
Table 7.1 Memory Management Techniques

Technique Description Strengths Weaknesses

Fixed Partitioning

Main memory is divided into a
number of static partitions at
system generation time. A process
may be loaded into a partition of
equal or greater size.

Simple to implement;
little operating system
overhead.

Inefficient use of
memory due to internal
fragmentation;
maximum number of
active processes is
fixed.

Dynamic Partitioning
Partitions are created dynamically,
so that each process is loaded into a
partition of exactly the same size as
that process.

No internal
fragmentation; more
efficient use of main
memory.

Inefficient use of
processor due to the
need for compaction to
counter external
fragmentation.

Simple Paging

Main memory is divided into a
number of equal-size frames. Each
process is divided into a number of
equal-size pages of the same length
as frames. A process is loaded by
loading all of its pages into
available, not necessarily
contiguous, frames.

No external
fragmentation.

A small amount of
internal fragmentation.

Simple Segmentation

Each process is divided into a
number of segments. A process is
loaded by loading all of its
segments into dynamic partitions
that need not be contiguous.

No internal
fragmentation; improved
memory utilization and
reduced overhead
compared to dynamic
partitioning.

External fragmentation.

Virtual-Memory
Paging

As with simple paging, except that
it is not necessary to load all of the
pages of a process. Nonresident
pages that are needed are brought in
later automatically.

No external
fragmentation; higher
degree of
multiprogramming;
large virtual address
space.

Overhead of complex
memory management.

Virtual-Memory
Segmentation

As with simple segmentation,
except that it is not necessary to
load all of the segments of a
process. Nonresident segments that
are needed are brought in later
automatically.

No internal
fragmentation, higher
degree of
multiprogramming;
large virtual address
space; protection and
sharing support.

Overhead of complex
memory management.

Table 7.2 Address Binding

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted
dynamically to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer must
place into the program the source code for all subprograms that are
referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is
referenced and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These
modules are linked together and all references are restated relative to the
origin of the final load module.

Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended
to the load module, and the entire package is loaded into main or virtual
memory.

Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

