
Defining Program Syntax 
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Syntax And Semantics 

  Programming language syntax: how 
programs look, their form and structure 
–  Syntax is defined using a kind of formal 

grammar 
  Programming language semantics: what 

programs do, their behavior and meaning 
–  Semantics is harder to define—more on this in 

Chapter 23 
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An English Grammar 
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A sentence is a noun 
phrase, a verb, and a 
noun phrase. 

A noun phrase is an 
article and a noun. 

A verb is… 

An article is… 

A noun is... 

<S> ::= <NP> <V> <NP> 

<NP> ::= <A> <N> 

<V> ::= loves | hates|eats 

<A> ::= a | the 

<N> ::= dog | cat | rat 



How The Grammar Works 
 The grammar is a set of rules that say how 

to build a tree—a parse tree 
 You put <S> at the root of the tree 
 The grammar’s rules say how children can 

be added at any point in the tree 
  For instance, the rule 

says you can add nodes <NP>, <V>, and 
<NP>, in that order, as children of <S> 
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<S> ::= <NP> <V> <NP> 



A Parse Tree 
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<S> 

<NP> <V> <NP> 

<A> <N> <A> <N> 

the dog the cat 

loves 



A Programming Language 
Grammar 

 An expression can be the sum of two 
expressions, or the product of two 
expressions, or a parenthesized 
subexpression 

 Or it can be one of the variables a, b or c 
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<exp> ::= <exp> + <exp> | <exp> * <exp> | ( <exp> ) 
             | a | b | c  



A Parse Tree 
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<exp> 

<exp> + <exp> 

( <exp> ) 

<exp> * <exp> 

( <exp> ) 

a b 

((a+b)*c) 

c 
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<S> ::= <NP> <V> <NP> 

<NP> ::= <A> <N> 

<V> ::= loves | hates|eats 

<A> ::= a | the 

<N> ::= dog | cat | rat 

tokens 

non-terminal 
symbols 

start symbol 

a production 



BNF Grammar Definition 
 A BNF grammar consists of four parts: 

–  The set of tokens 
–  The set of non-terminal symbols 
–  The start symbol 
–  The set of productions 
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Definition, Continued 
  The tokens are the smallest units of syntax 

–  Strings of one or more characters of program text  
–  They are atomic: not treated as being composed from 

smaller parts 
  The non-terminal symbols stand for larger pieces 

of syntax 
–  They are strings enclosed in angle brackets, as in <NP> 
–  They are not strings that occur literally in program text 
–  The grammar says how they can be expanded into 

strings of tokens 
  The start symbol is the particular non-terminal that 

forms the root of any parse tree for the grammar 
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Definition, Continued 
  The productions are the tree-building rules 
  Each one has a left-hand side, the separator ::=, 

and a right-hand side   
–  The left-hand side is a single non-terminal 
–  The right-hand side is a sequence of one or more things, 

each of which can be either a token or a non-terminal 
  A production gives one possible way of building a 

parse tree: it permits the non-terminal symbol on 
the left-hand side to have the things on the right-
hand side, in order, as its children in a parse tree 
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Alternatives 
 When there is more  than one production 

with the same left-hand side, an abbreviated 
form can be used 

 The BNF grammar can give the left-hand 
side, the separator ::=, and then a list of 
possible right-hand sides separated by the 
special symbol | 
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Example 
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Note that there are six productions in this grammar. 
It is equivalent to this one: 

<exp> ::= <exp> + <exp> | <exp> * <exp> | ( <exp> ) 
             | a | b | c  

<exp> ::= <exp> + <exp> 
<exp> ::= <exp> * <exp> 
<exp> ::= ( <exp> ) 
<exp> ::= a 
<exp> ::= b 
<exp> ::= c  



Empty 

 The special nonterminal <empty> is for 
places where you want the grammar to 
generate nothing 

  For example, this grammar defines a typical 
if-then construct with an optional else part: 

Chapter Two Modern Programming Languages, 2nd ed. 16 

<if-stmt> ::= if <expr> then <stmt> <else-part> 
<else-part> ::= else <stmt> | <empty> 



Parse Trees 

 To build a parse tree, put the start symbol at 
the root 

 Add children to every non-terminal, 
following any one of the productions for 
that non-terminal in the grammar 

 Done when all the leaves are tokens 
 Read off leaves from left to right—that is 

the string derived by the tree 
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Practice 
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Show a parse tree for each of these strings: 

  a+b 
  a*b+c 
  (a+b) 
  (a+(b)) 

<exp> ::= <exp> + <exp> | <exp> * <exp> | ( <exp> ) 
  | a | b | c 



Compiler Note 

 What we just did is parsing: trying to find a 
parse tree for a given string 

 That’s what compilers do for every program 
you try to compile: try to build a parse tree 
for your program, using the grammar for 
whatever language you used 

 Take a course in compiler construction to 
learn about algorithms for doing this 
efficiently 
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Language Definition 
 We use grammars to define the syntax of 

programming languages 
 The language defined by a grammar is the 

set of all strings that can be derived by some 
parse tree for the grammar 

 As in the previous example, that set is often 
infinite (though grammars are finite) 

 Constructing grammars is a little like 
programming... 
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Constructing Grammars 
 Most important trick: divide and conquer 
 Example: the language of Java declarations: 

a type name, a list of variables separated by 
commas, and a semicolon 

 Each variable can be followed by an 
initializer: 
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float a; 
boolean a,b,c; 
int a=1, b, c=1+2; 



Example, Continued 

 Easy if we postpone defining the comma-
separated list of variables with initializers: 

  Primitive type names are easy enough too: 

  (Note: skipping constructed types: class 
names, interface names, and array types) 
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<var-dec> ::= <type-name> <declarator-list> ; 

<type-name> ::= boolean | byte | short | int  
               | long | char | float | double 



Example, Continued 

 That leaves the comma-separated list of 
variables with initializers 

 Again, postpone defining variables with 
initializers, and just do the comma-
separated list part: 
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<declarator-list> ::= <declarator>  
                 | <declarator> , <declarator-list> 



Example, Continued 

 That leaves the variables with initializers: 

  For full Java, we would need to allow pairs 
of square brackets after the variable name 

 There is also a syntax for array initializers 
 And definitions for <variable-name> and <expr>  
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<declarator> ::= <variable-name>  
               | <variable-name> = <expr> 
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Where Do Tokens Come From? 

 Tokens are pieces of program text that we 
do not choose to think of as being built from 
smaller pieces 

  Identifiers (count), keywords (if), 
operators (==), constants (123.4), etc. 

  Programs stored in files are just sequences 
of characters 

 How is such a file divided into a sequence 
of tokens? 
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Lexical Structure And 
Phrase Structure 
 Grammars so far have defined phrase 

structure: how a program is built from a 
sequence of tokens 

 We also need to define lexical structure: 
how a text file is divided into tokens 
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One Grammar For Both 

 You could do it all with one grammar by 
using characters as the only tokens 

 Not done in practice: things like white space 
and comments would make the grammar too 
messy to be readable 
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<if-stmt> ::= if <white-space> <expr> <white-space>  
               then <white-space>  
               <stmt> <white-space> <else-part> 
<else-part> ::= else <white-space> <stmt> | <empty>  



Separate Grammars 
 Usually there are two separate grammars 

–  One says how to construct a sequence of tokens 
from a file of characters 

–  One says how to construct a parse tree from a 
sequence of tokens 
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<program-file> ::= <end-of-file> | <element> <program-file> 
<element> ::= <token> | <one-white-space> | <comment> 
<one-white-space> ::= <space> | <tab> | <end-of-line> 
<token> ::= <identifier> | <operator> | <constant> | …  



Separate Compiler Passes 

 The scanner reads the input file and divides 
it into tokens according to the first grammar 

 The scanner discards white space and 
comments 

 The parser constructs a parse tree (or at 
least goes through the motions—more about 
this later) from the token stream according 
to the second grammar 
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Historical Note #1 

 Early languages sometimes did not separate 
lexical structure from phrase structure 
–  Early Fortran and Algol dialects allowed spaces 

anywhere, even in the middle of a keyword 
–  Other languages like PL/I allow keywords to be 

used as identifiers 
 This makes them harder to scan and parse 
  It also reduces readability 
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Historical Note #2 
  Some languages have a fixed-format lexical 

structure—column positions are significant 
–  One statement per line (i.e. per card) 
–  First few columns for statement label 
–  Etc. 

 Early dialects of Fortran, Cobol, and Basic 
 Most modern languages are free-format: 

column positions are ignored 
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Other Grammar Forms 

 BNF variations 
 EBNF variations 
  Syntax diagrams 
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BNF Variations 

  Some use → or = instead of ::= 
  Some leave out the angle brackets and use a 

distinct typeface for tokens 
  Some allow single quotes around tokens, for 

example to distinguish ‘|’ as a token from 
| as a meta-symbol 
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EBNF Variations 
 Additional syntax to simplify some 

grammar chores: 
–  {x} to mean zero or more repetitions of x 
–  [x] to mean x is optional (i.e. x | <empty>) 
–  () for grouping 
–  | anywhere to mean a choice among alternatives 
–  Quotes around tokens, if necessary, to 

distinguish from all these meta-symbols 
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EBNF Examples 

 Anything that extends BNF this way is 
called an Extended BNF: EBNF 

 There are many variations 
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<stmt-list> ::= {<stmt> ;} 

<if-stmt> ::= if <expr> then <stmt> [else <stmt>] 

<thing-list> ::= { (<stmt> | <declaration>) ;} 

<mystery1> ::= a[1] 

<mystery2> ::= ‘a[1]’ 



Syntax Diagrams 

  Syntax diagrams (“railroad diagrams”) 
  Start with an EBNF grammar 
 A simple production is just a chain of boxes 

(for nonterminals) and ovals (for terminals): 
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if then else expr stmt stmt 
if-stmt 

<if-stmt> ::= if <expr> then <stmt> else <stmt> 



Bypasses 

  Square-bracket pieces from the EBNF get 
paths that bypass them 
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if then else expr stmt stmt 
if-stmt 

<if-stmt> ::= if <expr> then <stmt> [else <stmt>] 



Branching 
 Use branching for multiple productions 
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<exp> ::= <exp> + <exp> | <exp> * <exp> | ( <exp> ) 
  | a | b | c 



Loops 

 Use loops for EBNF curly brackets 
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<exp> ::= <addend> {+ <addend>} 



Syntax Diagrams, Pro and Con 

 Easier for people to read casually 
 Harder to read precisely: what will the parse 

tree look like? 
 Harder to make machine readable (for 

automatic parser-generators) 
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Formal Context-Free Grammars 
  In the study of formal languages and 

automata, grammars are expressed in yet 
another notation: 

 These are called context-free grammars 
 Other kinds of grammars are also studied: 

regular grammars (weaker), context-
sensitive grammars (stronger), etc. 
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S → aSb | X 
X → cX | ε  



Many Other Variations 

 BNF and EBNF ideas are widely used 
 Exact notation differs, in spite of occasional 

efforts to get uniformity 
 But as long as you understand the ideas, 

differences in notation are easy to pick up 
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Example 
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WhileStatement: 
 while ( Expression ) Statement 

 DoStatement: 
 do Statement while ( Expression ) ; 

BasicForStatement: 
 for ( ForInitopt ; Expressionopt ; ForUpdateopt) 

                             Statement 

  [from The Java™ Language Specification,  
              Third Edition, James Gosling et. al.] 



Conclusion 

 We use grammars to define programming 
language syntax, both lexical structure and 
phrase structure 

 Connection between theory and practice 
–  Two grammars, two compiler passes 
–  Parser-generators can write code for those two 

passes automatically from grammars 
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Conclusion, Continued 

 Multiple audiences for a grammar 
–  Novices want to find out what legal programs 

look like 
–  Experts—advanced users and language system 

implementers—want an exact, detailed 
definition 

–  Tools—parser and scanner generators—want 
an exact, detailed definition in a particular, 
machine-readable form 
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