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Today: Bits, Bytes, and Integers

n
N
m Integers
= Representation: unsigned and signed
|
|
|
|
n
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15



Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w-1 i w=2 )
B2UX) = Yx -2 B2T(X) = -x,,2" "+ Yx 2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| c4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative
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Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768
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Numeric Ranges

m Unsigned Values

m Two’s Complement Values

| 1 =
U’(‘)ﬁ’g ; 0 = TMin =  —2w!
100...0
| - w_
UMax 2" " TMax =  2%i-1
111..1 011..1
m Other Values
" Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 00OOOOOOO
-1 -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 0OOOOOOOO
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Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = f#include <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific
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Unsignhed & Signed Numeric Values

X B2U(X B2T(X
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 —6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 -1
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m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m => Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

20
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Today: Bits, Bytes, and Integers

u
u
m Integers
o
= Conversion, casting
o
o
0
N
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Mapping Between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7 B2U > UX

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

ux *[U2B [ B2T > X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret
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Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 —JT20— 5
0110 6 6
0111 7 2T 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
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Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 4 H 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
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Relation between Sighed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7’ B2U > UX

Maintain Same Bit Pattern

w—1 0
ux [+[+I+ eeo  [+[+[+

x [+ cee  [+[+[+

Large negative weight
becomes
Large positive weight
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Conversion Visualized

m 2’s Comp. — Unsigned
= QOrdering Inversion ® UMax
® UMax—-1

= Negative — Big Positive

_ ° ﬁ. TMax + 1 | unsigned
TMax ® TMax Range

2’s Complement ® -®
Range _2 .J/ 0 )

—2

_TMin
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Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;
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Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation

0 ou == unsigned

-1 0 < signed

-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned

-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed
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Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29



Carnegie Mellon

Today: Bits, Bytes, and Integers

n
N
m Integers
o
o
= Expanding, truncating
o
o
n
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Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

l —
B X = Xpyq e Xpye1r Xpe1 2 Xy o000 Xg

k copies of MSB < w >
o 00
X, o0 0 ()

<€ k > € " >
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Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
vy -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension
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Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
" Unsigned: mod operation
= Signed: similar to mod

= For small numbers yields expected behavior
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Today: Bits, Bytes, and Integers

O
O
m Integers
¥
o
o
= Addition, negation, multiplication, shifting
O
O
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Unsigned Addition

Operands: w bits u se e

+ VvV o000
True Sum: w+1 bits U+ —
Discard Carry: w bits ~ UAdd, (u , V) Y

m Standard Addition Function
" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,(u, V) = u+v mod2%
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Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bitintegers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

® Forms planar surface
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Visualizing Unsigned Addition

m Wraps Around Overflow
\

" |f true sum = 2%

= At most once

True Sum

2W+1“ Overflow
» "_LT
o -

Modular Sum
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Two’s Complement Addition

Operands: w bits u L
+ V o0 0

True Sum: w+1 bits
u-+v XK
Discard Carry: w bits TAdd (u ,v) (XX

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s ==
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TAdd Overflow

m Functionality True Sum
" True sum requires w+1 0111.1 2v-1 T
bits o2 TAdd Result
= Drop off MSB 0100..0 2w-1-1 + T o011.1
® Treat remaining bits as
2’s comp. integer 0000..0 0 T T 000..0
1011..1 _ow-1 4 L oo
1 000...0 _ow L1 NegOver
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Visualizing 2’s Complement Addition

NegOver

m Values
= 4-bit two’s comp.
= Range from -8 to +7
m Wraps Around
= |f sum = 2w
= Becomes negative
= At most once
" |f sum < -2w-1
= Becomes positive
= At most once

u 6 - PosOver
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Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w—-w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (=2w1)*(2w1-1) = —22w=24 2wl
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (—2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition M



Carnegie Mellon

Unsigned Multiplication in C

I/t o 00
Operands: w bits
* o000
\%
True Product: 2*w bitsit = V K Xy
UMult, (u , v) o

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic

UMult (u,v)= u -v mod 2%
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Signed Multiplication in C

u o 00
Operands: w bits
%* o000
\%
True Product: 2*w bitsid * V ° 00 ° 00
TMUltw(u R V) o0 0

Discard w bits: w bits

m Standard Multiplication Function
" |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= |Lower bits are the same
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Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
Operands: w bits " —
* Nk |0] eee |0]1]0] eee [0]O
True Product: w+k bits u * 2% coe 0] eee [0]0
Discard k bits: w bits UMult, (u , 2%) 0o 0| eee |0l0]

TMult, (u , 2%)
m Examples

" u << 3 == u * 8

" (u<<K b)) - (u<K 3)== u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u >> kgives |u / 2]
= Uses logical shift

k
o 4 u AL AL Binary Point
erands:

p l 2k _O 'YX ) OI]_IO (Y X (ﬂg /
Division: u/2k 1ol eee Jolo e T T
Result: | /2] Lol e« lolo AL

Division [ Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x >> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 [ 59.4257813 59 00 3B| 00000000 00111011
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Today: Bits, Bytes, and Integers

u
u
m Integers
" Summary
N
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Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

" Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)
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Why Should | Use Unsignhed?

m Don’t use without understanding implications
= Easy to make mistakes
unsigned 1i;
for (i = cnt-2; i >= 0; i--)
af[i] += a[i+l1];

® Can be very subtle
#define DELTA sizeof (int)
int 1;
for (1 = CNT,; i-DELTA >= 0; i-= DELTA)
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Counting Down with Unsigned

m Proper way to use unsigned as loop index

unsigned 1i;

for (i = cnt-2; i < cnt; i--)

af[i] += a[i+1];
m See Robert Seacord, Secure Coding in C and C++
= (C Standard guarantees that unsigned addition will behave like modular
arithmetic
= 0—1 -2 UMax

m Even better
size t i;
for (i = cnt-2; i < cnt; i--)
af[i] += a[i+l];
" Datatype size t defined as unsigned value with length = word size
= Code will work even if ent = UMax

= Whatif ent is sighed and < 0?
49
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Why Should I Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

" Logical right shift, no sign extension
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Integer C Puzzles

- x <0 = ((x*2) < 0)
cux >= 0
X &7 =17 = (x<<30) < 0
c ux > -1
* X >y = -X < -y
X * x>0
Initialization *x>0688y>0 = x+y>0
- + x >= 0 = -x <=0
int x = foo(); . x <= 0 o —x >= 0
int y = bar(); « (x|-x)>>31 == -1
unsigned ux = x; * ux >> 3 == ux/8
unsigned uy = y; * x >> 3 == x/8

x & (x-1) '=0
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Bonus extras

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64



Carnegie Mellon

Binary Number Property

Claim
1+14+2+4+8+...+2Ww1=2w
w-1 .
1+Ezl =
=0
m w=0:
| 1=20
m Assume true for w-1:
" 14+14+2+4+8+ .. +271+2W = w4 W = wH
\ J
|
— ZW
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Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

~X + 1 == -x

m Complement
® QObservation: ~x + x == 1111..111 == -1

x |110]0]1{1]1{0]1
+ ~x |0{1]1]0]0]0f1]0

m Complete Proof?
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Complement & Increment Examples

x =15213
Decimal| Hex Binary

X 15213| 3B 6D| 00111011 01101101

~X -15214| C4 92( 11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011

y -15213| C4 93| 11000100 10010011
x=0

Decimal | Hex Binary

0 0| 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74



Carnegie Mellon

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

= Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 84



Carnegie Mellon

Properties of Unsighed Arithmetic

m Unsigned Multiplication with Addition Forms
Commutative Ring

= Addition is commutative group

Closed under multiplication
0 =UMult,(u,v) = 2¥-1
= Multiplication Commutative
UMult (u, v) = UMult (v, u)
= Multiplication is Associative
UMult, (t, UMult (u, v)) = UMult, (UMult,(t, u), v)
= 1 is multiplicative identity
UMult (u, 1) = u
= Multiplication distributes over addtion
UMult (t, UAdd,(u, v)) = UAdd, (UMult,(t, u), UMult,(t, v))
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Properties of Two’s Comp. Arithmetic

m Isomorphic Algebras
" Unsigned multiplication and addition
= Truncating to w bits
" Two’s complement multiplication and addition

= Truncating to w bits

m Both Form Rings
" |somorphic to ring of integers mod 2%

m Comparison to (Mathematical) Integer Arithmetic

= Both are rings

" |ntegers obey ordering properties, e.g.,
u>0 = U+v>v
u>0,v>0 = u-v>0

" These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)
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