Dining Philosophers Revisited, Again

Kwok=bun Yue
University of Houston - Clear Lake
2700 Bay Area Boulevard
TX 77058

Houston,

Abstract

This paper describes a problem in the
solution of the dining philosophers problem
by Gingras [2] that makes it inefficient,
instead of the claimed maximal efficiency.
A correct implementation is presented.
Even then, the solution has other
undesirable characteristics and is still
not maximally efficient. Depending on the
definition of efficiency, it may not be
possible to attain maximal efficiency and
be starvation-free at the same time. A
better and simpler solution for general
mutual exclusion problems, in which the
dining philosophers problem is a special
This solution can

case, 1is presented.
become symmetric if appropriate data
structures are used.
Introduction

In a recent article in the SIGCSE
Bulletin, titled "Dining Philosophers

Revisited", Gingras presented some results
on the well-known dining philosophers
problem [2]. He presented an asymmetric
solution and a symmetric solution. He
proved that the asymmetric solution, where
all philosophers always prefer to pick up a
fork with a particular hand first, are both
deadlock-free and starvation-free. The
article also pointed out, as an example of
the subtlety required to solve the problen,
that the solution in a popular operating
systems book (6] 1is not starvation-free.
The symmetric solution is then proposed as
one that 1is starvation-free and also
attains maximal efficiency.

In this paper, the dining philosophers
problem 1s considered in the context of

general mutual exclusion problens. A
problem in Gingras's solution that actually
makes it inefficient is identified and
fixed. However, even with the fix, the

solution still has some shortcomings and
does not attain maximal efficiency. It is
shown that maximal efficiency may lead to

starvation and it is necessary to
compromise between the absence of
starvation and efficiency.

SIGCSE Vol. 23 No. 2 Jume 1991

BULLETIN

60

A simpler and better method for
generating asymmetric starvation-free
solutions for general mutual exclusion
problems 1is presented. With appropriate
data structures, the solution can be
converted to a symmetric one where every
process uses the same synchronization code.

The Problem

In the dining philosophers problem,
there are five philosophers sitting at a
round table, with a chopstick between each
pair of neighboring philosophers. The
philosophers only do two things: eating and
thinking. To eat, a philosopher must pick
up the two chopsticks closest to him. The
problem 1is to synchronize the actions of
the philosophers such that certain
requirements must be satisfied.

The dining philosophers problem is an
example of general nutual exclusion
problems. If the action of a philosopher
is a process, then eating is a critical
section mutually exclusive to the critical
sections of neighboring philosophers.

A simple way to represent nutual
exclusion problems is by graphs [5]. A
process is represented by a node and a
mutual exclusion constraint between two
processes is represented by an edge between
the corresponding two nodes. For example,
the dining philosophers problems can be
yeprgsented by the mutual exclusion graph
in Figure 1.

There can be many requirements for the
solutions of mutual exclusion problens
[2,7]. The fundamental one being the
mutual exclusion constraint which states
that no two neighboring processes can be in
their critical sections in the same tine.
The solutions should also avoid deadlock

and starvation and be efficient -- allows
reasonable degree of concurrency. In the
dining philosophers problen, deadlock

occurs'when every philosopher is holding a
chopstick, not giving up it and waiting for
the other chopstick. Starvation occurs

Figure 1 The Mutual Exclusion Graph for
The Dining Philosophers Problen

when the two neighbors of a philosopher eat
in turn, thus denying the philosopher to
eat indefinitely.

Gingras's Solution

In [2], Gingras presented a solution
(Figure 2) to the dining philosophers
problem using wonitor (3] in Concurrent
Buclid (4] that is symmetric, deadlock-
free,
efficiency.

process PHILI
imports (var DINER)
begin var i: 0..H
Loop DINER.THINK(i) busy(A) (A=thinking delay}
DTMER.HUNGER(i)

{EAT) busy(B) (B=eating delay)
erd loop
end PHILI
var DIMER : {H=5; M=N-1}
monitor

exports (THIHK, HURGER)

var Line : array 1..H of 0..H {hunger wait line}
var LineLen : 0..H := 0 {# waiting in Line)
var Eating : array 0..M of boolean {phils eating}
var Phil : array 0..M of condition ({wait queues}

FUNCTION HonADj(j:0..M, i:0..M) {T if i,] not neighs}
returns b: boolean = {note no phil is adj to self
begin return (not{ (j=(i+M) mod N) or

(j=Ci+l) mod HY))
end NonAdj

FUNCTION Ready(i:0..M) (T if no neigh is eating}

returns b: boolean =

imports (Eating)

begin return ((not Eating((i+MImod N)} and

(not Eating((i+1)mod N}))
erd Ready

PROCEDURE EnLine(i:0..H) = (i to end of Linel
imports (var LineLen, var Line)
begin Linelen := Linelen + 1
Line(LineLen) == i
end Entine

PROCEDURE DeLine(k:1..N) = {dele kth phil in Line)
imports {var LinelLen, var Line)
begin var j & 1..M

] =k

loop exit when j = Linelen
Line(j) := Line(]+1)
jo= g

{move up)
{followers)
{to close gap}

end loop
LinelLen := LineLen - 1
end Deline
SIGCSE vol. 23 No. 2 June 1991

BULLETIN

starvation-free and achieves maximal

61

PROCEDURE Mext =
imports (var Eating, var Phil, var Linelen,
var Line, HonAdj, Ready, DelLine)

begin var k : 1..H var i ¢ 0..H
if Lineten > 0 then {fecd oldest eligd
k =1 {waiting phil}

loop if (Moradj(Line(k),Line(1)) and
Ready(Line(k)}}
then Eating(Line(k)) := true

i := Line(k)
Detine(k)
Signal(Phil(i))
exit
else exit when k = LineLen
k= k+1
end if
enrd loop
end if
end Next

PROCEDURE THINK(i: 0..H) =
imports (var Eating, Hext)
begin Eating(i) := false

Mext
end THINK

PROCEDURE HUNGER(i: 0..M) =
imports (var Eating, var Phil, ar Linelen,
var Line, EnLine, Next)
begin EnLine(i)

Next
If not Eating(i) then wait(Phil(i))
end if
end HUNGER
Figure 2 Gingras's Solution
Essentially, Gingras's solution is to

use a waiting Line for the philosophers
waiting to eat. A waiting philosopher is
put at the end of the Line. A philosopher
waiting in the Line is allowed to eat if
(1) no neighboring philosopher is eating
and (2) the head of the Line is not its
neighbor. The second condition is added to
avoid starvation.

In Figure 2, the most important
procedure is Next which finds the next
philosopher in Line that should be allowed
to eat to do so. The procedure Next is
called in two locations: in the procedure
THINK when a philosopher has just finished
eating and thus its neighbors may be
allowed to eat; and in the procedure HUNGER
when a philosopher wants to eat and thus
wants to check whether he is allowed to do
so.

The problem with Gingras's solution is
that the procedure Next finds only one
waiting philosopher in Line who should be
allowed to eat to do so. However, there
may be more than one philosopher in Line
that should be allowed to eat. For
example, in Figure 1, suppose philosophers
Pl and P3 are hungry and waiting in Line
and philosopher P2 1is eating. If
philosopher P2 has just finished eating now
and calls the procedure Next within the
procedure THINK, only one of the
philosophers P1L and P3 will be allowed to
eat whereas both should be allowed to eat.

A correct implementation

The correct implementation of Next is
of course to allow all ready philosophers

to eat. This is done by examining the
entire Line starting from the Head. Figure
3 is the correct implementation of the
procedure Next. The only necessary change
is to add the condition "when k > LineLen"
to the exit statement to force iteration.

PROCEDURE Mext =
imports (var Eating, var Phil, var LinelLen,
var Line, NonAdj, Ready, Deline)
begin var k : 1..H var i : O..M
if Lineten > 0 then {feed oldest elig}
k=1 {waiting phil}
toop if (MonAdj(Line(k),Line(1}) and
Ready(Line(k))}
then Eating{Line(k}} i= true
i = Linetk)
DeLine(k)
Signal(Phil(i))
exit when k > LineLen {change here}
else exit when k = LinelLen
ki=k+1
end if
erd Loop
end if
end Next

Figure 3
Next

The correct implementation of

This solution can be used for general
mutual exclusion problems. The only
necessary change is the function NonAdj and
Ready to reflect the topology of the
problem.

The resulting solution is a faithful
implementation of the strategy:

A process is blocked or remains
blocked if and only if it has a
neighbor in critical section or
it is the neighbor of the process
blocked for the longest time.

This and other strategies to construct
solutions for graphical mutual exclusion
problems are discussed in [7).

Even with the correction, Gingras's
solution has other undesirable
characteristics.

o The code is too long.

o A lot of variables are needed. In
particular, N Boolean variables (i.e.
Eating), N conditions (i.e. Phil) and a

line of length N is necessary, where N is
the number of processes in the problem.

o The time for executing Next is O(N).

o 8ince the solution uses a moniter and a
monitor allows only one process inside it
at a time, this may represent a significant
bottleneck in synchronization for complex
problems with a lot of processes.

Furthermore, the solution does not
provide maximal efficiency, as claimed by
Gingras. It is very difficult to measure
the degree of concurrency. One possible
way of defining maximal efficiency is to

SIGCSE

BULLETIN Vol- 23

No, 2 June 1991

62

maximize the current number of processes in
critical sections. If this is so, then the
following strategy will ensure maximal
efficiency.

A process is blocked or remains
blocked if and only if one or
more of its neighbors are in
their critical sections.

It is easy to see that this strategy is
more efficient, defined as above, than that
of Gingras. However, the stratedy is not
starvation-free. Thus, maximal efficiency,
defined as above, can be contradictory to
the absence of starvation. [7]) described
other methods for measuring degree of
concurrent activities.

A 8imple Bolution

There are many other strategies, with
relative merits, to construct solutions for
general mutual exclusion problems (8]. 1In
this section, a simple method, based on
[8], of generating solutions for general
mutual exclusion problems is discussed.

Oour method is based on Dijkstra's
semaphore [1]. A semaphore S is a global
non-negative integer variable that can be
accessed only through the two primitive
functions P and V (called down and up in
[2,6]):

P(8): if 8 > 0 then § <== 8§ - 1
else wait.
V(8): 1f S > 0 then 8 <= 8 + 1

elge signal a process waiting at
P(8) to complete P(S).

In our method, there is a semaphore,
with an initial value of 1, associated with
each edge in the graph describing the
mutual exclusion problem. Let N(p) be the
set of all neighbors of node p in the
graph. Let entry(p) and exit(p) be the
synchronization «code for process p,
executed immediately before and after its
critical section. The Pascal-like code for
enter(p) and exit(p) of every node p in the
graph can be obtained by the following
algorithm where the symbol & is the string
concatenation operator.

(1] Arbitrarily label the values 1 to N to
the N nodes in the graph.
[2) for every node p in the graph do
entry(p) <- '"v;
exit(p) <—-- "v;
work_set <-- N(p);
while work_set is not empty do
Let ¢ be the node in work_set
with the smallest value.
Let S8 be the semaphore associated
with edge joining p and q.

entry(p) <-- entry(p) & "P(" & S
& ");II

exit(p) <-- exit(p) & "V(" & 8
& II);II

The code generated by the algorithm
does not have the undesirable features of
Gingras's solution.

As an example, consider the graph G in
Figure 4 that has six nodes, a, b, ¢, 4, e
and £, labelled with values 1, 2, 3, 4, 5,
6 respectively. There are 7 edges with
associated semaphores T, U, V, W, X, ¥ and
Z. The synchronization code for the 6
nodes generated by the algorithm is shown
in Figure 5.

Figure 4 A mutual exclusion graph
Node p entry(p) exit(p)
a P(T); V(T) :
P(U); V(U);
b P(T) ; V(T) :
P(V); V(V);
P(W); V(W) :
c P(U); v(u);
P(X); V(X);
P(Y): V{Y):
d P(V): V(V);
P(X): V(X):
e P(W): V(W) ;
P(z}): v(z):
f P(Y): V(Y):
P(%): V(2):
Figure 5 BSolution for Figqure 4 generated

by the algorithn

As another example, Figure 6 is the
code generated by the algorithm for the
dining philosophers problem of Figure 1,
where the value associated with every node
and the semaphore associated with every
edge are also shown. This is similar to
Gingras's asymmetric solution where
philosopher pl is a t'lefty' and all other
philosophers are ‘rightiest.

SIGCSE

BULLETIN V01 23

No. 2 June 1991

63

Node p entry (p) exit(p)
Pl P(V); V(V)i
P(2): v(2);:
P2 P(V); V(V);
P(W); V(W) ;
P3 P(W); V(W)
P(X); V(X):
P4 P(X); V(X))
P(Y): v(Y);
P5 P(Y): vV(Y);
P(Z); V(Z);
Figure 6 The sclution for the dining

philosephers problem of Figure 1
generated by the algorithm

The algorithm can actually be
considered as a generalization of Gingras's
asymmetric solution. Informally, deadlock
and starvation is avoided because the
algorithm guarantees that there is at least

a 'lefty' and a 'righty' in every cycle in
the graph. For a formal proof and a

detailed discussion, please refer to {8].

The solutions in Figures 5 and 6 are
asymmetric in the sense that each process
does not have the same synchronization
code. A symmetric solution can be
generated if appropriate data structure is
used.

Suppose there are N nodes and M edges.
As an example, Figure 7 contains the
necessary data declarations and code.

S[(1..M) : semaphore;

E[1..N,1..M] : Boolean:
{E[1,J]=True iff the edge j is
incident to the node i.}

Synchronization code for node i:

entry(1i):
for j := 1 to M do
if E[i,J] then P(S[§]):
exit(i):
for j i= 1 to M do

if E[i,3J] then V(S[i]):
Figure 7 A symmetriec solution

More efficient data structures can be

used. For example, linked lists may be
used to improve performance for sparse
graphs.

Coneclusion

In this paper, we have demonstrated and
fixed a problem in a symmetric solution by
Gingras of the dining philosophers problem.
Even after the correction, this solution
has some undesirable characteristics. The
other asymmetric solution by Gingras is

generalized so that it can deal with any
mutual exclusion problem, not Jjust the
dining philosophers problem. By using
simple data structures, the solution can be
converted to a symmetric one where all
processes have the same synchronization
code.

References

Dijkstra, E.W. Cooperating Sequential
Processes, in Programming Languages,
Genuys, F. Ed., Academic Press, New
York, 1968.

(1]

A.R.,
SIGCSE Bulletin,
21-28.

Dining Philosophers
vol.22

(2] Gingras,
Revisited.

No.3 (1990),

Hoare, C.A.R. Communicating Sequential
Processes, Prentice-Hall Inc.,

Englewocod Cliffs, New Jersey, 1985.

(31

Holt, R.C., Concurrent Fuclid, The
UNIX System, and TUNIS, Addison-
Wesley, Reading, Massachusetts, 1983.

(4]

page, I.P. & Jacob, R.T., The
Solution of Mutual Exclusion Problems
which can be Described Graphically,
The Computer Journal, vol.32 No.l
(1989), 45-54.

(5]

Tanenbaum, A.S. Operating Systems:
Design and Implementation, Prentice-

Hall 1Inc., Englewood Cliffs, New
Jersey, 1987.

el

Yue K. & Jacob R.T., Starvation-Free
Semaphore Solutions to Mutual
Exclusion Problenms, Proceedings of the
1987 ACM Southern Central Regional ACM
Conference, Lafayette, Louisiana (Nov.
1987), 127-141.

(71

Yue K., Semaphore Solutions for
General Mutual Exclusion Problems, PhD

dissertation, University of North
Texas, Denton, Texas, 1988.

Kk kA kA EEKRARRKARRRRRRR R R ARk Rk bk kR khhds
BIBLIOGRAPHY-- continued from page 59

(8]

Anneliese von Mayrhauser. Software
Engineering: Methods and Management

San Diego, Calif.: Academic Press, 1990. ISBN 0-12-
727320-4, 864 pages. $49.95. Includes exercises.

Table of Contents

Part 1: Methods

. Introduction

Problem Definition

. Functional Requirements Collection
Qualitative Requirements

. Specifications

Design: Strategies and Notations

. Software System Structure Design
Detailed Design

. Coding

. Testing

. Operation and Maintenance

EOOEao,ouis o=

SR

SIGCSE

BULLETIN VoLl- 23

No., 2 June 1991

64

Part 2: Management
12 Management by Metrics
13, Feasibility and Early Planning
14. Models for Managerial Planning
15, Project Personnel
16, Software Development Guidelines

Richard Wiener and Richard Sincovec.
Software Engineering with Modula-2 and Ada

New York: John Wiley & Sons, 1984. ISBN 0-471-
89014-6. 451 pages. Includes exercises.

Reviewed in Computing Reviews, October 1985.

Table of Contents
1. What is Software Engineering? A Top-Down View
2. Software Requirements and Specifications
3, Programming Languages and Software
Ingineering
General Principles of Software Design
. Modular Software Development Using Ada
. Modular Software Construction Using Modula-2
Programming Methodology
. Software Testing
, A Case Study in Modular Software Construction

000 NI L

P R N L E R R R AR R EE R L AL
INTERNET-- continued from page 54

facilities of C using additional (nonstandard) Pascal procedure
names and corresponding library routines is being considered.
Providing a name server for students to register and request
services, thus providing a means of "broadcasting" (and con-
necting to) some new service, is planned. Also, an adequate
means of handling INET file identifiers is being sought. At
the least, the initialization of these identifiers will be moved to
the constant section of the source code.

An early decision was made to support only character
based input/output using read(in) and write(in). Extensions
will allow the use INET files for output of integers, reals, and
booleans, as is required by the Pascal standard. The system
will also allow access to INET files through file pointers using
pointer notation and the Pascal procedures get and put.

In summary, the PIP system can be effectively used to
introduce or reinforce concepts of networks and telecommuni-
cations using a language quite similar to Pascal. Very few
changes to Pascal syntax are introduced, and PIP retains all of
the features of standard Pascal. Very little class time is needed
to introduce PIP. The system can be implemented on 4.2+
BSD UNIX systems with minimal effort.

REFERENCES

Cooper, Doug. Standard Pascal User Reference Manual.
W.W. Norton & Company, New York. 1983.

Leffler, Samuel, Robert Fabry, and William Joy. "A 4.2BSD
Interprocess Communication Primer." Computer Sys-
tems research Group, Dept. of Electrical Engineering and
Computer Science, University of California, Berkeley.
1986.

Tanenbaum, Andrew. Computer Networks, 2nd. Prentice Hall,
Englewood Cliffs, NJ. 1988,

