damlnpaﬁ'l.‘n'ha.

Using TCP/IP

Creating an echo server and client

Skill Level: Introductory

David Mertz, Ph.D. (mertz@gnosis.cx)
Developer
Gnosis Software

28 Oct 2003

This introductory-level tutorial shows how to begin programming with sockets.
Focusing on C and Python, it guides you through the creation of an echo server and
client, which connect over TCP/IP. Fundamental network, layer, and protocol concepts
are described, and sample source code abounds.

Section 1. Before you start

About this tutorial

IP sockets are the lowest-level layer upon which high level Internet protocols are
built: everything from HTTP to SSL to POP3 to Kerberos to UDP-Time. To
implement custom protocols, or to customize implementation of well-known
protocols, a programmer needs a working knowledge of the basic socket
infrastructure. While this tutorial focuses primarily on C programming, and also uses
Python as a representative higher-level language for examples, a similar API is
available in many languages.

This tutorial introduces you to the basics of programming custom network tools using
the cross-platform Berkeley Sockets Interface. Almost all network tools in Linux and
other UNIX-based operating systems rely on this interface.

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 18

mailto:mertz@gnosis.cx
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Prerequisites

This tutorial requires a minimal level of knowledge of C, and ideally of Python also
(mostly for the follow-on Part 2). However, if you are not familiar with either
programming language, you should be able to make it through with a bit of extra
effort; most of the underlying concepts will apply equally to other programming
languages, and calls will be quite similar in most high-level scripting languages like
Ruby, Perl, TCL, and so on.

Although this tutorial introduces the basic concepts behind IP (Internet Protocol)
networks, some prior acquaintance with the concept of network protocols and layers
will be helpful (see Resources at the end of this tutorial for background documents).

Section 2. Understanding IP networks and network layers

What is a network?

Figure 1. Network layers

Using TCP/IP
Page 2 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock2-i.html
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Application
formats
(e.g. HTML, XML)

Layer 5-7. session,
present, & applic
{e.q., S5SL, HTTR)

(" Socketinterface }——> AP

yer 4. Transp
CP or UDP

Layer 3 : Network
(2.0 1P}

Layer 2: Data
{e.g. Ethemet)

Layer 1 : Physical
(e.g. Twisted pair)

What we usually call a computer network is composed of a number of network layers
(see Resources for a useful reference that explains these in detail). Each of these
network layers provides a different restriction and/or guarantee about the data at that
layer. The protocols at each network layer generally have their own packet formats,
headers, and layout.

The seven traditional layers of a network are divided into two groups: upper layers
and lower layers. The sockets interface provides a uniform API to the lower layers of
a network, and allows you to implement upper layers within your sockets application.
Further, application data formats may themselves constitute further layers; for
example, SOAP is built on top of XML, and ebXML may itself utilize SOAP. In any
case, anything past layer 4 is outside the scope of this tutorial.

What do sockets do?

While the sockets interface theoretically allows access to protocol families other than
IP, in practice, every network layer you use in your sockets application will use IP.
For this tutorial we only look at IPv4; in the future IPv6 will become important also,

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 18

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

but the principles are the same. At the transport layer, sockets support two specific
protocols: TCP (transmission control protocol) and UDP (user datagram protocol).

Sockets cannot be used to access lower (or higher) network layers; for example, a
socket application does not know whether it is running over Ethernet, token ring, or a
dial-up connection. Nor does the socket's pseudo-layer know anything about
higher-level protocols like NFS, HTTP, FTP, and the like (except in the sense that
you might yourself write a sockets application that implements those higher-level
protocols).

At times, the sockets interface is not your best choice for a network programming
API. Specifically, many excellent libraries exist (in various languages) to use
higher-level protocols directly, without your having to worry about the details of
sockets; the libraries handle those details for you. While there is nothing wrong with
writing you own SSH client, for example, there is no need to do so simply to let an
application transfer data securely. Lower-level layers than those addressed by
sockets fall pretty much in the domain of device driver programming.

IP, TCP, and UDP

As indicated above, when you program a sockets application, you have a choice to
make between using TCP and using UDP. Each has its own benefits and
disadvantages.

TCP is a stream protocol, while UDP is a datagram protocol. In other words, TCP
establishes a continuous open connection between a client and a server, over which
bytes may be written (and correct order guaranteed) for the life of the connection.
However, bytes written over TCP have no built-in structure, so higher-level protocols
are required to delimit any data records and fields within the transmitted bytestream.

UDP, on the other hand, does not require a connection to be established between
client and server; it simply transmits a message between addresses. A nice feature
of UDP is that its packets are self-delimiting; that is, each datagram indicates exactly
where it begins and ends. A possible disadvantage of UDP, however, is that it
provides no guarantee that packets will arrive in order, or even at all. Higher-level
protocols built on top of UDP may, of course, provide handshaking and
acknowledgments.

A useful analogy for understanding the difference between TCP and UDP is the
difference between a telephone call and posted letters. The telephone call is not
active until the caller "rings" the receiver and the receiver picks up. The telephone
channel remains alive as long as the parties stay on the call, but they are free to say
as much or as little as they wish to during the call. All remarks from either party

Using TCP/IP
Page 4 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

occur in temporal order. On the other hand, when you send a letter, the post office
starts delivery without any assurance the recipient exists, nor any strong guarantee
about how long delivery will take. The recipient may receive various letters in a
different order than they were sent, and the sender may receive mail interspersed in
time with those she sends. Unlike with the postal service (ideally, anyway),
undeliverable mail always goes to the dead letter office, and is not returned to
sender.

Peers, ports, names, and addresses

Beyond the protocol, TCP or UDP, there are two things a peer (a client or server)
needs to know about the machine it communicates with: an IP address and a port.
An IP address is a 32-bit data value, usually represented for humans in "dotted
quad" notation, such as 64. 41. 64. 172. A port is a 16-bit data value, usually simply
represented as a number less than 65536, most often one in the tens or hundreds
range. An IP address gets a packet to a machine; a port lets the machine decide
which process/service (if any) to direct it to. That is a slight simplification, but the
idea is correct.

The above description is almost right, but it misses something. Most of the time
when humans think about an Internet host (peer), we do not remember a number
like 64. 41. 64. 172, but instead a name like gnosi s. cx. To find the IP address
associated with a particular host name, usually you use a Domain Name Server, but
sometimes local lookups are used first (often via the contents of / et ¢/ host s). For
this tutorial, we will generally just assume an IP address is available, but we'll
discuss coding name/address lookups next.

Host name resolution

The command-line utility nsl ookup can be used to find a host IP address from a
symbolic name. Actually, a number of common utilities, such as pi ng or network
configuration tools, do the same thing in passing. But it is simple to do the same
thing programmatically.

In Python or other very-high-level scripting languages, writing a utility program to find
a host IP address is trivial:

#!/ usr/ bi n/ env python

"USAGE: nsl ookup. py <i net address>"

i mport socket, sys

print socket.gethostbynane(sys. argv[1])

The trick is using a wrapped version of the same get host bynane()) function we

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 18

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

also find in C. Usage is as simple as:

$./nsl ookup. py gnosis. cx
64.41.64.172

In C, that standard library call get host bynane() is used for name lookup. Below is
a simple implementation of nsl ookup as a command-line tool; adapting it for use in
a larger application is straightforward. Of course, C is a bit more finicky than Python
is.

/* Bare nslookup utility (w mnimal error checking) */

#i ncl ude <stdi o. h> /* stderr, stdout */

#i ncl ude <netdb. h> /* hostent struct, gethostbyname() */
#i ncl ude <arpalinet. h> /* inet_ntoa() to format | P address */
#i ncl ude <netinet/in.h> /* in_addr structure */

int nain(int argc, char **argv) {

struct hostent *host; /* host information */

struct in_addr h_addr; /* Internet address */

if (argc = 2) {
fprintf(stderr, "USAGE: nsl ookup <inet_address>\n");

) exit(1);

if ((host = gethostbynane(argv[1])) == NULL) {
fpri?tg(stderr, "(mni) nslookup failed on "%'\n", argv[1]);
exit(1);

}

h_addr.s_addr = *((unsigned long *) host-> h_addr _|ist[O0]);
fprintf(stdout, "%\n", inet_ntoa(h_addr));

exit(0);

Notice that the returned value from get host bynane() is a host ent structure that
describes the name's host. The member host - > h_addr _| i st contains a list of
addresses, each of which is a 32-bit value in "network byte order"; in other words,
the endianness may or may not be machine-native order. In order to convert to
dotted-quad form, use the function i net _nt oa() .

Section 3. Writing a client application in C

The steps in writing a socket client

My examples for both clients and servers will use one of the simplest possible
applications: one that sends data and receives the exact same thing back. In fact,
many machines run an "echo server" for debugging purposes; this is convenient for

Using TCP/IP
Page 6 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

our initial client, since it can be used before we get to the server portion (assuming
you have a machine with echod running).

I would like to acknowledge the book TCP/IP Sockets in C by Donahoo and Calvert
(see Resources). | have adapted several examples that they present. | recommend
the book, but admittedly, echo servers/clients will come early in most presentations
of sockets programming.

The steps involved in writing a client application differ slightly between TCP and
UDP clients. In both cases, you first create the socket; in the TCP case only, you
next establish a connection to the server; next you send some data to the server;
then receive data back; perhaps the sending and receiving alternates for a while;
finally, in the TCP case, you close the connection.

A TCP echo client (client setup)

First we will look at a TCP client; in Part 2 of this tutorial series, we will make some
adjustments to do (roughly) the same thing with UDP. Let's look at the first few lines:
some includes, and creating the socket:

#i ncl ude <stdio. h>

#i ncl ude <sys/socket. h>

#i ncl ude <arpalinet. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <uni std. h>
#i ncl ude <netinet/in. h>

#def i ne BUFFSI ZE 32
void Die(char *nmess) { perror(mess); exit(1); }

There is not too much to the setup. A particular buffer size is allocated, which limits
the amount of data echo'd at each pass (but we loop through multiple passes, if
needed). A small error function is also defined.

A TCP echo client (creating the socket)

The arguments to the socket () call decide the type of socket: PF_| NET just
means it uses IP (which you always will); SOCK_STREAMand | PPROTO_TCP go
together for a TCP socket.

int nain(int argc, char *argv[]) {
int sock;

struct sockaddr_in echoserver;
char buf f er [BUFFSI ZE] ;

unsi gned int echol en;

int received = 0;

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 18

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock2-i.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

if (argc !'= 4) {
fprintf(stderr, "USAGE: TCPecho <server _ip> <word> <port>\n");
exit(1);

/* Create the TCP socket */
if ((sock = socket(PF_I NET, SOCK_STREAM |PPROTO TCP)) < 0) {
Die("Failed to create socket");

The value returned is a socket handle, which is similar to a file handle; specifically, if
the socket creation fails, it will return -1 rather than a positive-numbered handle.

A TCP echo client (establish connection)

Now that we have created a socket handle, we need to establish a connection with
the server. A connection requires a sockaddr structure that describes the server.
Specifically, we need to specify the server and port to connect to using
echoserver. sin_addr.s_addr and echoserver. si n_port. The fact that we
are using an IP address is specified with echoser ver. si n_fam |y, but this will
always be set to AF_I NET.

/* Construct the server sockaddr _in structure */

nenset (&echoserver, 0, sizeof (echoserver)); /* Clear struct */

echoserver.sin_famly = AF_I NET; [* Internet/IP */

echoserver.sin_addr.s_addr = inet_addr(argv[1]); /* IP address */

echoserver.sin_port = htons(atoi (argv[3])); /* server port */

/* Establish connection */

if (connect (sock,

(struct sockaddr *) &echoserver,

si zeof (echoserver)) < 0) {
Die("Failed to connect with server");

As with creating the socket, the attempt to establish a connection will return -1 if the
attempt fails. Otherwise, the socket is now ready to accept sending and receiving
data. See Resources for a reference on port numbers.

A TCP echo client (send/receive data)

Now that the connection is established, we are ready to send and receive data. A
call to send() takes as arguments the socket handle itself, the string to send, the
length of the sent string (for verification), and a flag argument. Normally the flag is
the default value 0. The return value of the send() call is the number of bytes
successfully sent.

/* Send the word to the server */

echolen = strlen(argv[2]);

if (send(sock, argv[2], echolen, 0) != echolen) {
Die("M smatch in nunber of sent bytes");

Using TCP/IP
Page 8 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

}
/* Receive the word back fromthe server */
fprintf(stdout, "Received: ");
while (received < echol en) {
int bytes = 0;
if ((bytes = recv(sock, buffer, BUFFSIZE-1, 0)) < 1) {

Die("Failed to receive bytes fromserver");
}
recei ved += bytes;
buffer[bytes] = '\0"; /* Assure null term nated string */
fprintf(stdout, buffer);

—

The rcv() call is not guaranteed to get everything in-transit on a particular call; it
simply blocks until it gets something. Therefore, we loop until we have gotten back
as many bytes as were sent, writing each partial string as we get it. Obviously, a
different protocol might decide when to terminate receiving bytes in a different
manner (perhaps a delimiter within the bytestream).

A TCP echo client (wrapup)

Calls to both send() and r ecv() block by default, but it is possible to change
socket options to allow non-blocking sockets. However, this tutorial will not cover
details of creating non-blocking sockets, nor such other details used in production
servers as forking, threading, or general asynchronous processing (built on
non-blocking sockets). These issues are covered in Part 2.

At the end of the process, we want to call cl ose() on the socket, much as we
would with a file handle:
fprintf(stdout, "\n");

cl ose(sock);
exit(0);

Section 4. Writing a server application in C

The steps in writing a socket server

A socket server is a bit more complicated than a client, mostly because a server
usually needs to be able to handle multiple client requests. Basically, there are two
aspects to a server: handling each established connection, and listening for

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 18

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock2-i.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

connections to establish.

In our example, and in most cases, you can split the handling of a particular
connection into support function, which looks quite a bit like how a TCP client
application does. We name that function Handl eCl i ent ().

Listening for new connections is a bit different from client code. The trick is that the
socket you initially create and bind to an address and port is not the actually
connected socket. This initial socket acts more like a socket factory, producing new
connected sockets as needed. This arrangement has an advantage in enabling
fork'd, threaded, or asynchronously dispatched handlers (using sel ect ());
however, for this first tutorial we will only handle pending connected sockets in
synchronous order.

A TCP echo server (application setup)

Our echo server starts out with pretty much the same few #i ncl ude s as the client
did, and defines some constants and an error-handling function:

#i ncl ude <stdi o. h>
#i ncl ude <sys/socket. h>
#i ncl ude <arpalinet. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i nclude <netinet/in.h>

#defi ne MAXPENDI NG 5 /* Max connection requests */
#def i ne BUFFSI ZE 32
voi d Die(char *ness) { perror(mess); exit(1); }

The BUFFSI ZE constant limits the data sent per loop. The MAXPENDI NG constant
limits the number of connections that will be queued at a time (only one will be
serviced at a time in our simple server). The Di e() function is the same as in our
client.

A TCP echo server (the connection handler)

The handler for echo connections is straightforward. All it does is receive any initial
bytes available, then cycles through sending back data and receiving more data. For
short echo strings (particularly if less than BUFFSI ZE) and typical connections, only
one pass through the whi | e loop will occur. But the underlying sockets interface
(and TCP/IP) does not make any guarantees about how the bytestream will be split
between callstorecv().

Using TCP/IP
Page 10 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

voi d Handl edient(int sock) {
char buf f er [BUFFSI ZE] ;
int received = -1;
/* Recei ve nessage */
if ((received = recv(sock, buffer, BUFFSIZE, 0)) < 0) {
Die("Failed to receive initial bytes fromclient");

/* Send bytes and check for nore incomng data in |oop */
while (received > 0)
/* Send back received data */
if (send(sock, buffer, received, 0) != received) {
Die("Failed to send bytes to client");

/* Check for nore data */

if ((received = recv(sock, buffer, BUFFSIZE, 0)) < 0) {
Die("Failed to receive additional bytes fromclient");

}

E’:I ose(sock) ;

The socket that is passed in to the handler function is one that already connected to
the requesting client. Once we are done with echoing all the data, we should close
this socket; the parent server socket stays around to spawn new children, like the
one just closed.

A TCP echo server (configuring the server socket)

As outlined before, creating a socket has a bit different purpose for a server than for
a client. Creating the socket has the same syntax it did in the client, but the structure
echoser ver is set up with information about the server itself, rather than about the
peer it wants to connect to. You usually want to use the special constant
| NADDR_ANY to enable receipt of client requests on any IP address the server
supplies; in principle, such as in a multi-hosting server, you could specify a particular
IP address instead.

int main(int argc, char *argv[]) {

int serversock, clientsock; _
struct sockaddr _in echoserver, echoclient;

if (argc = 2) {
fprintf(stderr, "USAGE: echoserver <port>\n");
exit(1);

}

/* Create the TCP socket */

if ((serversock = socket(PF_I NET, SOCK_STREAM |PPROTO TCP)) < 0) {
Die("Failed to create socket");

/* Construct the server sockaddr _in structure */

nenset (&echoserver, 0, sizeof (echoserver)); /* Cear struct */
echoserver.sin_famly = AF_I NET; /[* Internet/IP */
echoserver.sin_addr.s_addr = htonl (| NADDR_ANY) ; /* Incom ng addr */
echoserver.sin_port = htons(atoi (argv[1])); /* server port */

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 18

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Notice that both IP address and port are converted to network byte order for the
sockaddr _i n structure. The reverse functions to return to native byte order are

nt ohs() and nt ohl (). These functions are no-ops on some platforms, but it is still
wise to use them for cross-platform compatibility.

A TCP echo server (binding and listening)

Whereas the client application connect () 'd to a server's IP address and port, the
server bi nd() s to its own address and port:

/* Bind the server socket */

if (bind(serversock, (struct sockaddr *) &echoserver,

si zeof (echoserver)) < 0) {
Die("Failed to bind the server socket");

/* Listen on the server socket */
if (listen(serversock, MAXPENDING < 0) {
Die("Failed to |listen on server socket");

Once the server socket is bound, itis ready to | i st en() . As with most socket
functions, both bi nd() and | i st en() return -1 if they have a problem. Once a
server socket is listening, it is ready to accept () client connections, acting as a
factory for sockets on each connection.

A TCP echo server (socket factory)

Creating new sockets for client connections is the crux of a server. The function
accept () does two important things: it returns a socket pointer for the new socket;
and it populates the sockaddr _i n structure pointed to, in our case, by
echocl i ent.

/* Run until cancelled */
while (1) {

unsigned int clientlen = sizeof (echoclient);

/* Wait for client connection */

if ((clientsock =

accept (serversock, (struct sockaddr *) &echoclient,
&clientlen)) < 0)
Die("Failed to accept client connection");

fprintf(stdout, "Cient connected: %\n"

i net _ntoa(echoclient.si n‘_addr)) ;
Handl eCl i ent (cl i ent sock);

We can see the populated structure in echocl i ent with the f pri ntf () call that

Using TCP/IP
Page 12 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

accesses the client IP address. The client socket pointer is passed to
Handl ed i ent (), which we saw at the start of this section.

Section 5. Writing socket applications in Python

The socket and SocketServer module

Python's standard module socket provides almost exactly the same range of
capabilities you would find in C sockets. However, the interface is generally more
flexible, largely because of the benefits of dynamic typing. Moreover, an
object-oriented style is also used. For example, once you create a socket object,
methods like . bind(),. connect(),and. send() are methods of that object,
rather than global functions operating on a socket pointer.

At a higher level than socket , the module Socket Ser ver provides a framework
for writing servers. This is still relatively low level, and higher-level interfaces are
available for serving higher-level protocols, such as Si npl eHTTPSer ver ,
DocXMLRPCSer ver , and CA HTTPSer ver .

A Python TCP echo client

Let's look at the complete client. At first brush, we seem to have left out some of the
error-catching code from the C version. But since Python raises descriptive errors for
every situation that we checked for in the C echo client, we can let the built-in
exceptions do our work for us. Of course, if we wanted the precise wording of errors
that we had before, we would have to add afewtry / except clauses around the
calls to methods of the socket object.

#!/ usr/ bi n/ env python
"USAGE: echoclient.py <server> <word> <port>"
from socket inport * # inmport *, but we'll avoid nane conflict
i mport sys
if len(sys.argv) != 4:

print _ doc__

sys. exit(0)
sock = socket (AF_I NET, SOCK_STREAM
sock. connect ((sys.argv[1], int(sys.argv[3])))
nessage = sys.argv[2]
nessl en, received = sock.send(nmessage), O
if messlen != |en(nmessage)
print "Failed to send conpl ete nessage"
nt "Received: "
I

pri €
ile received < nesslen:

Whi

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 18

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

data = sock.recv(32)
sys. stdout.wite(data)
recei ved += | en(data)
print
sock. cl ose()

While shorter, the Python client is somewhat more powerful. Specifically, the
address we feedto a. connect () call can be either a dotted-quad IP address or
a symbolic name, without need for extra lookup work; for example:

$./echoclient 192.168.2.103 foobar 7

Recei ved: foobar

$./echoclient.py fury.gnosis.lan foobar 7
Recei ved: foobar

We also have a choice between the methods . send() and. sendall (). The
former sends as many bytes as it can at once, the latter sends the whole message
(or raises an exception if it cannot). For this client, we indicate if the whole message
was not sent, but proceed with getting back as much as actually was sent.

A Python TCP echo server (SocketServer)

The simplest way to write an echo server in Python is using the Socket Ser ver
module. It is so easy as to almost seem like cheating. Later, we will spell out the
lower-level version that follows the C implementation. For now, let's see how quick it
can be:

#!/ usr/ bi n/ env python

"USAGE: echoserver. py <port>"

from Socket Server inport BaseRequestHandl er, TCPServer
i mport sys, socket

cl ass EchoHandl er (BaseRequest Handl er) :
def handl e(sel f):
print "Client connected:", self.client_address
sel f.request.sendal | (sel f.request.recv(2**16))
sel f.request. cl ose()

if len(sys.argv) != 2:
print _ doc__
el se:
TCPServer (('',int(sys.argv[1])), EchoHandl er).serve_forever()

The only thing we need to provide is a child of

Socket Ser ver . BaseRequest Handl er that hasa. handl e() method. The
sel f instance has some useful attributes, suchas. client address, and.
r equest , which is itself a connected socket object.

A Python TCP echo server (socket)

Using TCP/IP
Page 14 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

If we wish to do it "the hard way," and gain a bit more fine-tuned control, we can
write almost exactly our C echo server in Python (but in fewer lines):

#! / usr/ bi n/ env pyt hon

"USACE: echoclient.py <server> <word> <port>"

from socket inmport * # inport *, but we'll avoid nanme conflict
i mport sys

def handl eCl i ent (sock):
data = sock.recv(32)
whi | e dat a:
sock. sendal | (dat a)
data = sock.recv(32)
sock. cl ose()

if len(sys.argv) != 2:
print _ doc__
el se:
sock = socket (AF_I NET, SOCK_STREAM
sock. bind(('"',int(sys.argv[1])))
sock. | i sten(5)
while 1: # Run until cancell ed
newsock, client_addr = sock.accept()
print "Client connected:", client_addr
handl ed i ent (newsock)

In truth, this "hard way" still isn't very hard. But as in the C implementation, we
manufacture new connected sockets using . |i sten(), and call our handler for
each such connection.

Section 6. Summary

The server and client presented in this tutorial are simple, but they show everything
essential to writing TCP sockets applications. If the data transmitted is more
complicated, or the interaction between peers (client and server) is more
sophisticated in your application, that is just a matter of additional application
programming. The data exchanged will still follow the same pattern of connect ()
and bi nd(), thensend() andrecv().

One thing this tutorial did not get to, except in brief summary at the start, is usage of
UDP sockets. TCP is more common, but it is important to also understand UDP
sockets as an option for your application. Part 2 of this tutorial series looks at UDP,
as well as implementing sockets applications in Python, and some other
intermediate topics.

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 18

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock2-i.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Using TCP/IP
Page 16 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Resources

Learn

» Programming Linux sockets, Part 2: Using UDP, the next tutorial in this series,
looks at UDP sockets as an option for your application, and also covers
implementing sockets applications in Python as well as other intermediate topics.

» A good introduction to sockets programming in C is TCP/IP Sockets in C , by
Michael J. Donahoo and Kenneth L. Calvert (Morgan-Kaufmann, 2001).
Examples and more information are available on the book's Author pages.

¢ The UNIX Systems Support Group document Network Layers explains the
functions of the lower network layers.

* The Transmission Control Protocol (TCP) is covered in RFC 793.
» The User Datagram Protocol (UDP) is the subject of RFC 768.

* You can find a list of widely used port assignments at the IANA (Internet
Assigned Numbers Authority) Web site.

* "Understanding Sockets in Unix, NT, and Java" (developerWorks, June 1998)
illustrates fundamental sockets principles with sample source code in C and in
Java.

* The Sockets section from the AIX C Programming book Communications
Programming Concepts goes into depth on a number of related issues.

» Volume 2 of the AIX 5L Version 5.2 Technical Reference focuses on
Communications, including, of course, a great deal on sockets programming.

» Sockets, network layers, UDP, and much more are also discussed in the
conversational Beej's Guide to Network Programming.

* You may find Gordon McMillan's Socket Programming HOWTO and Jim Frost's
BSD Sockets: A Quick and Dirty Primer useful as well.

» Find more tutorials for Linux developers in the developerWorks Linux one.
« Stay current with developerWorks technical events and Webcasts.
Get products and technologies

» Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

» Download IBM trial software directly from developerWorks.

Discuss

Using TCP/IP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 18

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock2-i.html
http://books.elsevier.com/us//mk/us/subindex.asp?maintarget=&isbn=1558608265
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/
http://www.ussg.iu.edu/usail/network/nfs/layers.html
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.iana.org/assignments/port-numbers
http://www.ibm.com/developerworks/linux/library/j-sockets/understanding-sockets.html
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/progcomc/ch9_sockets.htm
http://publib16.boulder.ibm.com/pseries/en_US/libs/commtrf2/mastertoc.htm#mtoc
http://beej.us/guide/bgnet/
http://www.amk.ca/python/howto/sockets/
http://world.std.com/~jimf/papers/sockets/sockets.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?type_by=Tutorials&S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=TUT
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

* Read developerWorks blogs, and get involved in the developerWorks community.

About the author

David Mertz, Ph.D.

David Mertz has been writing the developerWorks columns Charming Python and XML
Matters since 2000. Check out his book Text Processing in Python . For more on
David, see his personal Web page.

Using TCP/IP

Page 18 of 18 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/blogs/
http://gnosis.cx/TPiP/
http://gnosis.cx/dW/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Prerequisites

	Understanding IP networks and network layers
	What is a network?
	What do sockets do?
	IP, TCP, and UDP
	Peers, ports, names, and addresses
	Host name resolution

	Writing a client application in C
	The steps in writing a socket client
	A TCP echo client (client setup)
	A TCP echo client (creating the socket)
	A TCP echo client (establish connection)
	A TCP echo client (send/receive data)
	A TCP echo client (wrapup)

	Writing a server application in C
	The steps in writing a socket server
	A TCP echo server (application setup)
	A TCP echo server (the connection handler)
	A TCP echo server (configuring the server socket)
	A TCP echo server (binding and listening)
	A TCP echo server (socket factory)

	Writing socket applications in Python
	The socket and SocketServer module
	A Python TCP echo client
	A Python TCP echo server (SocketServer)
	A Python TCP echo server (socket)

	Summary
	Resources
	About the author

