Chapter 10

Virtual Memory

Processes in a system share the CPU and main memory with other processes. However, sharing the main
memory poses some special challenges. As demand on the CPU increases, processes slow down in some
reasonably smooth way. But if too many processes need too much memory, then some of them will simply
not be able to run. When a program is out of space, it is out of luck.

Memory is also vulnerable to corruption. If some process inadvertently writes to the memory used by
another process, that process might fail in some bewildering fashion totally unrelated to the program logic.

In order to manage memory more efficiently and with fewer errors, modern systems provide an abstraction
of main memory known as virtual memory (VM). Virtual memory is an elegant interaction of hardware
exceptions, hardware address translation, main memory, disk files, and kernel software that provides each
process with a large, uniform, and private address space. With one clean mechanism, virtual memory
provides three important capabilities. (1) It uses main memory efficiently by treating it as a cache for an
address space stored on disk, keeping only the active areas in main memory, and transferring data back and
forth between disk and memory as needed. (2) It simplifies memory management by providing each process
with a uniform address space. (3) It protects the address space of each process from corruption by other
processes.

Virtual memory is one of the great ideas in computer systems. A major reason for its success is that it works
silently and automatically, without any intervention from the application programmer. Since virtual memory
works so well behind the scenes, why would a programmer need to understand it? There are several reasons.

¢ Virtual memory iscentral. Virtual memory pervades all levels of computer systems, playing key roles
in the design of hardware exceptions, assemblers, linkers, loaders, shared objects, files, and processes.
Understanding virtual memory will help you better understand how systems work in general.

e Virtual memory is powerful. Virtual memory gives applications powerful capabilities to create and
destroy chunks of memory, map chunks of memory to portions of disk files, and share memory with
other processes. For example, did you know that you can read or modify the contents of a disk file
by reading and writing memory locations? Or that you can load the contents of a file into memory
without doing any explicit copying? Understanding virtual memory will help you harness its powerful
capabilities in your applications.

669

670 CHAPTER 10. VIRTUAL MEMORY

¢ Virtual memory is dangerous. Applications interact with virtual memory every time they reference a
variable, dereference a pointer, or make a call to a dynamic allocation package such as mal | oc. If
virtual memory is used improperly, applications can suffer from perplexing and insidious memory-
related bugs. For example, a program with a bad pointer can crash immediately with a “Segmentation
fault” or a “Protection fault”, run silently for hours before crashing, or scariest of all, run to completion
with incorrect results. Understanding virtual memory, and the allocation packages such as mal | oc
that manage it, can help you avoid these errors.

This chapter looks at virtual memory from two angles. The first half of the chapter describes how virtual
memory works. The second half describes how virtual memory is used and managed by applications. There
is no avoiding the fact that VM is complicated, and the discussion reflects this in places. The good news is
that if you work through the details, you will be able to simulate the virtual memory mechanism of a small
system by hand, and the virtual memory idea will be forever demystified.

The second half builds on this understanding, showing you how to use and manage virtual memory in your
programs. You will learn how to manage virtual memory via explicit memory mapping and calls to dynamic
storage allocators such as the mal | oc package. You will also learn about a host of common memory-related
errors in C programs and how to avoid them.

10.1 Physical and Virtual Addressing

The main memory of a computer system is organized as an array of M contiguous byte-sized cells. Each
byte has a unique physical address (PA). The first byte has an address of 0, the next byte an address of 1,
the next byte an address of 2, and so on. Given this simple organization, the most natural way for a CPU to
access memory would be to use physical addresses. We call this approach physical addressing. Figure 10.1
shows an example of physical addressing in the context of a load instruction that reads the word starting at
physical address 4.

Main memory

Physical
address

CPU (PA) >

4

XNOTRWNEO

M -1:

Data word

Figure 10.1: A system that uses physical addressing.

When the CPU executes the load instruction, it generates an effective physical address and passes it to main
memory over the memory bus. The main memory fetches the four-byte word starting at physical address 4
and returns it to the CPU, which stores it in a register.

10.2. ADDRESS SPACES 671

Early PCs used physical addressing, and systems such as digital signal processors, embedded microcon-
trollers, and Cray supercomputers continue to do so. However, modern processors designed for general-
purpose computing use a form of addressing known as virtual addressing. (See Figure 10.2.)

CPU chip Main memory
[0:
Virtual Address | Physical 1:
' address translation ! address 2:
CcPU VA VIV G N
'y 4100 i 4 5:
--- 6:
7
M-1

Data word

Figure 10.2: A system that uses virtual addressing.

With virtual addressing, the CPU accesses main memory by generating a virtual address (VA), which is
converted to the appropriate physical address before being sent to the memory. The task of converting a
virtual address to a physical one is known as address trandation. Like exception handling, address transla-
tion requires close cooperation between the CPU hardware and the operating system. Dedicated hardware
on the CPU chip called the memory management unit (MMU) translates virtual addresses on the fly, using a
look-up table stored in main memory whose contents are managed by the operating system.

10.2 Address Spaces

An address space is an ordered set of nonnegative integer addresses
{0,1,2,...}.

If the integers in the address space are consecutive, then we say that it is a linear address space. To simplify
our discussion, we will always assume linear address spaces. In a system with virtual memory, the CPU
generates virtual addresses from an address space of N = 2™ addresses called the virtual address space:

{0,1,2,...,N —1}.

The size of an address space is characterized by the number of bits that are needed to represent the largest
address. For example, a virtual address space with v = 2" addresses is called an n-bit address space.
Modern systems typically support either 32-bit or 64-bit virtual address spaces.

A system also has a physical address space that corresponds to the M bytes of physical memory in the
system:
{0,1,2,...,M —1}.

M is not required to be a power of two, but to simplify the discussion we will assume that M = 2™,

672 CHAPTER 10. VIRTUAL MEMORY

The concept of an address space is important because it makes a clean distinction between data objects
(bytes) and their attributes (addresses). Once we recognize this distinction, then we can generalize and
allow each data object to have multiple independent addresses, each chosen from a different address space.
This is the basic idea of virtual memory. Each byte of main memory has a virtual address chosen from the
virtual address space, and a physical address chosen from the physical address space.

Practice Problem 10.1:

Complete the following table, filling in the missing entries and replacing each question mark with the
appropriate integer. Use the following units: K = 219 (Kilo), M = 22° (Mega), G = 23° (Giga),
T = 240 (Tera), P = 250 (Peta), or E = 290 (Exa).

| # virtual address bits (n) | # virtual addresses (V) | Largest possible virtual address |
8

27 = 64K

222 —1=7?G-1

27 = 256T

64

10.3 VM asaTool for Caching

Conceptually, a virtual memory is organized as an array of N contiguous byte-sized cells stored on disk.
Each byte has a unique virtual address that serves as an index into the array. The contents of the array on
disk are cached in main memory. As with any other cache in the memory hierarchy, the data on disk (the
lower level) is partitioned into blocks that serve as the transfer units between the disk and the main memory
(the upper level). VM systems handle this by partitioning the virtual memory into fixed-sized blocks called
virtual pages (VPs). Each virtual page is P = 2P bytes in size. Similarly, physical memory is partitioned
into physical pages (PPs), also P bytes in size. (Physical pages are also referred to as page frames.)

Virtual memory Physical memory

VP 0 [Unallocated °
VP 1 [_Cached \: Empty PP O
Uncached PP 1
Unallocated Empty
Cached
Uncached ><: Empty
Cached PP 2m-p-]

VP 2n-p-1 | Uncached M-1

N-1
Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM

Figure 10.3: How a VM system uses main memory as a cache.

At any point in time, the set of virtual pages is partitioned into three disjoint subsets:

e Unallocated: Pages that have not yet been allocated (or created) by the VM system. Unallocated
blocks do not have any data associated with them, and thus do not occupy any space on disk.

10.3. VM ASA TOOL FOR CACHING 673

e Cached: Allocated pages that are currently cached in physical memory.

e Uncached: Allocated pages that are not cached in physical memory.

The example in Figure 10.3 shows a small virtual memory with 8 virtual pages. Virtual pages 0 and 3 have
not been allocated yet, and thus do not yet exist on disk. Virtual pages 1, 4, and 6 are cached in physical
memory. Pages 2, 3, 5, and 7 are allocated, but are not currently cached in main memory.

10.3.1 DRAM Cache Organization

To help us keep the different caches in the memory hierarchy straight, we will use the term SRAM cache to
denote the L1 and L2 cache memories between the CPU and main memory, and the term DRAM cache to
denote the VM system’s cache that caches virtual pages in main memory.

The position of the DRAM cache in the memory hierarchy has a big impact on the way that it is organized.
Recall that a DRAM is about 10 times slower than an SRAM and that disk is about 100,000 times slower
than a DRAM. Thus, misses in DRAM caches are very expensive compared to misses in SRAM caches
because DRAM cache misses are served from disk, while SRAM cache misses are usually served from
DRAM-based main memory. Further, the cost of reading the first byte from a disk sector is about 100,000
times slower than reading successive bytes in the sector. The bottom line is that the organization of the
DRAM cache is driven entirely by the enormous cost of misses.

Because of the large miss penalty and the expense of accessing the first byte, virtual pages tend to be large,
typically four to eight KB. Due to the large miss penalty, DRAM caches are fully associative, that is, any
virtual page can be placed in any physical page. The replacement policy on misses also assumes greater
importance, because the penalty associated with replacing the wrong virtual page is so high. Thus, operating
systems use much more sophisticated replacement algorithms for DRAM caches than the hardware does for
SRAM caches. (These replacement algorithms are beyond our scope.) Finally, because of the large access
time of disk, DRAM caches always use write-back instead of write-through.

10.3.2 PageTables

As with any cache, the VM system must have some way to determine if a virtual page is cached somewhere
in DRAM. If so, the system must determine which physical page it is cached in. If there is a miss, the
system must determine where the virtual page is stored on disk, select a victim page in physical memory,
and copy the virtual page from disk to DRAM, replacing the victim page.

These capabilities are provided by a combination of operating system software, address translation hardware
in the MMU (memory management unit), and a data structure stored in physical memory known as a page
table that maps virtual pages to physical pages. The address translation hardware reads the page table each
time it converts a virtual address to a physical address. The operating system is responsible for maintaining
the contents of the page table and transferring pages back and forth between disk and DRAM.

Figure 10.4 shows the basic organization of a page table. A page table is an array of page table entries
(PTEs). Each page in the virtual address space has a PTE at a fixed offset in the page table. For our
purposes, we will assume that each PTE consists of a valid bit and an n-bit address field. The valid bit

674 CHAPTER 10. VIRTUAL MEMORY

indicates whether the virtual page is currently cached in DRAM. If the valid bit is set, the address field
indicates the start of the corresponding physical page in DRAM where the virtual page is cached. If the
valid bit is not set, then a null address indicates that the virtual page has not yet been allocated. Otherwise,
the address points to the start of the virtual page on disk.

Physical memory

Physical page (DRAM)
number or R
Valid disk address / PP O
VP 2
PTEO[O null VP 7
—
1 VP 4 PP 3
1 —
0 .
1 —-.
null e Virtual memory
0 . AN (disk)
Pre7Q IS
Memory resident >« _ RN
Pagelabe T
(DRAM) ..

Figure 10.4: Page table.

The example in Figure 10.4 shows a page table for a system with 8 virtual pages and 4 physical pages. Four
virtual pages (VP 1, VP 2, VP 4, and VP 7) are currently cached in DRAM. Two pages (VP 0 and VP 5)
have not yet been allocated, and the rest (VP 3 and VP 6) have been allocated but are not currently cached.
An important point to notice about Figure 10.4 is that because the DRAM cache is fully associative, any
physical page can contain any virtual page.

Practice Problem 10.2:

Determine the number of page table entries (PTEs) that are needed for the following combinations of
virtual address size (n) and page size (P):

| n [P=2F || #PTEs |

16 4K
16 8K
32 4K
32 8K

10.3.3 PageHits

Consider what happens when the CPU reads a word of virtual memory contained in VP 2, which is cached
in DRAM. (See Figure 10.5.) Using a technique we will describe in detail in Section 10.6, the address
translation hardware uses the virtual address as an index to locate PTE 2 and read it from memory. Since
the valid bit is set, the address translation hardware knows that VP 2 is cached in memory. So it uses the

10.3. VM ASA TOOL FOR CACHING 675

physical memory address in the PTE (which points to the start of the cached page in PP 0) to construct the
physical address of the word.

Virtual address Physical page (DRAM)
number or VP
valid disk address PPO
VP 2
PTE O] O null VP 7
o«
1 VP 4
! < PP 3
0 °
i
0 null 4 Virtual memory
0 'S \\\ (dlSk)
PTE7LL .
Memory resident >~ _
page table
(DRAM) "
>~

Figure 10.5: VM page hit. The reference to a word in VP 2 is a hit.

10.3.4 PageFaults

In virtual memory parlance, a DRAM cache miss is known as a page fault. Figure 10.6 shows the state of
our example page table before the fault. The CPU has referenced a word in VP 3, which is not cached in
DRAM. The address translation hardware reads PTE 3 from memory, infers from the valid bit that VP 3 is
not cached, and triggers a page fault exception.

Virtual address

Physical page

Physical memory

number or
Valid disk address
PTEOf 0 null
1 —
1 —
> .
i
0 null A
o] [3
PTE 7|1 o ~.
Memory resident
page table
(DRAM)

(DRAM)
VP 1 PP 0
VP 2
VP 7
VP4 PP 3

Virtual memory
(disk)
VP 1
VP 2
VP 3
VP 4
VP 6
VP 7

it

Figure 10.6: VM page fault (before). The reference to a word in VP 3 is a miss and triggers a page fault.

The page fault exception invokes a page fault exception handler in the kernel, which selects a victim page,

676 CHAPTER 10. VIRTUAL MEMORY

in this case VP 4 stored in PP 3. If VP 4 has been modified, then the kernel copies it back to disk. In either
case, the kernel modifies the page table entry for VP 4 to reflect the fact that VP 4 is no longer cached in
main memory.

Next, the kernel copies VP 3 from disk to PP 3 in memory, updates PTE 3, and then returns. When the
handler returns, it restarts the faulting instruction, which resends the faulting virtual address to the address
translation hardware. But now, VP 3 is cached in main memory, and the page hit is handled normally by the
address translation hardware, as we saw in Figure 10.5. Figure 10.7 shows the state of our example page
table after the page fault.

Physical memory

Virtual address Physical page (DRAM)
number or o
Valid disk address o PP O
PTE O] O null ok
o«
1 VP 3
1 — PP 3
> 1 —
‘\
0 null_~ Virtual memory
0 . <1, (disk)
PTE 7L1 o S VP 1
Memory resident ">« s VP 2
page table RN N VP 3

(DRAM) s
VP 4

VP 6
VP 7

’
’
II

Figure 10.7: VM page fault (after). The page fault handler selects VP 4 as the victim and replaces it with
a copy of VP 3 from disk. After the page fault handler restarts the faulting instruction, it will read the word
from memory normally, without generating an exception.

Virtual memory was invented in the early 1960s, long before the widening CPU-memory gap spawned
SRAM caches. As a result, virtual memory systems use a different terminology from SRAM caches, even
though many of the ideas are similar. In virtual memory parlance, blocks are known as pages. The activity of
transferring a page between disk and memory is known as swapping or paging. Pages are swapped in (paged
in) from disk to DRAM, and swapped out (paged out) from DRAM to disk. The strategy of waiting until the
last moment to swap in a page, when a miss occurs, is known as demand paging. Other approaches, such
as trying to predict misses and swap pages in before they are actually referenced, are possible. However, all
modern systems use demand paging.

10.3.5 Allocating Pages

Figure 10.8 shows the effect on our example page table when the operating system allocates a new page of
virtual memory, for example, as a result of calling mal | oc. In the example, VP 5 is allocated by creating
room on disk and updating PTE 5 to point to the newly created page on disk.

104. VM ASA TOOL FOR MEMORY MANAGEMENT 677

Physical page (DRAM)
number or Ve 1
Valid disk address VP2 PPO
PTEOf 0 null VP 7
1 — VP 3 PP 3
1 —
1 —
o
0 - ~. Virtual memory
0 - >/:\ . (disk)
PTE7[2 o 0
Memory resident \\\\\\\\
page table % T
(ORAM) N ACE]

Figure 10.8: Allocating a new virtual page. The kernel allocates VP 5 on disk and points PTE 5 to this
new location.

10.3.6 Locality tothe Rescue Again

When many of us learn about the idea of virtual memory, our first impression is often that it must be terribly
inefficient. Given the large miss penalties, we worry that paging will destroy program performance. In
practice, virtual memory works pretty well, mainly because of our old friend locality.

Although the total number of distinct pages that programs reference during an entire run might exceed the
total size of physical memory, the principle of locality promises that at any point in time they will tend to
work on a smaller set of active pages known as the working set or resident set. After an initial overhead
where the working set is paged into memory, subsequent references to the working set result in hits, with no
additional disk traffic.

As long as our programs have good temporal locality, virtual memory systems work quite well. But of
course, not all programs exhibit good temporal locality. If the working set size exceeds the size of physi-
cal memory, then the program can produce an unfortunate situation known as thrashing, where pages are
swapped in and out continuously. Although virtual memory is usually efficient, if a program’s performance
slows to a crawl, the wise programmer will consider the possibility that it is thrashing.

Aside: Counting page faults.
You can monitor the number of page faults (and lots of other information) with the Unix get r usage function.
End Aside.

10.4 VM asaTool for Memory Management

In the last section we saw how virtual memory provides a mechanism for using the DRAM to cache pages
from a typically larger virtual address space. Interestingly, some early systems such as the DEC PDP-11/70
supported a virtual address space that was smaller than the physical memory. Yet virtual memory was still a

678 CHAPTER 10. VIRTUAL MEMORY

useful mechanism because it greatly simplified memory management and provided a natural way to protect
memory.

To this point we have assumed a single page table that maps a single virtual address space to the physical
address space. In fact, operating systems provide a separate page table, and thus a separate virtual address
space, for each process. Figure 10.9 shows the basic idea. In the example, the page table for process i maps
VP 1to PP 2and VP 2 to PP 7. Similarly, the page table for process 5 maps VP 1 to PP 7 and VP 2 to PP
10. Notice that multiple virtual pages can be mapped to the same shared physical page.

Virtual address spaces Physical memory
0
0 Address translation
) VP 1 >
Process i: VP 2

Shared page

VP 1

Process j: R R

M-1

Figure 10.9: How VM provides processes with separate address spaces. The operating maintains a
separate page table for each process in the system.

The combination of demand paging and separate virtual address spaces has a profound impact on the way
that memory is used and managed in a system. In particular, VM simplifies linking and loading, the sharing
of code and data, and allocating memory to applications.

10.4.1 Simplifying Linking

A separate address space allows each process to use the same basic format for its memory image, regardless
of where the code and data actually reside in physical memory. For example, every Linux process uses the
format shown in Figure 10.10.

The text section always starts at virtual address 0x08048000, the stack always grows down from address
Oxbf ffffff,shared library code always starts at address 0x40000000, and the operating system code
and data start always start at address Oxc0000000. Such uniformity greatly simplifies the design and
implementation of linkers, allowing them to produce fully linked executables that are independent of the
ultimate location of the code and data in physical memory.

10.4.2 Simplifying Sharing

Separate address spaces provide the operating system with a consistent mechanism for managing sharing
between user processes and the operating system itself. In general, each process has its own private code,
data, heap, and stack areas that are not shared with any other process. In this case, the operating system
creates page tables that map the corresponding virtual pages to disjoint physical pages.

104. VM ASA TOOL FOR MEMORY MANAGEMENT 679

Memory

| virtual T invisible to
OXE0000000 Kernel virtual memory user code
User stack
created at runtime .
(7) «—%esp (stack pointer)
?
Memory mapped region for
shared libraries
0x40000000
T «— brk

Run-time heap
(created at runtime by malloc)

Read/write segment

(. data, . bss) Loaded from the

Read-only segment executable file
(.init,.text,.rodata)

0x08048000)
0 Unused

Figure 10.10: The memory image of a Linux process. Programs always start at virtual address
0x08048000. The user stack always starts at virtual address Oxbf f f f f f f . Shared objects are always
loaded in the region beginning at virtual address 0x40000000.

However, in some instances it is desirable for processes to share code and data. For example, every process
must call the same operating system kernel code, and every C program makes calls to routines in the standard
C library such as pri nt f. Rather than including separate copies of the kernel and standard C library in
each process, the operating system can arrange for multiple processes to share a single copy of this code by
mapping the appropriate virtual pages in different processes to the same physical pages.

10.4.3 Simplifying Memory Allocation

Virtual memory provides a simple mechanism for allocating additional memory to user processes. When a
program running in a user process requests additional heap space (e.g., as a result of calling mal | oc), the
operating system allocates an appropriate number, say &, of contiguous virtual memory pages, and maps
them to k arbitrary physical pages located anywhere in physical memory. Because of the way page tables
work, there is no need for the operating system to locate & contiguous pages of physical memory. The pages
can be scattered randomly in physical memory.

10.4.4 Simplifying Loading

Virtual memory also makes it easy to load executable and shared object files into memory. Recall that the
.t ext and . dat a sections in ELF executables are contiguous. To load these sections into a newly created
process, the Linux loader allocates a contiguous chunk of virtual pages starting at address 0x08048000,
marks them as invalid (i.e., not cached), and points their page table entries to the appropriate locations in

680 CHAPTER 10. VIRTUAL MEMORY

the object file.

The interesting point is that the loader never actually copies any data from disk into memory. The data is
paged in automatically and on demand by the virtual memory system the first time each page is referenced,
either by the CPU when it fetches an instruction, or by an executing instruction when it references a memory
location.

This notion of mapping a set of contiguous virtual pages to an arbitrary location in an arbitrary file is known
as memory mapping. Unix provides a system call called mrap that allows application programs to do their
own memory mapping. We will describe application-level memory mapping in more detail in Section 10.8.

10.5 VM asaTool for Memory Protection

Any modern computer system must provide the means for the operating system to control access to the
memory system. A user process should not be allowed to modify its read-only text section. Nor should it be
allowed to read or modify any of the code and data structures in the kernel. It should not be allowed to read
or write the private memory of other processes, and it should not be allowed to modify any virtual pages
that are shared with other processes, unless all parties explicitly allow it (via calls to explicit interprocess
communication system calls).

As we have seen, providing separate virtual address spaces makes it easy to isolate the private memories
of different processes. But the address translation mechanism can be extended in a natural way to provide
even finer access control. Since the address translation hardware reads a PTE each time the CPU generates
an address, it is straightforward to control access to the contents of a virtual page by adding some additional
permission bits to the PTE. Figure 10.11 shows the general idea.

Page tables with permission bits

SUP READ WRITE Address Physical memory
VPOl No | Yes | No PP6 &
Processi: VP 1: No | Yes | Yes PP4 o] PP O
VP 2:| Yes | Yes | Yes PP2 o PP 2
: x PP 4
PP 6
SUP READ WRITE Address /
VPO:] No | Yes | No PP9O o PP 9
Processj: VP 1] Yes | Yes | Yes PP6 o
VP 2| No | Yes | Yes PPl e f— T ———PPU

Figure 10.11: Using VM to provide page-level memory protection.

In this example, we have added three permission bits to each PTE. The SUP bit indicates whether processes
must be running in kernel (supervisor) mode to access the page. Processes running in kernel mode can
access any page, but processes running in user mode are only allowed to access pages for which SUP is 0.

10.6. ADDRESS TRANSLATION 681

Basic parameters
Symbol || Description
N =2" Number of addresses in virtual address space
M = 2™ || Number of addresses in physical address space
p=2r Page size (bytes)

Components of a virtual address (VA)
Symbol || Description

VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index

TLBT TLB tag

Components of a physical address (PA)
Symbol || Description

PPO Physical page offset (bytes)
PPN Physical page number

CoO Byte offset within cache block
Cl Cache index

CT Cache tag

Figure 10.12: Summary of address translation symbols.

The READ and WRITE bits control read and write access to the page. For example, if process ¢ is running
in user mode, then it has permission to read VP 0 and to read or write VP 1. However, it is not allowed to
access VP 2.

If an instruction violates these permissions, then the CPU triggers a general protection fault that transfers
control to an exception handler in the kernel. Unix shells typically report this exception as a “segmentation
fault.”

10.6 Address Trandation

This section covers the basics of address translation. Our aim is to give you an appreciation of the hardware’s
role in supporting virtual memory, with enough detail so that you can work through some concrete examples
by hand. However, keep in mind that we are omitting a number of details, especially related to timing, that
are important to hardware designers, but are beyond our scope. For your reference, Figure 10.12 summarizes
the symbols that we will using throughout this section.

Formally, address translation is a mapping between the elements of an N-element virtual address space
(VAS) and an M-element physical address space (PAS),

MAP: VAS — PASU ()
where

MAP(A) = A’if data at virtual addr A is present at physical addr A’ in PAS.

682 CHAPTER 10. VIRTUAL MEMORY

= () if data at virtual addr A is not present in physical memory.

Figure 10.13 shows how the MMU uses the page table to perform this mapping. A control register in the
CPU, the page table base register (PTBR) points to the current page table. The n-bit virtual address has two
components: a p-bit virtual page offset (VPO) and an (n — p)-bit virtual page number (VPN). The MMU
uses the VPN to select the appropriate PTE. For example, VPN 0 selects PTE 0, VPN 1 selects PTE 1, and
so on. The corresponding physical address is the concatenation of the physical page number (PPN) from
the page table entry and the VPO from the virtual address. Notice that since the physical and virtual pages
are both P bytes, the physical page offset (PPO) is identical to the VPO.

VIRTUAL ADDRESS

Page table n-1 p p-1 0

base register —|—0 Virtual page number (VPN) | Virtual page offset (VPO)
(PTBR)

> Valid _Physical page number (PPN)

\4

. L Page
The VPN acts table
as index into

the page table

If valid=0

then page

not in memory
(page fault)

m-1 v p _p-1 A 4 0
Physical page number (PPN) |Physical page offset (PPO)

PHYSICAL ADDRESS

Figure 10.13: Address translation with a page table.

Figure 10.14(a) shows the steps that the CPU hardware performs when there is a page hit.

e Sep 1. The processor generates a virtual address and sends it to the MMU.

e Sep 2. The MMU generates the PTE address and requests it from the cache/main memory.
e Sep 3: The cache/main memory returns the PTE to the MMU.

e Sep 3. The MMU constructs the physical address and sends it to cache/main memory.

e Sep 4. The cache/main memory returns the requested data word to the processor.

Unlike a page hit, which is handled entirely by hardware, handling a page fault requires cooperation between
hardware and the operating system kernel (Figure 10.14(b)).

e Seps1to 3: The same as Steps 1 to 3 in Figure 10.14(a).

e Sep 4: The valid bit in the PTE is zero, so the MMU triggers an exception, which transfers control in
the CPU to a page fault exception handler in the operating system kernel.

10.6. ADDRESS TRANSLATION

CPU _chip

e
|

'

'

Processor

» MMU

CPU _chip

PTEA _
PTE
@ Cache/
memory
PA

Processor

T T ©)

MMU

Page fault exception handler

(b) Page fault.

Cache/
memory

'
'

<=
N/

Victim page

®

_ New page

©

Disk

683

Figure 10.14: Operational view of page hits and page faults. VA: virtual address. PTEA: page table

entry address. PTE: page table entry. PA: physical address.

684 CHAPTER 10. VIRTUAL MEMORY

e Sep 5. The fault handler identifies a victim page in physical memory, and if that page has been
modified, pages it out to disk.

e Sep 6: The fault handler pages in the new page and updates the PTE in memory.

e Sep 7: The fault handler returns to the original process, causing the faulting instruction to be restarted.
The CPU resends the offending virtual address to the MMU. Because the virtual page is now cached
in physical memory, there is a hit, and after the MMU performs the steps in Figure 10.14(b), the main
memory returns the requested word to the processor

Practice Problem 10.3:

Given a 32-bit virtual address space and a 24-bit physical address, determine the number of bits in the
VPN, VPO, PPN, and PPO for the following page sizes P:

[P [#VPNbits | # VPO bits | # PPN bits | # PPO bits |
1KB
2KB
4KB
8 KB

10.6.1 Integrating Cachesand VM

In any system that uses both virtual memory and SRAM caches, there is the issue of whether to use virtual
or physical addresses to access the cache. Although a detailed discussion of the trade-offs is beyond our
scope, most systems opt for physical addressing. With physical addressing it is straightforward for multiple
processes to have blocks in the cache at the same time and to share blocks from the same virtual pages.
Further, the cache does not have to deal with protection issues because access rights are checked as part of
the address translation process.

Figure 10.15 shows how a physically addressed cache might be integrated with virtual memory. The main
idea is that the address translation occurs before the cache lookup. Notice that page table entries can be
cached, just like any other data words.

10.6.2 Speeding up Address Trandlation witha TLB

As we have seen, every time the CPU generates a virtual address, the MMU must refer to a PTE in order
the translate the virtual address into a physical address. In the worst case, this requires an additional fetch
from memory, at a cost of tens to hundreds of cycles. If the PTE happens to be cached in L1, then the cost
goes down to one or two cycles. However, many systems try to eliminate even this cost by including a small
cache of PTEs in the MMU called a trandlation lookaside buffer (TLB).

A TLB is a small, virtually addressed cache where each line holds a block consisting of a single PTE. A
TLB usually has a high degree of associativity. As shown in Figure 10.16, the index and tag fields that are
used for set selection and line matching are extracted from the virtual page number in the virtual address. If

10.6. ADDRESS TRANSLATION 685

CPU chip i PTE
L_|{PTEA PTE

' hit

' PTEA prea| PTEA

T > miss

Processor VA > MMU Memory
3 7'y . PA PA| PA
| ! miss|
PA Data
’/hit)
B R * L1
cache

Figure 10.15: Integrating VM with a physically addressed cache. VA: virtual address. PTEA: page table
entry address. PTE: page table entry. PA: physical address.

n-1 pt+t p+t-1 p p-1 0
TLB tag (TLBT) | TLB index (TLBI) | VPO |
—
VPN

Figure 10.16: Components of a virtual address that are used to access the TLB.

the TLB has T = 2 sets, then the TLB index (TLBI) consists of the ¢ least significant bits of the VPN, and
the TLB tag (TLBT) consists of the remaining bits in the VPN.

Figure 10.17(a) shows the steps involved when there is a TLB hit (the usual case). The key point here is that
all of the address translation steps are performed inside the on-chip MMU, and thus are fast.

e Sep 1. The CPU generates a virtual address.
e Seps2and 3: The MMU fetches the appropriate PTE from the TLB.

e Sep 4: The MMU translates the virtual address to a physical address and sends it to the cache/main
memory.

e Sep 5: The cache/main memory returns the requested data word to the CPU.

When there is a TLB miss, then the MMU must fetch the PTE from the L1 cache, as shown in Fig-
ure 10.17(b). The newly fetched PTE is stored in the TLB, possibly overwriting an existing entry.

10.6.3 Multi Level Page Tables

To this point we have assumed that the system uses a single page table to do address translation. But if we
had a 32-bit address space, 4-KB pages, and a 4-byte PTE, then we would need a 4-MB page table resident
in memory at all times, even if the application referenced only a small chunk of the virtual address space.
The problem is compounded for systems with 64-bit addresses spaces.

686

CHAPTER 10. VIRTUAL MEMORY

CPU chip
TLB
A
@ven| |PTE®
A
Processor © » Trans- | O Cache/
7Y VA lation | i PA memory
@ Data
(a) TLB hit.
CPU chip
TLB i
— @ @
@ ven . PTE
v i
o | PTEA
Processor VA Trans " PA » Cache/
[y lation @ memory

(b) TLB miss.

Figure 10.17: Operational view of a TLB hit and miss.

10.6. ADDRESS TRANSLATION 687

The common approach for compacting the page table is to a use a hierarchy of page tables instead. The idea
is easiest to understand with a concrete example. Suppose the 32-bit virtual address space is partitioned into
four-KB pages, and that page table entries are four bytes each. Suppose also that at this point in time the
virtual address space has the following form: The first 2K pages of memory are allocated for code and data,
the next 6K pages are unallocated, the next 1023 pages are also unallocated, and the next page is allocated
for the user stack. Figure 10.18 shows how we might construct a two-level page table hierarchy for this
virtual address space.

Level 1 Level 2 Virtual
page table page tables memory
o
vpo |)
e | ——"[pre0
VP 1023 > 2K allocated VM pages
PTE 1 for code and data
PTE 1023 VP 1024
PTE 2 (null)
PTE 3 (null)
VP 2047 |
PTE 4 (null) PTEO N
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K -9) PTEs J

VP 9215 1 allocated VM page
for the stack

null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages

Figure 10.18: A two-level page table hierarchy. Notice that addresses increase from top to bottom.

Each PTE in the level-1 table is responsible for mapping a four-MB chunk of the virtual address space,
where each chunk consists of 1024 contiguous pages. For example, PTE 0 maps the first chunk, PTE 1 the
next chunk, and so on. Given that the address space is four GB, 1024 PTEs are sufficient to cover the entire
space.

If every page in chunk 7 is unallocated, then level-1 PTE 4 is null. For example, in Figure 10.18, chunks 2—7
are unallocated. However, if at least one page in chunk s is allocated, then level-1 PTE ¢ points to the base
of a level-2 page table. For example, in Figure 10.18, all or portions of chunks 0, 1, and 8 are allocated, so
their level-1 PTES point to level-2 page tables.

Each PTE in a level-2 page table is responsible for mapping a 4-KB page of virtual memory, just as before
when we looked at single-level page tables. Notice that with 4-byte PTEs, each level-1 and level-2 page
table is 4K bytes, which conveniently is the same size as a page.

This scheme reduces memory requirements in two ways. First, if a PTE in the level-1 table is null, then the
corresponding level-2 page table does not even have to exist. This represents a significant potential savings,
since most of the 4-GB virtual address space for a typical program is unallocated. Second, only the level-1
table needs to be in main memory at all times. The level-2 page tables can be created and paged in and out
by the VM system as they are needed, which reduces pressure on main memory. Only the most heavily used
level-2 page tables need to be cached in main memory.

688 CHAPTER 10. VIRTUAL MEMORY

Figure 10.19 summarizes address translation with a k-level page table hierarchy. The virtual address is
partitioned into & VPNs and a VPO. Each VPN i, 1 <4 < k, is an index into a page table at level 5. Each
PTE in a level-j table, 1 < j < k — 1, points to the base of some page table at level 5 + 1. Each PTE in
a level-k table contains either the PPN of some physical page or the address of a disk block. To construct
the physical address, the MMU must access k& PTEs before it can determine the PPN. As with a single-level
hierarchy, the PPO is identical to the VPO.

VIRTUAL ADDRESS

n-1 p-1 0
[¢veN1 [qveN2 [. [yvPNk | VPO
%{_/
Level 1 Level 2 Level k
page table page table page table

[H=
N —»PPN}—‘

m-1 v Pl oy 0

| PPN | pro |
PHYSICAL ADDRESS

Figure 10.19: Address translation with a k-level page table.

Accessing k£ PTEs may seem expensive and impractical at first glance. However, the TLB comes to the
rescue here by caching PTEs from the page tables at the different levels. In practice, address translation
with multi level page tables is not significantly slower than with single-level page tables.

10.6.4 Puttingit Together: End-to-end Address Trandation

In this section we put it all together with a concrete example of end-to-end address translation on a small
system with a TLB and L1 d-cache. To keep things manageable, we make the following assumptions:

e The memory is byte addressable.
e Memory accesses are to 1-byte words (not 4-byte words).

o Virtual addresses are 14 bits wide (n = 14).

Physical addresses are 12 bits wide (m = 12).

The page size is 64 bytes (P = 64).

The TLB is four-way set associative with 16 total entries.

e The L1 d-cache is physically addressed and direct mapped, with a 4-byte line size and 16 total sets.

Figure 10.20 shows the formats of the virtual and physical addresses. Since each page is 26 = 64 bytes,
the low-order six bits of the virtual and physical addresses serve as the VPO and PPO respectively. The

10.6. ADDRESS TRANSLATION 689

high-order eight bits of the virtual address serve as the VPN. The high-order six bits of the physical address
serve as the PPN.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

waes L1 1 1T [T T T T T T T T[]
< VPN < VPO ——M@M»

(Virtual page number) (Virtual page offset)
11 10 9 8 7 6 5 4 3 2 1 0

tress N N O A B

+————PPN—————»—— PPO —»

(Physical page number) (Physical page offset)

Figure 10.20: Addressing for small memory system. Assume 14-bit virtual addresses (n = 14), 12-bit
physical addresses (m = 12), and 64-byte pages (P = 64).

Figure 10.21 shows a snapshot of our little memory system, including the TLB (a), a portion of the page
table (b), and the L1 cache (c). Above the figures of the TLB and cache, we have also shown how the bits
of the virtual and physical addresses are partitioned by the hardware it accesses these devices.

e TLB: The TLB is virtually addressed using the bits of the VPN. Since the TLB has four sets, the two
low-order bits of the VPN serve as the set index (TLBI). The remaining six high-order bits serve as
the tag (TLBT) that distinguishes the different VPNs that might map to the same TLB set.

e Pagetable. The page table is a single-level design with a total of 28 = 256 page table entries (PTES).
However, we are only interested in the first sixteen of these. For convenience, we have labelled each
PTE with the VPN that indexes it; but keep in mind though that these VPNs are not part of the page
table and not stored in memory. Also, notice that the PPN of each invalid PTE is denoted with a dash
to reinforce the idea that whatever bit values might happen to be stored there are not meaningful.

e Cache. The direct-mapped cache is addressed by the fields in the physical address. Since each block
is 4 bytes, the low-order 2 bits of the physical address serve as the block offset (CO). Since there are
16 sets, the next 4 bits serve as the set index (Cl). The remaining 6 bits serve as the tag (CT).

Given this initial setup, lets see what happens when the CPU executes a load instruction that reads the byte
at address 0x03d4. (Recall that our hypothetical CPU reads one-byte words rather than four-byte words.)
To begin this kind of manual simulation, we find it helpful to write down the bits in the virtual address,
identify the various fields we will need, and determine their hex values. The hardware perform a similar
task when it decodes the address.

TLBT TLBI

0x03 0x03
bit position | 13 |12 |11 |10 |9 |8 |7 |6 |54 3|2 |10

VA=0x03d4 | 0O | O | O[O |21|1(1|1|0]1]|0|1]0]0O

VPN VPO

0xOf 0x14

690 CHAPTER 10. VIRTUAL MEMORY

——— TLBT — **+TLBI >
3 12 11 10 9 8 7 6 5 4 3 2 1 0

ress L1 1 [[T T T T T [T []

address |
< VPN > VPO — >

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0

(a) TLB: Four sets, sixteen entries, four-way set associative.

VPN PPN Valid VPN PPN Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 ocC - 0
05 16 1 oD 2D 1
06 - 0 OE 11 1
07 - 0 OF oD 1

(b) Page table: Only the first sixteen PTESs are shown.

+——————CcT—————*¢——cl——*+co >
' 11 10 9 8 7 6 5 4 3 2 1 0
wess 1 L [[[T [T T T T[]

PPN ——P¢—————ppo >

ldx Tag Valid BkO Bki1 Bk2 BIk3
0 19 1 99 | 11 | 23 | 11
1 15 0 - - - -
2 1B 1 00 | 02 | o4 | o8
3 36 0 - - - -
4 32 1 43 | 6D | 8F | 09
5 0D 1 36 | 72 | FO | 1D
6 31 0 - - - -
7 16 1 11 | c2 | oF | o3
8 24 1 3A | o0 | 51 | 89
9 2D 0 - - - -
A 2D 1 93 | 15 | DA | 3B
B 0B 0 - - - -
C 12 0 - - - -
D 16 1 04 | 96 | 34 | 15
E 13 1 83 | 77 | 1B | D3
F 14 0 - - - -

(c) Cache: 16 sets, four-byte blocks, direct mapped.

Figure 10.21: TLB, page table, and cache for small memory system. All values in the TLB, page table,
and cache are in hexadecimal notation.

10.6. ADDRESS TRANSLATION 691

To begin, the MMU extracts the VPN (OxOF) from the virtual address and checks with the TLB to see if
has cached a copy of PTE OxOF from some previous memory reference. The TLB extracts the TLB index
(0x03) and the TLB tag (0x3) from the VPN, hits on a valid match in the second entry of Set 0x3, and
returns the cached PPN (0x0D) to the MMU.

If the TLB had missed, then the MMU would need to fetch the PTE from main memory. However, in this
case we got lucky and had a TLB hit. The MMU now has everything it needs to form the physical address.
It does this by concatenating the PPN (0x0D) from the PTE with the VPO (0x14) from the virtual address,
which forms the physical address (0x354).

Next, the MMU sends the physical address to the cache, which extracts the cache offset CO (0x0), the
cache set index CI (0x5), and the cache tag CT (Ox0D) from the physical address.

CT Cl Co
0x0d 0x05 0x0
bit position | 11 | 10 |9 |8 |7 |6 |54 |3 (2|1 |0
PA=0x354 | 0 | 0 |1|1|0|1|0|12]|0|1]|0]|0O
PPN PPO
0x0d 0x14

Since the tag in Set 0x5 matches CT, the cache detects a hit, reads out the data byte (0x36) at offset CO,
and returns it to the MMU, which then passes it back to the CPU.

Other paths through the translation process are also possible. For example, if the TLB misses, then the
MMU must fetch the PPN from a PTE in the page table. If the resulting PTE is invalid, then there is a page
fault and the kernel must page in the appropriate page and rerun the load instruction. Another possibility is
that the PTE is valid, but the necessary memory block misses in the cache.

Practice Problem 10.4:

Show how the example memory system in Section 10.6.4 translates a virtual address into a physical
address and accesses the cache. For the given virtual address, indicate the TLB entry accessed, physical
address, and cache byte value returned. Indicate whether the TLB misses, whether a page fault occurs,
and whether a cache miss occurs. If there is a cache miss, enter “—" for “Cache byte returned”. If there
is a page fault, enter “—" for “PPN” and leave parts C and D blank.

Virtual address: 0x03d7

A. Virtual address format
13 12 11 10 9 8 7 6 5 4 3 2 1 0O

B. Address translation

692 CHAPTER 10. VIRTUAL MEMORY

| Parameter | Value |
VPN

TLB index

TLB tag

TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format
11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

| Parameter | Value |
Byte offset

Cache index

Cache tag

Cache hit? (Y/N)
Cache byte returned

10.7 Case Study: The Pentium/Linux Memory System

We conclude our discussion of caches and virtual memory with a case study of a real system: a Pentium-
class system running Linux. Figure 10.22 gives the highlights of the Pentium memory system. The Pentium
has a 32-bit (4 GB) address space. The processor package includes the CPU chip, a unified L2 cache,
and a cache bus (backside bus) that connects them. The CPU chip proper contains four different caches:
an instruction TLB, data TLB, L1 i-cache, and L1 d-cache. The TLBs are virtually addressed. The L1
and L2 caches are physically addressed. All caches in the Pentium (including the TLBs) are four-way set
associative.

The TLBs cache 32-bit page table entries. The instruction TLB caches PTEs for the virtual addresses
generated by the instruction fetch unit. The data TLB caches PTEs for the virtual addresses of data. The
instruction TLB has 32 entries. The data TLB has 64 entries. The page size can be configured at start-up
time as either 4 KB or 4 MB. Linux running on a Pentium uses 4-KB pages.

The L1 and L2 caches have 32-byte blocks. Each L1 caches is 16 KB in size and has 128 sets, each of
which contains four lines. The L2 cache size can vary from a minimum of 128 KB to a maximum of 2 MB.
A typical size is 512 KB.

10.7.1 Pentium Address Trandation

This section discusses the address translation process on the Pentium. For your reference, Figure 10.23
summarizes the entire process, from the time the CPU generates a virtual address until a data word arrives
from memory.

