MODERN
PROGRAMMING LANGUAGES

A PRACTICAL INTRODUCTION

SECOND EDITION

Adam Brooks Webber

Franklin, BEeedle & Associates Inc.
22462 SW Washington St
Sherwood, Oregon 97140
S503/625-4445

www.fbeedle.com

B Chapter 7

... A Second

. Look at ML

7.1 Introduction

This chapter continues the introduction to the ML pro-
gramming language. It will discuss ML patterns, a very
important part of the language. You have already used
simple ML patterns without realizing it. Using patterns in
a more sophisticated way, you can write functions that are
both more compact and more readable. This chapter will
also show how to define local variables for a function using
let expressions,

7.2 Patterns You Already Know

ML patferns are a very important part of the language, You
have already seen several kinds of simple patterns. For
example, you have seen that ML functions take a single
parameter, like the parameter n in this simple squaring
function:

fun f n =n * n;

P

You have also seen how to specify a function with more
than one input by using tuples, like the tuple of two items
(a,b) in this simple multiplying function:

103

104 Chapler 7—A Second Look at ML

fun £ t(a, b) = a * b;

If the language you are most familiar with is C, C++, or Java, you may have an
important misconception to lose, In the previous examples, nand (a, b) look like a
parameter and a parameter list, but they are actually patterns in ML. ML automati-
cally tries to match values with its patterns and takes action depending on whether
or not they match. The pattern n, for instance, matches any parameter, while the
pattern {a,b] makches any tuple of two items. Patterns occur in several different
parts of ML syntax, not just in function parameters. 1t is important to starct thinking
about them as patterns, and not just as simple parameter lists.

Patterns do more than just match data; they also introduce new variables. The
pattern n matches any parameter and inlroduces a variable n thal is bound to the
value of that parameter. The pattern (a, b} matches any tuple of two items and
introduces two variables, a and b, that are bound to the two components of that
tuple. ML supports patterns that are far more powerful than these two simple ex-
amples, but they all work by matching data and introducing new variables.

EEm 7.3
- W™ More Simple Patterns

The simplest pattern in ML is |, the underscore character, It is a pattern that
matches anything and does not introduce any new variables. The following exam-
ple shows a function £ that takes one parameter and ignores its value. If the value
of a parameter doesn’t matter, use the _ pattern to malch the parameter without
introducing a variable.

- fun £ _ = "yea";

val £ = En : 'a -» string
- £ 34.5;
val it = "yes" ; string

=% [}
val it = "yeg" : string
The function £ can now be applied to any parameter of any type. (The function’s
type, 'a -= string, indicates that ils input can be of any type and its output is
always a string.) The function £ ignores its parameter and always returns the string
value "ves®. The function could have been defined without the underscore, as in

fim £ x = “yeg";

That would introduce an unused variable x. In ML, as in most languages, you
should avoid introducing variables if you don’t intend to use them.

7. 4—Complex Palierns 105

The underscore pattern matches everything. At the other extreme, you can make
a pattern that matches just one thing—a constant, The next example defines a fune-
lion £ that only works if its parameter is the integer constant 0:

- fun £ 0 = "yes";
Warning: match nonexhaustive

Qs s
val £ = fan : int -» sSCEring
- £ 0;
wval it = "wyea" : string

The function £ refurns the string value "yes® if applied to the constant 0. No other
application of the function is defined. Almost any constant can be used as a pattern.
The only restriction is that it must be of an equality-testable type. You can’t use real
constants as patterns.

The ML language system showed £'s type as int -= string, but it gave the
waming message “match nonexhaustive.” The language system is warning us that
we defined £ without using patterns that cover the whole domain type (in this
case, the integers). 50 we have defined £ in a way thal can lead to runtime errors. If
f is called on an integer value that isn't 0, it won't work.

- £ 0;
val 1t = "yes" i string

- E Ly
uncaught exception Match [nonexhaustive match failurel]

HE" 74
- W™ Complex Patterns

Any list of patterns is a legal pattern. For example, this tunction selects and retums
the first element from a list of two elements:

- fun £ [a,] = a;

Warning: match nonexhaustive

8 ob: _ 30 omll o=son

val £ = fn : 'a list -= 'a

- £ [#"£", #"g"],

val it = #"f" : char
In the example, [a, | is the pattern for £'s parameter. Note the square brackets—
this is a list, not a tuple. The pattern [a, _| matches any list of exactly two items
and introduces the variable a (bound to the first element of the list). This is, again,
a nonexhaustive function definition; the domain includes lists of any type, but the
Function will fail if a list has more or less than two elements.

106 Chapler 7—A Second Look at ML

The cons operator (: :) may also appear in patterns. Any cons of patterns is a
lezal pattern. For example,

- fun £ [(x :: X8} = %X;
Warning: match nonexhaustive
X 11 XB =3 ;

val £ = £n : 'a list -> 'a

- £ [1, 2, 3];

val it = 1 : int
The pattern = :: == matches any non-empty list and introduces the variables «
{bound to the head element of the list) and x= (bound to the tail of the list). The
parentheses around x : - x5 are not really part of the pattern, but are necessary
because of precedence. Function application has higher precedence than cons, so
without parentheses ML would interpret £ % :: xsas (f =) :: xs, which

isn't what we wanted. This example produced another nonexhaustive function
definition, This one is almost exhaustive—it matches almost every parameter of the
domain type—but it will fail on the empty list.

Wl 7.5
- BN A Summary of ML Patterns So Far

Here is a mini-language of patterns in ML:
B A variable is a pattern that matches anything and binds to it.
B An underscore () is a pattern that mabches anything.
B A constant (of an equality type]) is a pattern that matches only that constant
value,
B A tuple of patterns is a pattern that matches any tuple of the right size, whose
contents match the subpatterns.
® A list of patterns is a pattern that matches any list of the right size, whose
contents match the subpatterns.
B A cons of patberns is a pattern that matches any non-empty list whose head
and tail match the subpatterns.
You could easily give a BNF grammar for the language of ML patterns (see Exer-
cise 1),

W 7.6
~ N Using Multiple Patterns for Functions

ML allows you to specify multiple patterns for the parameter of a function, with
alternative function bodies for each one. Here's an example:

7.7—Pattern-Matching Style 107

fun £ 0 = "zero"
| E 1= "one®:
This defines a function of type int -» string that has two different function
bodies: one to use if the parameter is 0, the other if the parameter is 1. This defini-
tion is still nonexhaustive, since it has no alternative for any other integer.

Below is the general syntax for ML function definitions, allowing multiple pat-
terns. A function definition can contain one or more function bodies separated by

the | token.
zfun-def> ::= fun <fun-bodies> ;
cfun-bodies> ::= <fun-body= | <fun-body> ' |* <fun-bodipss

Each function body repeats the function name, but gives a different pattern for the
parameter and a different expression:

zfun-body= : 1= sfun-nomes <pafterns = <cexpressions

The same <fun-name> must be repeated in each alternative.!
Alternate patterns like this can have overlapping patterns. For example, this is

legal:

fun £ 0 = "zero"”

| £ = "non-zero";
Here, the function £ has one alternative that covers the constant (f and another that
covers all values. The patterns overlap, so which alternative will ML execute when
the function is called? ML tries the patterns in the order they are listed and uses the

first one that matches.

|
N Pattern-Matching Style

These two funchon definibons are equi\rali:nt:

fun £ ¢ = "zaro!
| £ _ = "non-zero™;
Fun £ n =

if n = 0 then "zero!
else "non-zero®;

1. This is redundant. From the language interpreter’s point of view; it doesn’t add any information to
have that function name repeated over and over, and it makes extra work, since the interpreter must
chasck that the function name i the same each time. Repeatingg the function namee does, however, make
the function definitions easier for pecple to read,

108 Chapler 7—A Second Look at ML

The first one is in the pattern-matching style; the second one accomplishes the
same thing without giving alternative patterns. Many ML programmers prefer the
pattern-matching style, since it usually gives shorter and more legible functions.
This example, without the pattern-matching stvle, was used back in Chapter 5:
fun fact n =

ifn =0 then 1
else n * factin — 1);

It can be written in the pattern-matching style like this:

fun fact 0 = 1
| fact m = o * factin - 1);

This is easier to read, since it clearly separates the base case from the recursive case.
Here is another earlier example that doesn’t use the pattern-matching style:
fun reverse L =

if mull L then nil
else reverse(tl L) @ [hd L];

It can be written in the pattern-matching style like this:

fun reverse nil = nil
| reverge (firgt :: rest} = reverse rest & [Lirst];

This shows another advantage of using pattern matching. By matching the com-
pound pattern (first :: rest}, weareable to extract the head and tail of the
list without having to explicitly apply the hd and t1 functions. That makes the
code shorter and easier to read. (It doesn't make it any faster, though. In either case,
the ML language system has to find the head and tail of the lst.)

Functions that operate on lists often have the same structure as this reverse
function: one alternative for the base case (nil) and one alternative for the re-
cursive case (£irst :: rest), making a recursive call using the tail of the list
(rest). Any function that needs to visit all the elements of a list will have a similar
recursive structure. Suppose we want to compute the sum of all the elements of a
list:

fun f nil = 0
| f {(first :: rest) = first + £ rest;

See how the function definition follows the same structure? It just says that the sum
of the elements in an empty list is 0, while the sum in a non-empty list is the first el-
ement plus the sum of the rest. Suppose we want to count how many true values
are in a list of booleans:

7.7—Pattern-Matching Style 109

funt £ nil = 0
| £ (true :: rest) = 1 + £ rest
| £ (falee :: remt) = £ rest:

The inductive case is broken into two parts, one to use if the first element is true
and one if the first element is false. But you can still see the underlying structure.
Here's one more example. Suppose we want to make a new list of integers in which
each integer is one greater than it was in the original list:

fun £ nil = nil
| £ (first :: rest} = first + 1 :: f rest;

This same pattern-matching structure occurs in many of the exercises at the end of
this chapter.

Patterns in ML are powerful, but they have one important restriction: the same
variable name cannot be used more than once in a pattern. For example, suppose
you want to write a function that works on pairs and does one thing if the two
elements are equal and something else if they are not. You might try to write it like
this:

Fun £ {a, al = ... for pairs of equal elements
| £ fa, b} = .. forpairs of unegual elements

But the pattern (a, a) is illegal because it uses the same variable name more than
once. The only way to write this is in a non-pattern-matching style:

fun £ {a, b} =
if {a = b} then .. for pairs of equal elements
elae ... for pairs of unequal elemenis

Patterns occur in many places in ML programs. For instance, you can use pat-
terms in wal definitions like this:

- val {ﬂ-r h} L {ll EI-E};

val a = 1 = int
val b = 2.3 : real
-val 2 :: ' b= [1, 2, 3, 4., 51;
val & = 1 = -dmt
val b = [2.3.4,5] : int list
Wotice in the last example that the patterna : : b does not cover all lists—in

particular, it does not cover the empty list. In other contexts this might cause a
problem, but it does no harm here since the list that is matched to the pattern is not
the empty list,

Later chapters will show additional ML constructs that use patterns.

110 Chapler 7—A Second Look at ML

HEN 7.8
- W Local Variable Definitions

5o far, we have used only two kinds of variable definitions: val definitions at the
top level and the variables defined by patterns for function parameters. There is a
way to make additional, local variable definitions in ML, using the let expression.
A let expression looks like this:

1.I1-Ef—t'rpn- 1= let -:dt“ﬁm:ﬁﬂi'::i:- in -:f‘.t]:".l’l'&'}‘l-ﬂnz- end

The <definitions> part is a sequence of any number of definitions, such as val
definitions, that hold only within the <lef-exp>. The <expression> is evaluated in an
environment in which the given definitions hold. The value of the <expression> is
then used as the value of the entire <lef-exp>. Here is an example:

- let val x = 1 val y = 2 in x + y end;

val it = 3 : int;

1

Error: unbound wvariable or constructor: x

The expression evaluates x + vy in an environment in which xis 1 and v is 2.
That value, 3, is the value of the entire 1et expression. The detinition for x is not
permanent. It is local to the 1et expression. Variables defined in a let expression
between let and in are visible only from the point of definition to end.

For readability, vou usually would not write a 1et expression all on one line.
Rather, you would break it up and indent it like this:

let

val x = 1

val oy = 4
in

X+ ¥
end

Some ML programmers put a semicolon after each definition. This is optional.
Une reason for using a let expression is to break up a long expression and give
meaningful names to the pieces. For example, this function converts from days to
milliseconds:
fun dayszms days =
let
val hours = days * 24.0
val minutes = hours * 60.0
val seconds = minutes * 60.0
in
gseconds * 1000.0
end;

7.8—Local Variable Definitions 111

Each definition in the 1et part can be used in subsequent definitions, as well as in
the final expression of the in part.

When you use let to define variables, you can use pattern matching at the
same time to extract the individual parts of compound values, Consider this halve
function. It takes a list parameter and returns a pair of lists, each containing half the
elements of the original list.

fun halve nil = (nil, nil)
| halve [a] = {([a], mil)}
| halve (a :: b :: cB) =
lat
val {x, ¥} = halve cs
in
fa :: %, b : ¥l
end;

Notice how the val defines both x and v by pattern matching. The recursive call to
halve returns a pair of lists, and the val definifion binds x to the first element of
the pair and y to the second. The 1et expression in that function could have been
written like this instead:
lat
val halved = halve os
val x = #1 halved
val ¥ = §2 halwved
in
{a :: %, b =z ¥)
end;

The first version, using pattern matching, is more compact and easier to read. (In
general, if you find yourself using the # notation to extract an element from a tuple,
think twice, You can usually get a better solution using pattern matching.)

The halwve function divides a list into a pair of half-lists. Here are some exam-
ples of halwve in operation:

- halve [1];:
val it-= ([1],11) : int: liast * int list
hﬂ"il"ﬂ [1! a];
val it = ([1],[2]) : ime 1list * int list
- halve [1, 2, 3, 4. 5, B&l;
val it = ([1,3,58],[2,4,6)) ¢ int list * int list

To better understand how halve works, let's break it down into its three alter-
natives:

12 Chapler 7—A Second Look at ML

halve nil = (nil, mil) The halve of an empty list is, of course,
just two empty half-lists.

halve [al = ([al. nil) The halwve of a one-element list puts that
one element in the first half-list and no
elements in the second half-list.

halve {(a :1 b :: cs) = The halve of a list of two or more
let elements is computed recursively. Tt first
val (X, ¥y} = halve cs gets the halve of the rest of the list, after
in the first two elements. Then it adds the
A xrosy Bireiy) first element to the first half-list and the
end; second element to the second half-list,

The halwve function is part of a simple merge-sort implementation. For more
practice with ML, let's go ahead and see the rest of the merge sort. Here is a func-
tion that merges bwo sorted lists of integers:

fun merge (nil, ya) = y=s
merge (xs, nil) = x=s
merge (X ;: X5, ¥ f: ¥8) =
if {x < ¥y} then x :; merge(xs, ¥ :: yB)
else ¥ :: mergeix :: X8, y8);

(The type of this merge functionis int list * int list -» int listc. ML
infers this type because integers are the default type for the < operator.) The merge
function takes a pair of sorted lists and combines them into a single sorted list:

- merge ([2], [1. 21);

val it = {[1,2,3]) : int list

- merge {[11 3r '!J T 3]1' [21' 3r 5 El‘ 1{”15
val it = [1,2,3,3;4,5,6,.7,8,10] : int lint

Tor better understand how merge works, let's break it down into i three alter-

natives,

merge {(nil, ys] = ys The merge of two lists, il the first one is
emply, is just the second one.

merge (s, nil) « xs The merge of two lists, if the second one is
empty, is just the first one,

7.8—Local Variable Definitions

merge (X :1: XB, ¥ i y&8] =
if (x < ¥) then x :: merge(xs, ¥y ::
elge ¥ :: merge(x :: xg, y5);

113

The merge of two
non-empty lists is
computed recursively.
The smallest element
is attached to the front
of the recursively
computed merge of
the remainder of the
elements.

ys)

Now with a halve and a merge function, we can easily create a merge sort,
Here, again, we take advantage of the ler expression in ML:

fun mergeSort nil = mil

mergesScrt [a] = [a]
mergesSort theList =
let
val {x, ¥} = halve thelList

in

merge (mergelSort x, mergeSort y)

end;

This mergeSort function sorts lists of integers:

- mergeSort [4, 3, 2, 1];
val it = [1,2,32,4] : inmr Iise
- mergeSort [4, 2, 3, 1. 5, 3.
val it = [1,2,3,3.4,5,;6]

6] :
int list

To better understand how mergeSort works, let’s break it down into its three

alternatives.

mergeSort nil = nil

An empty list is already sort-
ed, mergeSaort just returns
it.

mergeSort lal = [al

A list of one element is al-
ready sorted too. mergeSort
just rehurns it

mergeSort thelList =
let
val {x, v} =
in
merge (mergelort ®, mergelort y)
end;

halve theList

To sort a list of more than one
element, halwe it into two
halves, recursively sort the
halves, and merae the two
sorted halves.

114 Chapler 7—A Second Look at ML

BEN 7.9
- MW Nested Function Definitions

The previous functions halve and merge are not very useful by themselves; they

are really just helpers for mergesort. They could be locally defined inside the
mergeSort definition like this;

i* Sort a ligt of integera. *)
fun mergescrt nil = nil
| mergeSort [e] = [e]
| mergeSort ctheList =
lek
{(* From the given list make a palr of lists
* (x, ¥), where half the elements of the
* original are in x and half are in y. *)

fun halve nil = [(nil, nil)
| halwve [a] = {[al, nil)
| halve {a :: b :: &) =
let
val (x, y} = halve c&
in
{a rr:x; b oxz ¥)
end;

(* Merge two sorted liets of integers into
* 5 single sorted 1igt, *)
fun merge (nil, vs) = vs

merge {xs, nil) = xs8

merge {x :: x8, ¥ 1t y&] =
if (2 < y) then % :: merge(xs, y :: ys)
else ¥ :: merge(x :: %xs, ¥B);

val (x, ¥} = halve theList
in

merge (margeSort x, mergeSort y)
end;

As this example shows, fun definitions can be made inside let, just like val
definitions. The effect is to define a function that is visible only from the point of
the definition to the end of the 1=t This organization has the advantage of making
halwve and merge invisible to the rest of the program, which makes it clear to the
reader that they will be used in only this one place. There is another potential ad-
vantage to this nesting of functions, which was not used in the example above: the
inner functions can refer to variables from the containing function, We'll see more
about this in Chapler 12.

Exercises 116

The previous example also shows the use of comments in ML. Comments in
ML programs start with (* and end with *) . In ML, as in all other programming
languages, programmers use comments to make programs more readable.?

HEN 7.10
- ™ Conclusion

This chapter introduced ML patterns and the pattern-matching style for function
definitions. It introduced the ML 1et expression for local function definitions, A
long merge-sort example demonstrated how to use both patterns and let expres-
stons in ML. This chapter also showed how to write local function definitions in
ML and how to write comments.

Exercises

Exercise 1 Give a BNF grammar for the language of ML patterns, Use the
non-terminal symbol <pattern= as the start symbol. Use the non-terminal symbaols
<ttame= and <constani= without defining productions for them, for the appropriate
parts of the language.

In all the following exercises, wherever possible, practice using pattern-match-

ing function definitions. With some SML/NJ installations, you will encounter

a new warning message while solving these exercises: “Warning: calling
polyEqual.” This warning indicates that your code is comparing bwo values for
equality, at a point where the compiler doesn’t know the runtime types of those
values. This is perfectly legal in ML, and in fact is required for some of the exercises
below. The compiler gives a waming message only because it is a somewhat inef-
ficient operation. In general, it is safe to ignore this warning message.

Do not, however, ignore any other error or warning messages. In particular, you
should make complete function definitions that do not give rise to any “match
nonexhaustive” wamings.

Exercise 2 Define a function member of type ' 'a * ''a list -» boolso
that member (=, L) is true if and only if & i5 an element of the list L.

L Some programmers claim that their ML programs are so dearly written as to be “self-documenting,”
requiring no comments. Indeed, some programmers have made this cladm for their code in just about
every programming language ever invented. But no program is ever as self-documenting as it seems o
it= author

116 Chapler 7—A Second Look at ML

Exercise 3 Define a function less of type int *# int list -»> int list
sothat 1ess (e, L) is a list of all the integers in T, that are less than =.

Exercise 4 Define a function repesatsof type ' 'a list -= bool so that
repeats (L) is true if and only if the list L. has two equal elements next to each
other,

Exercise 5 Represent a polynomial using a list of its (real) coefficients, starting
with the constant coefficient and going only as high as necessary. For example,
Ix! + 5x + 1 would be represented as the list [1.0,5.0,3.0] and

x*-2xas [0.0,~2.0,0.0,1.0]. Write a function eval of type

real list % real -> real thattakesa polynomial represented this way and
a value for x and returns the value of that polynomial at the given x. For example,
eval ([1.0,5.0,3.0],2.0} should evaluate to 23 . 0, because when x = 2,
I+ 5x+1=23

Exercise 6 Write a quicksort function of type int list -= int Iist.
Here's a review of the quicksort algorithm. First pick an element and call it the
pivot. (The head of the list is an easy choice for the pivol.} Partition the rest of the
list into two sublists, one with all the elements less than the pivot and another with
all the elements not less than the pivot. Recursively sort the sublists. Combine the
two sublists (and the pivot) into a final sorted list.

Exercise 7 Functions can be passed as parameters just like other values in ML.
For example, consider these function definitions:

fun sgquare a = a * a;

fun double a = a + a;

fun compute (n, £} = £ n:

The functions sgquare and double take a single int parameter and return an ine
result. The funchion compute takes a value n and a function £, and returns the
result of calling that function £ with n as its parameter. 5o compute (3, square)
evaluates to 9, while compute (3, double) evaluates to 6. Chztpter 9 will explore
this important aspect of ML in more detail. For this exercise, you need only the
simple function-passing technique just illustrated.

Make another version of your quicksort function, but this time of type
ta Iist * {'a * 'a -> bool} -» 'a list.The second parameter should
be a function that performs the role of the < comparison in your original function.
(Hint: This should require only minor changes to your previous quicksort defini-
tion.)

Exercises 117

Why would you want to define such a function? Because it is much more useful
than the original one. For example, suppose yvou defined 1iemp and romp like this:
fun iemp (a, b) = a <« b;
fun romp (& : real, bl = a'< b;

You could now use quicksort (L, iemp) tosort an integer list &, and you could
use quicksort (M, romp) to sort a real list M. And if you defined

fun iremp (a, b) = a = b;

then you could use quicksort (L, ircmp) tosort the integer list L in reverse
order.

In the following exercises, implement sets as lists, where each element of a set
appears exactly once in the list and the elemenis appear in no particular order. Do
not assume you can sort the lists. Do assume that input lists have no duplicate ele-
ments, and do guarantee that output lists have no duplicate elements.

Exercise 8 Write a function to test whether an element is a member of a set,
Exercise 9 Write a function to construct the union of bwo sets,
Exercise 100 Write a function to construct the intersection of two sets,

Exercise 11 Write a funciion to construct the powerset of any set. A set’s power-
sek is the set of all of its subsets. Consider the set A = 1,23}, It has various subsets:
{11, (1,2}, and so on. Of course the empty set, &, is a subset of every set. The power-
set of A is the set of all subsets of A;

[xlxcAl=(241112L13111.2511,3L12.3),11,2.3])

Your powerset function should take a list (representing the set) and return a
list of lists (representing the set of all subsets of the original set). powersec [1,2]
should return [[1,2], [17, [2], [1] (in any order}. Your powsrset function
need not work on the untyped empty list; it may give an error message when
evaluating powerset nil. But it should work on a typed empty list, 50
powerset (nil : int list) should give the right answer ([[]]).

