
Defining Program Syntax

Chapter Two Modern Programming Languages, 2nd ed. 1

Syntax And Semantics

  Programming language syntax: how
programs look, their form and structure
–  Syntax is defined using a kind of formal

grammar
  Programming language semantics: what

programs do, their behavior and meaning
–  Semantics is harder to define—more on this in

Chapter 23

Chapter Two Modern Programming Languages, 2nd ed. 2

Outline

 Grammar and parse tree examples
 BNF and parse tree definitions
 Constructing grammars
  Phrase structure and lexical structure
 Other grammar forms

Chapter Two Modern Programming Languages, 2nd ed. 3

An English Grammar

Chapter Two Modern Programming Languages, 2nd ed. 4

A sentence is a noun
phrase, a verb, and a
noun phrase.

A noun phrase is an
article and a noun.

A verb is…

An article is…

A noun is...

<S> ::= <NP> <V> <NP>

<NP> ::= <A> <N>

<V> ::= loves | hates|eats

<A> ::= a | the

<N> ::= dog | cat | rat

How The Grammar Works
 The grammar is a set of rules that say how

to build a tree—a parse tree
 You put <S> at the root of the tree
 The grammar’s rules say how children can

be added at any point in the tree
  For instance, the rule

says you can add nodes <NP>, <V>, and
<NP>, in that order, as children of <S>

Chapter Two Modern Programming Languages, 2nd ed. 5

<S> ::= <NP> <V> <NP>

A Parse Tree

Chapter Two Modern Programming Languages, 2nd ed. 6

<S>

<NP> <V> <NP>

<A> <N> <A> <N>

the dog the cat

loves

A Programming Language
Grammar

 An expression can be the sum of two
expressions, or the product of two
expressions, or a parenthesized
subexpression

 Or it can be one of the variables a, b or c

Chapter Two Modern Programming Languages, 2nd ed. 7

<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>)
 | a | b | c

A Parse Tree

Chapter Two Modern Programming Languages, 2nd ed. 8

<exp>

<exp> + <exp>

(<exp>)

<exp> * <exp>

(<exp>)

a b

((a+b)*c)

c

Outline

 Grammar and parse tree examples
 BNF and parse tree definitions
 Constructing grammars
  Phrase structure and lexical structure
 Other grammar forms

Chapter Two Modern Programming Languages, 2nd ed. 9

Chapter Two Modern Programming Languages, 2nd ed. 10

<S> ::= <NP> <V> <NP>

<NP> ::= <A> <N>

<V> ::= loves | hates|eats

<A> ::= a | the

<N> ::= dog | cat | rat

tokens

non-terminal
symbols

start symbol

a production

BNF Grammar Definition
 A BNF grammar consists of four parts:

–  The set of tokens
–  The set of non-terminal symbols
–  The start symbol
–  The set of productions

Chapter Two Modern Programming Languages, 2nd ed. 11

Definition, Continued
  The tokens are the smallest units of syntax

–  Strings of one or more characters of program text
–  They are atomic: not treated as being composed from

smaller parts
  The non-terminal symbols stand for larger pieces

of syntax
–  They are strings enclosed in angle brackets, as in <NP>
–  They are not strings that occur literally in program text
–  The grammar says how they can be expanded into

strings of tokens
  The start symbol is the particular non-terminal that

forms the root of any parse tree for the grammar
Chapter Two Modern Programming Languages, 2nd ed. 12

Definition, Continued
  The productions are the tree-building rules
  Each one has a left-hand side, the separator ::=,

and a right-hand side
–  The left-hand side is a single non-terminal
–  The right-hand side is a sequence of one or more things,

each of which can be either a token or a non-terminal
  A production gives one possible way of building a

parse tree: it permits the non-terminal symbol on
the left-hand side to have the things on the right-
hand side, in order, as its children in a parse tree

Chapter Two Modern Programming Languages, 2nd ed. 13

Alternatives
 When there is more than one production

with the same left-hand side, an abbreviated
form can be used

 The BNF grammar can give the left-hand
side, the separator ::=, and then a list of
possible right-hand sides separated by the
special symbol |

Chapter Two Modern Programming Languages, 2nd ed. 14

Example

Chapter Two Modern Programming Languages, 2nd ed. 15

Note that there are six productions in this grammar.
It is equivalent to this one:

<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>)
 | a | b | c

<exp> ::= <exp> + <exp>
<exp> ::= <exp> * <exp>
<exp> ::= (<exp>)
<exp> ::= a
<exp> ::= b
<exp> ::= c

Empty

 The special nonterminal <empty> is for
places where you want the grammar to
generate nothing

  For example, this grammar defines a typical
if-then construct with an optional else part:

Chapter Two Modern Programming Languages, 2nd ed. 16

<if-stmt> ::= if <expr> then <stmt> <else-part>
<else-part> ::= else <stmt> | <empty>

Parse Trees

 To build a parse tree, put the start symbol at
the root

 Add children to every non-terminal,
following any one of the productions for
that non-terminal in the grammar

 Done when all the leaves are tokens
 Read off leaves from left to right—that is

the string derived by the tree

Chapter Two Modern Programming Languages, 2nd ed. 17

Practice

Chapter Two Modern Programming Languages, 2nd ed. 18

Show a parse tree for each of these strings:

 a+b
 a*b+c
 (a+b)
 (a+(b))

<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>)
 | a | b | c

Compiler Note

 What we just did is parsing: trying to find a
parse tree for a given string

 That’s what compilers do for every program
you try to compile: try to build a parse tree
for your program, using the grammar for
whatever language you used

 Take a course in compiler construction to
learn about algorithms for doing this
efficiently

Chapter Two Modern Programming Languages, 2nd ed. 19

Language Definition
 We use grammars to define the syntax of

programming languages
 The language defined by a grammar is the

set of all strings that can be derived by some
parse tree for the grammar

 As in the previous example, that set is often
infinite (though grammars are finite)

 Constructing grammars is a little like
programming...

Chapter Two Modern Programming Languages, 2nd ed. 20

Outline

 Grammar and parse tree examples
 BNF and parse tree definitions
 Constructing grammars
  Phrase structure and lexical structure
 Other grammar forms

Chapter Two Modern Programming Languages, 2nd ed. 21

Constructing Grammars
 Most important trick: divide and conquer
 Example: the language of Java declarations:

a type name, a list of variables separated by
commas, and a semicolon

 Each variable can be followed by an
initializer:

Chapter Two Modern Programming Languages, 2nd ed. 22

float a;
boolean a,b,c;
int a=1, b, c=1+2;

Example, Continued

 Easy if we postpone defining the comma-
separated list of variables with initializers:

  Primitive type names are easy enough too:

  (Note: skipping constructed types: class
names, interface names, and array types)

Chapter Two Modern Programming Languages, 2nd ed. 23

<var-dec> ::= <type-name> <declarator-list> ;

<type-name> ::= boolean | byte | short | int
 | long | char | float | double

Example, Continued

 That leaves the comma-separated list of
variables with initializers

 Again, postpone defining variables with
initializers, and just do the comma-
separated list part:

Chapter Two Modern Programming Languages, 2nd ed. 24

<declarator-list> ::= <declarator>
 | <declarator> , <declarator-list>

Example, Continued

 That leaves the variables with initializers:

  For full Java, we would need to allow pairs
of square brackets after the variable name

 There is also a syntax for array initializers
 And definitions for <variable-name> and <expr>

Chapter Two Modern Programming Languages, 2nd ed. 25

<declarator> ::= <variable-name>
 | <variable-name> = <expr>

Outline

 Grammar and parse tree examples
 BNF and parse tree definitions
 Constructing grammars
  Phrase structure and lexical structure
 Other grammar forms

Chapter Two Modern Programming Languages, 2nd ed. 26

Where Do Tokens Come From?

 Tokens are pieces of program text that we
do not choose to think of as being built from
smaller pieces

  Identifiers (count), keywords (if),
operators (==), constants (123.4), etc.

  Programs stored in files are just sequences
of characters

 How is such a file divided into a sequence
of tokens?

Chapter Two Modern Programming Languages, 2nd ed. 27

Lexical Structure And
Phrase Structure
 Grammars so far have defined phrase

structure: how a program is built from a
sequence of tokens

 We also need to define lexical structure:
how a text file is divided into tokens

Chapter Two Modern Programming Languages, 2nd ed. 28

One Grammar For Both

 You could do it all with one grammar by
using characters as the only tokens

 Not done in practice: things like white space
and comments would make the grammar too
messy to be readable

Chapter Two Modern Programming Languages, 2nd ed. 29

<if-stmt> ::= if <white-space> <expr> <white-space>
 then <white-space>
 <stmt> <white-space> <else-part>
<else-part> ::= else <white-space> <stmt> | <empty>

Separate Grammars
 Usually there are two separate grammars

–  One says how to construct a sequence of tokens
from a file of characters

–  One says how to construct a parse tree from a
sequence of tokens

Chapter Two Modern Programming Languages, 2nd ed. 30

<program-file> ::= <end-of-file> | <element> <program-file>
<element> ::= <token> | <one-white-space> | <comment>
<one-white-space> ::= <space> | <tab> | <end-of-line>
<token> ::= <identifier> | <operator> | <constant> | …

Separate Compiler Passes

 The scanner reads the input file and divides
it into tokens according to the first grammar

 The scanner discards white space and
comments

 The parser constructs a parse tree (or at
least goes through the motions—more about
this later) from the token stream according
to the second grammar

Chapter Two Modern Programming Languages, 2nd ed. 31

Historical Note #1

 Early languages sometimes did not separate
lexical structure from phrase structure
–  Early Fortran and Algol dialects allowed spaces

anywhere, even in the middle of a keyword
–  Other languages like PL/I allow keywords to be

used as identifiers
 This makes them harder to scan and parse
  It also reduces readability

Chapter Two Modern Programming Languages, 2nd ed. 32

Historical Note #2
  Some languages have a fixed-format lexical

structure—column positions are significant
–  One statement per line (i.e. per card)
–  First few columns for statement label
–  Etc.

 Early dialects of Fortran, Cobol, and Basic
 Most modern languages are free-format:

column positions are ignored

Chapter Two Modern Programming Languages, 2nd ed. 33

Outline

 Grammar and parse tree examples
 BNF and parse tree definitions
 Constructing grammars
  Phrase structure and lexical structure
 Other grammar forms

Chapter Two Modern Programming Languages, 2nd ed. 34

Other Grammar Forms

 BNF variations
 EBNF variations
  Syntax diagrams

Chapter Two Modern Programming Languages, 2nd ed. 35

BNF Variations

  Some use → or = instead of ::=
  Some leave out the angle brackets and use a

distinct typeface for tokens
  Some allow single quotes around tokens, for

example to distinguish ‘|’ as a token from
| as a meta-symbol

Chapter Two Modern Programming Languages, 2nd ed. 36

EBNF Variations
 Additional syntax to simplify some

grammar chores:
–  {x} to mean zero or more repetitions of x
–  [x] to mean x is optional (i.e. x | <empty>)
–  () for grouping
–  | anywhere to mean a choice among alternatives
–  Quotes around tokens, if necessary, to

distinguish from all these meta-symbols

Chapter Two Modern Programming Languages, 2nd ed. 37

EBNF Examples

 Anything that extends BNF this way is
called an Extended BNF: EBNF

 There are many variations
Chapter Two Modern Programming Languages, 2nd ed. 38

<stmt-list> ::= {<stmt> ;}

<if-stmt> ::= if <expr> then <stmt> [else <stmt>]

<thing-list> ::= { (<stmt> | <declaration>) ;}

<mystery1> ::= a[1]

<mystery2> ::= ‘a[1]’

Syntax Diagrams

  Syntax diagrams (“railroad diagrams”)
  Start with an EBNF grammar
 A simple production is just a chain of boxes

(for nonterminals) and ovals (for terminals):

Chapter Two Modern Programming Languages, 2nd ed. 39

if then else expr stmt stmt
if-stmt

<if-stmt> ::= if <expr> then <stmt> else <stmt>

Bypasses

  Square-bracket pieces from the EBNF get
paths that bypass them

Chapter Two Modern Programming Languages, 2nd ed. 40

if then else expr stmt stmt
if-stmt

<if-stmt> ::= if <expr> then <stmt> [else <stmt>]

Branching
 Use branching for multiple productions

Chapter Two Modern Programming Languages, 2nd ed. 41

<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>)
 | a | b | c

Loops

 Use loops for EBNF curly brackets

Chapter Two Modern Programming Languages, 2nd ed. 42

<exp> ::= <addend> {+ <addend>}

Syntax Diagrams, Pro and Con

 Easier for people to read casually
 Harder to read precisely: what will the parse

tree look like?
 Harder to make machine readable (for

automatic parser-generators)

Chapter Two Modern Programming Languages, 2nd ed. 43

Formal Context-Free Grammars
  In the study of formal languages and

automata, grammars are expressed in yet
another notation:

 These are called context-free grammars
 Other kinds of grammars are also studied:

regular grammars (weaker), context-
sensitive grammars (stronger), etc.

Chapter Two Modern Programming Languages, 2nd ed. 44

S → aSb | X
X → cX | ε

Many Other Variations

 BNF and EBNF ideas are widely used
 Exact notation differs, in spite of occasional

efforts to get uniformity
 But as long as you understand the ideas,

differences in notation are easy to pick up

Chapter Two Modern Programming Languages, 2nd ed. 45

Example

Chapter Two Modern Programming Languages, 2nd ed. 46

WhileStatement:
 while (Expression) Statement

 DoStatement:
 do Statement while (Expression) ;

BasicForStatement:
 for (ForInitopt ; Expressionopt ; ForUpdateopt)

 Statement

 [from The Java™ Language Specification,
 Third Edition, James Gosling et. al.]

Conclusion

 We use grammars to define programming
language syntax, both lexical structure and
phrase structure

 Connection between theory and practice
–  Two grammars, two compiler passes
–  Parser-generators can write code for those two

passes automatically from grammars

Chapter Two Modern Programming Languages, 2nd ed. 47

Conclusion, Continued

 Multiple audiences for a grammar
–  Novices want to find out what legal programs

look like
–  Experts—advanced users and language system

implementers—want an exact, detailed
definition

–  Tools—parser and scanner generators—want
an exact, detailed definition in a particular,
machine-readable form

Chapter Two Modern Programming Languages, 2nd ed. 48

