer accesses a stream, such as a 
network tap, local file, audio, video, or multimedia stream, the software 
needs to understand how the file is constructed. For example: if a graphics 
file, such as a .BMP file, which is little-endian format, is written out to a big-
endian machine, the byte order of each integer must first be reversed. 
Otherwise another standardized program will not be able to read the file. 
 
How can the opposing endian data be efficiently processed? A hardware 
solution doesn’t allow for variability in data since it expects either big-endian 
or little-endian formats. Also, hard-wired endian swapping typically won’t 
suffice for a large range of networks and protocols and many of these file 
formats are endian specific. Software byte swapping seems to be a viable 
method. Several different methods are available, and are described in the 
following sections. 
 
Byte Swapping 
 
Basically, anytime multi-byte data is imported or exported between 
computer systems, the format of the data must be standardized. If the data 
format is binary, the endianness of the data must be known by both 
computer systems. With this knowledge, the computer systems can decide, 
based on their own endian architecture, whether byte swapping must be 
performed on the data. Byte swap methods are developed to standardize the 
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access to the data. The byte swap methods of endian-neutral code use byte 
swap controls to determine whether a byte swap must be performed. 
 
Byte Swapping Methods 
 
Several methods are available for byte swapping. These methods perform 
the actual byte swapping of the given data. 

 Byte swapping macros provided by an operating system’s networking 
libraries include ntohl and ntohs, short for network-to-host long and 
network-to-host short. 

 Optimized custom byte swap macros. 
 Inline bswap macros. 
 Assembly language instructions such as rotate operand right (ror) or 

rotate operand left (rol). 
 Standard C library function swab can be used to swap two adjacent 

bytes. 
 A generic assembly language function implementing the same 

algorithm as the ntohl and ntohs macros. 
 
Network Input/Output Macros 
 
All communication protocols must define the endianness of the protocol so 
that there is a predefined agreement on how nodes at opposite ends know 
how to communicate. In the Transmission Control Protocol/Internet Protocol 
(TCP/IP) stack, each network host is identified by its 32-bit IP address, 
which is ordinarily displayed in the four numeric octets referred to as 
network byte order. TCP/IP defines the network byte order as big-endian 
and the IP header of a TCP/IP packet contains several multi-byte fields. 
Computers having little-endian architecture must reorder the bytes in the 
TCP/IP header information into big-endian format before transmitting the 
data and likewise need to reorder the TCP/IP information received into little-
endian format. 
 
Computers having big-endian architecture need to do nothing since their 
endian architecture is the same as TCP/IP. 
 
Network input/output (I/O) macros are standardized popular macros 
commonly available in network libraries and are commonly used to 
import/export TCP/IP packet header data, which is described below, in an 
endian-neutral manner. 

 Length: 2 bytes 
 ID: 2 bytes 
 Off set: 2 bytes 
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 Source: 4 bytes 
 Destination: 4 bytes 

 
Table 3 describes network I/O macros. The term host is used to refer to the 
processor’s endian architecture and the term network is used to refer to the 
TCP/IP endian architecture. Using these macros allows for the same code to 
work on a big-endian or little-endian processor. 
 
Table 3 Network I/O Macros 

Macro 
Name 

Translation  
(Can be read as…) 

Meaning 

htons() host to network short Converts the unsigned short integer hostshort 
from host byte order to network byte order. 

htonl() host to network long Converts the unsigned integer hostlong from 
host byte order to network byte order. 

ntohs() network to host short Converts the unsigned short integer netshort 
from network byte order to host byte order. 

ntohl() network to host long Converts the unsigned integer netlong from 
network byte order to host byte order. 

 
The byte swap performed for TCP/IP communication on little-endian 
processors adds performance overhead. However, this overhead can be 
recovered as the processor speed increases. See the section “Recovering 
Byte Swap Overhead.” 
 
Custom Byte Swap Macros 
 
Custom byte swap macros are used to wrap and standardize the code for 
accessing each data type. Table 4 shows examples of byte swap macros for 
each data size. 
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Table 4 Custom Byte Swap Macros 

Access 
Size 

Example Macro 
Name 

Macro Code 

16 bits 
 

SwapTwoBytes #include <stdio.h> 
 
#define SwapTwoBytes(data) \ 
( (((data) >> 8) & 0x00FF) | (((data) << 8) & 
0xFF00) ) 

32 bits 
 

SwapFourBytes #include <stdio.h> 
 
#define SwapFourBytes(data)   \ 
( (((data) >> 24) & 0x000000FF) | (((data) >>  8) 
& 0x0000FF00) | \ 
  (((data) <<  8) & 0x00FF0000) | (((data) << 24) 
& 0xFF000000) ) 

64 bits 
 

SwapEightBytes #include <stdio.h> 
 
#define SwapEightBytes(data)   \ 
( (((data) >> 56) & 0x00000000000000FF) | 
(((data) >> 40) & 0x000000000000FF00) | \ 
  (((data) >> 24) & 0x0000000000FF0000) | 
(((data) >>  8) & 0x00000000FF000000) | \ 
  (((data) <<  8) & 0x000000FF00000000) | 
(((data) << 24) & 0x0000FF0000000000) | \ 
  (((data) << 40) & 0x00FF000000000000) | 
(((data) << 56) & 0xFF00000000000000) )  

 
Byte Swap Controls 
 
Byte swap controls are used within byte swap methods to determine when 
byte swapping should be performed. In normal usage, the controls add byte 
swap code if byte swapping is required. If byte swapping is not required the 
control adds no code and thus, does nothing. Byte swapping can be 
controlled with the following mechanisms: 

 Compile-time controls 
 Runtime controls 

 
Compile-Time Controls 
 
Table 5 is an example of how the compiler preprocessor is used within data 
access wrappers to control whether or not byte swapping should be 
performed. Note that different code is compiled in based on the preprocessor 
definition. This example is defined by the compiler to work for both little-
endian and big-endian processors. 
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Table 5 Preprocessor Control 

Access Size Example Macro Names Macro Code 

16-bit big- 
endian data 

MY_RD_BE_SHORT 
MY_WRT_BE_SHORT 

#if CPU_ARCHITECTURE == BIG_ENDIAN 
/* Do nothing */ 
#else 
SwapTwoBytes (data) 
#endif 

16-bit little- 
endian data 

MY_RD_LE_SHORT 
MY_WRT_LE_SHORT 

#if CPU_ARCHITECTURE == BIG_ENDIAN 
SwapTwoBytes (data) 
#else 
/* Do nothing */ 
#endif 

32-bit big- 
endian data 

MY_RD_BE_LONG 
MY_WRT_BE_LONG 

#if CPU_ARCHITECTURE == BIG_ENDIAN 
/* Do nothing */ 
#else 
SwapFourBytes (data) 
#endif 

32-bit little- 
endian data 

MY_RD_LE_LONG 
MY_WRT_LE_LONG 

#if CPU_ARCHITECTURE == BIG_ENDIAN 
SwapFourBytes (data) 
#else 
/* Do nothing */ 
#endif 

64-bit big- 
endian data 

MY_RD_BE_DOUBLE 
MY_WRT_BE_DOUBLE 

#if CPU_ARCHITECTURE == BIG_ENDIAN 
/* Do nothing */ 
#else 
SwapEightBytes (data) 
#endif 

64-bit little- 
endian data 

MY_RD_LE_DOUBLE 
MY_WRT_LE_DOUBLE 

#if CPU_ARCHITECTURE == BIG_ENDIAN 
SwapEightBytes (data) 
#else 
/* Do nothing */ 
#endif 

 
Runtime Controls 
 
It is possible to detect the endian architecture of a processor using runtime 
code. Figure 1 shows an example of code that performs a runtime test that 
checks whether the code is running on a little- or big-endian system. This 
allows runtime code to dynamically perform endianness processing. 
 

 
 
union 
{ 
   char Array[4]; 
   long Chars; 
} TestUnion; 
 
char c = 'a'; 
 
/* Test platform Endianness */ 
for(x = 0; x < 4; x++) 
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   TestUnion.Array[x] = c++; 
 
if (TestUnion.Chars == 0x61626364) 
   /* It’s big endian */ 

 
Figure 1 Run-Time Byte Order Test (Source code example courtesy of Mark Sullivan, 
2004. Intel Corporation.) 
 
Recovering Byte Swap Overhead 
 
Overhead associated with byte swapping the fields in the IP header are 
miniscule compared to the actual propagation delay associated with even the 
fastest network transmission speeds available today. The byte-swapping 
overhead, though it undeniably exists, can be readily recovered, especially 
with the latest performance capabilities of today’s processors. Figure 2 
depicts a time exaggerated example of the overhead required for byte 
swapping, as well as the reduced processing time of current little-endian 
processors that recover the time. 
 

 
 

 
 

Figure 2 Example of Byte Swap Overhead and Recovery 
 
Figure 2 shows that some overhead is associated with swapping the bytes in 
the network headers. However, given a substantial increase in processor 
performance, the time associated with processing the byte swap required on 
the little-endian processor is recovered. 
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Platform Porting Considerations 
 
If the target application is currently running on a big-endian platform and 
the goal is to port to a little-endian platform, or vice versa, byte ordering 
may become an issue. For the most part, the byte ordering within a system 
is self-contained and therefore not affected by endianness. However, a few 
cases can result in porting problems, including the use of: 

 Data storage and shared memory 
 Data transfer 
 Data types: unions, byte arrays, bit fields and bit masks, pointer casts 

 
Data Storage and Shared Memory 
 
File system data and shared memory create a unique problem, because 
depending on the system design this type of data is accessible between 
platforms. 
 
Problem 1: The endian architecture of the platforms that access the data 
could be different. The format in which data is written to a file or shared 
memory must be understood by the reading application or the content will 
be misinterpreted by opposite endian architecture platforms. 
 
Example 1: Accessing data across platforms 
The big endian system writes the value 0x11223344. The little-endian 
system reads the value as 0x44332211. 
 
Solution 1.A: Store the data in an endian-neutral format 
For example: use text files with string data format, or the External Data 
Representation4 (XDR) protocol. XDR is a protocol governed by standards 
and formalizes a platform-independent way for computers to send data to 
each other. 
 
Solution 1.B: Specify the endian format 
Specify one endian format for the stored data and always write the data in 
that format. Then wrap the data access with macros that are aware of the 
endian format of the stored data as well as the native endian format of the 
host processor. The macros will perform byte swapping based on a 
difference in formats. 
 
Data Transfer 
 
Data transfer is the movement of data from one system to another across a 
specified transmission medium. 
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Problem 2: When transferring multi-byte data between big- and little-
endian systems, the data has to be manipulated to ensure the preservation 
of the true meaning of the data on both systems. When transferring multi-
byte data from a big-endian machine, the most significant byte will be in the 
leftmost position. When a little-endian system receives the data, however, 
the most significant byte will be in the rightmost position unless the bytes 
are swapped. 
 
Example 2: Transferring data between big-endian and little-endian 
systems 
The big-endian system transmits the value 0x11223344. The little-endian 
system receives the value as 0x44332211. 
 
Solution 2: Byte swap the data 
Whenever multi-byte data is transferred between big and little-endian 
systems, the bytes must be swapped in order to preserve the true meaning 
of the values. Use functions that swap the bytes like the network I/O macros 
to ensure the preservation of data in its true form on both big and little-
endian systems. 
 
Data Types 
 
The use of certain data types, such as unions, byte arrays, bit fields, bit 
masks, pointer casts, can create porting problems. 
 
Unions 
 
A union is a data type that may hold objects of different types and sizes, 
with the compiler keeping track of the size and alignment requirements. 
Objects of dissimilar types and sizes can only be held at different times. A 
union provides a way to manipulate different kinds of data in a single area of 
storage. 
 
Problem 3: Unions work fine for using the same memory to access different 
data. The key is to know what type of data exists in the memory before it is 
accessed. 
 
Example 3: Accessing the same data with different types 
Accessing the same data with different data types is not a valid use of 
unions and can cause endian issues. Although the code in Figure 1 suits the 
purpose for the runtime byte order test to check for the endianness of the 
machine, it is an example of an improper use of a union. Also, if data types 
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longer than 8 bits are united with a byte array, the data becomes byte order 
dependent. 
 
Solution 3: Always access the same data with the same data type 
Only use unions for their purpose of conserving space. Ensure that unions 
are not used to access the same data with different data types. 
 
Byte Arrays 
 
A byte array is a character array that is used to hold a specified number of 
bytes. The size of array is always equal to the number of bytes to hold. 
 
Problem 4: If data in the byte array is accessed outside of its native data 
type, the data becomes byte order dependent. 
 
Example 4: Array initialized as a list of characters 
An array that is initialized with a list of characters will be read as different 
values between little-endian and big-endian platforms. A byte array is 
initialized as “abcd”. Accessing this array as a long data type on a little-
endian platform results in the value 0x64636261. On a big-endian platform 
it results in the value 0x61626364. 
 
Solution 4: Avoid accessing byte arrays outside of the byte data 
type. 
Accessing data outside of its natural data type breaks endian neutral code. 
Always access byte arrays as byte values. 
 
Bit Fields and Bit Masks 
 
Bit operations are endian sensitive. Even a bit field defined within a single 
byte is endian sensitive. Code that defines bit fields is subject to endianness 
conflicts when porting the code to an opposite endian platform. 
 
Problem 5: In the following example, the network protocol IP header 
contains a bit field defined within a single byte. There are two fields within 
the definition, each four bits long, which is a bit length also referred to as 
nibbles. Code that sets the value of these nibbles, iphdr.ver = 4, and 
iphdr.ihl = 7, will get different results if the bit field data is accessed as a 
byte. The result of the data read as a byte on the big-endian machine is 
0x47, whereas the result of the data read as a byte on the little-endian 
machine is 0x74. 
 
Also, if the data is set as a byte value, say 0x74, on the little-endian 
machine, the result of the data read as nibbles on the little-endian machine 
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is a value of 4 for iphdr.ver field, and a value of 7 for iphdr.ihl field. On 
the big-endian machine the results would be a value of 7 for the iphdr.ver 
field, and a value of 4 for the iphdr.ihl field. 
 
Example 5: IP Header Bit Fields 
The code in Figure 3 illustrates how bit fields are susceptible to endian 
issues. The code purposefully incorrectly sets the value for the IP header 
version using bit fields, and then reads the data as a byte. Th e value of the 
IP header version will be 0x47 on a big-endian machine, or 0x74 on a little-
endian machine. 
 

 
 
struct  
{ 
   char ver:4, 
   ihl:4; 
} iphdr; 
 
/* 
 * A packet header may utilize bit fields. Bit order 
 * within a byte is determined by the byte order of the 
 * processor. In this example we modify two nibbles of an 
 * IP header and then access later as a byte. 
*/ 
char ipbyte; 
iphdr.ver = 0x4;  
iphdr.ihl = 0x7; 
ipbyte = *(char *)&iphdr; 
 
if (ipbyte == 0x47) 
{ 
   printf (“Big Endian\n”); 
} 
else if (ipbyte == 0x74) 
{ 
   printf (“Little Endian\n”); 
} 

 
Figure 3 IP Header Bit Fields (Source code courtesy of Bob Huff.) 
 
Solution 5: Access the entire 8-bit value in its native char data type. 
Access the value as a char data type and use a mask to access the bits of 
each field. Table 6 shows how the bit mask and hex values are represented 
for the four bits of the version field, V, and the 4 bits of the header length 
field, L. 
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Table 6 IP Header Bit Masks 

Data Name and Bits Mask Value 

Version field (V) bit mask 1111 0000 
Version bit mask hex value 0xF0 
Header Length field (L) bit mask 0000 1111 
Header Length bit mask hex value 0x0F 

 
Pointer Casts 
 
Casting pointers changes the native meaning of the original data. Doing so 
will affect which data is addressed. 
 
Problem 6: If the native data pointer is a 32-bit pointer and is cast to a 
byte pointer, depending on the endian architecture of the host, either the 
first byte or the last byte will be pointed to. 
 
Example 6: Casting pointers 
Casting a pointer that stores the 32-bit value 0x11223344 to a byte pointer, 
the big-endian system points to 0x11. The little-endian system points to 
0x44. 
 
Solution 6: Never change the native type of a pointer 
Instead, get the data in its native data type format and use byte swapping 
macros to access the bytes individually. 
 
Native Data Types 
 
Whenever data is accessed outside of its native data type, conflicts can 
occur. It is important to note that this is true whether the size accessed is 
smaller or larger than the native data type. 
 
If data is read or written outside of its native format, then the endian format 
of the shared data must be known and static. For example: if a big-endian 
computer stores data to a file in big-endian format, a little-endian computer 
must account for the endian difference and perform byte-swapping in order 
to read the data correctly. Conversely, whenever the little-endian computer 
writes data to that same file, it must perform byte-swapping to convert the 
data back to big-endian format. 
 
Table 7 shows the conversion action that is required when accessing data 
outside of its native data type and on opposite endian architectures. 
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Table 7 Data Type Conversion Actions 

Native Data  
Type Size 

Size  
Accessed 

Conversion 

short char Swap both bytes 
long short Swap both shorts end for end 
long char Swap bytes 0 and 3 

Swap bytes 1 and 2 
double long Swap both longs end for end 
double short Swap bytes 0, 1 with 7, 6 

Swap bytes 2, 3 with 5, 4 
char short Never. Although this may be efficient for copies, it is not 

a good programming practice. 
short long Never. Although this may be efficient for copies, it is not 

a good programming practice.  
long double Never. Although this may be efficient for copies, it is not 

a good programming practice.  
 
 
Endian-Neutral Code 
 
The goal of endian-neutral code is to provide one software source-set of files 
that will work correctly no matter which processor endian architecture the 
code is executed on, eliminating the need to rewrite the code. The way to 
effectively achieve this goal is by identifying the memory and external data 
interfaces of the system and then implementing the use of processor-
independent macros to perform the interface operations. These macros 
automatically compile the appropriate code for the respective endian 
architecture. 
 
Endian-neutral code makes no assumptions of the underlying platform in its 
implementation. Instead, it funnels all data and memory accesses through 
wrappers that decide how the accesses should be made. The decision is 
based on information that is defined during code compilation and specifies 
which endian architecture the code is being compiled to support. 
 
To convert endian-specific code to endian-neutral code, external interfaces 
that use endian-specific code will need to be re-implemented using the 
Endian-Neutral Coding Guidelines in the following section. 
 
Endian-Neutral Coding Guidelines 
 
Endian-neutral code can be achieved by identifying the external software 
interfaces and following these endian-neutral coding practices to access the 
interfaces. 
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1. Data Storage and Shared Memory 
Store data in a format that is not tied to endian architecture. Choices 
include: 

 Using a format that works for all architectures, such as text files 
and strings, or XDR protocol. 

 Specifying one endian format for the stored data and always 
write the data in that format, or using a header that specifies the 
endian format. 

 Wrapping the data access with macros that understand the 
endian format of the stored data as well as the native endian 
format of the host processor. The macros will perform byte 
swapping based on a difference in formats. 

2. Byte Swap Macros 
Use macros that serve as wrappers around all binary multi-byte data 
interfaces. 

3. Data Transfer 
Use network I/O macros to read/write data from the network. The 
macros will determine when byte swapping should occur based on 
whether the format of the transferred data is in the native endian 
format of the processor. 

4. Data Types 
Never access data outside of its native data type. Always read/write an 
int as an int type as opposed to reading/writing four bytes. An 
alternative is to use custom endian-neutral macros to access specific 
bytes within a multi-byte data type. Lack of conformance to this 
guideline will cause code compatibility problems between endian 
architectures. Examples of data type usages that can cause issues 
include: 

 Unions 
Never use unions to access the same data with dissimilar types. 
See Platform Porting considerations. 

 Byte Arrays 
Never access multi-byte data as a byte array. See Platform 
Porting considerations. 

 Pointer and Variable Typecasts 
Never use type casting to change the size of a pointer or 
variable. See Platform Porting considerations. 

5. Bit Fields 
Never define bit fields across byte boundaries or smaller than 8 bits. If 
it is necessary to access bit data that is not a full byte or on byte 
boundaries, access the entire bit field in its native data type and use a 
bit mask for the bits of each fields. 

6. Bit Shifts 
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Use the C language << and >> constructs to move byte positions of 
binary multi-byte data. 

7. Pointer Casts 
Never cast pointers to change the size of the data pointed to. 

8. Compiler Directives 
Be careful when using compiler directives, such as those affecting 
storage. Example; align and pack. Directives are not always portable 
between compilers. The C language defined directives, such as 
#include and #define, are okay. Use the #define directive to define 
the platform endian architecture of the compiled code compilers. 

 
 
 
For more information about endian architecture and migration issues, please 
refer to the book Break Away with Intel® Atom™ Processors:  A Guide to 
Architecture Migration by Lori Matassa and Max Domeika. 
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