
Table 5.1 Some Key Terms Related to Concurrency

critical section A section of code within a process that requires access to shared resources
and that may not be executed while another process is in a corresponding
section of code.

deadlock A situation in which two or more processes are unable to proceed because
each is waiting for one of the others to do something.

livelock A situation in which two or more processes continuously change their state in
response to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses
shared resources, no other process may be in a critical section that accesses
any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their
execution.

starvation A situation in which a runnable process is overlooked indefinitely by the
scheduler; although it is able to proceed, it is never chosen.

Table 5.2 Process Interaction

Degree of Awareness Relationship Influence that one
Process Has on the
Other

Potential Control
Problems

Processes unaware of
each other

Competition •Results of one
process independent
of the action of
others

•Timing of process
may be affected

•Mutual exclusion

•Deadlock (renewable
resource)

•Starvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by
sharing

•Results of one
process may depend
on information
obtained from others

•Timing of process
may be affected

•Mutual exclusion

•Deadlock (renewable
resource)

•Starvation

•Data coherence

Processes directly
aware of each other
(have communication
primitives available to
them)

Cooperation by
communication

•Results of one
process may depend
on information
obtained from others

•Timing of process
may be affected

•Deadlock
(consumable
resource)

•Starvation

 Table 5.3 Possible Scenario for the Program of Figure 5.9

Producer Consumer s n Delay
1 1 0 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0
4 if (n==1)

(semSignalB(delay))
0 1 1

5 semSignalB(s) 1 1 1
6 semWaitB(delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 semSignalB(s) 1 0 0
10 semWaitB(s) 0 0 0
11 n++ 0 1 0
12 if (n==1)

(semSignalB(delay))
0 1 1

13 semSignalB(s) 1 1 1
14 if (n==0) (semWaitB(delay)) 1 1 1
15 semWaitB(s) 0 1 1
16 n-- 0 0 1
17 semSignalB(s) 1 0 1
18 if (n==0) (semWaitB(delay)) 1 0 0
19 semWaitB(s) 0 0 0
20 n-- 0 –1 0
21 semSignalB(s) 1 –1 0

Colored areas represent the critical section controlled by semaphore s.

Table 5.4 Design Characteristics of Message Systems for Interprocessor
Communication and Synchronization

Synchronization
Send

blocking
nonblocking

Receive
blocking
nonblocking
test for arrival

Addressing
Direct

send
receive

explicit
implicit

Indirect
static
dynamic
ownership

Format
Content
Length

fixed
variable

Queuing Discipline
FIFO
Priority

Table 5.5 State of the Process Queues for Program of Figure 5.23

Readers only in the system •wsem set
•no queues

Writers only in the system •wsem and rsem set
•writers queue on wsem

Both readers and writers with read first •wsem set by reader
•rsem set by writer
•all writers queue on wsem
•one reader queues on rsem
•other readers queue on z

Both readers and writers with write first •wsem set by writer
•rsem set by writer
•writers queue on wsem
•one reader queues on rsem
•other readers queue on z

