
Computer Systems Organization 

Mohamed Zahran (aka Z) 

mzahran@cs.nyu.edu 

http://www.mzahran.com 

CSCI-UA.0201-003 

Lecture 2-3: C Programming 

Many slides of this lecture are adapted from Lewis Girod, CENS Systems Lab 
http://lecs.cs.ucla.edu/~girod/talks/c-tutorial.ppt 
and Clark Barrett 



Brian Kernighan Dennis Ritchie 

In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the 
publication of The C Programming Language by Kernighan & 
Ritchie caused a revolution in the computing world 



Why C? 

• Mainly because it produces code that runs nearly as 
fast as code written in assembly language. Some 
examples of the use of C might be:  
– Operating Systems  
– Language Compilers  
– Assemblers  
– Text Editors  
– Print Spoolers  
– Network Drivers  
– Modern Programs  
– Data Bases  
– Language Interpreters  
– Utilities  

 



Your first goal: Learn C!  

• Resources 
– KR book: “The C Programming Language” 
– This week’s lectures 
– Additional online resources linked from website 

 
• Learning a Programming Language 

– The best way to learn is to write programs 
– Start using the virtual machine environment to play 

with C 
– Work your way through examples from lectures, KR, 

and/or additional online tutorials 
– Once you are comfortable writing simple programs in C, 

take a look at Lab 1 





Writing and Running Programs 
#include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

1. Write text of program (source code) using an editor such 
as emacs, save as file e.g. my_program.c 

2. Run the compiler to convert program from source to an 
“executable” or “binary”:   
       $ gcc –Wall –g my_program.c –o my_program 

my_program 

$ gcc -Wall –g my_program.c –o my_program 

tt.c: In function `main': 

tt.c:6: parse error before `x' 

tt.c:5: parm types given both in parmlist and separately 

tt.c:8: `x' undeclared (first use in this function) 

tt.c:8: (Each undeclared identifier is reported only once 

tt.c:8: for each function it appears in.) 

tt.c:10: warning: control reaches end of non-void function 

tt.c: At top level: 

tt.c:11: parse error before `return' 

3-N. Compiler gives errors and warnings; edit source file, fix 
it, and re-compile 

N. Run it and see if it works  
      $ ./my_program 
      Hello World 
      $ ▌ 

-Wall –g ?  

. / ?  

What if it doesn’t work? 



About C 

• Hardware independent 
• Programs portable to most computers 
• Case-sensitive 
• Four stages 

– Editing: Writing the source code by using some IDE or 
editor 

– Preprocessing or libraries: Already available routines    
– compiling: translates or converts source to object code 

for a specific platform    source code -> object 
code 

– linking:   resolves external references and produces the 
executable module  

 



C Syntax and Hello World 

#include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

The main() function is always 
where your program starts 
running.   

#include inserts another file.  “.h” files are called “header” 
files.  They contain stuff needed to interface to libraries and 
code in other “.c” files.  

This is a comment.  The compiler ignores this. 

Blocks of code (“lexical scopes”) 
are marked by { … } 

Print out a message. ‘\n’ means “new line”. Return ‘0’ from this function  

What do the < > 
mean? 

Can your program have 
more than one .c file? 



A Quick Digression About the 
Compiler #include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

my_program 

__extension__ typedef  unsigned long long int   __dev_t; 

__extension__ typedef  unsigned int   __uid_t; 

__extension__ typedef  unsigned int   __gid_t; 

__extension__ typedef  unsigned long int   __ino_t; 

__extension__ typedef  unsigned long long int   __ino64_t; 

__extension__ typedef  unsigned int   __nlink_t; 

__extension__ typedef  long int   __off_t; 

__extension__ typedef  long long int   __off64_t; 

extern void flockfile (FILE *__stream)  ; 

extern int ftrylockfile (FILE *__stream)  ; 

extern void funlockfile (FILE *__stream)  ; 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

Compilation occurs in two steps: 
“Preprocessing” and “Compiling” 

In Preprocessing, source code is “expanded” into a 
larger form that is simpler for the compiler to 
understand.  Any line that starts with ‘#’ is a line that is 
interpreted by the Preprocessor. 
 
• Include files are “pasted in” (#include) 
• Macros are “expanded” (#define) 
• Comments are stripped out ( /*  */ , // ) 
• Continued lines are joined ( \ ) 

Preprocess 

Compile 

The compiler then converts the resulting text into 
binary code the CPU can run directly. 



OK, We’re Back.. What is a Function? 

#include <stdio.h> 

/* The simplest C Program */ 

int main(int argc, char **argv) 

{ 

  printf(“Hello World\n”); 

  return 0; 

} 

Function Arguments 

Return type, or void 

Calling a Function: “printf()” is just another 
function, like main().  It’s defined for you in a 
“library”, a collection of functions you can 
call from your program. 

A Function is a series of instructions to run.  You pass 
Arguments to a function and it returns a Value. 

“main()” is a Function. It’s only special because it always 
gets called first when you run your program. 

Returning a value 



What is “Memory”? 
Memory is like a big table of numbered slots 
where bytes can be stored. 

Addr Value 

0 

1 

2 

3 

4 ‘H’ (72) 

5 ‘e’ (101) 

6 ‘l’ (108) 

7 ‘l’ (108) 

8 ‘o’ (111) 

9 ‘\n’ (10) 

10 ‘\0’ (0) 

11 

12 

The number of a slot is its Address. 
One byte Value can be stored in each slot. 

Some “logical” data values span more than one 
slot, like the character string “Hello\n” 

A Type names a logical meaning to a span of 
memory.  Some simple types are: 

char  
char [10] 
int 
float 
int64_t 

a single character (1 slot) 
an array of 10 characters 
signed 4 byte integer 
4 byte floating point 
signed 8 byte integer 

not always… 



What is a Variable? 

char x; 
char y=‘e’; 

A Variable names a place in memory where you 
store a Value of a certain Type. 

Symbol Addr Value 

0 

1 

2 

3 

x 4 ? 

y 5 ‘e’ (101) 

6 

7 

8 

9 

10 

11 

12 

You first Define a variable by giving it a name 
and specifying the type, and optionally an 
initial value declare vs define? 

Type is single character (char) 

extern? static? const? 

Name 

Initial value 

Initial value of x is undefined 

The compiler puts them 
somewhere in memory. 



Multi-byte Variables 

char x; 
char y=‘e’; 
int z = 0x01020304;  

Different types consume different amounts of 
memory.  Most architectures store data on 
“word boundaries”, or even multiples of the 
size of a primitive data type (int, char) 

Symbol Addr Value 

0 

1 

2 

3 

x 4 ? 

y 5 ‘e’ (101) 

6 

7 

z 8 4 

9 3 

10 2 

11 1 

12 

0x means the constant is 
written in hex 

An int consumes 4 bytes 

padding 



      Lexical Scoping 
Every Variable is Defined within some scope.  A 
Variable cannot be referenced by name (a.k.a. 
Symbol) from outside of that scope. 

The scope of Function Arguments is the 
complete body of the function. 

void p(char x) 
{ 
            /* p,x */ 
  char y; 
            /* p,x,y */ 
  char z; 
            /* p,x,y,z */ 
} 
            /* p */ 
char z; 
            /* p,z */ 
 
void q(char a) 
{ 
  char b; 
            /* p,z,q,a,b */ 
 
  { 
    char c; 
            /* p,z,q,a,b,c */ 
  } 
 
  char d; 
  /* p,z,q,a,b,d (not c) */ 
} 
 
/* p,z,q */ 

(Returns nothing) 

The scope of Variables defined inside a 
function starts at the definition and ends at the 
closing brace of the containing block 

Lexical scopes are defined with curly braces { }. 

The scope of Variables defined outside a 
function starts at the definition and ends at the 
end of the file. Called “Global” Vars. 

legal? 

char b? 



Expressions and Evaluation 
Expressions combine Values using Operators, according to precedence. 

1 + 2 * 2       1 + 4       5 
(1 + 2) * 2     3 * 2       6 

Symbols are evaluated to their Values before being combined. 

int x=1; 
int y=2; 
x + y * y       x + 2 * 2      x + 4      1 + 4      5 

Comparison operators are used to compare values.   
In C, 0 means “false”, and any other value means “true”. 

int x=4; 
(x < 5)                  (4 < 5)               <true> 
(x < 4)                  (4 < 4)               0 
((x < 5) || (x < 4))     (<true> || (x < 4))   <true> 

Not evaluated because 
first clause was true 



Precedence 

• Highest to lowest 
• () 

• *, /, % 

• +, - 

 



Comparison and Mathematical Operators 

== equal to 
<  less than 
<= less than or equal 
>  greater than 
>= greater than or equal 
!= not equal 
&& logical and 
|| logical or 
!  logical not 

+  plus 
-  minus 
*  mult 
/  divide  
%  modulo 

The rules of precedence are clearly 
defined but often difficult to remember or 
non-intuitive.  When in doubt, add 
parentheses to make it explicit.  For oft-
confused cases, the compiler will give you 
a warning “Suggest parens around …” – do 
it! 

Beware division: 
• If second argument is integer, the  
  result will be integer (rounded): 
    5 / 10  0 whereas 5 / 10.0  0.5 
• Division by 0 will cause a FPE 

&  bitwise and 
|  bitwise or 
^  bitwise xor 
~  bitwise not 
<< shift left 
>> shift right 

Don’t confuse & and &&..  
1 & 2  0 whereas 1 && 2  <true> 



Assignment Operators 
x = y   assign y to x 
x++     post-increment x 
++x     pre-increment x 
x--     post-decrement x 
--x     pre-decrement x 

Note the difference between ++x and x++: 

Don’t confuse = and ==!  The compiler will warn “suggest parens”.  

int x=5; 
int y; 
y = ++x; 
/* x == 6, y == 6 */ 

int x=5; 
int y; 
y = x++; 
/* x == 6, y == 5 */ 

int x=5; 
if (x=6)   /* always true */  
{ 
  /* x is now 6 */ 
} 
/* ... */ 

int x=5; 
if (x==6)   /* false */ 
{ 
  /* ... */ 
} 
/* x is still 5 */ 

x += y  assign (x+y) to x 
x -= y  assign (x-y) to x 
x *= y  assign (x*y) to x 
x /= y  assign (x/y) to x 
x %= y  assign (x%y) to x 



A More Complex Program: pow 
#include <stdio.h> 
#include <inttypes.h> 
 
float pow(float x, uint32_t exp) 
{ 
  /* base case */ 
  if (exp == 0) { 
    return 1.0; 
  } 
 
  /* “recursive” case */ 
  return x*pow(x, exp – 1); 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(10.0, 5); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

Tracing “pow()”:  
• What does pow(5,0) do? 
• What about pow(5,1)? 

“if” statement 

/* if evaluated expression is not 0 */ 
if (expression) { 
  /* then execute this block */ 
} 
else { 
  /* otherwise execute this block */ 
} 

Need braces? 

X ? Y : Z 



The “Stack” 

float x 5.0 

uint32_t exp 1 

20 

Recall lexical scoping.  If a variable is valid 
“within the scope of a function”, what happens 
when you call that function recursively? Is there 
more than one “exp”? 

#include <stdio.h> 
#include <inttypes.h> 
 
float pow(float x, uint32_t exp) 
{ 
  /* base case */ 
  if (exp == 0) { 
    return 1.0; 
  } 
 
  /* “recursive” case */ 
  return x*pow(x, exp – 1); 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(5.0, 1); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

Yes. Each function call allocates a “stack frame” 
where Variables within that function’s scope will 
reside. 

float x 5.0 

uint32_t exp 0 

int argc 1 

char **argv 0x2342 

float p undefined 

Return 1.0 

Return 5.0 

int argc 1 

char **argv 0x2342 

float p 5.0 
Grows 



Iterative pow(): the “while” loop 
Problem: “recursion” eats stack space (in C).  Each 
loop must allocate space for arguments and local 
variables, because each new call creates a new 
“scope”. 

float pow(float x, uint exp) 
{ 
  int i=0; 
  float result=1.0; 
  while (i < exp) { 
    result = result * x; 
    i++; 
  } 
  return result; 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(10.0, 5); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

Solution: “while” loop. 

loop: 
  if (condition) { 
    statements; 
    goto loop; 
  } 

while (condition) { 
  statements; 
} 



The “for” loop 

float pow(float x, uint exp) 
{ 
  float result=1.0; 
  int i; 
  for (i=0; (i < exp); i++) { 
    result = result * x; 
  } 
  return result; 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(10.0, 5); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

float pow(float x, uint exp) 
{ 
  float result=1.0; 
  int i; 
  i=0; 
  while (i < exp) { 
    result = result * x; 
    i++; 
  } 
  return result; 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(10.0, 5); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

The “for” loop is just shorthand for this “while” loop structure. 



Referencing Data from Other 
Scopes 

So far, all of our examples all of the data values we have used have 
been defined in our lexical scope 

float pow(float x, uint exp) 
{ 
  float result=1.0; 
  int i; 
  for (i=0; (i < exp); i++) { 
    result = result * x; 
  } 
  return result; 
} 
 
int main(int argc, char **argv) 
{ 
  float p; 
  p = pow(10.0, 5); 
  printf(“p = %f\n”, p); 
  return 0; 
} 

Nothing in this scope 

Uses any of these variables 



Can a function modify its 
arguments? 

What if we wanted to implement a function pow_assign() that 
modified its argument, so that these are equivalent: 

float p = 2.0; 
/* p is 2.0 here */ 
pow_assign(p, 5); 
/* p is 32.0 here */ 

float p = 2.0; 
/* p is 2.0 here */ 
p = pow(p, 5); 
/* p is 32.0 here */ 

void pow_assign(float x, uint exp) 
{ 
  float result=1.0; 
  int i; 
  for (i=0; (i < exp); i++) { 
    result = result * x; 
  } 
  x = result; 
} 

Would this work? 



NO! 

void pow_assign(float x, uint exp) 
{ 
  float result=1.0; 
  int i; 
  for (i=0; (i < exp); i++) { 
    result = result * x; 
  } 
  x = result; 
} 
 
{ 
  float p=2.0; 
  pow_assign(p, 5); 
} 

Remember the stack! 

float x 2.0 

uint32_t exp 5 

float result 1.0 

float p 2.0 Grows 

float x 2.0 

uint32_t exp 5 

float result 32.0 

float x 32.0 

uint32_t exp 5 

float result 32.0 

In C, all arguments are passed 
as values 

But, what if the argument is 
the address of a variable?  



Passing Addresses 
Recall our model for variables stored in 
memory 

Symbol Addr Value 

0 

1 

2 

3 

char x 4 ‘H’ (72) 

char y 5 ‘e’ (101) 

6 

7 

8 

9 

10 

11 

12 

What if we had a way to find out the 
address of a symbol, and a way to 
reference that memory location by 
address? 

address_of(y) == 5 
memory_at[5] == 101 

void f(address_of_char p) 
{ 
  memory_at[p] = memory_at[p] - 32; 
} 

char y = 101;      /* y is 101 */ 
f(address_of(y));  /* i.e. f(5) */  
/* y is now 101-32 = 69 */ 



“Pointers” 
This is exactly how “pointers” work. 

“address of” or reference operator:  & 
“memory_at” or dereference operator: *    

void f(char * p) 
{ 
  *p = *p - 32; 
} 

char y = 101;      /* y is 101 */ 
f(&y);             /* i.e. f(5) */  
/* y is now 101-32 = 69 */ 

void f(address_of_char p) 
{ 
  memory_at[p] = memory_at[p] - 32; 
} 

char y = 101;      /* y is 101 */ 
f(address_of(y));  /* i.e. f(5) */  
/* y is now 101-32 = 69 */ 

A “pointer type”: pointer to char 

Pointers are used in C for many other purposes: 
• Passing large objects without copying them 
• Accessing dynamically allocated memory 
• Referring to functions 



Pointer Validity 
A Valid pointer is one that points to memory that your program controls.  
Using invalid pointers will cause non-deterministic behavior, and will often 
cause Linux to kill your process (SEGV or Segmentation Fault).  

There are two general causes for these errors: 
• Program errors that set the pointer value to a strange number 
• Use of a pointer that was at one time valid, but later became invalid 

char * get_pointer() 
{ 
  char x=0; 
  return &x; 
} 
 
{ 
  char * ptr = get_pointer(); 
  *ptr = 12;  /* valid? */ 
} 

Will ptr be valid or invalid? 



Answer: Invalid! 
A pointer to a variable allocated on the stack becomes invalid when that 
variable goes out of scope and the stack frame is “popped”.  The pointer will 
point to an area of the memory that may later get reused and rewritten. 

100 char * ptr ? Grows 

char * get_pointer() 
{ 
  char x=0; 
  return &x; 
} 
 
{ 
  char * ptr = get_pointer(); 
  *ptr = 12;  /* valid? */ 
  other_function(); 
} 

101 char x 0 

100 char * ptr 101 

101 char x 0 

But now, ptr points to a 
location that’s no longer in use, 
and will be reused the next time 
a function is called! 

Return 101 101 char x 12 101 int average 456603 



More on Types 
We’ve seen a few types at this point: char, int, float, char * 

Types are important because: 
• They allow your program to impose logical structure on memory 
• They help the compiler tell when you’re making a mistake 

In the next slides we will discuss: 
• How to create logical layouts of different types (structs) 
• How to use arrays 
• How to parse C type names (there is a logic to it!)  
• How to create new types using typedef 



Structures 
struct: a way to compose existing types into a structure 
 
#include <sys/time.h> 
 
/* declare the struct */ 
struct my_struct { 
  int counter; 
  float average; 
  struct timeval timestamp; 
  uint in_use:1; 
  uint8_t data[0]; 
}; 
 
/* define an instance of my_struct */ 
struct my_struct x = { 
  in_use: 1, 
  timestamp: { 
    tv_sec: 200 
  } 
}; 
x.counter = 1; 
x.average = sum / (float)(x.counter); 
 
struct my_struct * ptr = &x; 
ptr->counter = 2; 
(*ptr).counter = 3;  /* equiv. */ 

struct timeval is defined in this header 

structs can contain other structs 

fields can specify specific bit widths 

A newly-defined structure is initialized using 
this syntax.  All unset fields are 0. 

structs define a layout of typed fields 

Fields are accessed using ‘.’ notation. 

A pointer to a struct.  Fields are accessed 
using ‘->’ notation, or (*ptr).counter 



Arrays 
Arrays in C are composed of a particular type, laid out in memory in a 
repeating pattern.  Array elements are accessed by stepping forward in 
memory from the base of the array by a multiple of the element size. 

/* define an array of 10 chars */ 
char x[5] = {‘t’,’e’,’s’,’t’,’\0’}; 
 
/* accessing element 0 */ 
x[0] = ‘T’; 
 
/* pointer arithmetic to get elt 3 */ 
char elt3 = *(x+3);  /* x[3] */ 
 
/* x[0] evaluates to the first element; 
 * x evaluates to the address of the 
 * first element, or &(x[0]) */ 
 
/* 0-indexed for loop idiom */ 
#define COUNT 10 
char y[COUNT]; 
int i; 
for (i=0; i<COUNT; i++) { 
  /* process y[i] */ 
  printf(“%c\n”, y[i]); 
} 

Brackets specify the count of elements. Initial 
values optionally set in braces. 

Arrays in C are 0-indexed (here, 0..9) 

x[3] == *(x+3) == ‘t’     (NOT ‘s’!)  

Symbol Addr Value 

char x [0] 100 ‘t’ 

char x [1] 101 ‘e’ 

char x [2] 102 ‘s’ 

char x [3] 103 ‘t’ 

char x [4] 104 ‘\0’ 

For loop that iterates from 
0 to COUNT-1. 
Memorize it! 



How to Parse and Define C Types 
At this point we have seen a few basic types, arrays, pointer types, and 
structures.  So far we’ve glossed over how types are named. 

int x;        /* int;                      */  typedef int T;        
int *x;       /* pointer to int;           */  typedef int *T;       
int x[10];    /* array of ints;            */  typedef int T[10];      
int *x[10];   /* array of pointers to int; */  typedef int *T[10];     
int (*x)[10]; /* pointer to array of ints; */  typedef int (*T)[10]; 

C type names are parsed by starting at the type name and working outwards 
according to the rules of precedence: 

int (*x)[10];  x is 
a pointer to 
an array of 
int 

int *x[10];  

x is  
an array of 
pointers to 
int Arrays are the primary source of 

confusion.  When in doubt, use 
extra parens to clarify the 
expression. 

typedef defines a 
new type 



Function Types 
The other confusing form is the function type. 
For example, qsort: (a sort function in the standard library) 

void qsort(void *base, size_t nmemb, size_t size, 
           int (*compar)(const void *, const void *)); 

For more details: 
$ man qsort 

/* function matching this type: */ 
int cmp_function(const void *x, const void *y); 
 
/* typedef defining this type: */ 
typedef int (*cmp_type) (const void *, const void *); 
 
/* rewrite qsort prototype using our typedef */ 
void qsort(void *base, size_t nmemb, size_t size, cmp_type compar); 

The last argument is a 
comparison function 

const means the function is 
not allowed to modify 
memory via this pointer. 

void * is a pointer to memory of unknown type.   

size_t is an unsigned int 



Dynamic Memory Allocation 
So far all of our examples have allocated variables statically by defining them 
in our program.  This allocates them in the stack. 

But, what if we want to allocate variables based on user input or other 
dynamic inputs, at run-time?  This requires dynamic allocation. 

int * alloc_ints(size_t requested_count)  
{ 
  int * big_array; 
  big_array = (int *)calloc(requested_count, sizeof(int)); 
  if (big_array == NULL) { 
    printf(“can’t allocate %d ints: %m\n”, requested_count); 
    return NULL; 
  } 
 
  /* now big_array[0] .. big_array[requested_count-1] are  
   * valid and zeroed. */  
  return big_array; 
} 

calloc() allocates memory for 
N elements of size k 

Returns NULL if can’t alloc 

For details: 
$ man calloc 

%m ? 

sizeof() reports the size of a type in bytes 

It’s OK to return this pointer. It 
will remain valid until it is 
freed with free() 



Caveats with Dynamic Memory 
Dynamic memory is useful.  But it has several caveats: 

Whereas the compiler enforces that reclaimed stack space can no longer be 
reached, it is easy to accidentally keep a pointer to dynamic memory that has 
been freed.  Whenever you free memory you must be certain that you will not try 
to use it again.  It is safest to erase any pointers to it. 

Whereas the stack is automatically reclaimed, dynamic allocations must be 
tracked and free()’d when they are no longer needed.  With every allocation, be 
sure to plan how that memory will get freed. Losing track of memory is called a 
“memory leak”. 

Because dynamic memory always uses pointers, there is generally no way for the 
compiler to statically verify usage of dynamic memory.  This means that errors 
that are detectable with static allocation are not with dynamic 



Some Common Errors and Hints 

/* allocating a struct with malloc() */ 
struct my_struct *s = NULL; 
s = (struct my_struct *)malloc(sizeof(*s));  /* NOT sizeof(s)!! */ 
if (s == NULL) { 
  printf(stderr, “no memory!”); 
  exit(1); 
} 
 
memset(s, 0, sizeof(*s)); 
 
/* another way to initialize an alloc’d structure: */ 
struct my_struct init = { 
  counter: 1, 
  average: 2.5, 
  in_use: 1 
}; 
 
/* memmove(dst, src, size) (note, arg order like assignment) */ 
memmove(s, &init, sizeof(init)); 
 
/* when you are done with it, free it! */ 
free(s); 
s = NULL; 

sizeof() can take a variable reference in place of a type name.  This gurantees the right allocation, 
but don’t accidentally allocate the sizeof() the pointer instead of the object! 

malloc() does not zero the memory, so 
you should memset() it to 0. 

Always check for NULL.. Even if you just exit(1). 

malloc() allocates n bytes 

memmove is preferred because it is safe 
for shifting buffers 



Dynamic Memory Allocation 

• void *malloc (size_t size); 

• void* calloc (size_t num, size_t size); 

• void free (void* ptr); 

• Unary operator sizeof is used to 
determine the size in bytes of any data 
type.  Examples: 
– sizeof(double)   

– sizeof(int)  

 



Pointers and Arrays in C 

• An array name by itself is an address, or 
pointer in C.   

• When an array is declared, the compiler 
allocates sufficient space beginning with 
some base address to accommodate 
every element in the array.   

• The base address of the array is the 
address of the first element in the 
array (index position 0).  

–  &num[0] is the same as num 



Pointers and Arrays in C 

• Suppose we define the following array and 
pointer: 

  int   a[100],  *ptr; 

 Assume that the system allocates memory bytes 
400, 404, 408, ..., 796 to the array.  Recall that 
integers are allocated 32 bits = 4 bytes. 

– The two statements:  ptr = a; and ptr = &a[0]; are 
equivalent and would assign the value of 400 to ptr. 

• Pointer arithmetic provides an alternative to 
array indexing in C.   

– The two statements:  ptr = a + 1; and ptr = &a[1]; 
are equivalent and would assign the value of 404 to 
ptr. 

 



Pointers and Arrays in C 

• Assuming the elements of the array 
have been assigned values, the following 
code would sum the elements of the 
array: 
sum = 0; 
for (ptr = a; ptr < &a[100]; ++ptr) 
    sum += *ptr; 

 
• Here is a way to sum the array: 
 sum = 0; 
 for (i = 0; i < 100; ++i) 
      sum += *(a + i); 

a[b] in C is just syntactic sugar 
for 

*(a + b) 
 



Strings 
• Series of characters treated as a single 

unit 
• Can include letters, digits, and certain 

special characters (*, /, $) 
• String literal (string constant) - written in 

double quotes 
– "Hello" 

• Strings are arrays of characters 
• Example: 

– char name[] = “test”; 
– address of the above string can be expressed 

in two ways: 
• &name[0] 
• name 

 



Strings 

• String declarations 
– Declare as a character array or a variable of type char * 

char color[] = "blue"; 

char *colorPtr = "blue"; 

– Remember that strings represented as character arrays end with 
'\0' 

• color has 5 elements 

• Inputting strings 
– Use scanf 
 scanf("%s", word); 

• Copies input into word[], which does not need & (because a string 
is a pointer) 

– Remember to leave space for '\0' 

 
 



Character Handling Library 
• In <ctype.h> 

 

Prototype Description 

int isdigit( int c ) Returns true if c is a digit and false otherwise. 

int isalpha( int c ) Returns true if c is a letter and false otherwise. 

int isalnum( int c ) Returns true if c is a digit or a letter and false otherwise. 

int isxdigit( int c ) Returns true if c is a hexadecimal digit character and false otherwise. 

int islower( int c ) Returns true if c is a lowercase letter and false otherwise. 

int isupper( int c ) Returns true if c is an uppercase letter; false otherwise. 

int tolower( int c ) If c is an uppercase letter, tolower returns c as a lowercase letter. Otherwise, tolower 

returns the argument unchanged. 

int toupper( int c ) If c is a lowercase letter, toupper returns c as an uppercase letter. Otherwise, toupper 

returns the argument unchanged. 

int isspace( int c ) Returns true if c is a white-space character—newline ('\n'), space (' '), form feed 

('\f'), carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v')—and 

false otherwise 

int iscntrl( int c ) Returns true if c is a control character and false otherwise. 

int ispunct( int c ) Returns true if c is a printing character other than a space, a digit, or a letter and false 

otherwise. 

int isprint( int c ) Returns true value if c is a printing character including space (' ') and false 

otherwise. 

int isgraph( int c ) Returns true if c is a printing character other than space (' ') and false otherwise. 

 
Each function receives a character (an int) or EOF as an argument 



String Conversion Functions 
• in <string.h> 

• Conversion functions 
– In <stdlib.h> (general utilities library) 

– Convert strings of digits to integer and floating-
point values 

  

Prototype Description 

double atof( const char *nPtr ) Converts the string nPtr to double. 

int atoi( const char *nPtr ) Converts the string nPtr to int. 

long atol( const char *nPtr ) Converts the string nPtr to long int. 

double strtod( const char *nPtr, char 

**endPtr ) 
Converts the string nPtr to double. 

long strtol( const char *nPtr, char 

**endPtr, int base ) 
Converts the string nPtr to long. 

unsigned long strtoul( const char *nPtr, 
char **endPtr, int base ) 

Converts the string nPtr to unsigned 

long. 

 



String Manipulation Functions 
• String handling library has functions to 

– Manipulate string data 

– Search strings 

– Determine string length 

 
 

Func tion p rototype Func tion desc rip tion 

char *strcpy( char *s1, 

const char *s2 ) 

Copies string s2 into array s1. The value of s1 is 

returned. 

char *strncpy( char *s1, 

const char *s2, size_t n ) 

Copies at most n characters of string s2 into array 

s1. The value of s1 is returned. 

char *strcat( char *s1, 

const char *s2 ) 

Appends string s2 to array s1. The first character of 

s2 overwrites the terminating null character of s1. 

The value of s1 is returned. 

char *strncat( char *s1, 

const char *s2, size_t n ) 

Appends at most n characters of string s2 to array 

s1. The first character of s2 overwrites the 

terminating null character of s1. The value of s1 is 

returned. 

 



String Manipulation Functions 

int strcmp ( const char * str1,  

    const char * str2 ) 

return value indicates 

<0 
the first character that does 
not match has a lower value in 
ptr1 than in ptr2 

0 
the contents of both strings 
are equal 

>0 
the first character that does 
not match has a greater value 
in ptr1 than in ptr2 



Macros 
Macros can be a useful way to customize your interface to C and make your 
code easier to read and less redundant.  However, when possible, use a static 
inline function instead. 

Macros and static inline functions must be included in any file that uses 
them, usually via a header file.  Common uses for macros: 

/* Macros are used to define constants */ 
#define FUDGE_FACTOR   45.6  
#define MSEC_PER_SEC   1000 
#define INPUT_FILENAME “my_input_file” 
 
/* Macros are used to do constant arithmetic */ 
#define TIMER_VAL      (2*MSEC_PER_SEC) 
 
/* Macros are used to capture information from the compiler */ 
#define DBG(args...) \ 
  do { \ 
    fprintf(stderr, “%s:%s:%d: “, \ 
      __FUNCTION__, __FILE__, __LINENO__); \ 
    fprintf(stderr, args...); \ 
  } while (0) 
 
/* ex. DBG(“error: %d”, errno); */ 

Float constants must have a decimal 
point, else they are type int 

Put expressions in parens.  

Multi-line macros need \ 

args… grabs rest of args 

Enclose multi-statement macros in do{}while(0)  


