
MODERN
PROGRAMMING LANGUAGES

A PRACTICAL INTRODUCTION

SECOND EDITION

Adam Brooks Webber

Franklin, Beedle & Associates Inc.
22462 SW Washington St
Sherwood, Oregon 97140
503/625-4445

'

www.fbGedle.oom

Chapter 7
A Second
Look at ML

7.1 Introduction
This chapter continues the introduction to the MLpro-
gramming language. It will discuss MLpatterns, a. very
important part of the language. You have already used
simple Ml. patterns without realizing it. Using patterns in
a more sophisticated way,you can write functions that are
both more compact and more readable.This chapter will
also show how to define local variables for a function using
let expressions,

7.2 Patterns You Already Know
MLjfttfftfrnS are a very important part of the language. You
have already seen several kinds of simple patterns, for
example,you have seen that ML functions take a single
parameter, like the parameter n in tins simple squaring
function:

fun f n = n * n;

You have also seen how to specify a function with more
than one input by using tuples,like the tuple of two items
(a r b) in. this simple multiplying function:
103

104 Chapter 7— A Second Look at ML

fun f fa , b] * a * b;

If the language you art:most familiar with Is C„ C-H> nr Java, you may have an
importa n t m isconception to lc6e. I n the previons examplea,n and (a , b I look I ike a
parameter and a parameter list but they are actually patterns in ML. ML automati-
cally tries to match values with its patterns and takes action depending on whether
or not they match , The pattern nr for instance, matchesany parameter, while the
pattern {a, b) matches any tuple of two items. Patterns occur in several different
parts of ML syntax, not just in function parameters. It is important to start thinking
about them as patterns, and not just as simple parameter lists.

Patterns do more than just match data; they also introduce new variables. The
pattern n matches any parameter and introduces a variable n that is bound to the
value of that parameter. The pattern fa , b} matches any tuple of two items and
introduces two variables, a and b, that a re bound to the two components of that
tuple. MLsupports patterns that are far more powerful, than these two simple ex-
amples, but they all work by matching data and introducing new variables.

7- 3
I More Simple Patterns

I he simplest pattern in ML is _ , the underscore character, It is a pattern that
matches anything and does not introduce any new variables. The following exam
pie shows a function f Shell takes one parameter and ignores its value. If the value
of a parameter doesn't matter, use the _ pattern to match the parameter without
introducing a variable.

- f un f EC "ye s ?
val JT = Cn ; 1a - > aLrinq_ i 34 , 5 j

val it - "yes" : string
- f I I ;
val it = "yea* - string

The function f can now be applied to any parameter of tiny type . (The function s
type, ' a. - > Ht ring, indicates that its input can be of any type and its output Is
always a string.) The function f ignores its parameter and always returns the string
value "yes Vl'he function could have been defined without the underscore,as in

fun f x = " yes ,r i

That would introduce an unused variable x, fn Ml , a* in most languages, you
should avoid introducing variables if you don't intend to use them.

7.4— Complex Patterns 105

The underscore pattern matches everything. At the other extreme* you can make
a pattern that matches just one tiling— A constant , The next example defines a func-
tion f that only works if its parameter is the integer constant OJ

- fun f 0 * “ yeE " j

W.3. rn i ng 5 ma t- ch n n nex‘h puS11VR

Q = > * * ,

val f = fn : int - > string
- £ O s
val it H "yea11 i string

The function £ returns the string value * yes- if applied to the constant a. No other
application of the function is defined , Almost any Constant can he used as a pattern.
The only restriction as that at must be of an equality-testable type. You can't use real
constants as patterns

The ML language system showed £'s type as int - > string, but it gave the
warning message "match nunexhaustive/ ' The Language system is warning us that
we defined £ without using patterns that cover the whole domain type (in this
case, the integers). So we have defined f in a way Lhal can lead to runtime errors. If
f is called on an integer value that isn ' t 0, it won't work,

- f 0;
val it = ’’ yes " L string
- f I t
uncaught exception Match [nonexhaustive match failure]

mm 7 A
Complex Patterns

Any l i s t of patterns i s a legal pattern. For example, this futn Hon selects and returns
the first element from a list of two elements:

- fun f (a ,) = a i
Warning; match nonfixhau^ t. ive

a : i
_ ;: nil = >

val f n fn J ' a l i s t - > 'a
- £ [# “ £ » , # g -] j

val it = : char

In the example, [a , _ I is the pattern for f fs parameter, Note the square brackets—
this is a lint, not ci tuple.The pattern [a r _1 matches any list of exactly two i tems
and introduces the variable a (hound to the first element of the list). This is, again*
a nonexhaustive function definition; the domain includes lists of any type, but the
function will fail if a list has more or Less than two elements.

106 Chapter 7— A Second Look at ML

The cons operator { i :) may also appear inpatterns. Any cons of patterns as a
legal pattern.For example,

- f u n f (x :: x s) = x;
Waming: match nonexhaust ive

X l l x s . , .
val f = fn : list - > fa
- £ 11, 2 , 33 ;
val it = 1 : int

rhe pattern x = * xs matches any non-empty list and introduces the variables x
(hound to ihe head element of the list.) and xs (bound to the tail of the list).The
parentheses around x ;; xs are not really part of the pattern,, but are necessary
because of precedence. Function application has higher precedence than cons,so
without parenthesesML would interpret f x 52 x s a s f f x) : : xs, which
isn't what we wanted. Phis example produced another nonexhaustLve function
definition. This one is almost exhaustive— it matches almost every parameter of the
domain type— but it will fail on the empty list.

17.5
V A Summary of ML Patterns So Far

Here is a mini-langtiage ot patterns in ML;

A variable is a pattern that matches anything and binds to it.
An underscore (_) is a paItem that maIdles anything.
A constant (of an equality type) is a pattern thal matches only that constant
value.
A tuple of patterns is a pattern that matches any tuple of the right size, whose
contents match the sub-patterns.

A list of patterns is a pattern that matches any list of the right size, whose
contents match Lhe subpat terns.
A. cons of patterns is a pattern that matches any non-empty list whose head
and tail match the subpattems.

You could easily give a BNF grammar for lhe language of ML patterns (see Exer-
cise I),

7.S
Using Multiple Patterns tor Functions

Ml.allows you to specify multiple patterns for the parameter of a function,with
alternative function bodies for each one. Here's an example;

7,7— Fattem-Matehmg Style 107

fun f 0 *zero'"
| f I = "one ?

This defines a function of type ini - > string that has two different function
bodies; one to use if the parameter is 0, the other if thje parameter is I . This defini-
tion is still ncmexhaLLstive, since It has no alternative for any other integer,

Below is the general syntax for Ml function definitions, allowing multiple pat-
terns. A function, definition can contain one or more fund ion bodies separated by
the | tokenr

it - fun <fmf -htn{iirs> ;
c/T4t t-f c c t d f r t i > : i = <furt-body> | ' I 1 < fun-boih&*

Each function body repeats the function name, but gives a different pattern for the
parameter and a different expression:

<jfrin-taiy> 12 = < pattem> - cfjprFssibn^

I hesame <fun-nam£> must be repeated in each alternative.1
Alternate patterns like this can have overlapping patterns. For example, this is

legal:
fun f 0 = "-zero"

f _ » ''non-zero" ;

Here, the function f has one alternative that covers the constant 1) and another that
covers all values The patterns overlap, so which alternative will ML execute when
the function is called ? ML tries the patterns in the order they are listed and uses the
first one that matches.

7.7
Pattern-Matching Style

These two function definitions are equivalent:
fun f 0 = '" zero 1'

£ = ''non-zero" ;

fun f n t

if n « 0 then "zero"
else "non- zero";

I This ks redundant From the language interpreter 's point of view, it doesn't add any information to
have that function, name repeated over and over, and it makes extra work, since the interpreter must
check that the function name is the mime each time Repealing; the function name dues,however, make
I lie fumtUin defirntiotM e.isi.M for people- to read,

108 Chapter 7— A Second Look at ML

The first one is on the pattern-matching style; the second one accomplishes the
same thing without givingalternative patterns. Many MLprogrammers prefer the
pattern-matchingstyle,since it usually gives shorter and more legible functions.

This example,without the pattern-matching style,was used back in Chapter 5;

CLUI fact. n -
if n = a then i
else * fact (n - 1) ;

It can be written in the patLem-matching style like this:

fun fact 0 = 1
fact n - n * fact (n - 1) ;

This is easier to read, since it clearly separates the base case from the recursive case.
Here is another earlier example that doesn't use the pattern-matchingstyle;

fun reverse L =
if null L then nil
else reverse (tl L) S [hd L] ;

It can be written in the pattern-matching style like this:

fun reverse nil » nil
reverse (f i rs t : : re^t) = reverse rest 3 [f i rs t] ;

This shows another advantage of using pattern matching. Ely matching the com-
pound pattern t £irst : = rest), we Am able to extract the head and tail of the
list without having to explicitly apply the hd and 11 functions. That makes the
code shorter and easier in read, (it doesn't make it any faster, though., Irt either case,
Lhe ML language system has to find the head and tail, of the list .)

hunctions that operate on lists often have the same structure as this reverse
function:one alternative for the base case (nil) and one alternative for the re-

cursive case (f i rs t : r rest),making a recursive call using the tail of the list
(reat). Any function that needs to visit all the elements of a list will have a similar
recursive structure Suppose we want to compute the sum of all theelements of a

list:
fun f nil a 0

f (f i rs t : s res t) - f i rs t * f res t ;

Sec how the function definition follows the same structure? h just says that the sum
of the elements in an empty list is G, while the sum ina non-empty list is the first el-
ement plus thesum of the rest Suppose we want to count how many tint- values
are in a list of boolean*’

77— Pattern-Matching Style 109

fun f ni l = 0
£ (true \ t rest) = 1 + t rest
f (false ;; rep?t! = f rest *

The inductive case is broken into two parts,one to use it the first element is true
arid one if the first element is false. But you ran still siv the underlying structure.
Here's one more example. Suppose we want to- make a new last of integers in which
ea* h integer is om greater than it was in the original list:

fun f ni l = ni l
| f (f i rs t r : res t) - f i rs t + 1 i : f res t ;

This same pattern-matching structure occurs in many of the exercises at the end of
this chapter.

Patterns in ML are powerful, but they have one important restriction: the same
variable name cannot be used more than once in a pattern. For example, suppose
you want to write -i function lhal works on pairs and does one tiling if the two
elements are equal and something else if they are not. You might try to write it like
this;

fun f (a , a) = ... for pairs of equal Yemenis
f (a , b) = pairs ofimMual elements

But the pattern fa r aj is illegal because it uses the same variable name more than
once The only way to write this is in a non-pattern-matching style:

fun f (a * Jo) =
i f (a = b) then ... fair pairs of equal dements
else ,, . for pairs of unequal elements

Patterns occur in. many places in Ml . programs. For instance, you can use pat-
terns in val definitions like this:

- v a l (a , b) = (1 # 2 , 3) j

val a. = 1 r int
val b = 2 h 3 : real
- v a1 a :: b [1, 2 , 3 , 4 , 5 1 j

v a l a a l : i n t
val b - [2,3,4,51 : int list

Notice in the last example that the pattern a L : b does not cover all lists— in
particular, ii does not cover i he empty list . In other contexts this might cause a
problem, but it does no harm here since the list that is matched to the pattern is not
the empty list.

Later chapters will show additional MIL constructs that use patterns.

110 Chapter 7— A Second Look at ML

H 7.6
Local Variable Definitions

So far, we have used only two kinds of variable definitions; val definitions at the
lop level and the variables defined by patterns for function parameters. There is a
way to make additional r local variable definitions in ML, using the let expression
A lest expression looks like this;

: I ? let in end

The part is a sequence of any number of definitions such as val
definitions, that hold only within the <kif -t*Xp>r The <£Xpnub$iM> is evaluated in an
environment in which Lhe given definitions hold. I he value of the <tTipr«sjoff> is

then used ay the value of the entire <W-np>. I [ere is an example:

- let val x = 1 val y = 2 in x + y end;
val it = 3 int;
- XJ
Error: unbound variable or constructor : x

The expression evaluates x + y sn an environment in which x Is 1 and y Is 2.

That Value, 3, is the value of the entire let expression. The definition for x is not
permanent. It is local to the let expression. Variables defined in a let expression
between let and in are visible only from the point of definition to end

For readability you usually would not write a let expression all on one line.

Rather, you would break i l up and. indent it like this;

let
val x = l
val y = 2

In
x + y

end

Some ML programmers put a semicolon after each definition. This is optional .

One ne-ssoti for using a \et expression is to break up a long expression and give
meaningful names to the pieces. For example, this function converts from days to
milliseconds:

fun d.ays2riLU days =
let

val hours * days * 24 * 0
val minutes - hours * 0.0
val HecnndH = minutes * 0,o

in
seconds * 1000 , D

end;

7.8— Local Variable Definitions 111

Each definition in the let part can he used in subsequent definitions, as well as in
tlit? final expression of the in part.

When you u_se let to define variables, you can use pattern matching al the
same time to extract the individual parte ot compound values. Consider this halve
function. It lakes a list parameter and returns a pair of lists, each containing half the
elements of the original list.

fun halve nil = (nil, nil)
halvfe [a] = ([a j r n i l)
halve ta i : b si cs) =

let
val (Xj y) - halve cs

in
(a : i x, b i : y >

end;

Notice how the val defines both x and y by pattern matching. The recursive call to
halve returns a pair of lists, and the vai definition binds x to the first element of
the pair and y to the second. I he I efc expression in that function could have been
written like this instead:

let
val halved = halve C B
val x = #1 halved
val y = # 2 halved

in
{a : : X , b : : y)

end ;

The first version, using pattern matching, is more compact and easier to read , fin
general, if you find yourself using the # notation to extract an dement from a tuple,
thank twice, You can usual ly get a better solution using pattern matching ,)

The halve function divides a list into a pair of half-lists. Here are some exam-
ples of halve in operation:

- halve Hi ?
val it = (T 11 r 11) : int list * int list

halve { I , 2];
val it » ([l] r 12U i int list * int list
- halve |1, 2 i 3 § 4 . 5 , S i s
val it ([1,3,5J * [2J 4,6]) : int list * int iist

To better understand how halve works, let's break it down into its three alter-

natives:

112 Chapter 7— A Second Look at ML

halve nil = (nil , nil) Die halve of an empty list is,of course*
just two e m p t y haJfdists.

haIve [a] = { [a] „ nil) The halve of a une-elenient List puts that
one element in the first half -list and no
elements In the second haLf-lisI

halve (a : : b : i cs)

l^t
val (x * y) = halve cs

in
(a : : x * b i - y)

end ?

The halve of a list of two or more
elements is computed recursively. I f first
gets the halve of the rest of the list* after
the first two elements, Then i!adds the
first element to the first half-list and the
second elt1ment to the secorid half-1ist.

The halve function is part of a simple merge-sort implementation, For more
practice with ML, lei's go ahead and see the rest of the merge sort. Here is a func-
tion that merges two sorted lists of integers;

fun merge (n i l * yg) = ye
merge (xs. , nil) = xa
merge (x ; i XS , y : % ys) «=

if (x < y) then x :: merge (xs * y : i y s)
else y : i merge {x : i xs (ys) ;

(The type of this merge function is in t l i s t * in t l i s t - > Lnt l i s t, ML
infers this type because integers are the default type for the < operator.)1he merge
function takes a pair of sorted lists and combines them into a single sor ted list

- merge (£2], fl, 31)i
val it = ([1,2* 3]) : int list
- merge (. [I, 3, 4 * 7 * 8] f [2 , 3> 5 , G, 10]) ;
va l i t = [l , 2 J 3 r 3 r 4 * Srf i * 7 * 8 * 10] : in t l i s t

lb I letter understand how merge works, let's break it down into its three alter-
natives.

marge (nil * ys) = ys The merge of two lists* if the first one is
empty* is just the second one.

merge (xs * nil) xs The merge of two lists, if the second, one is
empty, is just the first one.

7.8— Local Variable Definitions 113

merge (x :: x s r y : ys) » The merge of two
if (x C y ^ then x z i merge (xs , y : : ys) non-empty lists is
else y i : merge (x 1: xs , ys) ; computed recursively.

The smallest element
is attached to the front
of the recursively
Computed merge of
the remainder of the
elements.

Mow with a halve and a merge function, we am easily create a merge sort.
Here, again, we Lake advantage of the lee expression in ML:

fun mergeSort nil » nil
mergeSort [a] = [a]
mergesort theList =

let
val (i, y) = halve theList

in
merge(mergeSort x, mergeSort. y >

end ;

This mergesort function sorts lists of integers:

mergeSort [4, 3, 2, lj;
yal it = [1 * 2, 3,4! i int list
- mergeSort [4, 2. 3 * lr 5, 3, S];
val it p [1,2,3,3,4,5,63 s int list

To better understand how mergeSore works, let's break it down into its three
alternatives.

mergeSort nil » nil An empty list is already sort-
ed.mergaSort just returns
it.

mergeSort La] = la]

mergeSort theList =
let

val (xj y) = halve: tbeLiet
in

merge (mergesart x , mergeSort y)

end ;

A list of one element is al-
ready sorted IDO. mergeSort
just returns it.

To sort a list of more than one
element, halve it into two
halves, recursively sort the
halves, and merge the two
sorted halves.

114 Chapter 7— A Second Look at ML

«I7 . 9
Nested Function Definitions

The previous functions halve and merge are not very useful by themselves; they
are really just helpers for mergeSort.They could be locally defined inside the
mergesart definition like this:

(* Sor t a list of integers. * >
fun mergesort nil = nil

mergeSort [el * [e]
mergeSort theList -

let
(* From the givsn list make a pair of lists
* (x * y) , where half the elements of the
* original are in x and half are in y 4 *]

fun halve nil - (nilr nil)
halve [a] m ([al, nil)
hal v e (a t : b : T C S) =
let

val fx, y> = halve cs
in

[a 3: xr b u y)
end j

(* Merge two sorted lists of integers into
* a single sorted list. *}

fun merge frill, yg) = ys
m^rge (x6 p nil) = xs
merge (x xu * y t t ys) =
if (x < y) then x * 3 merge(xs, y ys)
else y i : merge (x :: xs, ys) ;

val ^ x * y) = halve theList
in

merge(iriorgeSort xP mergeSort y)
end;

As this example shows, fun definitionsranbe made insidel&tr just like val
definitions. The effect is to define a function that is visible only from the point of
the definition to the end of the Let.This organization has the advantage of making
halve and merge invisible to the rest of the program, which makes it clear to the
reader that they will be used inonly this one place, There is another potential ad-
vantage to thisnesting of functions, which was nut used in the example above: the
inner functions can refer to variables from the containing function. We 'll see more
about this in Chapter 12.

Exercises 115

The previous example also shows tine use of comments in ML. Comments in
ML programs start with (* find end with * 3 , In ML, as in fill other programming
languages, programmers use comments to make programs more readable.2

7.10
Conclusion

This chapter introduced ML patterns and the pattern matching style for function
definitions. It introduced the ML let expression for local function definitions, A
long merge-sort example demonstrated how to use both patterns and let expres-
sions in ML, This chapter also showed how to write local function definitions in

MI.arid how to wti te eoni merits.

Exercises
Exrrtfse 1 Give & UN I grammar for die language of ML patterns. Use the
non-terminal symbol <pattern:> a_s the start symbol Use the non-terminal symbols
<MM£> and fomt>r without defining productions for them, for the appropriate
parts of the language.

In all the following exercises* wherever possible, practice using pattern -match-
ing function definitions. With some SML/ NJJ installations, you will encounter
a neve wanting message while solv ing these exercises: "Warning ? oal ling
pol'/Equal/' Tins warning indicates that your code is comparing two values for
equality, at a point where the compiler doesn't know the runtime types of those
values. This is perfectly legal in ML, and m fact is required for some of the exercises

below. The compiler gives a warning message only because it is a somewhat inef-
ficient operation , In general, it is safe to ignore this warning message.

Do not, however, ignore any other error or warning messages. In particular, you
should make complete function definitions dial do not give rise to any "match
nonexhaust ive" warnings.

Exercise 2 Define a function member of type ' ' a * 1 ‘a list - > bool so
that member I e , L) is true if and only if e is an element of the list L,

2. Some pmj'namnn.L̂ rs ciatm ihal their ML prugrams iire su dearly written as EL? be"sdMocumd ting,"
requiring no cumnuTita - Indeed, softie pri.^rrvrnmers Ivne made this d-mn for their rude in piist ibtsi.it
every pnogr-unmii^g lasi£ujge ever invented BLLt no program Is ever m setf-doeumtniing a* ii seems «si

ifts author.

116 Chapter 7— A Second Look at ML

Exercise 3 Define a function less of typeInt * int list - > int list
so that less < e,L) is a list of all the integers in L that arc less than e.

Efeerrrs? 4 Defines function repeats of type ' 1 a list - > bool so that
repeats CL] is true if and only if the list L has two equal elements next to each
other.
Exercise 5 Represent a polynomial using a list of its (real) coefficients,starting
with the constant coefficient and goingonly as high as necessary, For example,
3x* -r 5x + i would be represented as the list [1 . 0 , 5 . 0,3 . 0 1 and
x* - 2K as [0.Q,-2.0'

p 0.0 # 1.0] t Write a function aval of type1

rt?al list * real > real that lakes a polynomial represented Lhis way and
a value for x and returns the value of that polynomial at the given x. For example,
oval (fi.a r 5,o ri.a] , 2.0) should evaluate to 23 .o,because when * = %
3xJ + 5x + t = 23.
Exercise 6 Write a quicksort function of type int l i s t - > int list.
Here's a review of the quicksort algorithm.First pick an element and call it the
pivot. (The head of the list is an easy choice for the pivot.) Partition the rest of the
list into two subsists,one withall the elements less than the pivot and another with
all the elements not less than the pivot. Recursively sort the sublists.Combing tile
two sublists (and the pivot) into a final sorted list.

Exercise ? Functions can be passed as parameters just like other values in ML.

Fur example,consider these function definitions;
fun .square a = a. * e.;
fun double a = a + a;
fun compute int ft * f n ?

The functions square and double take a single int parameter and return an iriL
result. The function compute takes a value n and a function f, and returns the
result of calling that function f withnas its parameter, bo compute { 3,squareI-
evaluates to 9, whale comput e (3 r double) evaluates to 6. Chapter 9 will explore
this important aspect of Ml. art more detail.For thisexcrci&& you mvd only the
simple function-passing technique just illustrated.

Make another version of your quicksort function,but this time oi type

' a list * < " a * -> bool) ' a. list. The second parameter should
be a function that performs the rule of the -= comparison in your original function.
(Hint 1his should require only minor changes to your previous quicksort defini-
tion.)

Exerd&es 117

Why would you. want to define such a function? Because it is much more useful
than the original one, 1 'or example, suppose you defined icmp and rcmp like this:

fun lamp (u „ b) = a < b;
fun rcmp (a : real , b) = a < b;

You could now use quicksort (L , icmp) to sorL an integer list Lr and you. could
use quicksort (M , rcmp) to sort a re.il list M.And if you defined

fun ircmp fa , b) = a > b ?

then you could use quicksort (L , ircinp) to sort the integer list L in reverse
order.

In the following exercises, implement sets as Usls, where each element of a set
appears exactly once in the list and the elements appear in no particular order. Do
not assume you can sort the lists, Do assume that input lists have no duplicate ele-
ments, and do guarantee that output lists have no duplicate elements.

Etcrd$tf 8 Write a function to test whether an element is a member of a set,

Exercise 9 Write a function to construct the union of two sets.

Exercise 70 Write- a function to construe! the intersection of two sets.

Exercise U Write a function to construct the powerset of any set A set's power-
set is the set of all of its subsets.Consider the set A - I1,23), It has various subsets:
|I], 11,21. and so on. Of course the empty set,0, is a subset of every set. The power-
set of A is the set of all subsets of A:

Ert^|=|0dibi2[d3|,lUh[l3b{23idl^] l
Your paw&rset function should take a list (representing the set) and return a

list of lists (representing the set of all subsets of the original set), poverse t l l f 2]

should return f [i , 2] , [l] , [21 , 111 (in anyorder), Your pewetest function
need not work on the untyped empty last; it may give an error message wiien
evaluating paverset nil. But it should work on a typed empty list, SO
power^et (nil : int li^t) should give the right answer ([[]!),

