
Configuring TCP/IP under Linux
Using TCP/IP under Red Hat 7.0

Skill Level: Intermediate

Tom Syroid (dwcomments@syroidmanor.com)
Freelance author
Studio B Productions

30 Oct 2001

Learn about the origins of TCP/IP, then move into how TCP/IP works -- including IP
addresses, subnets, and routing. Then learn about the various network configuration
files required by Linux®, how to initialize a network interface, and how to edit the
system's routing table. The tutorial closes with a brief look at how to analyze your
network and ensure that data gets to where it's supposed to go, without error.

Section 1. Before you start

About this tutorial

This tutorial reviews the history of TCP/IP, the OSI model and its relationship to
TCP/IP's design, IP addressing, subnetting, and routing -- all from a theoretical
perspective. It then examines how a TCP/IP network is initialized under Red Hat 7.0
and which files do what. Next it covers how to configure a network interface, and
how to designate a route between your local LAN and the "outside world". Finally it
shows you the netstat program, and how to use it to examine the health of your
network.

Prerequisites

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 25

mailto:dwcomments@syroidmanor.com
http://www.ibm.com/legal/copytrade.shtml

This tutorial has no prerequisites.

Section 2. Understanding the TCP/IP protocol

A brief history of TCP/IP

The suite of widely used protocols known as Transmission Control Protocol/Internet
Protocol (TCP/IP) has become the de facto standard for network communications in
recent years. This is due in large part to the explosive growth of the Internet, and the
need for diverse platforms, devices, and operating systems to share data in a
"language" everyone understands. Let's start with a look at TCP/IP's history.

In the late 1960s, the U.S. Department of Defense (DOD) recognized a
communication problem developing within its halls. Traffic from the ever-increasing
volume of electronic information among DOD staff, research labs, universities, and
contractors had hit a major obstacle. The various entities and organizations
comprising DOD had computer systems from different computer manufacturers,
running different operating systems, using different networking topologies and
protocols.

The Advanced Research Projects Agency (ARPA) was assigned the task of coming
up with a solution to the problem. ARPA formed an alliance with universities and
computer manufactures to develop a set of communication standards. This alliance
specified and built a four-node network that became the foundation of today's
Internet. During the 1970s, this network migrated to a new, core protocol design that
became the basis for TCP/IP.

The Open System Interconnection (OSI) model

Many different types of computers are in use today, varying in operating systems,
CPUs, network interfaces, etc. These differences make communication between
computer systems problematic. In 1977, the International Organization for
Standardization (ISO) created a subcommittee to develop date communication
standards to promote multi-vendor interoperability. The result was the Open System
Interconnection (OSI) model.

The OSI model doesn't specify any communication standards or protocols; instead, it

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 2 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

provides guidelines that communication tasks follow.

Note: It's important to understand that the OSI model is simply a model, or a
framework, that specifies the functions to be performed. It doesn't detail how these
functions are performed. ISO, however, does certify specific protocols that meet OSI
standards for parts of the OSI model. For example, the CCIT X.25 protocol is
accepted by ISO as an implementation that provides most of the services of the
Network layer of the OSI model.

The seven OSI layers

To simplify matters, the ISO subcommittees took the divide-and-conquer approach.
By dividing the complex communication process into smaller subtasks, the problem
became more manageable, and each subtask could then be optimized individually.
The OSI model is composed of seven layers:

• Application

• Presentation

• Session

• Transport

• Network

• Data Link

• Physical

Each layer is assigned a specific set of functions. Each layer uses the services of
the layer beneath it and provides services to the layer above it. For example, the
Network layer uses services from the Data Link layer and provides network-related
services to the Transport layer.

The concept of a layer making use of services and providing services to its adjacent
layers is simple. Consider how a company operates: the secretary provides
secretarial services to the president (the next layer up) to write a memo. The
secretary uses the services of a messenger (the next layer down) to deliver the
message. By separating these services, the secretary (application) doesn't have to
know how the message is actually carried to its recipient. The secretary merely has
to ask the messenger (network) to deliver it. Just as many secretaries can send
memos in this way by using a standard messenger service, a layered network can
send packets by handing them to the network layer for delivery.

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 25

http://www.ibm.com/legal/copytrade.shtml

Note: Don't confuse the Application layer with application programs you execute on
a computer. Remember that the Application layer is part of the OSI model that
doesn't specify how the interface between a user and the communication pathway
happens; an application program is a specific implementation of this interface. A real
application typically performs Application, Session, and Presentation layer services
and leaves Transport, Network, Data Link, and Physical layer services to the
network operating system.

Communicating across layers

Each layer communicates with its peer in other computers. For example, layer 3 in
one system communicates with layer 3 in another computer system.

When information is passed from one layer down to the next, a header is added to
the data to indicate where the information is coming from and going to. The
header-plus-data block of information from one layer becomes the data for the next.
For example when layer 4 passes data to layer 3, it adds its own header. When layer
3 passes the information to layer 2, it considers the header-plus-data from layer 4 as
data and adds its own header before passing that combination down.

In each layer, the information units are given different names:

Application --> Message
Transport --> Segment
Network --> Datagram
Data Link --> Frame (also called packet)
Physical --> Bit

Before the advent of the OSI model, the U.S. Department of Defense defined its own
networking model, known as the DOD model. The DOD model is closely related to
the TCP/IP suite of protocols, as explained in the next section.

The TCP/IP protocol stack (TCP)

The TCP/IP protocol stack represents a network architecture that's similar to the OSI
model.

TCP/IP does not, however, make detailed distinctions between the top layers of the
protocol stack as the OSI model does. The top three OSI layers are roughly
equivalent to the Internet process protocols. Some examples of process protocols
are Telnet, FTP, SMTP, NFS, SNMP, and DNS.

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 4 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The Transport layer of the OSI model is responsible for reliable data delivery. In the
Internet protocol stack, this corresponds to the host-to-host protocols. Examples of
these are TCP and UDP. TCP is used to translate variable-length messages from
upper-layer protocols and provides the necessary acknowledgment and
connection-oriented flow control between remote systems.

UDP is similar to TCP, except that it's not connection oriented and doesn't
acknowledge data receipt. UDP only receives messages and passes them along to
the upper-level protocols. Because UDP doesn't have any of the overhead related to
TCP, it provides a much more efficient interface for such actions as remote disk
services.

The TCP/IP protocol stack (IP)

The Internet Protocol (IP) is responsible for connectionless communications
between systems. It maps onto the OSI model as part of the Network layer, which is
responsible for moving information around the network. This communication is
accomplished by examining the Network layer address, which determines the
systems and the path to send the message.

IP provides the same functionality as the Network layer and helps get the messages
between systems, but it doesn't guarantee the delivery of these messages. IP may
also fragment the messages into chunks and then reassemble them at the
destination. In addition, each fragment may take a different network path between
systems. If the fragments arrive out of order, IP reassembles the packets into the
correct sequence at the destination.

Section 3. IP addressing, subnets, and routing

IP addresses

The Internet Protocol requires an address be assigned to every device on a network.
This address, known as the IP address, is organized as a series of four octets.
These octets each define a unique address, with part of the address representing a
network (and optionally a subnetwork) and another part representing a particular
node on the network.

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 25

http://www.ibm.com/legal/copytrade.shtml

Several addresses have special meanings on TCP/IP networks:

• An address starting with a zero references the local node within its current
network. For example, 0.0.0.23 references workstation 23 on the current
network. Address 0.0.0.0 references the current workstation.

• The addresses starting with 127 are important in troubleshooting and
network diagnosis. The network address block 127.x.x.x is formally
defined as class A addresses, which are reserved for internal loopback
functions.

• The ALL address is represented by turning on all bits, giving a value of
255. Therefore, 192.18.255.255 sends a message to all nodes on network
192.18.; similarly, 255.255.255.255 sends a message to every node on
the Internet. These addresses are used for multicast messages and
service announcements.

Caution: When you assign node numbers to a system, don't use 0 or 255; these are
reserved numbers and have special meaning.

IP address classes

IP addresses are assigned in ranges referred to as classes, depending on the
application and the size of an organization. The three most common classes are A,
B, and C. These three classes represent the number of locally assignable bits
available for the local network.

Class A addresses are used for very large networks or collections of related
networks. Class B addresses are used for large networks having more than 256
nodes (but fewer than 65,536 nodes). Class C addresses are used by most
organizations. It's a better idea for an organization to get several class C addresses
because the number of class B addresses is limited. Class D is reserved for
multicast messages on the network, and class E is reserved for experimentation and
development.
Class Addresses
A 0.x.x.x to 126.x.x.x
B 128.0.x.x to 191.255.x.x
C 192.0.0.x to 223.255.255.x
D 224.0.0.1 to 239.255.255.255
E 240.x.x.x to 255.255.255.255

"Private" IP addresses

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 6 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

If your network is not connected to the Internet and won't be in the near future, you
are free to choose any legal network address. Just make sure no packets from your
internal network escape to the real Internet. To make sure no harm could be done
even if packets did escape, you should use one of the network numbers reserved for
private use. The Internet Assigned Numbers Authority (IANA) has set aside several
network numbers from classes A, B, and C that you can use without registering.
These addresses are valid only within your private network and are (theoretically)
not routed between real Internet sites.
A 10.0.0.0
B 172.16.0.0 - 172.31.0.0
C 192.168.0.0 - 192.168.255.0

Note that the second and third blocks contain 16 and 256 networks, respectively.

Picking your addresses from one of these network numbers is useful for networks
completely unconnected to the Internet. And you can still implement access to
another network (such as the Internet) by using a single host as a gateway. To your
local network, the gateway is accessible by its internal private IP address, while the
outside world knows it by an officially registered address (assigned to you by your
bandwidth provider).

Subnetworks and subnet masks

Subnetting is the process of dividing a large real network into smaller logical
networks. Reasons for dividing a network include the electrical (physical layer)
limitations of the networking technology, a desire to segment for simplicity by putting
a separate network on each floor of a building (or in each department or for each
application), reducing network segment loads, or a need for remote locations
connected with a high-speed line.

The resulting networks are smaller chunks of the whole and are easier to manage.
Smaller subnets communicate among one another through gateways and routers.
Also, an organization may have several subnetworks that are physically on the same
network, so as to logically divide network functions into workgroups.

The individual subnets are a division of the whole. Suppose that a class B network is
divided into 64 separate subnets. To accomplish this subnetting, the IP address is
viewed in two parts: network and host. The network part becomes the assigned IP
address and the subnet information bits. These bits are, in essence, removed from
the host's part of the address. The assigned number of bits for a class B network is
16. The subnet part adds 6 bits, for a total of 22 bits to distinguish the subnetwork.
The division results in 64 networks with 1,024 nodes in each. The network part can

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 25

http://www.ibm.com/legal/copytrade.shtml

be larger or smaller, depending on the number of networks desired or the number of
nodes per network.

Setting a subnet mask is a matter of determining where the network address ends
and the host address begins. The subnet mask contains all 1s in the network field
and 0s (zeroes) in the host field.

Suppose a class C network is composed of the following:

N = network

H = host

NNNNNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH

Each position represents a single bit out of the 32-bit address space. If this class C
network is to be divided into four class C networks, the pattern resembles the
following:

NNNNNNNN.NNNNNNNN.NNNNNNNN.NNHHHHHH

The subnet mask looks like the following:

11111111.11111111.11111111.11000000

If this address is written in base-10 dot notation (a.k.a. dotted quad), the subnet
mask is 255.255.255.192. This mask is used to communicate among nodes on all
subnetworks within this particular network.

Subnets, an example

Instead, if three bits are taken from the host field, eight networks can be formed, and
the resulting network mask is as follows:

11111111.11111111.11111111.11100000

This subnet mask is 255.255.255.224. Each of the eight networks would have 30
nodes because five address bits are available. (It would be 32 except that all 1s, and
all 0s are not legal host addresses.)
Network Hosts Address Range Broadcast
192.168.1.0 192.168.1.1 to 192.168.1.30 192.168.1.31
192.168.1.32 192.168.1.33 to 192.168.1.62 192.168.1.63
192.168.1.64 192.168.1.65 to 192.168.1.94 192.168.1.95
192.168.1.96 192.168.1.97 to 192.168.1.126 192.168.1.127
192.168.1.128 192.168.1.129 to 192.168.1.158 192.168.1.159
192.168.1.160 192.168.1.161 to 192.168.1.190 192.168.1.191

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 8 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

192.168.1.192 192.168.1.193 to 192.168.1.222 192.168.1.223
192.168.1.224 192.168.1.225 to 192.168.1.254 192.168.1.255

Tip: If you need some help calculating subnets, check out the subnet mask
calculator.

Communicating across networks: gateways and routing

Due to the structure of IP addressing, hosts can only communicate with other hosts
on the same network. To overcome this limitation, we add routing and gateways to
the networking equation. Routing is the mechanism that determines the path a
packet takes from its source to its destination. This path, or route, is established by
looking up the destination IP address in a routing table. If the address is found, the
packets are delivered to the network; if the address is not found, the packets are
forwarded to an entry termed the default route, which is the IP where all addresses
"unknown" to that machine or device are forwarded.

The machine or device that performs these routing and/or forwarding functions is
called a gateway or router. Sometimes these two terms are used interchangeably.
Technically speaking, a gateway describes a system or device that sends messages
between different types of networks; a router sends messages between networks of
the same type. We won't get too fussy in our discussions here given that we're only
dealing with TCP/IP networking, but be aware that there is a difference between the
two.

It's also important to note that gateways are, by definition, equipped with more than
one network interface (say, A and B), each configured with a different IP or
IP/subnet. This is how the "network bridging" effect is achieved. Packets arrive on
interface A, and according to the entries in the device's routing table, one of four
actions takes place. Packets can be:

• Delivered to a host on network A

• Passed to the default routing device "upstream" on network A

• Delivered to a host on network B

• Passed to the default routing device "upstream" on network B

Routing configurations

There are four common types of routing configurations:

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 25

http://www.cotse.com/networkcalculator.html
http://www.cotse.com/networkcalculator.html
http://www.ibm.com/legal/copytrade.shtml

• Minimal -- A network completely isolated from all other networks requires
only minimal routing. A minimal routing table is usually built when a
network interface is initialized. If you have no need to communicate with
other TCP/IP networks, and you are not using subnetting, this is all the
routing information your system needs.

• Static -- A network with one or two gateways is typically configured using
static routing. A static routing table is automatically created by a network
configuration script (using an IP supplied by the user) or manually by a
system administrator (using the /sbin/route command discussed in
Section 5). This table is as the name implies -- static. It does not adjust to
network changes. When a network does change, the table must be
manually re-configured.

• Dynamic -- Large networks often have multiple routers and/or gateways
installed, perhaps pointing to the same remote network for
redundancy/failover purposes. This is the realm of dynamic routing.
Dynamic routing allows routing tables to be dynamically constructed (and
continuously updated) from information exchanged between routing
devices using protocols called... yes, you guessed it... routing protocols.
This continuous exchange of information provides a mechanism whereby
routes automatically adjust to account for changing network conditions
such as high traffic loads or outages. The biggest drawback to dynamic
routing is that the route information exchanged between devices can
consume considerable bandwidth.

• A fourth option is to use a combination of static and dynamic routing.
Machines on each subnet use static routing to reach their immediate
neighbors. The default route -- the route used from packets that are not
assigned a specific route by the routing table -- is set to a gateway
machine that's configured to provide dynamic routing and hence knows
about networks beyond its own subnet.

Dynamic routing is based on one of several routing protocols (RIP, Hello, OSPF, etc.
for interior protocols; EGP, BGP for exterior protocols), and is enabled via the
gateway routing daemon, gated. Dynamic routing is beyond the scope of this
tutorial. For more information, see Craig Hunt's TCP/IP Network Administration listed
in Resources.

Next topics

It's now time to take all the preceding theoretical knowledge and put it to use. We're
going to look at:

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 10 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• The configuration files responsible for a network interface under Red Hat
7.0

• Examining and configuring an interface using ifconfig

• Adding and editing static routes

• Using netstat to monitor/troubleshoot a network interface

Section 4. TCP/IP configuration files (Red Hat 7.0)

The key files and scripts

The actual process of initializing a network interface (sometimes referred to as
"bringing an interface up") is controlled by a set of configuration files and scripts,
most of which reside under the /etc directory. The configuration files tell Linux what
its IP address, host name, and domain name are; the scripts are responsible for
initializing the network interfaces.

Unfortunately, to date there is no agreed-upon standard for file locations and naming
conventions across distributions. To provide concrete examples for this section, we'll
base our descriptions on the popular Red Hat 7.0 package. Keep in mind that if your
distribution is not Red Hat, or based on Red Hat conventions (like the Mandrake
distributions), some of the files referenced here will be located in different directories
or have different names. The net effect (pardon the pun) is the same, however --
pass the network information stored in a series of configuration files to a script, and,
from the script, initialize the interface and network routes.

The key files involved in initializing and configuring a network interface are:

• /etc/hosts (Maps host names to IP addresses)

• /etc/networks (Maps domain names to network addresses)

• /etc/sysconfig/network (Sets networking on or off, the hostname,
and the gateway)

• /etc/resolv.conf (Sets the nameserver or DNS server IPs)

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 25

http://www.ibm.com/legal/copytrade.shtml

• /etc/rc.d/rc3.d/S10network (Activates configured Ethernet
interfaces at boot time, called by symlinks in the runlevel directories,
/etc/rc.d/rcN.d/)

• A collection of files in /etc/sysconfig/network-scripts. These
include the main configurations for network connections, as well as
symbolic links to provide interface status and control functions

/etc/hosts

/etc/hosts is a simple text file that associates IP addresses with host names.
Every computer on a TCP/IP network must have a unique IP address. The hosts file
simply allows users to relate a name to an IP address and use that name when
accessing a computer rather than typing a string of numbers. Each entry in
/etc/hosts contains an IP address separated by white space, followed by a host
name and/or an alias. Comments begin with a hash (#). For example:
/etc/hosts
last updated 12/3/2000

127.0.0.1 loopback localhost # loopback (lo0) name/address

192.168.1.5 janus.syroidmanor.com janus
192.168.1.6 thumper.syroidmanor.com thumper
192.168.1.7 donovan.syroidmanor.com donovan
192.168.1.8 raidserver

192.168.1.20 phoenix.syroidmanor.com phoenix
192.168.1.15 hydras.syroidmanor.com hydras

In the hosts file shown above, the IP address 192.168.1.5 is mapped to the host
janus.syroidmanor.com, and is assigned an alternate host name (or alias) of janus.
Although the host file has been superseded by DNS, it is still used for the following
reasons:

• Most systems have a small host table containing name and address
information about key hosts on the local network. The table is used when
DNS is not running, such as during initial system startup. Even if you have
a local DNS server running, you should have a small hosts file on each
system containing an entry for the host itself, an entry for localhost, and
entries for any important gateways and servers on the LAN.

• Small networks that are not connected to the Internet or other networks
have no need for DNS services. They do, however, need to know how to
locate their peers.

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 12 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

/etc/networks

Just as hosts have names and addresses, networks and subnets can also be named
for convenience. The /etc/networks file is similar in layout to /etc/hosts with
the name and address reversed.
/etc/networks for syroidmanor.com

localnet 127.0.0.0 #loopback
syroid-C1 192.168.1 #development, class C
syroid-C2 192.168.2 #support, class C

In the example above, the network name syroid-C1 can be used in scripts or with
any command-line utility to reference the 192.168.1 class C network.

/etc/sysconfig/network

The /etc/sysconfig/network (note that network is singular, not plural, as
opposed to the /etc/networks file) is used to specify information about the
desired network configuration; it is used by several scripts at bootup. It can contain
one or more of the following keyword/value pairings:

NETWORKING=YES|NO -- YES = networking should be configured; NO = it should
not.

HOSTNAME=hostname -- the fully qualified domain name of the host; for
compatibility with older programs, this should match the host entry in /etc/hosts.

GATEWAY=gw-ip -- the IP of the network's gateway.

GATEWAYDEV=gw-dev -- the name of the gateway device (for example, eth0).

NISDOMAIN=dom-name -- the NIS domain, if applicable.

The following is an example of a minimum /etc/sysconfig/network
configuration:
NETWORKING=yes
HOSTNAME=phoenix.syroidmanor.com
GATEWAY=192.168.1.1

/etc/resolv.conf and /etc/rc.d/rc3.d/S10network

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 25

http://www.ibm.com/legal/copytrade.shtml

/etc/resolv.conf is one of the key files used by the network to determine host
resolution. In it you can identify up to three nameservers; the last two provide
backup if the first server listed fails to respond to a query. The domain entry defines
the default domain name. The resolver (which, incidently, is not a separate process
but a library of routines called by network processes) appends the domain name
listed here to any hostname query that does not contain a dot.
/etc/resolv.conf
domain name resolver config file
domain syroidmanor.com

nameserver 192.168.1.7
nameserver 192.168.1.10
nameserver 165.142.268.19

In the example shown above, if a query is submitted to the resolver for host phoenix
(note, no dot), the domain is appended to the request, which expands the query to
phoenix.syroidmanor.com. For more details and available options, type man
resolv.conf .

/etc/rc.d/rc3.d/S10network is a symlink to the
/etc/rc.d/init.d/network script. It is responsible for initializing all configured
network interfaces when the system reaches run-level 3. We won't take the time
here to detail the logic behind this file as it primarily calls other scripts and programs
referenced in this section. It's worth perusing, however, if you're interested in seeing
the order various network components and services are initialized in (less
/etc/rc.d/rc3.d/S10network).

The /etc/sysconfig/network-scripts/ directory

Finally, the following files are normally found in the
/etc/sysconfig/network-scripts/ directory:

• /etc/sysconfig/network-scripts/ifup

• /etc/sysconfig/network-scripts/ifdown

• /etc/sysconfig/network-scripts/network-functions

• /etc/sysconfig/network-scripts/ifcfg-interface-name

• /etc/sysconfig/network-scripts/ifcfg-interface-name:clone-name

• /etc/sysconfig/network-scripts/chat-interface-name

• /etc/sysconfig/network-scripts/dip-interface-name

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 14 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• /etc/sysconfig/network-scripts/ifup-post

Next we'll look briefly at each of these key files, what they do, and what they contain.

.../network-scripts/

The ifup and ifdown entries in /etc/sysconfig/network-scripts are
actually symbolic links to /sbin/ifup and /sbin/ifdown, respectively. These
are the only two scripts in this directory that should be called directly, and they call
all other scripts as needed.

ifup and ifdown take one argument normally: the name of the device (for
example, eth0). They are called by the system with the argument "boot" during the
boot process so that devices not configured to be initialized on system start are not
activated (see ONBOOT=no under the interface-name description below).

network-function is not a public file. It contains functions required by several
scripts within this directory. Specifically, it contains most of the code for handling
alternative interface configurations.

The configuration files ifcfg-interface-name and
ifcfg-interface-name:clone-name contain the bulk of the details required to
initialize an interface. The first file defines an interface, while the second file contains
only parts of the definition pertinent to an "alias" (or alternative) interface. For
example, the network address might be different, but everything else would be the
same.

Items defined in the ifcfg file depend on interface type; the following values are
common:

• DEVICE=name , where name is the name of the physical device

• IPADDR=addr , where addr is the IP address

• NETMASK=mask , where mask is the netmask value

• NETWORK=addr , where addr is the network address

• BROADCAST=addr , where addr is the broadcast address

• GATEWAY=addr , where addr is the gateway address

• ONBOOT=answer , where answer is "yes" (activate device on boot) or
"no"

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 25

http://www.ibm.com/legal/copytrade.shtml

• USERCTL=answer , where answer is "yes" (non-root users can control
the device) or "no"

• BOOTPROTO=proto , where proto is one of the following: "none" (no
boot-time protocol), "bootp" (use the BOOTP protocol), or "dhcp" (use the
DHCP protocol)

In addition, the following values are common to all SLIP (Serial Line IP) files:

• PERSIST=answer , where answer is "yes" (keep the device active even
if the modem has hung up) or "no" (do not keep active)

• MODEMPORT=port , where port is the modem port's device name (for
example, /dev/modem

• LINESPEED=baud , where baud is the modem's linespeed

• DEFABORT=answer , where answer is "yes" (insert default abort strings
when creating/editing the script for this interface) or "no" (do not insert the
default abort strings)

The chat-interface-name file is a chat script for SLIP connections. Its function
is to initiate the connection. For SLIP devices, a DIP script is written from the chat
script.

The chat-interface-name is a write-only script created from the chat script by
the program netcfg. DO NOT modify this file.

/etc/sysconfig/network-scripts/ifup-post is called when any network
device (except a SLIP device) is initialized. It calls
/etc/sysconfig/network-scripts/ifup-routes to bring up static routes
that depend on the device, brings up any aliases configured for the device, and sets
the hostname if it is not already set -- and a hostname can be found for the IP
matching the device. Finally, ifup-post sends a signal (SIGIO) to any programs
that have requested notification of network events.

Section 5. Configuring network interfaces and routes

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 16 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The ifconfig program

The ifconfig command sets, checks, or monitors configuration values for network
interfaces. It can also be used to set the "state" of an interface -- that is, "up"
(initialized) or "down" (uninitialized). A simple invocation of ifconfig is:

ifconfig interface-name ip-address up|down

This activates the specified interface and assigns the supplied IP address to it.

ifconfig has numerous options available (metric, mtu, pointtopoint, etc; see the
man page for details) for explicitly setting unique interface parameters, but generally
speaking, supplying the interface name (for example, eth0), IP address, and
netmask are enough. For example:

ifconfig eth0 192.168.1.5 netmask 255.255.255.0 up

assigns interface eth0 the IP 192.168.1.5, the netmask 255.255.255.0, and "brings
it up" or initializes it. Similarly, to take the interface "down", type ifconfig eth0
down ; IP and netmask need not be specified.

Using ifconfig to inspect an interface

Running ifconfig with no arguments causes the program to display the status of
all network interfaces. To check the status of a specific interface, append the name
after ifconfig. For example:
[tom@phoenix tom]$ /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:10:5A:00:87:22

inet addr:192.168.1.20 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:9625272 errors:0 dropped:0 overruns:0 frame:0
TX packets:6997276 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:19 Base address:0xc800

The above output shows the MAC address (Hwaddr), assigned IP address (inet
addr), broadcast address (Bcast), and netmask (Mask). In addition, you can see the
interface is UP with an MTU of 1500 and a Metric of 1. The next two lines give
statistics on the number of packets received (RX) and transmitted (TX), along with
packet error, dropped, and overrun counts. The last two lines shown the number of
packet collisions, the transmit queue size (txqueuelen), and the IRQ and base
address of the card.

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 25

http://www.ibm.com/legal/copytrade.shtml

Configuring routes

Let's begin our look at configuring routes by looking at a network interface that has
no gateway configured. As you can see, using the route command without
arguments displays the kernel routing table.
[root@phoenix tom]# /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.0 127.0.0.1 255.0.0.0 U 0 0 0 lo
192.168.1.0 192.168.1.5 255.255.255.0 U 0 0 0 eth0

The first entry is the loopback route to localhost that was automatically created when
lo was configured. The second entry is the route to network 192.168.1.0 through
interface eth0. Address 192.168.1.5 is not a remote gateway address. It is the
address assigned to the eth0 interface on phoenix.

Note the flags for each entry. Both have the U (up) flag set, indicating they are ready
to be used, but neither has the G (gateway) flag set. The G flag is not set because
both of these routes are direct routes through local interfaces, not through external
gateways.

The above example contains only one network route, 192.168.1.0. Therefore
phoenix can only communicate with hosts located on that network.

Adding static routes

A minimal routing table only allows hosts on the same network to communicate. To
reach remote hosts, routes through external gateways must be added to the routing
table. One way to accomplish this is through the use of the /sbin/route
command. Using the above example, we're now going to add the route 192.168.1.1
to our network configuration.
[root@phoenix tom]# /sbin/route add default 192.168.1.1 1

The first argument after the route command in the above example is the keyword
add . The first keyword on a route command is either add or del (delete). The
next value is the destination address, which is the address reached via this route. If
the keyword default is used for the destination address, a default route is
created. The default route is used whenever there is no specific route to a
destination; often this is the only entry you'll need in your routing table. If your
network has only one gateway, use a default route to direct all traffic bound for
remote networks through that gateway.

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 18 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Next on the command line is the gateway address. The address must be the
address of a gateway on a directly connected network. TCP/IP routes specify the
next-hop in the path to the remote destination. That next-hop must be directly
accessible to the local host; therefore, it must be on a directly connected network.

Note: Because most routes are added early in the system startup process, numeric
IPs are recommended over host names. This is done to ensure the routing
configuration is not dependent on the state of the name server software. And always
use complete numeric address (all four bytes); route guesses at partial IPs and you
may end up with an incorrect configuration.

Referring to the route command above, the last argument is the number 1; it is
called the routing metric. The metric argument is not needed when a route is
deleted, but many systems require it when a route is added. Despite being required,
route only uses the metric to decide if the route is through a directly attached
interface or through an external gateway. If the metric is 0, the route is installed
through a local interface and the G flag is not set; if the metric value is greater than
0, the route is installed with the G flag and the gateway address is assumed to be
external. Static routing makes no other use of the metric. Dynamic routing is needed
to make real use of varying metric values.

To display our new routing table, type /sbin/route or use the netstat -rn
command (which we'll discuss in the next section):
[root@phoenix tom]# netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

As a final test that everything is working as advertised, ping a host on another
network; you should receive a response. If you don't, recheck your configuration.

To familiarize yourself with other route options and arguments, type man route .

Section 6. Monitoring your TCP/IP network

The netstat program

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 25

http://www.ibm.com/legal/copytrade.shtml

If you manage a TCP/IP network of any size, the netstat program is an invaluable
tool. It can display the kernel routing table, the status of active network connections,
and useful statistics for each installed network interface.

Like most Linux administrative command-line programs, the amount of detail and/or
range of information netstat provides is selectable by appending options or flags
to the program command. Some of the more common options are:

-a -- shows information on all connections, including those just listening
-i -- shows statistics for all configured network devices
-c -- continually updates the network status (once per second) until interrupted(^C)
-r -- displays the kernel routing table
-n -- shows remote and local addresses in numeric (raw) format rather than resolved
names
-t -- shows only TCP socket information (excluding any UCP socket information)
-v -- displays the version information for netstat

Type man netstat for a complete list of available flags and a detailed explanation
of what each one does. Note that you can also combine flags, so entering netstat
-rn displays the system routing table (r) in raw IP format for local and remote hosts
(n).

Displaying active network connections

netstat supports a set of options to display active or passive sockets: -t, -u, -w,
and -x show active TCP, UDP, RAW, or UNIX socket connections, respectively. If
the -a flag is added, sockets that are waiting for a connection (in other words,
listening) are shown as well. This display will give you a list of all servers that are
currently running on your system.

For example, typing netstat -ta on the host phoenix produces the following:
[tom@phoenix tom]$ netstat -ta
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 40 phoenix.syroidmanor:ssh 192.168.1.5:1132 ESTABLISHED
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 phoenix.syroidmano:1028 hydras.syro:netbios-ssn ESTABLISHED
tcp 0 0 phoenix.syroidmano:1027 raidserver:netbios-ssn ESTABLISHED
tcp 0 0 *:printer *:* LISTEN
tcp 0 0 *:auth *:* LISTEN
tcp 0 0 *:1024 *:* LISTEN
tcp 0 0 *:sunrpc *:* LISTEN

The above output shows most servers simply waiting for an incoming connection
(LISTEN). The first line, however, shows a connection between the host phoenix and

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 20 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the IP address 192.168.1.5; the third and fourth lines show two netbios connections
(Samba SMB shares).

Viewing the routing table with netstat

When invoked with the -r flag, netstat displays the kernel routing table similar to
typing /sbin/route :
[tom@phoenix tom]$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

The -n option forces netstat to output addresses as dotted quad IP numbers
rather than the symbolic host and network names. This option is especially useful
when you want to avoid address lookups over the network (to a DNS or NIS server,
for example).

The second column displays the gateway the routing entry points to. If no gateway is
used, an asterisk is shown instead. The third column is the netmask for the route.
The kernel uses this to set the "generality" of a route by bitwise ANDing the
Genmask against a packet's IP address before comparing it to the destination IP
address of the route.

The fourth column displays flags for the route: U means up, H means host, G means
gateway, D means dynamic route, and M means modified.
[tom@phoenix tom]$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

The next three columns show the MSS, Window, and irtt that will be applied to TCP
connections established via this route. The MSS is the Maximum Segment Size and
is the size of the largest datagram the kernel will construct for transmission via this
route. The Window is the maximum amount of data the system will accept in a single
burst from a remote host.

The acronym irtt stands for "initial round trip time." The TCP protocol ensures that
data is reliably delivered between hosts by retransmitting a datagram if it has been
lost. The TCP protocol keeps a running count of how long it takes for a datagram to
be delivered to the remote end, and an acknowledgement to be received so that it

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 25

http://www.ibm.com/legal/copytrade.shtml

knows how long to wait before assuming a datagram needs to retransmitted; this
process is called the round-trip time. The initial round-trip time is the value that the
TCP protocol will use when a connection is first established. For most network types,
the default value is okay, but for some slow networks, notably certain types of
amateur packet radio networks, the time is too short and causes unnecessary
retransmission. The irtt value can be set using the route command. Values of zero in
these fields mean that the default is being used.

Finally, the last field displays the network interface that the displayed route will use.

Displaying usage statistics with netstat

Invoking netstat with the -i option displays usage statistics for all configured
interfaces -- an excellent tool for troubleshooting network problems. With this
command, it's easy to check on both the status and the "health" of connections.
[tom@phoenix tom]$ netstat -i
Kernel Interface table
eth0 Link encap:Ethernet HWaddr 00:10:5A:00:87:22

inet addr:192.168.1.20 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:10554374 errors:0 dropped:0 overruns:0 frame:0
TX packets:8528339 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:19 Base address:0xc800

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:5612 errors:0 dropped:0 overruns:0 frame:0
TX packets:5612 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

The RX packets and TX packets lines show how many packets have been
received or transmitted, respectively, as well as RX/TX statistics for errors, dropped
packets, and overruns. The most common interface errors stem from incorrect
configuration, so if you're experiencing difficulties, always start your diagnosis by
triple checking all settings.

Providing the interface is up, there should be no packets queued for transmission
(txqueuelen) -- if there are, suspect a bad network cable or network card. Start by
swapping in a spare cable and rechecking the connection. RX/TX errors should be
close to zero. High TX errors could indicate a saturated network or a bad physical
connection; high RX errors could indicate a saturated network, a bad physical
connection, or an overworked host. If you experience high collision rates (collision
rates are a percent of output packets, and are not calculated from the total number
of packets sent/received) it could also be indicative of a saturated network; confirm

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 22 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

this by running netstat -i from another host on the same subnet and comparing
results.

To troubleshoot network errors, careful and methodical analysis of all aspects of the
interface (hardware and software) is essential. Don't get in a rush, and... ahem... did
we mention always check your network cable first? Trust us on this one.

Section 7. Summary

TCP/IP is a huge topic with hundreds of sideroads one can wander down and get
lost on for a day or three. The facts remain: TCP/IP is the backbone of the Internet,
routing is the glue that holds it all together, and IP addressing represents the places
we visit as we surf the world. And when you think about it, given the explosive
growth demands that the Internet in particular, and computing general have seen
over the last three or four years, the infrastructure really is holding up remarkably
well.

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 25

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Learn how to Easily configure TCP/IP on your AIX system

• For some of the best networking books ever written, check out O'Reilly's Safari
subscription service. In particular, look for:

• TCP/IP Network Administration, 2nd Edition by Craig Hunt (O'Reilly; ISBN:
1-56592-322-7)

• Linux in a Nutshell, 3rd Edition, by Siever, Spainhour, Figgins, and Hekman
(O'Reilly; ISBN: 0-596-00025-1)

• Running Linux, 3rd Edition, by Welsh, Dalheimer, and Kaufman (O'Reilly;
ISBN: 1-56592-469-X)

• Find more tutorials for Linux developers in the developerWorks Linux zone.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• IBM offers tools for network monitoring such as the Tivoli NetView Performance
Monitor.

• Visit the home page for TCP/IP for OS/400.

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Download IBM trial software directly from developerWorks.

Discuss

• Read developerWorks blogs, and get involved in the developerWorks community.

About the author

Tom Syroid
Tom Syroid is a contract writer for Studio B Productions, a literary agency based in
Indianapolis, IN, specializing in computer-oriented publications. His specialties include
*NIX system security, Samba, Apache, and Web database applications based on PHP
and MySQL. He has experience administering and maintaining a diverse range of
operating systems including Linux (Red Hat, OpenLinux, Mandrake, Slackware,

developerWorks® ibm.com/developerWorks

Configuring TCP/IP under Linux
Page 24 of 25 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/servers/aix/products/aixos/whitepapers/tcpip_howto.html
http://safari.oreilly.com/
http://safari.oreilly.com/
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?type_by=Tutorials&S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=TUT
http://www-306.ibm.com/software/tivoli/products/netview-performance/?S_TACT=105AGX03&S_CMP=tut
http://www-306.ibm.com/software/tivoli/products/netview-performance/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/servers/eserver/iseries/tcpip/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/blogs/
http://www.studiob.com
http://www.ibm.com/legal/copytrade.shtml

Gentoo), Windows (95, 98, NT, 2000, and XP), and AIX (4.3.3 and 5.1). He is also the
co-author of Outlook 2000 in a Nutshell (O'Reilly & Associates) and OpenLinux Secrets
(Hungry Minds). Tom lives in Saskatoon, Saskatchewan, with his wife and two
children. Hobbies include breaking perfectly good computer installations and then
figuring out how to fix them, along with gardening, reading, and building complex
structures out of Legos with his kids. Contact Tom at dwcomments@syroidmanor.com.

ibm.com/developerWorks developerWorks®

Configuring TCP/IP under Linux
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 25

mailto:dwcomments@syroidmanor.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Prerequisites

	Understanding the TCP/IP protocol
	A brief history of TCP/IP
	The Open System Interconnection (OSI) model
	The seven OSI layers
	Communicating across layers
	The TCP/IP protocol stack (TCP)
	The TCP/IP protocol stack (IP)

	IP addressing, subnets, and routing
	IP addresses
	IP address classes
	"Private" IP addresses
	Subnetworks and subnet masks
	Subnets, an example
	Communicating across networks: gateways and routing
	Routing configurations

	TCP/IP configuration files (Red Hat 7.0)
	The key files and scripts
	
 /etc/hosts

	
 /etc/networks

	
 /etc/sysconfig/network

	
 /etc/resolv.conf and /etc/rc.d/rc3.d/S10network

	The /etc/sysconfig/network-scripts/ directory
	
 .../network-scripts/

	Configuring network interfaces and routes
	The ifconfig program
	Using ifconfig to inspect an interface
	Configuring routes
	Adding static routes

	Monitoring your TCP/IP network
	The netstat program
	Displaying active network connections
	Viewing the routing table with netstat

	Displaying usage statistics with netstat

	Summary
	Resources
	About the author

