
Dining Philosophers Revisited, Agai n

Kwok-bun Yue
University of Houston - Clear Lak e

2700 Bay Area Boulevar d
Houston, TX 7705 8

Abstract

This paper describes a problem in th e
solution of the dining philosophers problem
by Gingras [2] that makes it inefficient ,
instead of the claimed maximal efficiency .
A correct implementation is presented .
Even then, the solution has othe r
undesirable characteristics and is stil l
not maximally efficient . Depending on th e
definition of efficiency, it may not b e
possible to attain maximal efficiency an d
be starvation-free at the same time . A
better and simpler solution for genera l
mutual exclusion problems, in which th e
dining philosophers problem is a specia l
case, is presented . This solution can
become symmetric if appropriate dat a
structures are used .

Introduction

In a recent article in the SIGCS E
Bulletin, titled "Dining Philosopher s
Revisited", Gingras presented some result s
on the well-known dining philosopher s
problem [2] . He presented an asymmetri c
solution and a symmetric solution . He
proved that the asymmetric solution, wher e
all philosophers always prefer to pick up a
fork with a particular hand first, are both
deadlock-free and starvation-free . The
article also pointed out, as an example o f
the subtlety required to solve the problem ,
that the solution in a popular operatin g
systems book [6] is not starvation-free .
The symmetric solution is then proposed a s
one that is starvation-free and als o
attains maximal efficiency .

In this paper, the dining philosopher s
problem is considered in the context o f
general mutual exclusion problems . A
problem in Gingras's solution that actually
makes it inefficient is identified and
fixed . However, even with the fix, the
solution still has some shortcomings an d
does not attain maximal efficiency . It i s
shown that maximal efficiency may lead t o
starvation and it is necessary

	

to
compromise

	

between

	

the

	

absence

	

of
starvation and efficiency .

A simpler and better method fo r
generating asymmetric starvation-fre e
solutions for general mutual exclusio n
problems is presented . With appropriate
data structures, the solution can b e
converted to a symmetric one where ever y
process uses the same synchronization code .

The Problem

In the dining philosophers problem ,
there are five philosophers sitting at a
round table, with a chopstick between eac h
pair of neighboring philosophers. The
philosophers only do two things : eating and
thinking . To eat, a philosopher must pic k
up the two chopsticks closest to him . Th e
problem is to synchronize the actions o f
the philosophers such that certai n
requirements must be satisfied .

The dining philosophers problem is a n
example of general mutual exclusio n
problems . If the action of a philosopher
is a process, then eating is a critical
section mutually exclusive to the critica l
sections of neighboring philosophers .

A simple way to represent mutua l
exclusion problems is by graphs [5] . A
process is represented by a node and a
mutual exclusion constraint between two
processes is represented by an edge between
the corresponding two nodes . For example ,
the dining philosophers problems can be
represented by the mutual exclusion grap h
in Figure 1 .

There can be many requirements for the
solutions of mutual exclusion problem s
[2,7] . The fundamental one being the
mutual exclusion constraint which state s
that no two neighboring processes can be i n
their critical sections in the same time .
The solutions should also avoid deadlock
and starvation and be efficient -- allow s
reasonable degree of concurrency . In the
dining philosophers problem, deadlock
occurs when every philosopher is holding a
chopstick, not giving up it and waiting fo r
the other chopstick .

	

Starvation occurs

SIGCSE
BULLETIN Vol . 23 No . 2 June 1991 60

6 1

Figure 1 The Mutual Exclusion Graph fo r
The Dining Philosophers Problem

when the two neighbors of a philosopher ea t
in turn, thus denying the philosopher t o
eat indefinitely .

Gingras's Solution

In [2], Gingras presented a solutio n
(Figure 2) to the dining philosophers
problem using monitor [3] in Concurrent
Euclid [4] that is symmetric, deadlock -
free, starvation-free and achieves maxima l
efficiency .

process PHIL i
imports (var DINER)
begin var is 0 . . H

loop DINER .THINK(i) busy(A) CA=thinking delay)
DINER .HUNGER(i)
(EAT)

	

busy(B) (B=eating delay)
end loo p

end PHIL i

var DINER :
monito r
exports (TIIINK,HUNGER)
var Line

	

array 1 . .N of O . .N (hunger wait line)
var LineLen : 0 . .N := 0

	

(II waiting in Line)
var Eating : array 0 . .N of boolean (Oils eating)
var Phil

	

array 0 . .H of condition (wait queues)

FUNCTION NonADj(j :O . .H, i :O . .H) CT if i,j not neighs)
returns b : boolean = (note no phil is adj to self)
begin return (not((j .00) mod N)

(j = (i+1) mod N)))
end NonAd j

FUNCTION Ready(i :O . .H)

	

CT if no neigh is eating)
returns b : boolean
irrports (Eating)
begin return ((not Eating((i+H)rnod N)) and

(not Eating((i+1)mod N)))
end Ready

PROCEDURE EnLine(i :O . .H) _

	

(i to end of Line)
imports (var LineLen, var Line)
begin LineLen := LineLen + 1

Line(LineLen) := i
end EnLine

PROCEDURE DeLine(k :) . .N) _ (dole kth phil in tine)
imports (var LineLen, var Line)
begin var j : 1 . . N

j := k

	

loop exit when j = LineLen

	

(move up)

	

Line(j) := Line(j+1)

	

(followers)
:= j+1

	

(to close gap)

end loop
LineLen := LineLen - 1

end DeLine

SIGCSE

	

Vol . 23 No . 2 June 199 1
BULLETIN

PROCEDURE Next =
imports (var Eating, var Phil, var LineLen ,

var Line, NonAdj, Ready, DeLine)
begin var k : 1 . .N var i : 0 . . H

if LineLen > 0 then

	

(feed oldest elig)
k := 1

	

(waiting phil)
loop if (Nonddj(Line(k),Line())) an d

Ready(Line(k)))
then Eating(Line(k))

	

tru e
i := Line(k)
DeLine(k)
Signal(Phil(i))
exi t

else exit when k = LineLen
k := k + 1

end i f
end loo p

end i f
end Nex t

PROCEDURE THINK(i : 0 . .H) =
imports (var Eating, Next)
begin Eating(i) := fals e

Nex t
end THIN K

PROCEDURE HUNGER(i : 0 . .H) =
imports (var Eating, var Phil, ar LineLen ,

var Line, EnLine, Next)
begin EnLine(i)

Nex t
If not Eating(i) then wait(Phil(i))
and i f

end HUNGER

Figure 2 Gingras's Solutio n

Essentially, Gingras's solution is t o
use a waiting Line for the philosopher s
waiting to eat . A waiting philosopher i s
put at the end of the Line . A philosophe r
waiting in the Line is allowed to eat i f
(1) no neighboring philosopher is eatin g
and (2) the head of the Line is not it s
neighbor . The second condition is added t o
avoid starvation .

In Figure 2, the most important
procedure is Next which finds the next
philosopher in Line that should be allowe d
to eat to do so . The procedure Next i s
called in two locations : in the procedur e
THINK when a philosopher has just finished
eating and thus its neighbors may b e
allowed to eat ; and in the procedure HUNGE R
when a philosopher wants to eat and thu s
wants to check whether he is allowed to do
so .

The problem with Gingras's solution i s
that the procedure Next finds only one
waiting philosopher in Line who should b e
allowed to eat to do so . However, there
may be more than one philosopher in Lin e
that should be allowed to eat . For
example, in Figure 1, suppose philosopher s
P1 and P3 are hungry and waiting in Lin e
and philosopher P2 is eating . If
philosopher P2 has just finished eating no w
and calls the procedure Next within the
procedure THINK, only one of the
philosophers P1 and P3 will be allowed t o
eat whereas both should be allowed to eat .

A correct implementatio n

The correct implementation of Next i s
of course to allow all ready philosopher s

(H=5 ; M=N-))

62

to eat . This is done by examining th e
entire Line starting from the Head . Figure
3 is the correct implementation of th e
procedure Next . The only necessary chang e
is to add the condition "when k > LineLen "
to the exit statement to force iteration .

PROCEDURE Next =

imports (var Eating, var Phil, var LineLen ,
var Line, NonAdj, Ready, DeLine)

begin var k : 1 . .N var i : 0 . . M

	

if LineLen > 0 then

	

(feed oldest elig)
k := 1

	

(waiting Phil)

loop if (tonAdj(Line(k),Line(1)) an d

Ready(Line(k)))

then Eating(Line(k)) := tru e

i := Line(k)

DeLine(k)

Signal(Phi1(i))

exit when k > LineLen (change here)

else exit when k = LineLe n

k :=k+ 1

end i f

end loo p

end i f
end Nex t

Figure 3 The correct implementation of
Next

This solution can be used for genera l
mutual exclusion problems . The onl y
necessary change is the function NonAdj an d
Ready to reflect the topology of th e
problem .

The resulting solution is a faithfu l
implementation of the strategy :

A process is blocked or remain s
blocked if and only if it has a
neighbor in critical section or
it is the neighbor of the process
blocked for the longest time .

This and other strategies to construc t
solutions for graphical mutual exclusio n
problems are discussed in [7] .

Even with the correction, Gingras' s
solution has other undesirabl e
characteristics .

o The code is too long .

o A lot of variables are needed . In
particular, N Boolean variables (i .e .
Eating), N conditions (i .e . Phil) and a
line of length N is necessary, where N i s
the number of processes in the problem .

o The time for executing Next is O(N) .

o Since the solution uses a monitor and a
monitor allows only one process inside i t
at a time, this may represent a significant
bottleneck in synchronization for comple x
problems with a lot of processes .

Furthermore, the solution does not
provide maximal efficiency, as claimed by
Gingras . It is very difficult to measure
the degree of concurrency . One possible
way of defining maximal efficiency is t o

SIG C S E

	

Vol . 23 No . 2 June 199 1BULLETIN

maximize the current number of processes i n
critical sections . If this is so, then the
following strategy will ensure maxima l
efficiency .

A process is blocked or remain s
blocked if and only if one o r
more of its neighbors are i n
their critical sections .

It is easy to see that this strategy i s
more efficient, defined as above, than tha t
of Gingras . However, the strategy is no t
starvation-free . Thus, maximal efficiency ,
defined as above, can be contradictory t o
the absence of starvation . [7] described
other methods for measuring degree o f
concurrent activities .

A Simple Solution

There are many other strategies, wit h
relative merits, to construct solutions for
general mutual exclusion problems [8] . In
this section, a simple method, based o n
[8], of generating solutions for genera l
mutual exclusion problems is discussed .

Our method is based on Dijkstra' s
semaphore [1] . A semaphore S is a globa l
non-negative integer variable that can b e
accessed only through the two primitiv e
functions P and V (called down and up i n
[2,6]) :

P(S) : if S > 0 then S <-- S - 1
else wait .

V(S) : if S > 0 then S <- S + 1
else signal a process waiting at
P(S) to complete P(S) .

In our method, there is a semaphore ,
with an initial value of 1, associated wit h
each edge in the graph describing the
mutual exclusion problem. Let N(p) be the
set of all neighbors of node p in the
graph . Let entry(p) and exit(p) be the
synchronization code for process p ,
executed immediately before and after it s
critical section . The Pascal-like code for
enter(p) and exit(p) of every node p in th e
graph can be obtained by the followin g
algorithm where the symbol & is the strin g
concatenation operator .

[1] Arbitrarily label the values 1 to N to
the N nodes in the graph .

[2] for every node p in the graph do
entry(p) <- un ;

exit(p) <-- "" ;
work set <-- N(p) ;
while work set is not empty d o

Let q be the node in work se t
with the smallest value .

Let S be the semaphore associate d
with edge joining p and q .

entry(p) <-- entry(p) & "P(" & S
& w) ; n

exit(p) <-- exit(p) & "V(" & S
& ") ;"

6 3

1

The code generated by the algorith m
does not have the undesirable features o f
Gingras's solution .

As an example, consider the graph G i n
Figure 4 that has six nodes, a, b, c, d, e
and f, labelled with values 1, 2, 3, 4, 5 ,
6 respectively . There are 7 edges with
associated semaphores T, U, V, W, X, Y an d
Z . The synchronization code for the 6
nodes generated by the algorithm is shown
in Figure 5 .

Figure 4 A mutual exclusion graph

Node p entry(p) exit(p)
----------------------- --------
a P(T) ;

P (U) ;
V(T) ;
V(U) ;

b P(T) ;
P(V) ;
P(W) ;

V(T) ;
V(V) ;
V(W) ;

c P(U) ;
P(X) ;
P(Y) ;

V(U) ;
V(X) ;
V(Y) ;

d P(V) ;
P(X) ;

V(V) ;
V(X) ;

e P(W) ;
P (Z) ;

V(W) ;
V(Z) ;

f P(Y) ;
P(Z) ;

V(Y) ;
V(Z) ;

Figure 5 Solution for Figure 4 generated
by the algorithm

As another example, Figure 6 is th e
code generated by the algorithm for the
dining philosophers problem of Figure 1 ,
where the value associated with every node
and the semaphore associated with every
edge are also shown . This is similar to
Gingras's asymmetric solution where
philosopher pl is a 'lefty' and all othe r
philosophers are 'righties' .

SIGCSE

	

Vol . 23 No . 2 June 199 1
BULLETIN

Node p entry(p) exit(p)

P1 P(V) ;
P(Z) ;

V(V) ;
V(Z) ;

P2 P(V) ;
P(W) ;

V(V)
V(W) ;

P3 P(W) ;
P(X) ;

V(W) ;
V(X)

P4 P(X) ;
NY) ;

V(X) ;
V(Y) ;

P5 P(Y) ;
P(Z) ;

V(Y)
V(Z) ;

Figure 6 The solution for the dinin g
philosophers problem of Figure I

generated by the algorithm

The algorithm can actually be
considered as a generalization of Gingras' s
asymmetric solution . Informally, deadlock
and starvation is avoided because th e
algorithm guarantees that there is at leas t
a 'lefty' and a 'righty' in every cycle in
the graph .

	

For a formal proof and a
detailed discussion, please refer to [8] .

The solutions in Figures 5 and 6 ar e
asymmetric in the sense that each proces s
does not have the same synchronizatio n
code . A symmetric solution can b e
generated if appropriate data structure i s
used .

Suppose there are N nodes and M edges .
As an example, Figure 7 contains th e
necessary data declarations and code .

S[l . .M] : semaphore ;
E[1 . .N,l . .M] : Boolean ;

(E[i,j]=True iff the edge j i s
incident to the node i .)

Synchronization code for node i s
entry(i) :

for j := 1 to M d o
if E[i,j] then P(S[j]) ;

exit(i) :
for j := 1 to M d o

if E[i,j] then V(S[j]) ;

Figure 7 A symmetric solution

More efficient data structures can b e
used . For example, linked lists may be
used to improve performance for spars e
graphs .

Conclusion

In this paper, we have demonstrated an d
fixed a problem in a symmetric solution b y
Gingras of the dining philosophers problem .
Even after the correction, this solutio n
has some undesirable characteristics . The
other asymmetric solution by Gingras i s

64

generalized so that it can deal with an y
mutual exclusion problem, not just th e
dining philosophers problem . By using
simple data structures, the solution can b e
converted to a symmetric one where al l
processes have the same synchronizatio n
code .

References

Dijkstra, E .W . Cooperating Sequentia l
Processes, in Programming Languages ,
Genuys, F . Ed ., Academic Press, New
York, 1968 .

[2]

	

Gingras, A .R ., Dining Philosophers
Revisited . SIGCSE	 Bulletin, vol .2 2
No .3 (1990), 21-28 .

Hoare, C .A.R . Communicating Sequential
Processes, Prentice-Hall Inc . ,
Englewood Cliffs, New Jersey, 1985 .

[4] Holt, R .C ., Concurrent Euclid,	 The
UNIX System, and TUNIS, Addison-
Wesley, Reading, Massachusetts, 1983 .

[5] Page, I .P . & Jacob, R .T ., The
Solution of Mutual Exclusion Problem s
which can be Described Graphically ,
The	 Computer Journal, vol .32 No . 1
(1989), 45-54 .

[6] Tanenbaum, A .S . Operating Systems :
Design and Implementation, Prentice -
Hall Inc ., Englewood Cliffs, New
Jersey, 1987 .

Yue K . & Jacob R .T ., Starvation-Free
Semaphore Solutions to Mutua l
Exclusion Problems, Proceedings of th e
1987 ACM Southern Central Regional ACM
Conference, Lafayette, Louisiana (Nov .
1987), 127-141 .

	

Yue K ., Semaphore	 Solutions	 for
General Mutual Exclusion Problems, PhD
dissertation, University of North
Texas, Denton, Texas, 1988 .

*** *
BIBLIOGRAPHY-- continued from page 5 9

Anneliese von Mayrhauser . Software
Engineering : Methods and Managemen t

San Diego, Calif. : Academic Press, 1990 . ISBN 0-12 -
727320-4 . 864 pages . $49 .95 . Includes exercises .

Table of Contents
Part 1 : Methods

1 . Introductio n
2 Problem Definition
3. Functional Requirements Collectio n
4. Qualitative Requirements
5. Specification s
6. Design : Strategies and Notation s
7. Software System Structure Desig n
8. Detailed Design
9. Codin g

10. Testin g
11. Operation and Maintenanc e

SIGCSE

	

Vol . 23 No . 2 June 199 1
BULLETIN

Part 2 : Managemen t
12 Management by Metric s
13.Feasibility and Early Plannin g
14.Models for Managerial Plannin g
15.Project Personne l
16. Software Development Guideline s

Richard Wiener and Richard Sincovec .
Software Engineering with Modula-2 and Ad a

New York : John Wiley & Sons, 1984 . ISBN 0-471 -
89014-6 . 451 pages . Includes exercises .

Reviewed in Computing Reviews, October 1985 .

Table of Contents
1 . What is Software Engineering? A Top-Down Vie w
2, Software Requirements and Specification s
3. Programming Languages and Softwar e

Engineering
4 General Principles of Software Desig n
5. Modular Software Development Using Ad a
6. Modular Software Construction Using Modula-2
7. Programming Methodology
8. Software Testin g
9. A Case Study in Modular Software Constructio n

•******1e*****•kir**•k•*************fir*fir******** *

INTERNET-- continued from page 5 4

facilities of C using additional (nonstandard) Pascal procedur e
names and corresponding library routines is being considered .
Providing a name server for students to register and reques t
services, thus providing a means of "broadcasting" (and con-
necting to) some new service, is planned . Also, an adequate
means of handling INET file identifiers is being sought. At
the least, the initialization of these identifiers will be moved t o
the constant section of the source code .

An early decision was made to support only character
based input/output using read(ln) and write(ln) . Extension s
will allow the use INET files for output of integers, teals, an d
booleans, as is required by the Pascal standard, The system
will also allow access to INET files through file pointers usin g
pointer notation and the Pascal procedures get and put .

In summary, the PIP system can be effectively used t o
introduce or reinforce concepts of networks and telecommuni-
cations using a language quite similar to Pascal . Very fe w
changes to Pascal syntax are introduced, and PIP retains all o f
the features of standard Pascal . Very little class time is needed
to introduce PIP. The system can be implemented on 4 .2 +
BSD UNIX systems with minimal effort .

REFERENCE S

Cooper, Doug. Standard Pascal User Reference Manual.
W.W. Norton & Company, New York . 1983 .

Leffler, Samuel, Robert Fabry, and William Joy. "A 4 .2BSD
Interprocess Communication Primer." Computer Sys-
tems research Group, Dept . of Electrical Engineering an d
Computer Science, University of California, Berkeley .
1986 .

Tanenbaum, Andrew . Computer Networks, 2nd. Prentice Hall,
Englewood Cliffs, NJ . 1988 .

[1]

[3]

[7]

[8]

