Can we sort in better than
nlgn?

Any comparison-based sorting program can be thought
of as defining a decision tree of possible executions.

Running the same program twice on the same per-
mutation causes it to do exactly the same thing, but
running it on different permutations of the same data
causes a different sequence of comparisons to be made
on each.

(1.3,2 (312 (231 (321

Claim: the height of this decision tree is the worst-case
complexity of sorting.



Once you believe this, a lower bound on the time com-
plexity of sorting follows easily.

Since any two different permutations of n elements
requires a different sequence of steps to sort, there
must be at least n! different paths from the root to
leaves in the decision tree, ie. at least n! different
leaves in the tree.

Since only binary comparisons (less than or greater
than) are used, the decision tree is a binary tree.

Since a binary tree of height h has at most 2" leaves,
we know n! < 2% or h > Ig(n!).

By inspection n! > (n/2)"/?, since the last n/2 terms of
the product are each greater than n/2. By Sterling’s
approximation, a better bound is n! > (n/e)™ where
e —=2.718.

h>lg(n/e)" =nlgn —nlge= Q(nlgn)



Why don’t CS profs ever stop
talking about sorting?!

1. Computers spend more time sorting than anything
else, historically 25% on mainframes.

2. Sorting is the best studied problem in computer
science, with a variety of different algorithms known.

3. Most of the interesting ideas we will encounter in
the course can be taught in the context of sort-
ing, such as divide-and-conquer, randomized algo-
rithms, and lower bounds.

You should have seen most of the algorithms - we will
concentrate on the analysis.



Applications of Sorting

One reason why sorting is so important is that once
a set of items is sorted, many other problems become
easy.

Searching

Binary search lets you test whether an item is in a
dictionary in O(lgn) time.

Speeding up searching is perhaps the most important
application of sorting.

Closest pair

Given n numbers, find the pair which are closest to
each other.

Once the numbers are sorted, the closest pair will be
next to each other in sorted order, so an O(n) linear
scan completes the job.



Element unigueness

Given a set of n items, are they all unigue or are there
any duplicates?

Sort them and do a linear scan to check all adjacent
pairs.

This is a special case of closest pair above.

Frequency distribution — Mode

Given a set of n items, which element occurs the largest
number of times?

Sort them and do a linear scan to measure the length
of all adjacent runs.

Median and Selection

What is the kth largest item in the set?

Once the keys are placed in sorted order in an array,
the kth largest can be found in constant time by simply
looking in the kth position of the array.



