
Chapter �

Basic Concepts

Learning to program is a lot like learning to speak a new language� You must learn new vocabulary�
i�e� the words of the language� the syntax� �also called the grammar�� i�e� the form of statements
in the language� as well as the semantics� i�e� the meaning of the words and statements� This
learning process usually begins slowly but often you �nd that with just a few basic words and
phrases you can begin conversing and getting your thoughts across� In this chapter we present a
few of the basic statements of the C language so that you can write programs from the beginning�

As in spoken languages� the �rst thing you need is something to say � an idea� In the program	
ming world� this idea is often in the form of a task� i�e� something you would like to have done
by the computer� The task may be described in terms of what information is to be provided to
the computer� what is to be done with this information� and what results should be produced by
the program� A program is often developed in small increments� starting with a relatively simple
version of the task and progressing to more complex ones� adding features until the entire task can
be solved� The focus is always on the task to be performed� The task must be clearly understood
in order to proceed to the next step� the development of an algorithm� As was discussed in the
previous chapter� an algorithm is a step by step description of what must be done to accom	
plish a task� These can be considered to be the most important steps in programming� specifying
and understanding the task �what is to be done�� and designing the algorithm �how it is to be
done�� We take this approach beginning in this chapter� and we will discuss task development and
algorithm design in more detail in Chapter
�

Once an algorithm is clearly stated� the next step is to translate the algorithm into a pro�

gramming language� In our case this will be the C language� Using the vocabulary� syntax� and
semantics of the language� we can code the program to carry out the steps in the algorithm� After
coding a program� we must test it by running it on the computer to ensure that the desired task is
indeed performed correctly� If there are bugs� i�e� errors in the program� they must be removed�
in other words an erroneous program must be debugged so it performs correctly� The job of pro	
gramming includes the entire process� algorithm development� and coding� testing and debugging
the program�

At the end of the Chapter� you should know�

�

� CHAPTER �� BASIC CONCEPTS

� How to code simple programs in C�

� How a program allocates memory to store data� called variables�

� How variables are used to store and retrieve data� and to make numeric calculations�

� How decisions are made based on certain events� and how a program can branch to di�erent
paths�

� How a set of computations can be repeated any number of times�

� How a program can be tested for errors and how the errors may be removed�

��� A Simple C Program

The easiest way to learn programming is to take simple tasks and see how programs are developed
to perform them� In this section we will present present one such program explaining what it does
and showing how it executes� A detailed description of the syntax of the statments used is given
in Section ����

����� Developing the Algorithm

In the previous chapter we introduced a payroll task which can be summarized as a task to
calculate pay for a number of people employed by a company� Let us assume that each employee
is identi�ed by an id number and that his�her pay is computed in terms of an hourly rate of
pay� We will start with a simple version of this task and progress to more complex versions� The
simplest version of our task can be stated as follows�

Task

PAY�� Given the hours worked and rate of pay� write a program to compute the pay for a person
with a speci�ed id number� Print out the data and the pay�

The algorithm in this case is very simple�

print title of program�

set the data� set id number� hours worked� and rate of pay�

set pay to the product of hours worked and rate of pay�

print the data and the results�

With this algorithm� it should be possible� without too much trouble� to implement the corre	
sponding program in almost any language since the fundamental constructs of most algorithmic

���� A SIMPLE C PROGRAM
�

programming languages are similar� While we will discuss the features of C� similar features are
usually available for most high level languages�

����� Translating the Algorithm to C

A program in a high level language� such as C� is called a source program or source code�
�Code is a generic term used to refer to a program or part of a program in any language� high or
low level�� A program is made up of two types of items� data and procedures� Data is information
we wish to process and is referred to using its name� Procedures are descriptions of the required
steps to process the data and are also given names� In C� all procedures are called functions� A
program may consist of one or more functions� but it must always include a function called main�
This special function� main��� acts as a controller� directing all of the steps to be performed and
is sometimes called the driver� The driver� like a conductor or a coordinator� may call upon other
functions to carry out subtasks� When we refer to a function in the text� we will write its name
followed by parentheses� e�g� main��� to indicate that this is the name of a function�

The program that implements the above algorithm in C is shown in Figure ���� Let us �rst
look brie�y at what the statements in the above program do during execution�

Any text between the markers� �� and �� is a comment or an explanation� it is not part of the
program and is ignored by the compiler� However� comments are very useful for someone reading
the program to understand what the program is doing� We suggest you get in the habit of including
comments in your programs right from the �rst coding� The �rst few lines between �� and ��

are thus ignored� and the actual program starts with the function name� main��� Parentheses are
used in the code after the function name to list any information to be given to the function� called
arguments� In this case� main�� has no arguments� The body of the function main�� is a number
of statements between braces f and g� each terminated by a semi	colon�

The �rst two statements declare variables and their data types� id number is an integer type�
and hours worked� rate of pay� and pay are �oating point type� These statements indicate that
memory should be allocated for these kinds of data and gives names to the allocated locations�
The next statement writes or prints the title of the program on the screen�

The next three statements set the variables id number� hours worked� and rate of pay to
some initial values� id number is set to ��
� hours worked to ����� and rate of pay to ���� The
next statement sets the variable pay to the product of the values of hours worked and rate of pay�
Finally� the last three statements print out the initial data values and the value of pay�

����� Running the Program

The program is entered and stored in the computer using an editor and saved in a �le called pay	
c�
The above source program must then be compiled� i�e� translated into a machine language object

program using a compiler� Compilation is followed� usually automatically� by a linking process
during which the compiled program is joined with other code for functions that may be de�ned

� CHAPTER �� BASIC CONCEPTS

�� File� pay	
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person� given the hours worked

and rate of pay

��

main��

� �� declarations ��

int id�number�

float hours�worked�

rate�of�pay�

pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� initialize variables ��

id�number � ����

hours�worked � �	
	

rate�of�pay � �
��

�� calculate pay ��

pay � hours�worked � rate�of�pay�

�� print data and results ��

printf�
ID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

prinf�
Pay � �f�n
� pay��

�

Figure ���� Code for pay��c

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS

elsewhere� The C language provides a library of standard functions which are linked to every
program and are available for use in the program� The end result is an executable machine
language program also in a �le� The executable machine language program is the only one that
can be executed on a machine� We will use the term compilation to mean both compiling and
linking to produce an executable program�

When the above program is compiled and executed on a computer� a sample session produces
the following on the terminal�

���Pay Calculation���

ID Number � ���

Hours Worked � �	
						� Rate of Pay � �
�					

Pay � ��	
						

Throughout this text� we will show all information printed by the computer in typewriter

style characters� As programs will frequently involve data entry by the user of the program
during execution� in a sample session� all information typed in by the user will be shown in slanted

characters�

��� Organization of C Programs � Simple Statements

We will now explain the syntax and semantics of the above program statements in more detail�
Refer back to the source program in Figure ��� as we explain the statements in the program�

����� Comment Statements

As already mentioned� the text contained within �� and �� is called a comment� When the
character pair �� is encountered� all subsequent text is ignored until the next �� is encountered�
Comments are not part of the program� they are private notes that the programmer makes about
the program to help one understand the logic� Comments may appear anywhere in a program but
cannot contain other comments� i�e�� they cannot be nested� For example�

�� This is a comment
 �� Nested comments are not allowed �� this part

is not in a comment
 ��

The comment starts with the �rst ��� When the �rst matching �� is encountered after the word
allowed� the comment is ended� The remaining text is not within the comment and the compiler
tries to interpret the remaining text as program statement�s�� most likely leading to errors�

� CHAPTER �� BASIC CONCEPTS

����� De�ning a Function � main��

To de�ne a function in C� the programmer must specify two things� the function header� giving
a name and other information about the function� and the function body� where the variables
used in the function are de�ned and the statements which perform the steps of the function are
speci�ed�

The Function Header

In C� main�� is the function that controls the execution of every program� The program starts
executing with the �rst statement of main�� and ends when main�� ends� As we shall soon see�
main�� may call upon� i�e� use� other functions to perform subtasks�

The �rst line of any function is the function header which speci�es the name of the function
together with a parenthesized �possibly empty� argument list� In the above case� there is no
argument list� We will discuss the concepts of arguments and argument lists in the next chapter�

The Function Body

The body of the function is contained within braces f and g� In C� a group of statements within
braces is called a block which may contain zero or more statements and which may be nested� i�e�
there may be blocks within blocks� A block is treated and executed as a single unit and is often
called a compound statement� Such a compound statement may be used anywhere a statement
can occur�

A program statement is like a sentence in English� except that it is terminated by a semi	colon�
Statements within a block may be written in free form� i�e� words in programs may be separated by
any amount of white space� �White space consists of spaces� tabs� or newlines �carriage returns���
Use of white space to separate statements and parts of a single statement makes programs more
readable and therefore easier to understand�

The function body �as for any block� consists of two parts� variable declarations and a list of

statements� Variable declarations will be described in more detail in the next section� however� all
such declarations must occur at the beginning of the block� Once the �rst executable statement
is encountered� no more declarations may occur for that block�

There are two types of statements used in our example �Figure ����� assignment statements
and statements for printing information from the program� These will be discussed more below�
The execution control �ow proceeds sequentially in this program� when the function is executed�
it begins with the �rst statement in the body and each statement is executed in succession� When
the end of the block is reached� the function terminates� As we will soon see� certain control
statements can alter this sequential control �ow in well de�ned ways�

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS
�

����� Variable Declarations

A variable is a language construct for identifying the data items used within a block� The
declaration statements give names to these data items and specify the type of the item� The �rst
two statements in our program are such declarations� The information we have in our task is the
employee ID� the number of hours worked by the employee and the rate of pay� In addition� we will
compute the total amount of pay for the employee and must declare a variable for this information�
We have named variables for this information� id number� hours worked� rate of pay� and pay�
We have also speci�ed the type of each� for example� id number is a whole number which requires
an integer type� so the keyword int is used� The remaining data items are real numbers �they
can have fractional values�� so the keyword float is used to specify �oating point type�

Variables of appropriate type �int� float� etc�� must be declared at the head of the block in
which they are used� Several variables of the same type may be grouped together in a declaration�
separated by commas�

int id�number�

float hours�worked�

rate�of�pay�

pay�

The names we have chosen for the variables are somewhat arbitrary� however� to make programs
readable and easier to understand� variable names should be descriptive and have some meaning
to the programmer� In programming languages� names are called identi�ers and must satisfy
certain rules�

First� identi�ers may not be keywords �such as int and float� which have special meaning
in C and are therefore reserved� All of these reserved words are listed in Appendix A� Otherwise�
identi�ers may include any sequence of lower and upper case letters� digits� and underscores�
but the �rst character must be a letter or an underscore �though the use of an underscore as
a �rst character is discouraged�� Examples of legal identi�ers include PAD��� pad��� room ��	�
etc� Alphabetic letters may be either lower case or upper case which are di�erent� i�e� PAY� Pay�
and pay are distinct identi�ers for three di�erent objects� There is no limit to the length of an
identi�er� however� there may be an implementation dependent limit to the number of signi�cant
characters that can be recognized by a compiler� �This means that if two identi�ers do not di�er
in their �rst n characters� the compiler will not recognize them as distinct identi�ers� A typical
value for n might be
���

The general form for a declaration statement is�

�type speci�er� �identi�er��� �identi�er�� � � ��

Throughout this text we will be presenting syntax speci�cations as shown above� The items
surrounded by angle brackets ���� are constructs of the language� for example �type speci�er�
is a type speci�er such as int or float� and �identi�er� is a legal identi�er� Items surrounded

� CHAPTER �� BASIC CONCEPTS

Size�

Type�

Name�

Addr�

�

int

id number

���

�

�oat

hours worked

���

�

�oat

rate of pay

���

�

�oat

pay

��A

�� �� �� ��
Mem

Cells

main��

Figure ���� Allocation of Memory Cells or Objects

by square brackets �� �� are optional� i�e� they may or may not appear in a legal statement� The
ellipsis �� � � � indicates one or more repetitions of the preceding item� Any other symbols are
included in the statement exactly as typed� So� in words� the above syntax speci�cation says that
a declaration statement consists of a type speci�er followed by an identi�er and� optionally� one
or more other identi�ers separated by commas� all terminated by a semicolon�

As for the semantics �meaning� of this statement� a declaration statement does two things�
allocates memory within the block for a data item of the indicated type� and assigns a name to
the location� As we saw in Chapter �� data is stored in the computer in a binary form� and di�erent
types of data require di�erent amounts of memory� Allocating memory for a data item means to
reserve the correct number of bytes in the memory for that type� i�e� choosing the address of the
memory cells where the data item is to be stored�

Figure ��� shows memory allocation for the declarations in our program as it might occur on
a �� bit machine� The outer box shows that these variables have been allocated for the function
main��� For each variable we show the size of the data item �in bytes�� its type� name and
assigned address assignment �in hex� above the box representing the cell itself� In the future�
we will generally show only the memory cell and its name in similar diagrams� Note that the
declaration statements do not put values in the allocated cells� We indicate this with the �� in
the boxes�

Memory cells allocated for speci�c data types are called objects� An object is identi�ed by its
starting address and its type� The type determines the size of the object in bytes and the encoding
used to represent it� A variable is simply a named object which can be accessed by using its name�
An analogy is gaining access to a house identi�ed by the name of the person living there� Smith
house� Anderson house� etc�

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS
�

main��

Size�

Type�

Name�

Addr�

�

int

id number

���

�

�oat

hours worked

���

�

�oat

rate of pay

���

�

�oat

pay

��A

��
Mem

Cells
��
 ���� ���

Figure ��
� Assignment of Values

Memory is automatically allocated for variables declared in a block when the block is entered
during execution� and the memory is freed when the block is exited� Such variables are called
automatic variables� The scope of automatic variables� i�e� the part of a program during
which they can be used directly by name� is the block in which they are de�ned�

����	 The Assignment Statement

The next three statements in our program assign initial values to variables� i�e� store initial values
into objects represented by the variables� The assignment operator is ��

id�number � ����

hours�worked � �	
	�

rate�of�pay � �
��

Each of the above statements stores the value of the expression on the right hand side of the
assignment operator into the object referenced by the variable on the left hand side� e�g� the
value stored in id number is ��
 �Figure ��
�� We will say the �current� value of id number is
��
� The value of a variable may change in the course of a program execution� for example� a
new assignment can store new data into a variable� Storing new data overwrites the old data�
otherwise� the value of a variable remains unchanged�

The �right hand side� of these three assignments is quite simple� a decimal constant� �The
compiler will take care of converting the decimal number we use in the source code into its

� CHAPTER �� BASIC CONCEPTS

main��

Size�

Type�

Name�

Addr�

�

int

id number

���

�

�oat

hours worked

���

�

�oat

rate of pay

���

�

�oat

pay

��A

Mem

Cells
��
 ���� ��� �����

Figure ���� Computation of pay

appropriate binary representation�� However� in general the right hand side of an assignment
may be an arbitrary expression consisting of constants� variable names and arithmetic operators
�functions may also occur within expressions�� For example� next� we calculate the product of the
value of hours worked and the value of rate of pay� and assign the result to the variable pay�
The multiplication operator is ��

pay � hours�worked � rate�of�pay�

The semantics of the assignment operator is as follows� the expression on the right hand side of
the assignment operator is �rst evaluated by replacing each instance of a variable by its current
value and the operators are then applied to the resulting operands� Thus� the above right hand
side expression is evaluated as�

�	
	 � �
�

The resulting value of the expression on the right hand side is then assigned to the variable on
the left hand side of the assignment operator� Thus� the value of ���� � ���� i�e� ������ is stored
in pay �Figure �����

The above assignment expression may be paraphrased in English as follows�

�SET pay TO THE VALUE OF hours worked � rate of pay�

or�

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS

�ASSIGN TO pay THE VALUE OF hours worked � rate of pay�

The syntax of an assignment statement is�

�Lvalue���expression��

The class of items allowed on the left hand side of an assignment operator is called an Lvalue�
a mnemonic for left value� Of course� �Lvalue� must always reference an object where a value is
to be stored� In what we�ve see so far� only a variable name can be an �Lvalue�� Later we will
see other ways of referencing an object which can be used as an �Lvalue��

As we can see from the above discussion� variables provide us a means for accessing information
in our program� Using a variable on the left hand side of an assignment operator allows us to
store a value in its memory cell� Variables appearing elsewhere in expressions cause the current
value of the data item to be read and used in the expression�

In C every expression evaluated during execution results in a value� Assignment is also an
expression� therefore also results in a value� Assignment expressions may be used anywhere ex	
pressions are allowed� The rule for evaluating an assignment expression is� evaluate the expression
on the right hand side of the assignment operator� and assign the value to the variable on the left
hand side� The value of the entire assignment expression is the value assigned to the left hand side
variable� For example� x � �	 assigns �� to x� and the value of the entire assignment expression
is ��� So if we wrote y � x � �	� the variable y would be assigned the value of the expression x �

�	� namely ��� In our programming example we have used assignment expressions as statements
but ignored their values�

Any expression terminated by a semi	colon is a statement� Of course� a statement is typically
written to perform some useful action� Some additional examples of expressions as statements
are�

�	�

� � �	�

z � �	 � � � �	�

�

The last statement is an empty statement which does nothing� The expressions in the �rst two
statements accomplish nothing since nothing is done with their values�

C has a rich set of operators for performing computations in expressions� The common arith	
metic operators and their meanings are shown in Table ���� Two types of operators are shown�
unary operators which take one operand� and binary operators which take two operands� The
unary operators� � and � a�ect the sign of the operand� The binary operators are those you are
familiar with� except possibly �� This is the mod operator� which we will describe below� but
�rst one other point to make is that for the division operator �� if both operands are type integer�
then integer division is performed� discarding and fractional part with the result also being type

�� CHAPTER �� BASIC CONCEPTS

Operator Name Example and Comments

� plus sign �x
� minus sign �x

� addition x � y
� subtraction x� y

� multiplication x � y
� division x�y

if x� y are both integers�
then x�y is integer�
e�g�� ��
 is ��

� modulus x�y
x and y MUST be integers�
result is remainder of
�x�y�� e�g�� ��
 is ��

Table ���� Arithmetic Operators

integer� Otherwise� a �oating point result is produced for division� The mod operator evaluates
to the remainder after integer division� Speci�cally� the following equality holds�

�x�y� � y � �x�y� � x�

In words� if x and y are integers� multiplying the result of integer division by the denominator
and adding the result of mod produces the numerator� We will see many more operators in future
chapters�

����
 Generating Output

Writing programs which declare variables and evaluate expressions would not be very useful if
there were no way to communicate the results to the user� Generally this is done by printing �or
writing� messages on the output�

Output of Messages

It is a good practice for a program to indicate its name or title when it is executed to identify the
task which is being performed� The next statement in our program is�

printf�
���Pay Calculation����n�n
��

���� ORGANIZATION OF C PROGRAMS � SIMPLE STATEMENTS ��

The statement prints the program title on the terminal� This statement invokes the standard
function printf�� provided by every C compiler in a standard library of functions� The function
printf�� performs the subtask of writing information to the screen� When this statement is
executed� the �ow of control in the program passes to the code for printf��� and when printf��

has completed whatever it has to do� control returns to this place in the program� These sequence
of events is called a function call�

As can be seen in this case� a function can be called by simply using its name followed by a
�possibly empty� pair of parentheses� Anything between the parentheses is called an argument

and is information being sent to the function� In the above case� printf�� has one argument�
a string of characters surrounded by double quotes� called a format string� As we shall soon
see� printf�� can have more than one argument� however� the �rst argument of printf�� must
always be a format string� This printf�� statement will write the following to the screen�

���Pay Calculation���

followed by two newlines� Note that all of the characters inside the double quotes have been
printed �but not the quotes themselves�� except those at the end of the string� The backslash
character� n�� in the string indicates an escape sequence� It signals that the next character
must be interpreted in a special way� In this case� �nn� prints out a newline character� i�e� all
further printing is done on the next line of output� We will encounter other escape sequences in
due time� Two newline escape sequences are used here� the �rst completes the line where ����Pay
Calculation���� was written� and the second leaves a blank line in the output�

Output of Data

In addition to printing �xed messages� printf�� can be used to print values of expressions by
passing the values as additional arguments separated by commas� We print out values of the initial
data and the result with the statements�

printf�
ID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Pay � �f�n
� pay��

The �rst argument of printf�� must always be a format string and may be followed by any
number of addition argument expressions �in this case simple variable names�� As before� all
regular characters in the format string are printed until the symbol �� The � and the following
character� called a conversion speci�cation� indicate that the value of the next argument is to
be printed at this position in the output� The conversion character following � determines the
format to be printed� The combination �d signals that a decimal integer value is to be printed
at this position� Similarly� �f indicates that a decimal �oating point value is to be printed at the

�� CHAPTER �� BASIC CONCEPTS

indicated position� �To write a � character itself� use �� in the format string�� Each conversion
speci�er in the format string will print the value of one argument in succession�

The �rst printf�� statement prints the value of id number in the position where �d is located�
The internal form of the value of id number is converted to a decimal integer format and printed
out� The output is�

ID Number � ���

The next printf�� writes the value of hours worked at the position of the �rst �f� and the value
of rate of pay at the position of the second �f� The internal forms are converted to decimal real
numbers �i�e�� �oating point� and printed� The output is�

Hours Worked � �	
						� Rate of Pay � �
�					

Observe that all regular characters in the format string� including the newline� are printed as
before� Only the format conversion speci�cation� indicated by a � followed by a conversion
character d or f� is replaced by the value of the next unmatched argument� The �oating point
value is printed with six digits after the decimal point by default�

The �nal statement prints�

pay � ��	
						

��� Testing the Program

As mentioned� the above program must be typed using an editor and saved in a �le which we have
called pay	
c� The program in C� a high level language� is called the source program or source
code� It must be translated into the machine language for the particular computer being used�
The machine language program is the only one that can be understood by the hardware�

A special program called a compiler is used to compile� i�e� translate a source program into a
machine language program� The resulting machine language program is called the object code
or object program� The object code may be automatically or optionally saved in a �le� The
terms source �le and object �le refer to the �les containing the corresponding source code and
object code�

The compiled object code is usually still not executable� The object code needs to be linked to
machine language code for certain functions� e�g� code for library functions such as printf��� to
create an executable machine language code �le� A linker or a link editor is used for this step of
linking disparate object codes� The linking step is usually automatic and transparent to the user�
We will refer to the executable code variously as the object code� the compiled program� or
the load module�

���� TESTING THE PROGRAM �

The executable code is then loaded into memory and run� The loading step is also transparent
to the user� the user merely issues a command to run the executable code�

For many systems� the convention is that the source �le name should end in
c as in pay	
c�
Conventions for object �le names di�er� on some systems object �les end in
obj� on others
they end in
o� �Consult your system manuals for details�� For compilation and execution� some
systems require separate commands� one to compile a C program and the other to execute a
compiled program� Other systems may provide a single command that both compiles and executes
a program� Check your operating system and compiler manuals for details�

For Unix systems� the cc command� with many available options� is used for compilation�
Examples are�

cc filename
c

cc �o outname filename
c

The �rst command line compiles the �le filename
c and produces an executable �le a
out� The
second directs that the executable �le is to be named outname� These programs are then run by
typing the executable �le name to the shell�

����� Debugging the Program

A program may have bugs� i�e� errors� in any of the above phases so these bugs must be removed�
a process called debugging� Some bugs are easy to remove� others can be di!cult� These bugs
may appear at one of three times in testing the program� compile time� link time� and run time�

When a program is compiled� the compiler discovers syntax �grammar� errors� which occur
when statements are written incorrectly� These compile time errors are easy to �x since the
compiler usually pinpoints them reasonably well� The astute reader may have noticed there are
bugs in the program shown in Figure ���� When the �le pay	
c is compiled on a Unix C compiler�
the following message is produced�

pay	
c
� line ��� syntax error at or near variable name
rate�of�pay

This indicates some kind of syntax error was detected in the vicinity of line �� near the variable
name rate of pay� On examining the �le� we notice that there is a missing semi	colon at the end
of the previous statement�

hours�worked � �	
	

Inserting the semi	colon and compiling the program again eliminates the syntax error� In another
type of error� the linker may not be able to �nd some of the functions used in the code so the
linking process cannot be completed� If we now compile our �le pay	
c again� we receive the
following message�

�� CHAPTER �� BASIC CONCEPTS

�bin�ld� Unsatisfied symbols�

prinf �code�

It indicates the linker was unable to �nd the function prinf which must have been used in our
code� The linker states which functions are missing so link time errors are also easy to �x� This
error is obvious� we didn�t mean to use a function� prinf��� but merely misspelled printf�� in
the statement

prinf�
Pay � �f�n
� pay��

Fixing this error and compiling the program again� we can successfully compile and link the
program� yielding an executable �le� As you gain experience� you will be able to arrive at a program
free of compile time and link time errors in relatively few iterations of editing and compiling the
program� maybe even one or two attempts�

A program that successfully compiles to an executable does not necessarily mean all bugs have
been removed� Those remaining may be detected at run time� i�e� when the program is executed
and may be of two types� computation errors and logic errors� An example of the former is an
attempt to divide by zero� Once these are detected� they are relatively easy to �x� The more
di!cult errors to �nd and correct are program logic errors� i�e� a program does not perform its
intended task correctly� Some logic errors are obvious immediately upon running the program�
the results produced by the program are wrong so the statement that generates those results is
suspect� Others may not be discovered for a long time especially in complex programs where logic
errors may be hard to discover and �x� Often a complex program is accepted as correct if it works
correctly for a set of well chosen data� however� it is very di!cult to prove that such a program is
correct in all possible situations� As a result� programmers take steps to try to avoid logic errors
in their code� These techniques include� but are not limited to�

Careful Algorithm Development

As we have stated� and will continue to state throughout this text� careful design of of the algorithm
is perhaps the most important step in programming� Developing and re�ning the algorithm using
tools such as the structural diagram and �ow chart discussed in Chapter � before any coding
helps the programmer get a clear picture of the problem being solved and the method used for the
solution� It also makes you think about what must be done before worrying about how to do it�

Modular Programming

Breaking a task into smaller pieces helps both at the algorithm design stage and at the debugging
stage of program development� At the algorithm design stage� the modular approach allows the
programmer to concentrate on the overall meaning of what operations are being done rather than
the details of each operation� When each of the major steps are then broken down into smaller

���� TESTING THE PROGRAM ��

steps� again the programmer can concentrate on one particular part of the algorithm at a time
without worrying about how other steps will be done�

At debug time� this modular approach allows for quick and easy localization of errors� When
the code is organized in the modules de�ned for the algorithm� when an error does occur� the
programmer can think in terms of what the modules are doing �not how� to determine the most
likely place where something is going wrong� Once a particular module is identi�ed� the same
re�nement techniques can be used to further isolate the source of the trouble without considering
all the other code in other modules�

Incremental Testing

Just as proper algorithm design and modular organization can speed up the debugging process�
incremental implementation and testing can assist in program development� There are two ap	
proaches to this technique� The �rst is to develop the program from simpler instances of the task
to more complex tasks as we are doing for the payroll problem in this chapter� The idea is to
implement and test a simpli�ed program and then add more complicated features until the full
speci�cation of the task is satis�ed� Thus beginning from a version of the program known to be
working correctly �or at least thoroughly tested�� when new features are added and errors occur�
the location of the errors can be localized to added code�

The second approach to incremental testing stems from the modular design of the code� Each
module de�ned in the design can be implemented and tested independently so that there is high
con�dence that each module is performing correctly� Then when the modules are integrated
together for the �nal program� when errors occur� again only the added code need be considered
to �nd and correct them�

Program Tracing

Another useful technique for debugging programs begins after the program is coded� but before it
is compiled and run� and is called a program trace� Here the operations in each statement of the
program are veri�ed by the programmer� In essence� the programmer is executing the program
manually using pencil and paper to keep track changes to key variables� Diagrams of variable
allocation such as those shown in Figures ���"��� may be used for this manual trace� Another
way of manually tracing a program is shown in Figure ���� Here the changes in variables is seen
associated with the statement which caused that change�

Program traces are also useful later in the debug phase� When an error is detected� a selective
manual trace of a portion or module of a program can be very instrumental in pinpointing the
problem� One word of caution about manual traces " care must be taken to update the variables
in the trace according to the statement as written in the program� not according to the intention
of the programmer as to what that statement should do�

Manual traces can become very complicated and tedious �one rarely traces an entire program��

�� CHAPTER �� BASIC CONCEPTS

�� File� pay	
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person� given the

hours worked and rate of pay

��

main�� PROGRAM TRACE

� hours� rate�of�

�� declarations �� id�number worked pay pay

int id�number� ��

float hours�worked� ��

rate�of�pay� ��

pay� ��

�� print title ��

printf�
���Pay Calculation����n�n
��

�� initialize variables ��

id�number � ���� ��� �� �� ��

hours�worked � �	� ��� �	
	 �� ��

rate�of�pay � �
�� ��� �	
	 �
� ��

�� calculate results ��

pay � hours�worked � rate�of�pay�

��� �	
	 �
� ��	
	

�� print data and results ��

printf�
ID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Pay � �f�n
� pay��

�

Figure ���� Program Trace for pay��c

���� INPUT� READING DATA ��

however selective application of this technique is a valuable debugging tool� Later in this chapter
we will discuss how the computer itself can assist us in generating traces of a program�

����� Documenting the Code

As a programmer� there are several �good� habits to develop for translating an algorithm into
a source code program which support debugging as well as general understanding of the code�
These habits fall under the topic of �coding for readability�� We have already mentioned a few of
these such as commenting the code and good choices of names for variables and functions� With
good naming� the syntax of the C language allows for relatively good self documenting code� i�e�
C source statements which can be read and understood with little e�ort�

Well documented code includes additional comments which clarify and amplify the meaning
or intention of the statements� A good source for comments in your code are the steps of the
algorithm you designed for the program� A well placed comment identifying which statements
implement each step of the algorithm makes for easily understood programs�

Another good habit is to include judicious amounts of white space in your program� The C
compiler would accept your program all written on one line� however� this would be very di!cult
for someone to read� Instead� space out your statements� separating groups of statements that
perform logically di�erent operations� It is also good to indent the statements in your program so
that blocks are clearly identi�ed at a glance� You will notice we have done that in Figure ��� and
will continue throughout this text� There is no standard for indenting code� so you should choose
a convention that is natural for you� as long as it is clear and you are consistent�

One last point� even though we have concentrated on the documentation of the code at the
end of our discussion on this program� good documentation should be considered throughout the
programming process� A bad habit to get into is to write the code and document it after it is
working� A good habit is to include documentation in the code from the beginning�

In this section we have looked in detail at a C program that solves our simpli�ed version of
the payroll problem� The program in �le pay	
c is not very useful since it can only be used to
calculate pay for a speci�ed set of data values because the data values are assigned to variables
as constants in the program itself� If we needed to calculate the pay with some other employee�
we would have to modify the program with new values and recompile and execute the program�
For a program to be useful� it should be �exible enough to use any set of data values� In fact� the
user should be able to enter a set of data during program execution� and the program should read
and use these data values�

��� Input� Reading Data

To address the de�ciency in our program mentioned above� the next task is to write a program
that reads data typed by the user at the keyboard� calculates pay� and prints out the data and

�� CHAPTER �� BASIC CONCEPTS

the results� In this case� the program must communicate with the user to get the input data�

Task

PAY�� Same as PAY�� except that the data values id number� hours worked� and rate of pay

should be read in from the keyboard�

The algorithm is the same as before except that the data is read rather than set�

print title of program�

read the data for id�number� hours�worked� and rate�of�pay�

set pay to the product of hours worked and rate of pay�

print the data and the results�

In the implementation of the above algorithm� we must read in data from the keyboard� In a
C program� all communication with a user is performed by functions available in the standard
library� We have already used printf�� to write on the screen� Similarly� a function� scanf��� is
available to read data in from the keyboard and store it in some object� Printf�� performs the
output function and scanf�� performs the input function�

The function scanf�� must perform several tasks� read data typed at the keyboard� convert
the data to its internal form� and store it into an object� In C� there is no way for any function�
including scanf��� to directly access a variable by its name de�ned in another function� Recall
that we said the scope of a variable was the block in which it was de�ned� and it is only within
this scope that a variable name is recognized� But if scanf�� cannot directly access a variable in
main��� it cannot assign a value to that variable� So how does scanf�� store data into an object�
A function can use the address of an object to indirectly access that object�

Therefore�scanf�� must be supplied with the address of an object in which a data value is
to be stored� In C� the address of operator� �� can be used to obtain the address of an object�
For example� the expression �x evaluates to the address of the variable x� To read the id number
from the keyboard and store the value into id number� hours worked and rate of pay we use
the statements�

scanf�
�d
� �id�number��

scanf�
�f
� �hours�worked��

scanf�
�f
� �rate�of�pay��

The �rst argument of scanf�� is a format string as it was for printf��� The conversion speci�ca	
tion� �d� speci�es that the input is in decimal integer form� Scanf�� reads the input� converts it to
an internal form� and stores it into an integer object whose address is given by the next unmatched
argument� In this case� the value read is stored into the object whose address is �id number� i�e�
the value is stored into id number� The remaining two scanf statements work similarly� except
the conversion speci�cation is �f� to indicate that a �oating point number is to be read� converted

���� INPUT� READING DATA �

� � � � � � � nn

Figure ���� Keyboard Bu�er

to internal form and stored in the objects whose addresses are �hours worked and �rate of pay

respectively� The type of the object must match the conversion speci�cation� i�e� an integer value
must be stored into an int type object and a �oating point value into a float object�

To better understand how scanf�� works� let us look in a little more detail� As a user types
characters at the keyboard they are placed in a block of memory called a bu�er �most but not
all systems bu�er their input�� The function scanf�� does not have access to this bu�er until
it is complete which is indicated when the user types the newline character� i�e� the RETURN
key� �see Figure ����� The function scanf�� then begins reading the characters in the bu�er one
at a time� When scanf�� reads numeric input� it �rst skips over any leading white space and
then reads a sequence of characters that make up a number of the speci�ed type� For example�
integers may only have a sign ��or�� and the digits � to
� A �oating point number may possibly
have a decimal point and the e or E exponent indicators� The function stops reading the input
characters when it encounters a character that does not belong to the data type� For example� in
Figure ���� the �rst scanf�� stops reading when it sees the space character after the
� The data
is then converted to an internal form and stored into the object address speci�ed in the argument�
Any subsequent scanf�� performed will begin reading where the last left o� in the bu�er� in this
case at the space� When the newline character has been read� scanf�� waits until the user types
another bu�er of data�

At this point we can modify our program by placing the scanf�� statements in the code
replacing the assignments to those variables� However� when we compile and execute the new
program� nothing happens� no output is generated and the program just waits� The user does not
know when a program is waiting for input unless the program prompts the user to type in the
desired items� We use printf�� statements to print a message to the screen telling the user what
to do�

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

The prompts are not necessary to read the data� without them� scanf�� will read what is typed�
but the user will not know when to enter the required data� We can now incorporate these
statements into a program that implements the above algorithm shown as the �le pay�
c in
Figure ���� When the program is run� here is the sample output�

���Pay Calculation���

�� CHAPTER �� BASIC CONCEPTS

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person with the

hours worked and the rate of pay read in from the keyboard

��

main��

�

�� declarations ��

int id�number�

float hours�worked�

rate�of�pay�

pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� read data into variables ��

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

pay � hours�worked � rate�of�pay�

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Pay � �f�n
� pay��

�

Figure ���� Code for pay��c

��	� MORE C STATEMENTS ��

Type ID Number� ���

Hours Worked� �

Hourly Rate� ��	

ID Number � ���

Hours Worked � �	
						� Rate of Pay � �
�					

Pay � ��	
						

Everything the user types at the keyboard is also echoed to the screen� and is shown here in slanted
characters�

We have now seen two ways of storing data into objects� assignment to an object and reading
into an object� Assignment stores the value of an expression into an object� Reading into an
object involves reading data from the input� converting it to an internal form� and storing it in an
object at a speci�ed address�

The function scanf�� can read several items of data at a time just as printf�� can print
several items of data at a time� For example�

scanf�
�d �f �f
� �id�number� �hours�worked� �rate�of�pay��

would read an integer and store it in id number� read a �oat and store it in hours worked� and
read a �oat and store it in rate of pay� Of course� the prompt should tell the user to type the
three items in the order expected by scanf���

��� More C Statements

Our program pay�
c is still very simple� It calculates pay in only one way� the product of
hours worked and rate of pay� Our original problem statement in Chapter � called for com	
puting overtime pay and for computing the pay for many employees� In this section we will look
at additional features of the C language which will allow us to modify our program to meet the
speci�cation�

��
�� Making Decisions with Branches

Suppose there are di�erent pay scales for regular and overtime work� so there are alternate ways of
calculating pay� regular pay and overtime pay� Our next task is to write a program that calculates
pay with work over �� hours paid at ��� times the regular rate�

�� CHAPTER �� BASIC CONCEPTS

Task

PAY�� Same as PAY�� except that overtime pay is calculated at ��� times the normal rate�

For calculating pay in alternate ways� the program must make decisions during execution� so�
we wish to incorporate the following steps in our algorithm�

if hours�worked is greater than �	
	�

then calculate pay as the sum of

excess hours at the overtime rate plus

�	
	 hours at regular rate�

otherwise� calculate pay at the regular rate

The program needs to make a decision� is hours worked greater than ����� If so� execute one
computation� otherwise� execute the alternate computation� Each alternate computation is im	
plemented as a di�erent path for program control �ow to follow� called a branch� C provides a
feature for implementing this algorithm form as follows�

if �hours�worked � �	
	�

pay � �	
	 � rate�of�pay �

�
� � rate�of�pay � �hours�worked � �	
	��

else

pay � hours�worked � rate�of�pay�

The above if statement �rst evaluates the expression within parentheses�

hours�worked � �	
	

and if the expression is True� i�e� hours worked is greater than ����� then the �rst statement is
executed� Otherwise� if the expression is False� the statement following the else is executed� After
one of the alternate statements is executed� the statement after the if statement will be executed�
That is� in either case� the program control passes to the statement after the if statement�

The general syntax of an if statement is�

if ��expression�	 �statement� �else �statement��

The keyword if and the parentheses are required as shown� The two �statement�s shown are
often called the then clause and the else clause respectively� The statements may be any valid
C statement including a simple statement� a compound statement �a block�� or even an empty
statement� The else clause� the keyword else followed by a �statement�� is optional� Omitting
this clause is equivalent to having an empty statement in the else clause� An if statement can be
nested� i�e� either or both branches may also be if statements�

��	� MORE C STATEMENTS �

PPPPPP������PP
PP

PP
��
��
��

� �

�

�

statement

expression

statement

False �optional�True

Figure ���� If statement control �ow

The semantics of the if statement are that the expression �also called the condition� is
evaluated� and the control �ow branches to the then clause if the expression evaluates to True�
and to the else clause �if any� otherwise� Control then continues with the statement immediately
after the if statement� This control �ow is shown in Figure ����

It should be emphasized that only one of the two alternate branches is executed in an if

statement� Suppose we wish to check if a number� x� is positive and also check if it is big� say
greater than ���� Let us examine the following statement�

if �x � 	�

printf�
�d is a positive number�n
� x��

else if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

If x is positive� say ���� the �rst if condition is True and the �rst printf�� statement is executed�
The control does not proceed to the else part at all� even though x is greater than ���� The else
part is executed only if the �rst if condition is False� When two conditions overlap� one must
carefully examine how the statement are constructed� Instead of the above� we should write�

if �x � 	�

printf�
�d is a positive number�n
� x��

if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

Each of the above is a separate if statement� If x is positive� the �rst printf�� is executed�
In either case control then passes to the next if statement� If x is greater than ���� a message

�� CHAPTER �� BASIC CONCEPTS

is again printed� Another way of writing this� since �x � �		� is True only when �x � 	�� we
could write�

if �x � 	� �

printf�
�d is a positive number�n
� x��

if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

�

If �x � 	� is true� the compound statement is executed� It prints a message and executes the if

�x � �		�

 statement� Suppose� we also wish to print a message when x is negative� We can
add an else clause to the �rst if statement since positive and negative numbers do not overlap�

if �x � 	� �

printf�
�d is a positive number�n
� x��

if �x � �		�

printf�
�d is a big number greater than �		�n
� x��

�

else if �x � 	�

printf�
�d is a negative number�n
� x��

Something for you to think about� is there any condition for which no messages will be printed
by the above code�

Returning to our payroll example� suppose we wish to keep track of both regular and overtime
pay for each person� We can write the if statement�

if �hours�worked � �	
	� �

regular�pay � �	
	 � rate�of�pay�

overtime�pay � �
� � rate�of�pay � �hours�worked � �	
	��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

pay � regular�pay � overtime�pay�

Note� both clauses in this case are compound statements� each block representing a branch
is treated as a single unit� Whichever branch is executed� that entire block is executed� If
hours worked exceeds ����� the �rst block is executed� otherwise� the next block is executed�
Note� both blocks compute regular and overtime pay so that after the if statement the total
pay can be calculated as the sum of regular and overtime pay� Also observe that we have used
consistent data types in our expressions to forestall any unexpected problems� Since variables in
the expressions are float type� we have used �oating point constants �	
	� �
�� and 	
	�

��	� MORE C STATEMENTS ��

Operator Meaning
� greater than
�� greater than or equal to
� less than
�� less than or equal to
�� equal to
� not equal to

Table ���� Relational Operators

Relational Operators

The greater than operator� �� used in the above expressions is called a relational operator�
Other relational operators de�ned in C� together with their meanings are shown in Table ��� Note
that for those relational operators having more than one symbol� the order of the symbols must
be as speci�ed in the table ��� not ���� Also take particular note that the equality relational
operator is ��� NOT �� which is the assignment operator�

A relational operator compares the values of two expressions� one on each side of it� If the
two values satisfy the relational operator� the overall expression evaluates to True� otherwise�
it evaluates to False� In C� an expression that evaluates to False has the value of zero and
an expression that evaluates to True has a non	zero value� typically �� The reverse also holds�
an expression that evaluates to zero is interpreted as False when it appears as a condition and
expression that evaluates to non	zero is interpreted as True�

��
�� Simple Compiler Directives

In some of the improvements we have made so far to our program for PAY�� we have used numeric
constants in the statements themselves� For example� in the code�

if �hours�worked � �	
	� �

regular�pay � �	
	 � rate�of�pay�

overtime�pay � �
� � rate�of�pay � �hours�worked � �	
	��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

pay � regular�pay � overtime�pay�

we use the constant �	
	 as the limit on the number of regular pay hours �hours beyond this are
considered overtime�� and the constant �
� as the overtime pay rate �time and a half�� Use of

�� CHAPTER �� BASIC CONCEPTS

numeric constants �sometimes called �magic numbers�� in program code is often considered bad
style because the practice makes the program logic harder to understand and debug� In addition�
the practice makes programs less �exible� since making a change in the values of numeric constants
requires that the entire code be reviewed to �nd all instances where the �magic number� is used�

C� like many other programming languages� allows the use of symbolic names for constants
in programs� This facility makes use of the C preprocessor and takes the form of compiler

directives� Compiler directives are not� strictly speaking� part of the source code of a program�
but rather are special directions given to the compiler about how to compile the program� The
directive we will use here� the define directive� has syntax�

de�ne �symbol name� �substitution string�

All compiler directives� including define� require a as the �rst non	white space character in
a line� �Some older compilers require that be in the �rst column of a line but most modern
compilers allow leading white space on a line before �� The semantics of this directive is to de�ne
a string of characters� �substitution string�� which is to be substituted for every occurrence of the
symbolic name� �symbol name�� in the code for the remainder of the source �le� Keep in mind�
a directive is not a statement in C� nor is it terminated by a semi	colon� it is simply additional
information given to the compiler�

In our case� we might use the following compiler directives to give names to our numeric
constants�

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

These directives de�ne that wherever the string of characters REG LIMIT occurs in the source �le�
it is to be replaced by the string of characters �	
	 and that the string OT FACTOR is to be replaced
by �
�� With these de�nitions� it is possible for us to use REG LIMIT and OT FACTOR in the program
statements instead of numeric constants� Thus our code would become�

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay � �hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

pay � regular�pay � overtime�pay�

The code is now more readable� it says in words exactly what we mean by these statements� Before
compilation proper� the preprocessor replaces the symbolic constants with strings that constitute

��	� MORE C STATEMENTS ��

actual constants� the string of characters �	
	 for the string REG LIMIT and �
� for OT FACTOR

throughout the source program code�

The rules for the symbol names in directives are the same as those for identi�ers� A common
practice used by many programmers is to use upper case for the symbolic names in order to
distinguish them from variable names� Remember� define directives result in a literal substitution
without any data type checking� or evaluation� It is the responsibility of the programmer to use
de�nes correctly� The source code is compiled after the preprocessor performs the substitutions�

The implementation of the PAY� algorithm incorporating the above de�nes and other improve	
ments discussed so far is shown in Figure ��
� Note in the code� when the hours worked do not
exceed REG LIMIT� the overtime pay is set to zero� A constant zero value in a program code is not
unreasonable when the logic is clear enough�

Here is a sample session from the resulting executable �le�

���Pay Calculation���

Type ID Number� �	�

Hours Worked� 	

Hourly Rate� �

ID Number � ��!

Hours Worked � �	
						� Rate of Pay � �	
						

Regular Pay � �		
						� Overtime Pay � ��	
						

Total Pay � ��	
						

��
�� More on Expressions

Expressions used for computation or as conditions can become complex� and considerations must
be made concerning how they will be evaluated� In this section we look at three of these consider	
ations� precedence and associativity� the data type used in evaluating the expression� and logical
operators�

Precedence and Associativity

Some of the assignment statements in the last section included expressions with more than one
operator in them� The question can arise as to how such expressions are evaluated� Whenever there
are several operators present in an expression� the order of evaluation depends on the precedence
and associativity �or grouping� of operators as de�ned in the programming language� If operators
have unequal precedence levels� then the operator with higher precedence is evaluated �rst� If
operators have the same precedence level� then the order is determined by their associativity�
The order of evaluation according to precedence and associativity may be overridden by using
parentheses� expressions in parentheses are always evaluated �rst�

�� CHAPTER �� BASIC CONCEPTS

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program calculates the pay for one person� given the

hours worked and rate of pay

��

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

main��

� �� declarations ��

int id�number�

float hours�worked�

rate�of�pay�

regular�pay� overtime�pay� total�pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� read data into variables ��

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

total�pay � regular�pay � overtime�pay�

��	� MORE C STATEMENTS �

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � �f� Overtime Pay � �f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � �f�n
� total�pay��

�

Figure ��
� Code for pay��c

Operator Associativity Type
� � � right to left unary arithmetic

� � � � � left to right binary arithmetic

� � � left to right binary arithmetic

� � �� � � � �� left to right binary relational

�� � # � left to right binary relational

Table ��
� Precedence and Associativity of Operators

�� CHAPTER �� BASIC CONCEPTS

Table ��
 shows the arithmetic and relational operators in precedence level groups separated by
horizontal lines� The higher the group in the table� the higher its precedence level� For example�
the precedence level of the binary operators �� �� and � is the same but it is higher than that of
the binary operator group �� �� Therefore� the expression

x � y � z

is evaluated as

x � �y � z�

Associativity is also shown in the table� Left to right associativity means operators with the
same precedence are applied in sequence from left to right� Binary operators are grouped from
left to right� and unary from right to left� For example� the expression

x � y � z

is evaluated as

�x � y� � z

The precedence of the relational operators is lower than that of arithmetic operators� so if we
had an expression like

x � y �� x � y

it would be evaluated as

�x � y� �� �x � y�

However� we will often include the parentheses in such expressions to make the program more
readable�

From our payroll example� consider the assignment expression�

overtime�pay � OT�FACTOR � rate�of�pay � �hours�worked � REG�LIMIT��

In this case� the parentheses are required because the product operator� �� has a higher precedence
than the sum operator� If these parentheses were not there� the expression would be evaluated as�

overtime�pay � ���OT�FACTOR � rate�of�pay� � hours�worked� � REG�LIMIT��

��	� MORE C STATEMENTS ��

where what we intended was�

overtime�pay � ��OT�FACTOR � rate�of�pay� � �hours�worked � REG�LIMIT���

That is� the subtraction to be done �rst� followed by the product operators� There are several
product operators in the expression� they are evaluated left to right in accordance with their
associativity� Finally� the assignment operator� which has the lowest precedence� is evaluated�

Precise rules for evaluating expressions will be discussed further in Chapter � where a complete
table of the precedence and associativity of all C operators will be given� Until then� we will point
out any relevant rules as we need them and we will frequently use parentheses for clarity�

Data Types in Expressions

Another important consideration in using expressions is the type of the result� When operands of
a binary operator are of the same type� the result is of that type� For example� a division operator
applied to integer operands results in an integer value� If the operands are of mixed type� they are
both converted to the type which has the greater range and the result is of that type� so� if the
operands are int and float� then the result is �oating point type� Thus� ��� is � and ����� is ����
The C language will automatically perform type conversions according to these rules� however�
care must be taken to ensure the intent of the arithmetic operation is implemented� Let us look
at an example�

Suppose we have a task to �nd the average for a collection of exam scores� We have already
written the code which sums all the the scores into a variable total scores and counted the
number of exams in a variable number exams� Since both of these data items are integer values�
the variables are declared as type int� The average� however is a real number �has a fractional
part� so we declared a variable average to be of type float� So we might write statements�

int total�scores� number�exams�

float average�

average � total�scores � number�exams�

in our program� However� as we saw above� since total scores and number exams are both
integers� the division will be done as integer division� discarding any fractional part� C will then
automatically convert that result to a �oating point number to be assigned to the variable average�
For example� if total scores is ��� and number exams is ��� the the right hand side evaluates
to the integer �� �the fractional part is truncated� which is then converted to a float� ���� when
it is assigned to average� The division has already truncated the fractional part� so our result
will always have � for the fractional part of average which may be in error� We could represent
either total scores or number exams as float type to force real division� but these quantities

�� CHAPTER �� BASIC CONCEPTS

Logical C
AND $$
OR ""

NOT #

Table ���� Logical Operator Symbols in C

are more naturally integers� We would like to temporarily convert one or both of these values to
a real number� only to perform the division� C provides such a facility� called the cast operator�
In general� the syntax of the cast operator is�

��type�speci�er�	 �expression�

which converts the value of �expression� to a type indicated by the �type�speci�er�� Only the
value of the expression is altered� not the type or representation of the variables used in the
expression� The average is then computed as�

average � �float� total�scores � �float� number�exams�

The values of the variables are �rst both converted to float �e�g� ����� and ������ the division
is performed yielding a float result ������ which is then assigned to average� We cast both
variables to make the program more understandable� In general� it is good programming practice
to cast variables in an expression to be all of the same type� After all� C will do the cast anyway�
the cast is simply making the conversion clear in the code�

Logical Operators

It is frequently necessary to make decisions based on a logical combination of True and False values�
For example� a company policy may not allow overtime pay for highly paid workers� Suppose only
those workers� whose rate of pay is not higher than a maximum allowed value� are paid overtime�
We need to write the pay calculation algorithm as follows�

if ��hours�worked � REG�LIMIT� AND �rate�of�pay �� MAXRATE��

calculate regular and overtime pay

else

calculate regular rate pay only� no overtime

If hours worked exceeds the limit� REG LIMIT� AND rate of pay does not exceed MAXRATE�
then overtime pay is calculated� otherwise� pay is calculated at the regular rate� Such logical
combinations of True and False values can be performed using logical operators� There are three
generic logical operators� AND� OR� and NOT� Symbols used in C for these logical operators are

��	� MORE C STATEMENTS �

e� e� e� $$ e� e� "" e� #e�
T T T T F
T F F T F
F T F T T
F F F F T

Table ���� Truth Table for Logical Combinations

shown in Table ��� Table ��� shows logical combinations of True and False values and the resulting
values for each of these logical operators� We have used T and F for True and False in the table�
From the table we can see that the result of the AND operation is True only when the two
expression operands are both True� the OR operation is True when either or both operands are
True� and the NOT operation� a unary operator� is True when its operand is False�

We can use the above logical operators to write a pay calculation statement in C as follows�

if ��hours�worked � REG�LIMIT� �� �rate�of�pay �� MAXRATE�� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

�We assume that MAXRATE is de�ned using a de�ne directive�� We use parentheses to ensure
the order in which expressions are evaluated� The expressions in the innermost parentheses are
evaluated �rst� then the next outer parentheses are evaluated� and so on� If �hours worked �
REG LIMIT� is True AND �rate of pay �� MAXRATE� is True� then the whole if expression is
True and pay is calculated using the overtime rate� Otherwise� the expression is False and pay is
calculated using regular rate�

In C� an expression is evaluated for True or False only as far as necessary to determine the result�
For example� if �hours worked � REG LIMIT� is False� the rest of the logical AND expression need
not be evaluated since whatever its value is� the AND expression will be False�

A logical OR applied to two expressions is True if either expression is True� For example� the
above statement can be written in C with a logical OR operator� ""�

if ��hours�worked �� REG�LIMIT� "" �rate�of�pay � MAXRATE�� �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

�� CHAPTER �� BASIC CONCEPTS

else �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

If either hours worked does not permit overtime OR the rate exceeds MAXRATE for overtime�
calculate regular rate pay� otherwise� calculate regular and overtime pay� Again� if �hours worked

�� REG LIMIT� is True� the logical OR expression is not evaluated further since the result is
already known to be True� Precedence of logical AND and OR operators is lower than that
of relational operators so the parentheses in the previous two code fragments are not required�
however� we have used them for clarity�

Logical NOT applied to a True expression results in False� and vice versa� We can rewrite the
above statement using a logical NOT operator� #� as follows�

if ��hours�worked � REG�LIMIT� �� #�rate�of�pay � MAXRATE�� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

If hours worked exceed REG LIMIT� AND it is NOT True that rate of pay exceeds MAXRATE� then
calculate overtime pay� etc� The NOT operator is unary and its precedence is higher than binary
operators� therefore� the parentheses are required for the NOT expression shown�

��
�	 A Simple Loop � while

Our latest program� pay�
c� still calculates pay for only one individual� If we have �� people on
the payroll� we must run the above program separately for each person� For our program to be
useful and �exible� we should be able to repeat the same logical process of computation as many
times as desired� i�e� it should be possible to write a program that calculates pay for any number
of people�

Task

PAY
� Same as PAY�� except that the program reads data� computes pay� and prints the data
and the pay for a known number of people�

��	� MORE C STATEMENTS ��

Let us �rst see how to repeat the process of reading data� calculating pay� and printing the
results a �xed number� say ��� times� To repeatedly execute an identical group of statements� we
use what is called a loop� To count the number of times we repeat the computation� we use an
integer variable� count� The logic we wish to implement is�

set count to 	

repeat the following as long as count is less than �	

read data

calculate pay

print results

increase count by �

Initially� we set count to zero and we will repeat the process as long as count is less than ���
Each time we execute the loop� we increment count so that for each value of count ��� �� �� ����

�� one set of data is processed� When count is ��� i�e� it is NOT less than ��� the repeating or
looping is terminated�

The C language provides such a control construct� a while statement is used to repeat a
statement or a block of statements� The syntax for a while statement is�

while � �expression� 	 �statement�

The keyword while and the parentheses are required as shown� The �expression� is a condition as
it was for the if statement� and the �statement� may be any statement in C such as an empty
statement� a simple statement� or a compound statement �including another while statement��

The semantics of the while statement is as follows� First� the while expression or condition�
�expression�� is evaluated� If True� the �statement� is executed and the �expression� is evaluated
again� etc� If at any time the �expression� evaluates to False� the loop is terminated and control
passes to the statement after the while statement� This control �ow for a while statement is
shown in Figure �����

To use the while statement to implement the algorithm above� there are several points to note
about loops� The loop variable�s�� i�e� variables used in the expression� must be initialized prior
to the loop� otherwise� the loop expression is evaluated with unknown �garbage� value�s� for the
variable�s�� Second� if the loop expression is initially True� the loop variable�s� must be modi�ed
within the loop body so that the expression eventually becomes False� Otherwise� the loop will be
an in�nite loop� i�e� the loop repeats inde�nitely� Therefore� a proper loop requires the following
steps�

initialize loop variable�s�

while � �expression� � �

update loop variable�s�

�

�� CHAPTER �� BASIC CONCEPTS

statement

PPPPPP������PP
PP

PP
��
��
��
�

�

�

�

expression
False

True

Figure ����� Control Flow for while statement

Keeping this syntax and semantics in mind� the code for the above algorithm fragment using
a while loop is shown in Figure �����

First� count is initialized to zero and tested for loop termination� The while statement will
repeat as long as the while expression� i�e� �count � �	�� is True� Since count is �� the condition
is true� so the body of the loop is executed� The loop body is a block which reads data� calculates
pay� prints results� and increases the value of count by one� Except for updating count� the
statements in the loop body are the same as those in the previous program in Figure ��
� The
count is updated by the assignment statement�

count � count � ��

In this statement� the right hand side is evaluated �rst� i�e� one is added to the current value
of count� then the new value is then stored back into count� Thus� the new value of count is
one greater than its previous value� For the �rst iteration of the loop� count is incremented
from � to � and the condition is tested again� Again �count � �	� is True� so the loop body
is executed again� This process repeats until count becomes ��� �count � �	� is False� and the
while statement is terminated� The program execution continues to the next statement� if any�
after the while statement�

The above while loop is repeated ten times� once each for count � �� �� �� ����
� We can also
count the number of iterations to be performed as follows�

count � �	�

while �count � 	� �

count � count � ��

�

��	� MORE C STATEMENTS ��

count � 	�

while �count � �	� �

�� read data into variables ��

printf�
Type ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

total�pay � regular�pay � overtime�pay�

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � �f� Overtime Pay � �f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � �f�n
� total�pay��

�� update the count ��

count � count � ��

�

Figure ����� Coding a While Loop

�� CHAPTER �� BASIC CONCEPTS

The initial value of count is �� and the loop executes while �count � 	�� Each time the loop
is processed� the value of count is decremented by one� Eventually� count becomes �� �count �
	� is False� and the loop terminates� Again� the loop is executed ten times for values of count �
���
� �� ���� ��

We can easily adapt the second approach to process a loop as many times as desired by the
user� We merely ask the user to type in the number of people� and read into count� Here is the
skeleton code�

printf�
Number of people�
��

scanf�
�d
� �count��

while �count � 	� �

count � count � ��

�

We use the latter approach to implement the program for our task� The entire program for pay�
c
is shown in Figure ���� A sample session from the execution of this program is shown below�

���Pay Calculation���

Number of people� �

Type ID Number� ���

Hours Worked� �

Hourly Rate� ��	

ID Number � ���

Hours Worked � �	
						� Rate of Pay � �
�					

Regular Pay � ��	
						� Overtime Pay � 	
						

Total Pay � ��	
						

Type ID Number� �	�

Hours Worked� 	

Hourly Rate� �

ID Number � ��!

Hours Worked � �	
						� Rate of Pay � �	
						

Regular Pay � �		
						� Overtime Pay � ��	
						

Total Pay � ��	
						

��	� MORE C STATEMENTS �

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program reads in hours worked and rate of pay and calculates

the pay for a specified number of persons

��

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

main��

�

�� declarations ��

int id�number� count�

float hours�worked� rate�of�pay�

regular�pay� overtime�pay� total�pay�

�� print title ��

printf�
���Pay Calculation����n�n
��

printf�
Number of people�
��

scanf�
�d
� �count��

while �count � 	� �

�� read data into variables ��

printf�
�nType ID Number�
��

scanf�
�d
� �id�number��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	
	�

�

total�pay � regular�pay � overtime�pay�

�� CHAPTER �� BASIC CONCEPTS

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � �f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � �f� Overtime Pay � �f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � �f�n
� total�pay��

�� update the count ��

count � count � ��

�

�

Figure ����� Code for pay
�c

��
�
 Controlling Loop Termination

The program in the last section illustrates one way to control how many times a loop is executed�
namely counting the iterations� Rather than build the number of iterations into the program
as a constant� pay�
c requires the user to type in the number of people for whom pay is to be
computed� That technique may be su!cient sometimes� but the user may not be happy if each
time a program is used� one has to count tens or hundreds of items� It might be more helpful to
let the user signal the end of data input by typing a special value for the data� For example� the
user can be asked to type a zero for the id number of the employee to signal the end of data �as
long as zero is not an otherwise valid id number�� This suggests another re�nement to our task�

Task

PAY�� Same as PAY
� except that pay is to be calculated for any number of people� In addition�
we wish to keep a count of the number of people� calculate the gross total of all pay disbursed�
and compute the average pay� The end of data is signaled by a negative or a zero id number�

Logic for the while loop is quite simple� The loop repeats as long as id number is greater than
�� This will also require us to initialize the id number to some value before the loop starts and to
update it within the loop body to ensure loop termination� For our task� we must also keep track
of the number of people and the gross pay� After the while loop� we must calculate the average
pay by dividing gross pay by the number of people� Here is the algorithm logic using the while

loop construct�

set gross pay and number of people to zero

prompt user and read the first id number

while �id number � 	� �

��	� MORE C STATEMENTS ��

read remaining data� compute pay� print data

update number of people

update gross pay

prompt user and read next id number

�

set average pay to �gross pay � number of people�

Values of gross pay and number of people must be kept as cumulative values� i�e� each time pay
for a new person is computed� the number of people must be increased by one� and gross pay must
be increased by the pay for that person� Cumulative sum variables must be initialized to zero
before the loop� similar to our counting variable in the last example� otherwise those variables
will contain garbage values which will then be increased each time the loop is processed� Our
algorithm is already �code like�� and its implementation should be straightforward� but �rst let
us consider the debugging process for the program�

As programs get more complex� manual program tracing becomes tedious� so let�s let the
program itself generate the trace for us� During program development� we can introduce printf��
statements in the program to trace the values of key variables during program execution� If
there are any bugs in program logic� the program trace will alert us� Such printf�� statements
facilitating the debug process are called debug statements� Once the program is debugged� the
debug statements can be removed so that only relevant data is output� In our example� we will
introduce debug statements to print values of gross pay and number of people�

In the program� we should not only prompt the user to type in an ID number but should
also inform him�her that typing zero will terminate the data input� �Always assume that users
do not know how to use a program�� Prompts should be clear and helpful so a user can use a
program without any special knowledge about the program� Figure ���
 shows the program that
implements the above algorithm�

Much of the code is similar to our previous program� We have introduced two additional
variables� number� an integer counting the number of employees processed� and gross� a float

to hold the cumulative sum of gross pay� Before the while loop� these variables are initialized to
zero� otherwise only garbage values will be updated� Each time the loop body is executed� these
values are updated� number by one� and gross by the new value of total pay�

A debug statement in the while loop prints the updated values of gross and number each
time the loop is executed� The output will begin with the word debug just to inform us that
this is a debug line and will be removed in the �nal version of the program� Enough information
should be given in debug lines to identify what is being printed� �A debug print out of line after
line of only numbers isn�t very useful for debugging�� The values can alert us to possible bugs
and to probable causes� For example� if we did not initialize gross to zero before the loop� the
�rst iteration will print a garbage value for gross� It would instantly indicate to us that gross

is probably not initialized to zero� We have also not indented the debug printf�� statement to
make it stand out in the source code�

Once the while loop terminates� the average pay must be computed as a ratio of gross and
number� We have added another declaration at the beginning of the block for average and the

�� CHAPTER �� BASIC CONCEPTS

�� File� pay�
c

Programmer� Programmer Name

Date� Current Date

This program reads in hours worked and rate of pay and calculates

the pay for several persons
 The program also computes the gross pay

disbursed� number of people� and average pay
 The end of data is

signaled by a negative or a zero id number

��

 define REG�LIMIT �	
	

 define OT�FACTOR �
�

main��

�

�� declarations ��

int id�number� number�

float hours�worked� rate�of�pay�

regular�pay� overtime�pay� total�pay�

gross� average�

�� print title ��

printf�
���Pay Calculation����n�n
��

�� initialize cumulative sum variables ��

number � 	�

gross � 	�

�� initialize loop variables ��

printf�
Type ID Number� 	 to quit�
��

scanf�
�d
� �id�number��

while �id�number � 	� �

�� read data into variables ��

printf�
Hours Worked�
��

scanf�
�f
� �hours�worked��

printf�
Hourly Rate�
��

scanf�
�f
� �rate�of�pay��

�� calculate results ��

if �hours�worked � REG�LIMIT� �

regular�pay � REG�LIMIT � rate�of�pay�

overtime�pay � OT�FACTOR � rate�of�pay �

�hours�worked � REG�LIMIT��

�

else �

regular�pay � hours�worked � rate�of�pay�

overtime�pay � 	�

�

��	� MORE C STATEMENTS �

total�pay � regular�pay � overtime�pay�

�� print data and results ��

printf�
�nID Number � �d�n
� id�number��

printf�
Hours Worked � �f� Rate of Pay � $�f�n
�

hours�worked� rate�of�pay��

printf�
Regular Pay � $�f� Overtime Pay � $�f�n
�

regular�pay� overtime�pay��

printf�
Total Pay � $�f�n
� total�pay��

�� update cumulative sums ��

number � number � ��

gross � gross � total�pay�

�� debug statements� print variable values ��

printf�
�ndebug� gross � �f� number � �d�n
� gross� number��

�� update loop variables ��

printf�
�nType ID Number� 	 to quit�
��

scanf�
�d
� �id�number��

�

if �number � 	� �

average � gross � �float� number�

printf�
�n���Summary of Payroll����n
��

printf�
Number of people � �d� Gross Disbursements � $�f�n
�

number� gross��

printf�
Average pay � $�f�n
� average��

�

�

Figure ���
� Code for pay��c

appropriate assignment statement to compute the average at the end� Note we have used the cast
operator to cast number to a float for the division� This is not strictly necessary� the compiler
will do this automatically� however� it is good practice to cast operands to like type in expressions
so that we are aware of the conversion being done�

It is possible that no data was entered at all� i�e� the user enters � as the �rst id� in which case
number is zero� If we try to divide gross by number� we will have a �divide by zero� run time
error� Therefore� we check that number is greater than zero and only calculate the average and
print the result when employee data has been entered�

With all of these changes made as shown in Figure ���
� the program is compiled� and run
resulting in the following sample session�

���Pay Calculation���

�� CHAPTER �� BASIC CONCEPTS

Type ID Number� 	 to quit� ���

Hours Worked� �

Hourly Rate� ��	

ID Number � ���

Hours Worked � �	
						� Rate of Pay � $�
�					

Regular Pay � $��	
						� Overtime Pay � $	
						

Total Pay � $��	
						

debug� gross � ��	
						� number � �

Type ID Number� 	 to quit� �	�

Hours Worked� 	

Hourly Rate� �

ID Number � ��!

Hours Worked � �	
						� Rate of Pay � $�	
						

Regular Pay � $�		
						� Overtime Pay � $��	
						

Total Pay � $��	
						

debug� gross � �		
						� number � �

Type ID Number� 	 to quit�

���Summary of Payroll���

Number of people � �� Gross Disbursements � $�		
						

Average pay � $��	
						

The debug lines show the changes in gross and number each time the loop is executed� The
�rst such line shows the value of gross the same as that of the total pay and the value of number
as �� The next pass through the loop shows the variables are updated properly� The program
appears to be working properly� nevertheless� it should be thoroughly tested with a variety of data
input� Once the program is deemed satisfactory� the debug statements should be removed from
the source code and the program recompiled�

��
�� More Complex Loop Constructs � Nested Loops

As we mentioned above� the �statement� that is the body of the loop can be any valid C statement
and very often it is a compound statement� This includes a while statement� or a while statement
with the block� Such a situation is called a nested loop� Nested loops frequently occur when
several items in a sequence are to be tested for some property� and this testing itself requires
repeated testing with several other items in sequence� To illustrate such a process� consider the
following task�

��	� MORE C STATEMENTS ��

Task

Find all prime numbers less than some maximum value�

The problem statement here is very simple� however� the algorithm may not be immediately
obvious� We must �rst understand the problem�

A prime number is a natural number� i�e� �� ��
� �� etc�� that is not exactly divisible by any
other natural number� except � and itself� The number � is a prime by the above de�nition� The
algorithm must �nd the other primes up to some maximum� One way to perform this task is to
use a process called generate and test� In our algorithm� we will generate all positive integers
in the range from � to a maximum �constant� value PRIME LIM� Each generated integer becomes a
candidate for a prime number and must be tested to see if it is indeed prime� The test proceeds as
follows� divide the candidate by every integer in sequence from � up to� but not including itself�
If the candidate is not divisible by any of the integers� it is a prime number� otherwise it is not�

The above approach involves two phases� one generates candidates and the other tests each
candidate for a particular property� The generate phase suggests a loop� each iteration of which
performs the test phase� which is also a loop� thus we have a nested loop� Here is the algorithm�

set the candidate to �

while �candidate � PRIME�LIM� �

test the candidate for prime property

print the result if a prime number

generate the next candidate

�

In testing for the prime property� we will �rst assume that the candidate is prime� We will
then divide the candidate by integers in sequence� If it is divisible by any of the integers excluding
itself� then the candidate is not prime and we may generate the next candidate� Otherwise� we
print the number as prime and generate the next candidate�

We need to keep track of the state of a candidate� it is prime or it is not prime� We can use
a variable� let�s call it prime which will hold one of two values indicating True or False Such a
state variable is often called a �ag� For each candidate� prime will be initially set to True� If
the candidate is found to be divisible by one of the test integers� prime will be changed to False�
When testing is terminated� if prime is still True� then the candidate is indeed a prime number
and can be printed� This testing process can be written in the following algorithm�

set prime flag to True to assume candidate is a prime

set test divisor to �

while �test divisor � candidate� �

if remainder of �candidate�test divisor� �� 	

candidate is not prime

else get the next test divisor in sequence

�

�� CHAPTER �� BASIC CONCEPTS

We will use the modulus �mod� operator� � described earlier� to determine the remainder of
�candidate � divisor�� Here is the code fragment for the above algorithm�

prime � TRUE�

divisor � ��

while �divisor � candidate� �

if ��candidate � divisor� �� 	�

prime � FALSE�

else

divisor � divisor � ��

�

where TRUE and FALSE are symbolic constants de�ned using the define compiler directive� The
complete program is shown in Figure �����

The program follows the algorithm step by step� We have de�ned symbols TRUE and FALSE to
be � and �� respectively� The �nal if statement uses the expression �prime� instead of �prime
�� TRUE�� the result is the same� The expression �prime� is True �non	zero� if prime is TRUE�
and False �zero� if prime is FALSE� Of course� we could have written the if expression as �prime

�� TRUE�� but it is clear� and maybe more readable� as written�

We have included a debug statement in the inner loop to display the values of candidate�
divisor� and prime� Once the we are satis�ed that the program works correctly� the debug
statement can be removed�

Here is a sample session with the debug statement and PRIME LIM set to ��

���Prime Numbers Less than ����

� is a prime number

� is a prime number

debug� candidate � �� divisor � � prime � �

� is a prime number

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � 	

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

� is a prime number

debug� candidate � !� divisor � � prime � �

debug� candidate � !� divisor � � prime � 	

debug� candidate � !� divisor � � prime � 	

debug� candidate � !� divisor � � prime � 	

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � � prime � �

��	� MORE C STATEMENTS ��

�� File� prime
c

Programmer� Programmer Name

Date� Current Date

This program finds all prime numbers less than PRIME�LIM

��

 define PRIME�LIM �	

 define TRUE �

 define FALSE 	

main��

� int candidate� divisor� prime�

printf�
���Prime Numbers Less than �d����n�n
� PRIME�LIM��

printf�
�d is a prime number�n
� ��� �� print � ��

candidate � �� �� start at candidate �� � ��

while �candidate � PRIME�LIM� � �� stop at candidate �� �	 ��

prime � TRUE� �� for candidate� set prime to True ��

divisor � �� �� initialize divisor to � ��

�� stop when divisor �� candidate ��

while �divisor � candidate� �

printf�
debug� candidate � �d� divisor � �d prime � �d�n
�

candidate� divisor�prime��

�� if candidate is divisible by divisor� ��

�� candidate is not prime� set prime to False ��

if �candidate � divisor �� 	�

prime � FALSE�

divisor � divisor � �� �� update divisor ��

�

if �prime� �� if prime is set to True� ��

�� print candidate
 ��

printf�
�d is a prime number�n
� candidate��

candidate � candidate � �� �� update candidate ��

�

�

Figure ����� Code for prime�c

�� CHAPTER �� BASIC CONCEPTS

debug� candidate � �� divisor � � prime � �

debug� candidate � �� divisor � ! prime � �

� is a prime number

We have shown part of a sample session with debug printing included� Notice� that the values
printed for prime are � or �� remember� TRUE and FALSE are symbolic names for � and � used
in the source code program only� In this output the nested loops are shown to work correctly�
For example� for candidate �� divisor starts at � and progresses to �� the loop terminates and the
candidate is a prime number� A sample session without the debug statement is shown below�

���Prime Numbers Less than �	���

� is a prime number

� is a prime number

� is a prime number

� is a prime number

� is a prime number

�� is a prime number

�� is a prime number

�� is a prime number

�� is a prime number

In looking at the debug output� you might see that the loop that tests for the prime property
of a candidate is not an e!cient one� For example� when candidate is �� we know that it is not
prime immediately after divisor � is tested� We could terminate the test loop as soon as prime

becomes false �if it ever does�� In addition� it turns out that a candidate needs to be tested for an
even more limited range of divisors� The range of divisors need not exceed the square root of the
candidate� �See Problem � at the end of the chapter��

��	 Common Errors

In this section we list some common problems and programming errors that beginners often make�
We also suggest steps to avoid these pitfalls�

�� Program logic is incorrect� This could be due to an incorrect understanding of the problem
statement or improper algorithm design� To check what the program is doing� manually
trace the program and use debug statements� Introduce enough debug statements to narrow
down the code in which there is an error� Once an error is localized to a critical point in the
code or perhaps to one or two statements� it is easier to �nd the error� Critical points in the
code include before a loop starts� at the start of a loop� at the end of a loop and so forth�

�� Variables are used before they are initialized� This often results in garbage values occurring
in the output of results� For example�

���� COMMON ERRORS �

int x� y�

x � x � y�

There is no compiler error� x and y have unknown� garbage values� Be sure to initialize all
variables�

� The assignment operator� �� is used when an �equal to� operator� ��� is meant� e�g��

while �x � y�

if �x � y�

printf�
x is equal to y�n
��

There will be no compiler error since any valid expression is allowed as an if or while

condition� The expression is True if non	zero is assigned� and False if zero is assigned�
Always double check conditions to see that a correct equality operator� ��� is used�

�� Object names are passed� instead of addresses of objects� in function calls to scanf���

scanf�
�d
� n�� �� should be �n ��

Again this is not a compile time error� the compiler will assume the value of n is the address
of an integer object and will attempt to store a value in it� This often results in a run time
addressing error� Make sure the passed arguments in scanf�� calls are addresses of the
objects where data is to be stored�

�� Loop variables are not initialized�

while �i � n�

i is garbage� the while expression is evaluated with unknown results�

�� Loop variables are not updated�

i � 	�

while �i � n� �

�

i is unchanged within the loop� it is always �� The result is an in�nite loop�

�� Loop conditions are in error� Suppose� a loop is to be executed ten times�

�� CHAPTER �� BASIC CONCEPTS

n � �	�

i � 	�

while �i �� n� �

i � i � ��

�

�i �� n� will be True for i � �� �� ���� ��� i�e� �� times� The loop is executed one more
time than required� Loop expressions should be examined for values of loop variables at the
boundaries� Suppose n is zero� should the loop be executed� Suppose it is �� suppose it is
��� etc�

�� User types in numbers incorrectly� This will be explained more fully in Chapter �� Consider
the loop�

while �x #� 	� �

scanf�
�d
� �x��

�

Suppose a user types� ��r� An integer is read by scanf�� until a non	digit is reached� in this
case� until r is reached� The �rst integer read will be �
� However� the next time scanf��

is executed it will be unable to read an integer since the �rst non	white space character is a
non	digit� The loop will be an in�nite loop�

� Expressions should use consistent data types� If necessary� use a cast operator to convert
one data type to another�

int sum� count�

float avg�

avg � sum � count�

Suppose sum is
� and count is �� The operation sum � count will be the integer value of

� � �� i�e� �� the fractional part is truncated� The result � is assigned to a float variable
avg as ���� If a �oating point value is desired for the ratio of sum � count� then cast the
integers to float�

avg � �float� sum � �float� count�

Now� the expression evaluates to
��� � ��� whose result is a �oating point value �����
assigned to avg

���� SUMMARY ��

��
 Summary

In this chapter we have begun looking at the process of designing programs� We have stressed the
importance of a correct understanding of the problem statement� and careful development of the
algorithm to solve the problem� This is probably the most important� and sometimes the most
di!cult part of programming�

We have also begun introducing the syntax and semantics of the C language� We have seen how
to de�ne the special function� main�� by specifying the function header followed by the function

body� a collection of statements surrounded by brackets� f and g� The function body begins with
variable declarations to allocate storage space and assign names to the locations� followed by the
executable statements� Variable declarations take the form�

�type speci�er� �identi�er��� �identi�er�� � � ��

where �type spec� may be either int or float for integers or �oating point variables� respectively�
�We will see other type speci�ers in later chapters�� We gave rules for valid �identi�er�s used as
variable names�

We have discussed several forms for executable statements in the language� The simplest
statement is the assignment statement�

�Lvalue���expression��

where �for now� �Lvalue� is a variable name and �expression� consists of constants� variable
names and operators� We have presented some of the operators available for arithmetic computa	
tions and given rules for how expressions are evaluated� The assignment statement evaluates the
expression on the right hand side of the operator � and stores the result in the object referenced
by the �Lvalue�� We pointed out the importance of variable type in expressions and showed the
cast operator for specifying type conversions within them�

��type�speci�er�	 �expression�

We also described how the library function printf�� can be used to generate output from the
program� as well as how information may be read by the program at run time using the scanf��

function�

We next discussed two program control constructs of the language� the if and while state	
ments� The syntax for if statements is�

if ��expression�	 �statement� �else �statement��

where the �expression� is evaluated and if the result is True �non	zero� then the �rst �statement�
�the �then� clause� is executed� otherwise� the �statement� after the keyword else �the �else�
clause� is executed� For a while statement� the syntax is�

�� CHAPTER �� BASIC CONCEPTS

while � �expression� 	 �statement�

where the �expression� is evaluated� and as long as it evaluates to True� the �statement� is
repeatedly executed�

In addition we discussed one of the simple compiler directives�

de�ne �symbol name� �substitution string�

which can be used to de�ne symbolic names to character strings within the source code� used here
for de�ning constants in the program�

With these basic tools of the language you should be able to begin developing your own
programs to compile� debug and execute� Some suggestions are provided in the Problems Section
below� In the next chapter� we will once again concentrate on the proper methods of designing
programs� and in particular modular design with user de�ned functions�

��
� EXERCISES �

��� Exercises

Given the following variables and their initializations�

int a� x� y� z�

float b� u� v� w�

x � �	� y� �	� z � �	�

u � �
	� v � �	
	�

What are the values of the expressions in each of the following problems�

�� �a� a � x � y � z�

�b� a � x � y � z�

�c� a � z � y � y�

�d� a � x � y � z�

�e� a � x � y � z

�� �a� a � �int� �u � v��

�b� a � �int� �v � u��

�c� b � v � u�

�d� b � v � u � w�

� What are the results of the following mod operations�

�a� � � �

�b� �� � �

�c� � � ��

�d� �� � ��

�item

�begin�verbatim�

�a� �x �� y �� x �� z�

�b� �x �� y "" x �� z�

�c� �x �� y �� #�x �� z��

�d� �x � y �� z � y�

�e� �x �� y �� z � y�

�� Under what conditions are the following expressions True�

�a� �x � y �� y � z�

�b� �x �� y �� y �� z�

�c� �x �� y "" y �� z�

�d� �x �� y �� x �� z�

�e� �x � y �� x � z�

�� CHAPTER �� BASIC CONCEPTS

�� Make required corrections in the following code�

�a�

main��

� int n�

scanf�
�d
� n��

�

�b�

main��

� float n�

printf�
�d
� n��

�

�c�

main��

� int n�� n��

if �n� � n��

printf�
Equal�n
��

else

printf�
Not equal�n
��

�

�� Find and correct errors in the following program that is supposed to read ten numbers and
print them�

main��

� int n� count�

scanf�
�d
� �n��

while �count � �	� �

printf�
�d�n
� n��

scanf�
�d
� �n��

�

�

�� We wish to print integers from � through ��� Check if the following loop will do so correctly�

i � ��

while �i � �	� �

printf�
�d�n
� i��

i � i � ��

�

��
� EXERCISES ��

�� Suppose a library �ne for late books is� �� cents for the �rst day� �� cents per day thereafter�
Assume that the number of late days is assigned to a variable late days� Check if the
following will compute the �ne correctly�

if �late�days �� ��

fine � 	
�	�

else

fine � late�days � 	
���

�� CHAPTER �� BASIC CONCEPTS

��� Problems

�� Write a program that reads three variables x� y� and z� The program should check if all
three are equal� or if two of the three are equal� or if none are equal� Print the result of the
tests� Show the program with manual trace�

�� Velocity of an object traveling at a constant speed can be expressed in terms of distance
traveled in a given time� If distance� s� is in feet and time� t� is in seconds� the velocity in
feet per second is�

v � d�t

Write a program to read distance traveled and time taken� and calculate the velocity for a
variety of input values until distance traveled is zero� Print the results for each case� Show
a manual trace�

� Acceleration of an object due to gravity� g� is
� feet per second per second� The velocity of
a falling body starting from rest at time� t� is given by�

v � g � t

The distance traveled in time� t� by a falling body starting from rest is given by�

d � g � t � t��

Write a program that repeatedly reads experimental values of time taken by a body to hit
the ground from various heights� The program calculates for each case� the height of the
body and the velocity of the body when it hits the ground�

�� Write a program that reads a set of integers until a zero is entered� Excluding zero� the
program should print a count of and a sum of�

�a� positive numbers

�b� negative numbers

�c� even numbers

�d� odd numbers

�e� positive even numbers

�f� negative odd numbers�

�g� all numbers

Use debug statements to show cumulative sums as each new number is read and processed�

�� We wish to convert miles to kilometers� and vice versa� Use the loose de�nition that a
kilometer is ��� � ��� of a mile� Write a program that generates two tables� a table for
kilometer equivalents to miles for miles � through ��� and a table for mile equivalents of
kilometers for kilometers from � to ���

�� Improve the program prime
c of Section ����� in the following ways�

���� PROBLEMS ��

�a� Terminate the inner loop as soon as it is detected that the number is not prime�

�b� Test each candidate only while �divisor � divisor �� candidate��

�c� Test only candidates that are odd numbers greater than
�

For each of these improvements� how many times is the inner loop executed when PRIME LIM

is ��� How does that compare to our original program�

�� Write a program to generate Fibonacci numbers less than ���� Fibonacci numbers are ��
�� ��
� �� �� �
� ��� etc� The �rst two Fibonacci numbers are � and �� All other numbers
follow the pattern� a Fibonacci number is the sum of previous two Fibonacci numbers in the
sequence� In words� the algorithm for this problem is as follows�

We will use two variables� prev� and prev�� such that prev� is the last �bonacci number
and prev� is the one before the last� Print the �rst two �bonacci numbers� � and �� and
initialize prev� and prev� as � and �� The new fib number is the sum of the two previous
numbers� prev� and prev�� the new fib number is now the last �bonacci number and prev�

is the one before the last� So� save prev� in prev� and save fib number in prev�� Repeat
the process while fib number is less than ����

�� �Optional� Write a program to determine the largest positive integer that can be stored in
an int type variable� An algorithm to do this is as follows�

Initialize a variable to �� Multiply by � and add � to the variable repeatedly until a negative
value appears in the variable� The value of the variable just before it turned negative is the
largest positive value�

The above follows from the fact that multiplying by � shifts the binary form to the left by
one position� Adding one to the result makes all ones in the less signi�cant part and all zeros
in the more signi�cant part� Eventually a � appears in the leading sign bit� i�e� a negative
number appears� The result just before that happens is the one with all ones except for the
sign bit which is �� This is the largest positive value�

� �Optional� Write a program to determine the negative number with the largest absolute
value�

��� Write a program that reads data for a number of students and computes and prints their
GPR� For each student� an id number and transcript data for a number of courses is read�
Transcript data for each course consists of a course number �range ���	
���� number of
credits �range �	��� and grade �range �	��� The GPR is the ratio of number of total grade
points for all courses and the total number of credits for all courses� The number of grade
points for one course is the product of grade and credits for the course� The end of transcript
data is signaled by a zero for the course number� the end of student data is signaled by a
zero id number�

�� CHAPTER �� BASIC CONCEPTS

