Best, Worst, and Average-Case

The worst case complexity of the algorithm is the func-
tion defined by the maximum number of steps taken
on any instance of size n.

of
Steps Worst Case

Complexity

Average Case
Complexity

Best Case
Complexity

The best case complexity of the algorithm is the func-
tion defined by the minimum number of steps taken on
any instance of size n.

The average-case complexity of the algorithm is the
function defined by an average number of steps taken
on any instance of size n.

Each of these complexities defines a numerical function
— time vs. sizel

Insertion Sort

One way to sort an array of n elements is to start with
a, empty list, then successively insert new elements in
the proper position:

a1 <ax2<...<ag | agy1...an

At each stage, the inserted element leaves a sorted
list, and after n insertions contains exactly the right
elements. Thus the algorithm must be correct.

But how efficient is it?

Note that the run time changes with the permutation
instance! (even for a fixed size problem)

How does insertion sort do on sorted permutations?

How about unsorted permutations?

Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode
will be executed.

Line | InsertionSort(A) #Inst. | #Exec.
1 for j:=2 to len. of A do cl n
2 key:=A[j] c2 n-1
3 /* put A[j] into A[1..j-1] */ | c3=0 /
4 ii=j-1 c4 n-1
5 while 7 > 0&A[1] > key do ch t]
6 Ali+1]:= AJi] c6

7 = i-1 c7

8 Ali4+1]:=key c8 n-1

The for statement is executed (n—1)+1 times (why?)

Within the for statement, " key:=A[j]" is executed n-1
times.

Steps 5, 6, 7 are harder to count.

Let t; = 14+ the number of elements that have to be
slide right to insert the jth item.

Step 5 is executed t5> + t3 + ... + t, times.

Step 6 is to—_1 +tz_1+ ... + t,—_1.

Add up the executed instructions for all pseudocode
lines to get the run-time of the algorithm:

ci¥n+co(n—1)+ca(n—1)+ cs Z?:z ti+ ce Z?=2(tj—1)
+c7 Z?=2(tj —1)+ecs

What are the t;.s? They depend on the particular input.

Best Case

If it’s already sorted, all t;'s are 1.

Hence, the best case time is

cin+ (co+ca+cs+cg)(n—1)=Cn—+ D

where C and D are constants.

Worst Case

If the input is sorted in descending order, we will have
to slide all of the already-sorted elements, so t; = j,
and step 5 is executed

Y i=m24n)/2-1
j=2

How can we modify almost any algorithm to have a
good best-case running time?

To improve the best case, all we have to do it to be
able to solve one instance of each size efficiently. We
could modify our algorithm to first test whether the
input is the special instance we know how to solve,
and then output the canned answer.

For sorting, we can check if the values are already or-
dered, and if so output them. For the traveling sales-
man, we can check if the points lie on a line, and if so
output the points in that order.

The supercomputer people pull this trick on the linpack
benchmarks!

Because it is so easy to cheat with the best case run-
ning time, we usually don’t rely too much about it.

Because it is usually very hard to compute the average
running time, since we must somehow average over all
the instances, we usually strive to analyze the worst
case running time.

The worst case is usually fairly easy to analyze and
often close to the average or real running time.

Exact Analysis is Hard!

We have agreed that the best, worst, and average case
complexity of an algorithm is a numerical function of
the size of the instances.

However, it is difficult to work with exactly because it
is typically very complicated!

Thus it is usually cleaner and easier to talk about upper
and lower bounds of the function.

This is where the dreaded big O notation comes in!

Since running our algorithm on a machine which is
twice as fast will effect the running times by a multi-
plicative constant of 2 - we are going to have to ignore
constant factors anyway.

Names of Bounding Functions

Now that we have clearly defined the complexity func-
tions we are talking about, we can talk about upper
and lower bounds on it:

e g(n) = O(f(n)) means C x f(n) is an upper bound
on g(n).

e g(n) = Q(f(n)) means C x f(n) is a lower bound
on g(n).

e g(n) = ©(f(n)) means C1x f(n) is an upper bound
on g(n) and C> x f(n) is a lower bound on g(n).

Got it? C, C1, and C> are all constants independent of
n.

All of these definitions imply a constant ng beyond
which they are satisfied. We do not care about small
values of n.

c2g(n)

f(n)

no

@

The value of ng shown is the minimum possible value;

clg(n)

€2, and ©

cg(n)

f(n)

f(n)

no

f(n) = O(g(n)

(b)

any greater value would also work.

(a) f(n) = ©(g(n)) if there exist positive constants ng,
c1, and ¢ such that to the right of ng, the value of
f(n) always lies between ci-g(n) and c>-g(n) inclusive.

(b) f(n) = O(g(n)) if there are positive constants ng
and c such that to the right of ng, the value of f(n)

always lies on or below c- g(n).

(c) f(n) = Q(g(n)) if there are positive constants ng
and c such that to the right of ng, the value of f(n)

always lies on or above c-g(n).

Asymptotic notation (O,©,<Q) are as well as we can

©

practically deal with complexity functions.

What does all this mean?

O(n?) because 3n? > 3n? — 100n + 6
O(n3) because .01n> > 3n? — 100n + 6

3n° —100n+ 6
3n° —100n+ 6

W

3n? — 100n 4+ 6 O(n) because c-n < 3n? when n>c
3n?2 —100n+6 = Q(n?) because 2.99n° < 3n? — 100n + 6
3n2 —100n+6 #* Q(n3) because 3n? — 100n + 6 < n3

3n%2 — 100n + 6 Q(n) because 101%°n < 3n% — 100+ 6

3n2 —100n+6 = ©O(n?) because O and
3n2 —100n+6 # ©O(n3) because O only
£

3n? —100n + 6 ©(n) because 2 only

Think of the equality as meaning in the set of functions.

Note that time complexity is every bit as well defined
a function as sin(z) or you bank account as a function
of time.

Testing Dominance

f(n) dominates g(n) if lim,50 g(n)/f(n) = 0, which is
the same as saying g(n) = o(f(n)).

Note the little-oh — it means ‘“grows strictly slower

than”.

Knowing the dominance relation between common func-
tions is important because we want algorithms whose
time complexity is as low as possible in the hierarchy.
If f(n) dominates g(n), f is much larger (ie. slower)

than g.

e n® dominates nb if @ > b since

lim n®/n® =n

n— o0

b—a

— 0

e n®+ o(n*) doesn’'t dominate n® since

JI_)h;]o n?/(n®* 4+ o(n?)) —» 1

Complexity 10 20 30 40

n 0.00001 sec | 0.00002 sec | 0.00003 sec | 0.00004 sec
n? 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec
n3 0.001 sec 0.008 sec 0.027 sec 0.064 sec
n> 0.1 sec 3.2 sec 24 .3 sec 1.7 min

2" 0.001 sec 1.0 sec 17.9 min 12.7 days
3" 0.59 sec 58 min 6.5 years 3855 cent

LLogarithms

It is important to understand deep in your bones what
logarithms are and where they come from.

A logarithm is simply an inverse exponential function.
Saying b* = y is equivalent to saying that z = log,y.

Exponential functions, like the amount owed on a n
year mortgage at an interest rate of <% per year, are
functions which grow distressingly fast, as anyone who
has tried to pay off a mortgage knows.

Thus inverse exponential functions, ie. logarithms,
grow refreshingly slowly.

Binary search is an example of an O(lgn) algorithm.
After each comparison, we can throw away half the
possible number of keys. Thus twenty comparisons
suffice to find any name in the million-name Manhattan
phone book!

If you have an algorithm which runs in O(lgn) time,
take it, because this is blindingly fast even on very
large instances.

Properties of Logarithms

Recall the definition, ¢'°9:* = .

Asymptotically, the base of the log
does not matter:

log.a

lo =
v a log.b

Thus, logon = (1/10g1002) X l0g100m, and note that
1/10g10902 = 6.643 is just a constant.

Asymptotically, any polynomial
function of n does not matter:

Note that

log(n*™® 4+ n? 4+ n+96) = O(log n)
since n*3 4+ n?2 4+ n+ 96 = O(n*"3), and logn?"3 =
473 x logn.

Any exponential dominates every polynomial. This
is why we will seek to avoid exponential time algo-
rithms.

Working with the Asymptotic
Notation

Suppose f(n) = O(n?) and g(n) = O(n?).

What do we know about ¢'(n) = f(n) + g(n)? Adding
the bounding constants shows ¢'(n) = O(n?).

What do we know about ¢'(n) = f(n) — g(n)? Since
the bounding constants don’t necessary cancel, ¢"(n) =
O(n?)

We know nothing about the lower bounds on ¢’ + ¢”
because we know nothing about lower bounds on f, g.

Suppose f(n) = Q(n?) and g(n) = Q(n?).

What do we know about ¢'(n) = f(n) + g(n)? Adding
the lower bounding constants shows ¢'(n) = Q(n?).

What do we know about ¢"(n) = f(n) — g(n)? We
know nothing about the lower bound of this!

Show that for any real constants a and b, b > 0,

(n+a)’ = ©(n?)

To show f(n) = ©(g(n)), we must show O and 2. Go
back to the definition!

e Big O — Must show that (n + a)® < ¢; - n® for all
n > ng. When is this true? If ¢; = 2%, this is true
for all n > |a| since n+a < 2n, and raise both sides
to the b.

e Big © — Must show that (n 4+ a)® > ¢ - nb for all
n > ng. When is this true? If c; = (1/2)°, this is
true for all n > 3|a|/2 since n 4+ a > n/2, and raise
both sides to the b.

Note the need for absolute values.

(a) Is 2"t1 = 0O(2")?

(b) Is 2?2 = O(2")?

(a) Is 27Tl = O(2™)?

Is 2711 < ¢ % 277

Yes, if ¢ > 2 for all n
(b) Is 227 = O(2™)7?

Is 22" < c* 2"7

note 227 = 27 x 2"

Is 2" % 2" < c % 2™7

Is 2" < ¢7?

No! Certainly for any constant ¢ we can find an n such
that this is not true.

