
ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

47

//new to java /

In the “New to Java” series, I try to provide beneit by picking
topics that invite a deeper understanding of the conceptual

background of a language construct. Often, novice program-

mers have a working knowledge of a concept—that is, they
can use it in many situations, but they lack a deeper under-

standing of the underlying principles that would lead to writ-
ing better code, creating better structures, and making better
decisions about when to use a given construct. Java interfaces

are just such a topic.
In this article, I assume that you have a basic understand-

ing of inheritance. Java interfaces are closely related to inher-

itance, as are the extends and implements keywords. So, I will
discuss why Java has two diferent inheritance mechanisms
(indicated by these keywords), how abstract classes it in, and
what various tasks interfaces can be used for.

As is so often the case, the story of these features starts
with some quite simple and elegant ideas that lead to the def-
inition of concepts in early Java versions, and the story gets
more complicated as Java advances to tackle more-intricate,
real-world problems. This leads to the introduction of default
methods in Java 8, which muddy the waters a bit.

A Little Background on Inheritance

Inheritance is quite straightforward to understand in prin-

ciple: a class can be speciied as an extension of another
class. In such a case, the present class is called a subclass, and

the class it’s extending is called the superclass. Objects of the
subclass have all the properties of both the superclass and
the subclass. They have all ields deined in either subclass or

superclass and also all methods from both. So far, so good.
Inheritance is, however, the equivalent of the Swiss

Army knife in programming: it can be used to achieve some
very diverse goals. I can use inheritance to reuse some code
I have written before, I can use it for subtyping and dynamic
dispatch, I can use it to separate speciication from imple-

mentation, I can use it to specify a contract between diferent
parts of a system, and I can use it for a variety of other tasks.
These are all important, but very diferent, ideas. It is nec-

essary to understand these diferences to get a good feel for
inheritance and interfaces.

Type Inheritance Versus Code Inheritance

Two main capabilities that inheritance provides are the abil-
ity to inherit code and the ability to inherit a type. It is useful
to separate these two ideas conceptually, especially because
standard Java inheritance mixes them together. In Java, every
class I deine also deines a type: as soon as I have a class, I
can create variables of that type, for example.

When I create a subclass (using the extends keyword),
the subclass inherits both the code and the type of the super-

class. Inherited methods are available to be called (I’ll refer to
this as “the code”), and objects of the subclass can be used in
places where objects of the superclass are expected (thus, the
subclass creates a subtype).

Let’s look at an example. If Student is a subclass of
Person, then objects of class Student have the type Student,

but they also have the type Person. A student is a person.
Both the code and the type are inherited.

The Evolving Nature of Interfaces
Understanding multiple inheritance in Java

PHOTOGRAPH BY

JOHN BLYTHE

MICHAEL KÖLLING

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

48

//new to java /

The decision to link type
inheritance and code inheri-
tance in Java is a language
design choice: it was done
because it is often useful, but
it is not the only way a lan-

guage can be designed. Other
programming languages
allow inheriting code with-

out inheriting the type (such
as C++ private inheritance) or
inheriting type without code
(which Java also supports, as I
explain shortly).

Multiple Inheritance

The next idea entering the
mix is multiple inheritance: a
class may have more than
one superclass. Let me give
you an example: PhD students
at my university also work
as instructors. In that sense,
they are like faculty (they are
instructors for a class, have a
room number, a payroll num-

ber, and so on). But they are also students: they are enrolled
in a course, have a student ID number, and so on. I can model
this as multiple inheritance (see Figure 1).

PhDStudent is a subclass of both Faculty and Student.
This way, a PhD student will have the attributes of both stu-

dents and faculty. Conceptually this is straightforward. In
practice, however, the language becomes more complicated
if it allows multiple inheritance, because that introduces new
problems: What if both superclasses have ields with the same
name? What if they have methods with the same signature

but diferent implementations? For these cases, I need lan-

guage constructs that specify some solution to the problem of
ambiguity and name overloading. However, it gets worse.

Diamond Inheritance

A more complicated scenario is known as diamond inheritance

(see Figure 2). This is where a class (PhDStudent) has two
superclasses (Faculty and Student), which in turn have a
common superclass (Person). The inheritance graph forms a
diamond shape.

Now, consider this question: if there is a ield in the top-
level superclass (Person, in this case), should the class at the
bottom (PhDStudent) have one copy of this ield or two? It
inherits this ield twice, after all, once via each of its inheri-
tance branches.

The answer is: it depends. If the ield in question is, say,
an ID number, maybe a PhD student should have two: a stu-

dent ID and a faculty/payroll ID that might be a diferent
number. If the ield is, however, the person’s family name,
then you want only one (the PhD student has only one family
name, even though it is inherited from both superclasses).

In short, things can become very messy. Languages
that allow full, multiple inheritance need to have rules and
constructs to deal with all these situations, and these rules
are complicated.

Type Inheritance to the Rescue

When you think about these problems carefully, you realize
that all the problems with multiple inheritance are related to
inheriting code: method implementations and ields. Multiple
code inheritance is messy, but multiple type inheritance
causes no problems. This fact is coupled with another obser-

vation: multiple code inheritance is not terribly important,
because you can use delegation (using a reference to another
object) instead, but multiple subtyping is often very useful
and not easily replaced in an elegant way.

Figure 1. An example of multiple inheritance

Faculty Student

PhDStudent

Figure 2. An example of diamond inheritance

Faculty Student

PhDStudent

Person

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

49

//new to java /

That is why the Java designers arrived at a pragmatic
solution: allow only single inheritance for code, but allow
multiple inheritance for types.

Interfaces

To make it possible to have diferent rules for types and code,
Java needs to be able to specify types without specifying code.
That is what a Java interface does.

Interfaces specify a Java type (the type name and the sig-

natures of its methods) without specifying any implementa-

tion. No ields and no method bodies are speciied. Interfaces
can contain constants. You can leave out the modiiers
(public static final for constants and public for methods)

—they are implicitly assumed.
This arrangement provides me with two types of inheri-

tance in Java: I can inherit a class (using extends), in which I
inherit both the type and the code, or I can inherit a type only
(using implements) by inheriting from an interface. And I can
now have diferent rules concerning multiple inheritance:
Java permits multiple inheritance for types (interfaces) but
only single inheritance for classes (which contain code).

Benefits of Multiple Inheritance for Types

The beneits of allowing the inheritance of multiple types—
essentially of being able to declare that one object can be
viewed as having a diferent type at diferent times—is quite
easy to see. Suppose you are writing a traic simulation, and
in it you have objects of class Car. Apart from cars, there
are other kinds of active objects in your simulation, such as
pedestrians, trucks, traic lights, and so on. You may then
have a central collection in your program—say, a List—that
holds all the actors:

private List<Actor> actors;

Actor, in this case, could be an interface with an act method:

public interface Actor

{

 void act();

}

Your Car class can then implement this interface:

class Car implements Actor

{

 public void act()

 {

 ...

 }

}

Note that, because Car inherits only the type, including the
signature of the act method, but no code, it must itself supply
the code to implement the type (the implementation of the
act method) before you can create objects from it.

So far, this is just single inheritance and could have been
achieved by inheriting a class. But imagine now that there is
also a list of all objects to be drawn on screen (which is not
the same as the list of actors, because some actors are not
drawn, and some drawn objects are not actors):

private List<Drawable> drawables;

You might also want to save a simulation to permanent
storage at some point, and the objects to be saved might,
again, be a diferent list. To be saved, they need to be of type
Serializable:

private List<Serializable> objectsToSave;

In this case, if the Car objects are part of all three lists (they
act, they are drawn, and they should be saved), the class Car

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

50

//new to java /

can be deined to implement all three interfaces:

class Car implements Actor, Drawable, Serializable ...

Situations like this are common, and allowing multiple
supertypes enables you to view a single object (the car, in
this case) from diferent perspectives, focusing on diferent
aspects to group them with other similar objects or to treat
them according to a certain subset of their possible behaviors.

Java’s GUI event-processing model is built around the
same idea: event handling is achieved via event listeners—
interfaces (such as ActionListener) that often just implement
a single method—so that objects that implement it can be
viewed as being of a listener type when necessary.

Abstract Classes

I should say a few words about abstract classes, because it is
common to wonder how they relate to interfaces. Abstract
classes sit halfway between classes and interfaces: they
deine a type and can contain code (as classes do), but they
can also have abstract methods—methods that are speciied
only, but not implemented. You can think of them as partially
implemented classes with some gaps in them (code that is
missing and needs to be illed in by subclasses).

In my example above, the Actor interface could be an
abstract class instead. The act method itself might be
abstract (because it is diferent in each speciic actor and
there is no reasonable default), but maybe it contains some
other code that is common to all actors.

In this case, I can write Actor as an abstract class, and
the inheritance declaration of my Car class would look
like this:

class Car extends Actor implements Drawable, Serializable

...

If I want several of my interfaces to contain code, turning
them all into abstract classes does not work. As I stated
before, Java allows only single inheritance for classes (that
means only one class can be listed after the extends key-

word). Multiple inheritance is for interfaces only.
There is a way out, though: default methods, which were

introduced in Java 8. I’ll get to them shortly.

Empty Interfaces

Sometimes you come across interfaces that are empty—

they deine only the interface name and no methods.
Serializable, mentioned previously, is such an interface.
Cloneable is another. These interfaces are known as marker

interfaces. They mark certain classes as possessing a speciic
property, and their purpose is more closely related to provid-

ing metadata than to implementing a type or deining a con-

tract between parts of a program. Java, since version 5, has
had annotations, which are a better way of providing meta-

data. There is little reason today to use marker interfaces in
Java. If you are tempted, look instead at using annotations.

A New Dawn with Java 8

So far, I have purposely ignored some new features that were
introduced with Java 8. This is because Java 8 adds function-

ality that contradicts some of the earlier design decisions
of the language (such as “only single inheritance for code”),
which makes explaining the relationship of some constructs
quite diicult. Arguing the diference between and justii-

cation for the existence of interfaces and abstract classes,
for instance, becomes quite tricky. As I will show in a
moment, interfaces in Java 8 have been extended so that
they become more similar to abstract classes, but with some
subtle diferences.

In my explanation of the issues, I have taken you down
the historical path—explaining the pre-Java 8 situation irst

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

51

//new to java /

and now adding the newer Java 8 features. I did this on pur-

pose, because understanding the justiication for the combi-
nation of features as they are today is possible only in light of
this history.

If the Java team were to design Java from scratch now,
and if breaking backward compatibility were not a problem,
they would not design it in the same way. The Java language
is, however, not foremost a theoretical exercise, but a system
for practical use. And in the real world, you must ind ways to
evolve and extend your language without breaking everything
that has been done before. Default methods and static meth-

ods in interfaces are two mechanisms that made progress
possible in Java 8.

Evolving Interfaces

One problem in developing Java 8 was how to evolve inter-

faces. Java 8 added lambdas and several other features to the
Java language that made it desirable to adapt some of the
existing interfaces in the Java library. But how do you evolve
an interface without breaking all the existing code that uses
this interface?

Imagine you have an interface MagicWand in your existing
library:

public interface MagicWand

{

 void doMagic();

}

This interface has already been used and implemented by
many classes in many projects. But you now come up with
some really great new functionality, and you would like to add
a really useful new method:

public interface MagicWand

{

 void doMagic();

 void doAdvancedMagic();

}

If you do that, then all classes that previously implemented
this interface break, because they are required to provide
an implementation for this new method. So, at irst glance,
it seems you are stuck: either you break existing user code
(which you don’t want to do) or you’re doomed to stick with
your old libraries without a chance to improve them easily.
(In reality, there are some other approaches that you could
try, such as extending interfaces in subinterfaces, but these
have their own problems, which I do not discuss here.) Java 8
came up with a clever trick to get the best of both worlds: the
ability to add to existing interfaces without breaking exist-
ing code. This is done using default methods and static methods,

which I discuss next.

Default Methods

Default methods are methods in interfaces that have a
method body—the default implementation. They are deined
by using the default modiier at the beginning of the method
signature, and they have a full method body:

public interface MagicWand

{

 void doMagic();

 default void doAdvancedMagic()

 {

 ... // some code here

 }

}

Classes that implement this interface now have the chance
to provide their own implementation for this method (by
overriding it), or they can completely ignore this method,

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// SEPTEMBER/OCTOBER 2016

52

//new to java /

in which case they receive the
default implementation from the
interface. Old code continues to
work, while new code can use
this new functionality.

Static Methods

Interfaces can now also contain
static methods with implemen-

tations. These are deined by
using the usual static modiier
at the beginning of the method
signature. As always, when writing interfaces, the public

modiier may be left out, because all methods and all con-

stants in interfaces are always public.

So, What About the Diamond Problem?

As you can see, abstract classes and interfaces have become
quite similar now. Both can contain abstract methods and
methods with implementations, although the syntax is dif-
ferent. There are still some diferences (for instance, abstract
classes can have instance ields, whereas interfaces cannot),
but these still leave the central point: since the release of
Java 8, you have multiple inheritance (via interfaces) that can
contain code!

At the beginning of this article I pointed out how the
Java designers treaded very carefully to avoid multiple code
inheritance because of possible problems, mostly related to
inheriting multiple times and to name clashes. So what is the
situation now?

As usual, the Java designers have settled on the following
pragmatic rules to deal with these problems:

■■ Inheriting multiple abstract methods with the same name
is not a problem—they are viewed as the same method.

■■ Diamond inheritance of ields—one of the diicult problems

—is avoided, because interfaces still are not allowed to

contain ields that are not constants.
■■ Inheriting static methods and constants (which are also

static by deinition) is not a problem, because they are pre-

ixed by the interface name when they are used, so their
names do not clash.

■■ Inheriting from diferent interfaces multiple default meth-

ods with the same signature and diferent implementations
is a problem. But here Java chooses a much more pragmatic
solution than some other languages: instead of deining a
new language construct to deal with this, the compiler just
reports an error. In other words, it’s your problem. Java just
tells you, “Don’t do this.”

Conclusion

Interfaces are a powerful feature in Java. They are useful in
many situations, including for deining contracts between
diferent parts of the program, deining types for dynamic
dispatch, separating the deinition of a type from its imple-

mentation, and allowing for multiple inheritance in Java.
They are very often useful in your code; you should make sure
you understand their behavior well.

The new interface features in Java 8, such as default
methods, are most useful when you write libraries; they are
less likely to be used in application code. However, the Java
libraries now make extensive use of them, so make sure you
know what they do. Careful use of interfaces can signiicantly
improve the quality of your code. </article>

Michael Kölling is a Java Champion and a professor at the

University of Kent, England. He has published two Java textbooks

and numerous papers on object orientation and computing educa-

tion topics, and he is the lead developer of BlueJ and Greenfoot,

two educational programming environments. Kölling is also a

Distinguished Educator of the ACM.

There is little
reason today to use
marker interfaces
in Java. If you are
tempted, look instead
at using annotations.

