developerWorks.

Inline assembly for x86 in Linux
Putting the pieces together

Bharata Rao (rbharata@in.ibm.com) 01 March 2001
IBM Linux Technology Center, IBM Software Labs, India

Bharata B. Rao offers a guide to the overall use and structure of inline assembly for x86 on the
Linux platform. He covers the basics of inline assembly and its various usages, gives some
basic inline assembly coding guidelines, and explains the instances of inline assembly code in
the Linux kernel.

If you're a Linux kernel developer, you probably find yourself coding highly architecture-dependent
functions or optimizing a code path pretty often. And you probably do this by inserting assembly
language instructions into the middle of C statements (a method otherwise known as inline
assembly). Let's take a look at the specific usage of inline assembly in Linux. (We'll limit our
discussion to the IA32 assembly.)

GNU assembler syntax in brief

Let's first look at the basic assembler syntax used in Linux. GCC, the GNU C Compiler for Linux,
uses AT&T assembly syntax. Some of the basic rules of this syntax are listed below. (The list is by
no means complete; I've included only those rules pertinent to inline assembly.)

Register naming
Register names are prefixed by %. That is, if eax has to be used, it should be used as %eax.

Source and destination ordering
In any instruction, source comes first and destination follows. This differs from Intel syntax, where
source comes after destination.

mov %eax, %ebx, transfers the contents of eax to ebx.

Size of operand

The instructions are suffixed by b, w, or |, depending on whether the operand is a byte, word, or
long. This is not mandatory; GCC tries provide the appropriate suffix by reading the operands. But
specifying the suffixes manually improves the code readability and eliminates the possibility of the
compilers guessing incorrectly.

© Copyright IBM Corporation 2001 Trademarks
Inline assembly for x86 in Linux Page 1 of 9

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:rbharata@in.ibm.com

developerWorks® ibm.com/developerWorks/

movb %al, %bl -- Byte move
movw %ax, %bx -- Word move
movl %eax, %ebx -- Longword move

Immediate operand
An immediate operand is specified by using $.

movl $OxXffff, %eax -- will move the value of Oxffff into eax register.

Indirect memory reference
Any indirect references to memory are done by using ().

movb (%esi), %al -- will transfer the byte in the memory
pointed by esi into al register

Inline assembly

GCC provides the special construct "asm" for inline assembly, which has the following format:

asm (assembler template

: output operands (optional)
: input operands (optional)
: list of clobbered registers (optional)

)i

In this example, the assembler template consists of assembly instructions. The input operands are
the C expressions that serve as input operands to the instructions. The output operands are the C
expressions on which the output of the assembly instructions will be performed.

asm ("movl %%cr3, %0\n" :"=r'"(cr3val));

%eax
%ebx
%ecx
%edx

%esi

%edi

OwnwaoOooTw

Memory operand constraint(m)

When the operands are in the memory, any operations performed on them will occur directly in

the memory location, as opposed to register constraints, which first store the value in a register

to be modified and then write it back to the memory location. But register constraints are usually
used only when they are absolutely necessary for an instruction or they significantly speed up the
process. Memory constraints can be used most efficiently in cases where a C variable needs to be
updated inside "asm" and you really don't want to use a register to hold its value. For example, the
value of idtr is stored in the memory location loc:

("sidt %0\n" : :"m"(loc));

Matching(Digit) constraints

Inline assembly for x86 in Linux Page 2 of 9

ibm.com/developerWorks/ developerWorks®

In some cases, a single variable may serve as both the input and the output operand. Such cases
may be specified in "asm" by using matching constraints.

asm ("incl %0" :"=a"(var):"0"(var));

In our example for matching constraints, the register %eax is used as both the input and the output
variable. var input is read to %eax and updated %eax is stored in var again after increment. "0"
here specifies the same constraint as the Oth output variable. That is, it specifies that the output
instance of var should be stored in %eax only. This constraint can be used:

* In cases where input is read from a variable or the variable is modified and modification is
written back to the same variable
* In cases where separate instances of input and output operands are not necessary

The most important effect of using matching restraints is that they lead to the efficient use of
available registers.

Examples of common inline assembly usage

The following examples illustrate usage through different operand constraints. There are too many
constraints to give examples for each one, but these are the most frequently used constraint types.

"asm" and the register constraint "r"
Let's first take a look at "asm" with the register constraint 'r'. Our example shows how GCC
allocates registers, and how it updates the value of output variables.

int main(void)

{
int x = 10, vy;

asm ("movl %1, %%eax;
"movl %%eax, %0;"
:"=r"(y) /* y is output operand */
:"r"(x) /* x is input operand */
:"%eax"); /* %eax is clobbered register */

In this example, the value of x is copied to y inside "asm". x and y are passed to "asm" by being
stored in registers. The assembly code generated for this example looks like this:

main:
pushl %ebp
movl %esp,%ebp
subl $8,%esp
movl $10, -4(%ebp)
movl -4(%ebp),%edx /* x=10 is stored in %edx */
#APP /* asm starts here */
movl %edx, %eax /* x is moved to %eax */
movl %eax, %edx /* y is allocated in edx and updated */

#NO_APP /* asm ends here */

movl %edx, -8(%ebp) /* value of y in stack is updated with
the value in %edx */

Inline assembly for x86 in Linux Page 3 of 9

developerWorks® ibm.com/developerWorks/

GCC is free here to allocate any register when the "r" constraint is used. In our example it chose
%edx for storing x. After reading the value of x in %edx, it allocated the same register for y.

Since y is specified in the output operand section, the updated value in %edx is stored in
-8(%ebp), the location of y on stack. If y were specified in the input section, the value of y on
stack would not be updated, even though it does get updated in the temporary register storage of
y(%edx).

And since %eax is specified in the clobbered list, GCC doesn't use it anywhere else to store data.

Both input x and output y were allocated in the same %edx register, assuming that inputs are
consumed before outputs are produced. Note that if you have a lot of instructions, this may not be
the case. To make sure that input and output are allocated in different registers, we can specify the
& constraint modifier. Here is our example with the constraint modifier added.

int main(void)
{
int x = 10, vy;

asm ("movl %1, %%eax;
"movl %%eax, %0;"
:"=&r"(y) /* y is output operand, note the
& constraint modifier. */
"r'"(x) /* x is input operand */
:"%eax"); /* %eax is clobbered register */

}

And here is the assembly code generated for this example, from which it is evident that x and y
have been stored in different registers across "asm".

main:
pushl %ebp
movl %esp, %ebp
subl $8,%esp
movl $10, -4(%ebp)
movl -4(%ebp),%ecx /* x, the input is in %ecx */
#APP
movl %ecx, %eax
movl %eax, %edx /* y, the output is in %edx */

#NO_APP
movl %edx, -8(%ebp)

Use of specific register constraints

Now let's take a look at how to specify individual registers as constraints for the operands. In the
following example, the cpuid instruction takes the input in the %eax register and gives output in
four registers: %eax, %ebx, %ecx, %edx. The input to cpuid (the variable "op") is passed to "asm"
in the eax register, as cpuid expects it to. The a, b, ¢, and d constraints are used in the output to
collect the values in the four registers, respectively.

Inline assembly for x86 in Linux Page 4 of 9

ibm.com/developerWorks/ developerWorks®

asm ("cpuid"
: "=a" (_eax),
n=p" (_ebx),
"=c" (_ecx),
"=d" (_edx)
: "a" (op));

And below you can see the generated assembly code for this (assuming the _eax, _ebx, etc....
variables are stored on stack):

movl -20(%ebp),%eax /* store 'op' in %eax -- input */
#APP
cpuid
#NO_APP
movl %eax, -4(%ebp) /* store %eax in _eax -- output */
movl %ebx, -8(%ebp) /* store other registers in
movl %ecx, -12(%ebp) respective output variables */
movl %edx, -16(%ebp)

The strcpy function can be implemented using the "S" and "D" constraints in the following manner:

asm ("cld\n
rep\n
movshb"
: /* no input */
:"S"(src), "D"(dst), "c"(count));

The source pointer src is put into %esi by using the "S" constraint, and the destination pointer dst
is put into %edi using the "D" constraint. The count value is put into %ecx as it is needed by rep
prefix.

And here you can see another constraint that uses the two registers %eax and %edx to combine
two 32-bit values and generate a 64-bit value:

#define rdtscll(val) \
_asm__ _ volatile ("rdtsc" : "=A" (val))

The generated assembly looks like this (if val has a 64 bit memory space).

#APP
rdtsc
#NO_APP
movl %eax,-8(%ebp) /* As a result of A constraint
movl %edx, -4(%ebp) %eax and %edx serve as outputs */

Note here that the values in %edx:%eax serve as 64 bit output.

Using matching constraints

Here you can see the code for the system call, with four parameters:

Inline assembly for x86 in Linux Page 5 of 9

developerWorks® ibm.com/developerWorks/

#define _syscall4(type,name, typel,argl, type2,arg2, type3, arg3, type4,argd) \
type name (typel argl, type2 arg2, type3 arg3, typed4 argd) \
{\
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name),"b" ((long)(argl)),"c" ((long)(arg2)), \

"d" ((long)(arg3)),"s" ((long)(arg4))); \

__syscall _return(type,__res); \

}

In the above example, four arguments to the system call are put into %ebx, %ecx, %edx, and
%esi by using the constraints b, ¢, d, and S. Note that the "=a" constraint is used in the output so
that the return value of the system call, which is in %eax, is put into the variable __res. By using
the matching constraint "0" as the first operand constraint in the input section, the syscall number
__NR_##name is put into %eax and serves as the input to the system call. Thus %eax serves
here as both input and output register. No separate registers are used for this purpose. Note also
that the input (syscall number) is consumed (used) before the output (the return value of syscall) is
produced.

Use of memory operand constraint

Consider the following atomic decrement operation:

asm__ _ volatile (
"lock; decl %0"
:"=m" (counter)
:"m" (counter));

The generated assembly for this would look something like this:

#APP
lock
decl -24(%ebp) /* counter is modified on its memory location */
#NO_APP.

You might think of using the register constraint here for the counter. If you do, the value of the
counter must first be copied on to a register, decremented, and then updated to its memory. But
then you lose the whole purpose of locking and atomicity, which clearly shows the necessity of
using the memory constraint.

Using clobbered registers

Consider an elementary implementation of memory copy.

asm ("movl $count, %%ecx;
up: lodsl;
stosl;
loop up;"
: /* no output */
:"S"(src), "D"(dst) /* input */
:"%ecx", "%eax"); /* clobbered list */

Inline assembly for x86 in Linux Page 6 of 9

ibm.com/developerWorks/ developerWorks®

While lodsl modifies %eax, the lodsl and stosl instructions use it implicitly. And the %ecx register
explicitly loads the count. But GCC won't know this unless we inform it, which is exactly what we
do by including %eax and %ecx in the clobbered register set. Unless this is done, GCC assumes
that %eax and %ecx are free, and it may decide to use them for storing other data. Note here
that %esi and %edi are used by "asm", and are not in the clobbered list. This is because it has
been declared that "asm" will use them in the input operand list. The bottom line here is that if

a register is used inside "asm" (implicitly or explicitly), and it is not present in either the input or
output operand list, you must list it as a clobbered register.

Conclusion
On the whole, inline assembly is huge and provides a lot of features that we did not even touch on

here. But with a basic grasp of the material in this article, you should be able to start coding inline
assembly on your own.

Inline assembly for x86 in Linux Page 7 of 9

developerWorks® ibm.com/developerWorks/

Resources
» Refer to the Using and Porting the GNU Compiler Collection (GCC) manual.

* Refer to the GNU Assembler (GAS) manual.
* Check out Brennan's Guide to Inline Assembly.

Inline assembly for x86 in Linux Page 8 of 9

http://gcc.gnu.org/onlinedocs/gcc-2.95.3/gcc.html
http://www.gnu.org/manual/gas-2.9.1/as.html
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html

ibm.com/developerWorks/ developerWorks®

About the author

Bharata Rao

Bharata B. Rao has a bachelor of Engineering in Electronics and Communication
from Mysore University, India. He has been working for IBM Global Services,

India since 1999. He is a member of the IBM Linux Technology Center, where he
concentrates primarily on Linux RAS (Reliability, Availability, and Serviceability). Other
areas of interest are operating system internals and processor architecture. He can
be reached at rbharata@in.ibm.com.

© Copyright IBM Corporation 2001
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/iom/trademarks/)

Inline assembly for x86 in Linux Page 9 of 9

mailto:rbharata@in.ibm.com
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	GNU assembler syntax in brief
	Inline assembly
	Examples of common inline assembly usage
	Use of specific register constraints
	Using matching constraints
	Use of memory operand constraint
	Using clobbered registers
	Conclusion
	Resources
	About the author
	Trademarks

