
$$ FETCH Cl ;
/* Will cause one tuple to be assigned t o

the structure Cl * /

DO WHILE (STATUS = 0) ;

PUT SKIP(2) LIST(Cl .PNAME, C1 .SALARY) ;
SAL = SAL + SALARY ;
COUNT = COUNT +1 ;

$$ FETCH Cl ;

END ;

PUT SKIP(2) LIST('Average Salary i s
SAL/COUNT) ;

The WVU DBMS executes on the VAX lin e
of computers running VMS . The WVU DBMS i s
available at no cost to any academi c
institution that wishes to use it . The
User's Guide and complete syntax as well a s
instructions for acquiring the software can
be obtained by writing :

John Atkins
Department of Statistics

and Computer Science
305 Knapp Hal l
West Virginia University
Morgantown, W .Va . 2650 6

REFERENCE S

1. Atkins, J .M ., and D .M . Henry ,
"A Database Management Syste m
Project for an Undergraduate Databas e
Design Course," Proceedings of the
1985 ACM Annual Conference, 1985 ,
pp . 266-27 0

2. Stout, Quentin F . and Patricia A .
Woodworth, "Relational Databases, " The
American Mathematical Monthly, February ,
1983, Vol .90, No . 2, pp . 101-11 8

3. Ullman, Jeffrey D ., Principles o f
Database and Knowledge-Base Systems ,
Volume 1, Computer Science Press, 198 8

*k****k************ik*Je******************** ****************** **** ,F**** ****** ,t* ********* *
DINING PHILOSPHERS--- continued from page 2 4

ing line after thinking and before eating even if neither o f

his neighbors is eating . Starvation would mean that som e

hungry philosopher stays in the waiting line forever . The

solution guarantees that whatever hungry philosopher P is
first in line is waiting for at least, one of his two neighbor s

to complete his clinker, This nnist . happen within 7' tim e

units, at which time P begins to eat and is removed fro m

the waiting line . All other waiting philosophers move one

step closer to the beginning of the line . Thus P will have

to wait at most 3T time units before beginning to eat an d

starvation is precluded .
Maximal Efficiency : The solution achieves maximal effi-

ciency since only those philosophers who are neighbors of th e

philosopher at the head of the waiting line are constrained [4]

from beginning to eat by the solution's control protocol .

Maximal efficiency does not allow the situation where on e

philosopher dines while the rest wait to cat . This cannot

happen in this solution since at most one neighbor of th e

head philosopher can be the solitary dining philosopher . I f

the solitary dining philosopher is not a neighbor of the hea d

philosopher, the head philosopher may proceed to cat sinc e

his neighbors are not eating. If the solitary dining philoso-
pher is a neighbor of the head philosopher, tlren the on e

philosopher who is a non-neighbor of both the head philoso-
pher and the solitary dining philosopher may begin to eat .

Finally this solution is symmetric with respect to th e

philosopher processes since they are identical in form . The

reader may show that the solution will continue to wor k

when the number of philosophers N is increased .

SIGCS E
BULLS N Vol . 22 No . 3 Sept . 199 0

$$ CLOSE Cl ;

END REPORT ;

CONCLUSION

The WVU DBMS has been very wel l
received by students in the undergraduate
database course at West Virgini a
University . It is easy to use, simple in
design yet contains most of the feature s
that a database instructor would want t o
illustrate in the discussion of th e

relational algebra .

Bibliography

Dijkstra, E .W . Cooperating Sequential Pro-
cesses, Technical Report EWD-123, Techno-
logical University, Eindhoven, The Nether -
lands, 1965 .

Dijkstra, E.W. Hierarchical ordering of se-
quential processes . Acta Inf., 1(1971), 115 -
138 .
Hoare, C .A.R . Communicating Sequentia l
Processes, Prentice-I-Iall Inc ., Englewoo d
Cliffs, New Jersey, 1985 .

Holt, R .C . Concurrent Euclid, The UNIX *
System, and TUNIS, Addison-Wesley, 1983 .

[f5] Ringwood, G .A . Parlog86 and the Dining Lo-
gicians, Comm . ACM, Jan . 1988, 10-25 .
Tanenbaum, AS . Operating Systems : Desig n
and Implementation, Prentice-Hall Inc., En-
glewood Cliffs, New Jersey, 1987 .

[6]

[3]

[2]

[1]

28

Dining Philosophers Revisited

Armando R. Gingras
Metropolitan State Colleg e

Denver, Colorad o

2 1

Abstrac t

In 1965 Dijkstra posed and solved the Dinin g
Philosophers problem . Since then the problem ha s
become a classic test case for concurrency mecha-
nisms and an example often discussed in operatin g
systems courses . Two theorems prove the correct-
ness of seatings where all philosophers always prefe r
to pick up a fork with a particular hand first . Thi s
note shows the subtlety required to solve the prob-
lem by showing that a recently published solution i s

incorrect . A correct solution is provided .

The Problem

This note discusses the well-known Dining Philosophers Prob-
lem. It was originally stated and solved by E .W. Dijkstr a

in 1965 [1 and 2) . The problem has become a standar d
synchronization test case [5] .

The problem is stated as follows . There are five philoso-
phers, P;, i = 0, . . .,41, who devote their time in an end -
less cycle of thinking, hungering, and eating . They sit a t
their own chair around a circular table with sitting t o
the right of P;, where addition is modulo 5 . Before each
philosopher is a plate of spaghetti and between each pair o f
adjacent plates is a fork . See figure 1 for a diagram of th e

table arrangement of the five plates and forks .
Requiring two forks to eat spaghetti, each philosopher

can only use those two forks on either side of his plate ,
i .e ., a philosopher cannot reach across the table for a fork .
Whenever a philosopher becomes hungry, he must wait unti l
these two forks are free to use . When the two forks become
available, he holds them until he is finished eating, at whic h
time he releases them and sinks into a thinking stupor . A
neighbor may then pick up the dirty fork and proceed to us e
it if he is hungry enough . The problem is to devise an al-
gorithm that guarantees minimally that no two neighborin g
philosophers eat simultaneously .

There are several other assumptions concerning the prob-
lem . The philosophers are so myoptic t.hal they cannot se e
what any other philosopher is doing and so act indepen-
dently and asynchronously of one another . The time give n
over to any activity by a philosopher is unknown . Thus the
solution cannot make use of special knowledge of individ -

SIG'CSC

	

Vol . 22 No . 3 Sept . 1990BULLETIN

P.m

Figure 1 : Seating setting .

ual eating and thinking patterns . However, there may be a
maximum T placed on the time that a philosopher can ea t
so that an estimate can be made of the maximum time a
hungry philosopher must wait before eating . Also, a philoso-
pher cannot be an overly greedy eater, i .e ., once a fork i s
released by a philosopher, it cannot be picked up again b y
that philosopher until his neighbor, if he is hungry, has had a
chance to pick un that fork . And no philosopher is altruisti c
enough to stage a hunger strike for more forks . Moreover ,
there are basic requirements for an acceptable solution .

Solution Requirement s

Any acceptable solution to the Dining Philosophers prob-
lem must meet several minimum criteria . First of all, th e
philosophers must observe basic table manners, i .e ., no reach-
ing across the table, no hoarding or hiding of forks, etc . One
particular aspect is that no fork can be shared simultane-
ously by two philosophers . This is the mutual exclusion
property.

Another requirement of any solution is that it must avoi d
deadlock . Deadlock occurs when some subset of philosopher s
find themselves obstinately holding one fork and waiting fo r
the second fork, and no one in the subset can eat .

Po

2 2

The third requirement is the prevention of starvation .
Starvation occurs when a continuing pattern of dining ca n
occur that systematically locks out at least one philosophe r
from eating .

Since there are five forks, two philosophers can eat si-
multaneously. The fourth requirement is that a solutio n
have maximal concurrency or efficiency . An efficient solu-
tion never allows four hungry philosophers to wait on on e
dining philosopher .

Synchronization Primitives

To understand the approaches discussed below, two synchro -
nization primitives will be reviewed briefly .

In 1965 Dijkstra introduced the semaphore, to coun t
the number of sleeping processes waiting for a wakeup call .
I-le introduced two operations on semaphores to manipu-
late their values . A process uses the down operation on a
semaphore as follows : if the semaphore's value is positive ,
the semaphore is decremented and the process continues ; i f
the value is zero, the process is put to sleep . When a pro-
cess uses an up operation on a semaphore, the semaphor e
is incremented ; if its value was zero, one of the sleeping pro -
cesses is awakened and completes its down operation . See
[6] for a fuller discussion of semaphores .

The second mechanism used in this article is the mon-
itor . A monitor, as implemented in the programming lan-
guage Concurrent Euclid, is a module that enforces mutuall y
exclusive use of its procedures and data by processes re-
quiring coordination . It manages condition queues wherein
delayed processes may wait . hnterprocess synchronization i s
effected by two statements : wait (cond), places a process i n
a sleeping state in queue cond, and signal(cond), whic h
awakens a waiting process queued in cond . See [4] for mor e
details on monitors .

While the concurrency mechanisms provided by a spe-
cific programming language must certainly be adequate t o
solve a given problem, a correct algorithm is still necessary .

Pseudo-Solutions

One trivial solution is to have all philosophers enter a queu e
when they become hungry. While this linearization avoid s
deadlock and starvation, it fails to provide any concurrency .
A second possible solution is to have each philosopher, whe n
struck by hunger, to grab the first available fork (or wait i f
until one is free), and wait for the second fork while holdin g
the first . Unfortunately, it is possible for all five philoso-
phers to simultaneously grab their left forks, and enter a
circular deadlock waiting for their obstinate right neighbors
to release the desired forks .

To demonstrate the subtlety of the problem, consider a
proposed solution reproduced in figure 2 as given by Tanen -
baum [6, p .78] in an undergraduate textbook on operating
systems. When a philosopher finishes eating, he allows hi s
left neighbor to proceed if possible, then permits his righ t
neighbor to proceed . Notice that the order in which th e
neighbors are checked and permitted to proceed is irrele-
vant .

SIBCSE
Vol . 22 No . 3 Sept . 199 0BULLETIN

#define N

	

5 {number of phils }
#define LEFT

	

(i-1)%U {i's left neighbor }
#define RIGHT (i+1)%N {i's right neighbor}
#define THINKING

	

0 {Phil is thinking }
#define HUNGRY

	

1 {P waiting for forks }

#define EATING

	

2 {P is eating }
typedef int semaphore ; {define a semaphore }
int state[N] ;

	

{track phils' state}
semaphore mutex = 1 ;

	

{shared data guard}

semaphore s[N] ;

	

{1 semaphore per phil}

philosopher(i)
int i ;

	

{phil 0 to N-1}
{ while (TRUE) {

	

{repeat forever}

think() ;

	

{phil is thinking}
take_forks(i) ; {get 2 forks or block }
eat() ;

	

{yum-yum, spaghetti }

put_forks(i) ;}} {put both forks back}

take_forks(i)
int i ;

	

{phil 0 to , N-1 }
{ down(mutex) ;

	

{enter critical area }
state[i] = HUNGRY ;

	

{phil i is hungry }
test(i) ;

	

{try to get 2 forks }
up(mutex) ;

	

{exit critical area }
down(s[i]) ; }

	

{block if not 2 forks }

put_forks(i)
int i ;

	

{phil 0 to N-11
{ down(mutex) ;

	

{enter critical area}
state[i] = THINKING ; {phil done eating }
test(LEFT) ;

	

{let left neigh eat }

test(RIGHT) ;

	

{let right neigh eat }
up(mutex) ; }

	

{exit critical area }

test(i)
int i ;

	

{phil 0 to N-1 }
{ if state[i] == HUNGR Y

&& state[LEFT] != EATIN G
&& state[RIGHT] != EATIN G

{ state[i] = EATING ; {phil i can eat }

up(s[i]) ; }}

Figure 2 : Tanenbaum's solution .

Let us make the following simplifying assumptions fo r
our counterexample. Our philosophers spend practically n o
time thinking and find themselves in the configuration wher e
philosophers Po, Pt , and P3 wait with hunger while philoso -
phers P2 and P4 dine in leisure . Now consider the followin g
admittedly unlikely sequence of philosophers' completion s
of their suppers .

EATING HUNGRY
42

	

01 3
20

	

13 4
30

	

12 4
02

	

13 4
42

	

013

2 3

Each line of this table is intended to indicate the philoso-
phers that are presently eating and those that are in a stat e
of hunger . The dining philosopher listed first on each lin e
is the one who finishes his meal next . For example, fro m
the initial configuration, philosopher P4 finishes eating first ,
which permits Po to commence eating . Notice that the pat -
tern folds in on itself and can repeat forever with the con-
sequent starvation of philosopher Pl .

It is not the low probability of the occurrence of a trou-
blesome pattern that renders a trial solution acceptable, bu t
rather the mere existence of such a pattern that is not log-
ically prevented from occurring that renders the solution
unacceptable .

Asymmetric Solutions

An exercise credited to Toscani [4, p .140] asks the studen t
to explore the situation where every philosopher but on e
always picks up his left fork first (a " lefty ") and the Iast on e
always picks up his right fork first (a "righty"), with each
philosopher always waiting when he cannot pick up his nex t
desired fork and not releasing any forks until after finishin g
his supper .

Before generalizing this exercise, we make explicit th e
actions of a lefty using the following process form :

loop think
TABLE .PickUp(left(i))
TABLE .PickUp(right(i))
eat
TABLE . PutDown(left(i))
TABLE . PutDown(right(i))

end loop

Using the monitor TABLE, lefty P; makes two calls to PickU p
to pick up first his left fork and then his right fork, waitin g
in each case until each is available . After eating, P; return s
both forks to the table . A righty is defined analogously.

The exercise is now generalized in the following two the-
orems to any combination of lefties and righties having a t
least one of each .

Theorem 1 Any seating arrangement of lefties an d
righties with at least one of each avoids deadlock .

Proof Assume the table is in deadlock, i .e ., there is a
nonempty set D of philosophers such that each I in D hold s
one fork and waits for a fork held by a neighbor . Without
loss of generality, assume that L, E D is a lefty . Since
L, clutches his left fork and cannot have his right fork, hi s
right neighbor L A never completes his dinner and is also a
lefty. Therefore L k E D . Continuing the, argument right -
ward around the table shows that all philosophers in D ar e
lefties . This contradicts the existence of a righty . Therefore
deadlock is not possible .

Theorem 2 Any seating arrangement of lefties an d
righties with at least one of each prevents starvation .

SSIGCSE

	

Vol . 22 No . 3 Sept . 199 0BULLETIN

Proof Assume that lefty Li starves, i .e ., there is a stable
pattern of dining in which L, never eats . Suppose L, holds
no fork . Then L i ' s left neighbor must continually hold hi s
right fork and never finishes eating . Thus L i 's left neighbor
R, is a righty holding his right fork, but never getting his left
fork to complete a meal, i .e ., R; also starves . Now R ;'s lef t
neighbor must be a nighty who continually holds his righ t
fork, etc . Proceeding leftward around the table with thi s
argument shows that all philosophers are (starving) righties .
But L, is a lefty : a contradiction . Thus L, must hold on e
fork .

As L, continually holds one fork and waits for his righ t
fork, Li 's right neighbor never sets his left fork down an d
never completes a meal, i .e ., Li 's right neighbor L A is also a
lefty who starves . If L k did not continually hold his left fork ,
L, could eat ; therefore, L k holds his left fork . Now carr y
the argument rightward around the table to show that al l
philosophers are (starving) lefties : a contradiction . Starva-
tion is thus precluded .

It is left as an exercise for the reader to show that in an y
arrangement of righties and lefties maximal efficiency is no t
attainable by exhibiting table configurations where at mos t
one philosopher eats while the rest must wait hungry .

The Footman Solutio n

One common solution is to allow at most four philosopher s
to eat or hunger at any time . This can be achieved by remov-
ing one chair from the table and requiring that a philoso-
pher can contend for forks only if he is seated . Whenever
a philosopher finishes a meal, he sets his forks down an d
stands up. If another philosopher is standing, he may si t
first . If no other philosopher is standing, the philosophe r
just completing his meal may sit down again when hunge r
strikes . The coordination and distribution of the chairs ma y
be handled by introducing a new agent, a footman, as i s
done in [3] . This more complex arrangement leads to an effi-
cient correct solution at the cost of greater inter-philosophe r
communication .

A Proffered Solution

Instead of focusing on the forks individually, the following
solution, written in Concurrent Euclid [4], looks at the action s
of the philosophers themselves .

The round of activities of philosopher P ; are modeled b y
an endless loop within a process of the following form :

process PHIL i

imports (var DINER)

begin var is 0 . . H

loop DINER .THINK(i) busy(A) {A=thinking delay }
DINER .HUNGER(i)
{EAT}

	

busy(H) {B=eating delay }
end loo p

end PHIL i

The central controlling mechanism is the monitor DINER .
It uses a waiting Line with the special property that all ad-

2 4

ditions are at the end of the line, but any waiting philoso-
pher in line may leave the line, not just the one at the hea d
of the line . The current length of Line is kept in LineLen .
The boolean array Eating indicates which philosophers are
presently eating . Finally the array Phil has one condition
variable for each philosopher to effect eating delays .

The monitor DINER begins with four internal utilities ,
The boolean function NonAdj returns true if two given philoso -
phers are not adjacent neighbors at the table . The boolean
function Ready returns true if a particular philosopher's tw o
neighbors are both not eating . The procedure EnLine add s
a philosopher to the end of Line, while the DeLine removes
a particular philosopher from within Line .

var DINER :
monitor
exports (THINK,HUNGER)

var Line : array 1 . .N of 0 . .H {hunger wait line }

var LineLen : 0 . .N := 0 {# waiting in Line}

var Eating : array 0 . .M of boolean {phils eating }

var Phil : array 0 . .H of condition {wait queues }

FUNCTION NonAdj(j : 0 . .M, is 0 . .10 {T if i,j not neighs}

returns b : boolean = {note no phil is adj to self }

begin return (not((j=(i+M) mod N) o r
(j=(i+1) mod N)))

end NonAdj

FUNCTION Ready(i : 0 . .M)

	

{T if no neigh is eating}

returns b : boolean =
imports (Eating)

begin return ((not Eating((i+H)mod N)) and

(not Eating((i+1)mod N)))

end Read y

PROCEDURE EnLine(i :O . .M) _

	

{i to end of Line}

imports (var LineLen, var Line)

begin LineLen := LineLen + 1

Line(LineLen) := i
end EnLin e

PROCEDURE DeLine(k :1 . .N) _

	

{dole kth phil in line }

imports (var LineLen, var Line)

begin var j : 1 . . N

j

	

k
loop exit when j = LineLen {move up }

Line(j) := Line(j+1)

	

{followers}

j := j+i

	

{to close gap }

end loo p
LineLen

	

LineLen - i

end DeLin e

The heart of the monitor is the procedure Next, which
attempts to find the longest waiting member of Line who
has the utensils to begin eating provided he is not adjacent
to the philosopher at the head of the line . If one is found ,
that philosopher is removed from Line and set to eating .
Note that the philosopher at the head of'the line, the head

philosopher, is not adjacent to himself.

SIG C S E

	

Vol . 22 No . 3 Sept . 1990BULLETIN

PROCEDURE Next =

imports (var Eating, var Phil, var LineLen ,
var Line, NonAdj, Ready, DeLine)

begin var k : 1 . .N

	

var i : 0 . . M

	

if LineLen > 0 then

	

{feed oldest elig}
k

	

1

	

{waiting phil}

loop if (NonAdj(Line(k),Line(1)) and
Ready(Line(k)))

then Eating(Line(k)) := tru e
i := Line(k)

DeLine(k)
Signal(Phil(i))
exi t

else exit when k = LineLen
k := k+ 1

end if

end loop
end i f

Nex t

The final two procedures are the only ones available t o
the several philosopher processes . The procedure THINK set s
the calling philosopher to thinking after eating and tries t o
start another philosopher eating by calling Next . The fina l
procedure HUNGER places the calling philosopher at the en d
of the waiting Line and checks which waiting philosophe r
can eat next . If this does not turn out to be the callin g
philosopher, then he is made to wait .

PROCEDURE THINK(i : 0 . .H) =
imports (var Eating, Next)
begin Eating(i)

	

fals e
Next

end THINK

PROCEDURE HUNGER(i : 0 . .H) =
imports (var Eating, var Phil, var LineLen ,

var Line, EnLine, Next)
begin EnLine(i)

Nex t

If not Eating(i) then wait(Phil(i))
end i f

end HUNGE R

end monitor {Diner }

Solution Verificatio n

To show that the given solution is correct, we must verif y
that it meets the minimum requirements of any acceptable
solution .

Mutual Exclusion : No two adjacent philosophers simul-
taneously use the fork placed between them . This canno t
happen since no philosopher is permitted to eat if either o f
his neighbors is eating ,

Deadlock Avoidance .' If deadlock were present in some
configuration, then each philosopher would be holding som e
resource, i .e ., a fork, while waiting for some other resource ,
i .e ., a second fork . However, a philosopher either holds tw o
forks (while eating) or no fork (while thinking or waiting) .

Starvation Prevention : Each philosopher enters the wait -

*** *
DINING PHILOSPHEPS---- continued on page 2 8

{N=b ; M=N-1}

	

end

