
Programming Linux sockets, Part 2: Using UDP
Writing UDP sockets applications in C and in Python

Skill Level: Introductory

David Mertz, Ph.D. (mertz@gnosis.cx)
Developer
Gnosis Software

25 Jan 2004

This intermediate-level tutorial extends the basics covered in Part 1 on programming
using sockets. Part 2 focuses on the User Datagram Protocol (UDP) and demonstrates
how to write UDP sockets applications in C and in Python. Although the code
examples in this tutorial are in Python and C, they translate well to other languages.

Section 1. Before you start

About this tutorial

IP sockets are the lowest-level layer upon which high-level Internet protocols are
built: everything from HTTP to SSL to POP3 to Kerberos to UDP-Time. To
implement custom protocols, or to customize implementation of well-known
protocols, a programmer needs a working knowledge of the basic socket
infrastructure. A similar API is available in many languages; this tutorial uses C
programming as a ubiquitous low-level language, and Python as a representative
higher-level language for examples.

In Part 1 of this tutorial series, David introduced readers to the basics of
programming custom network tools using the widespread and cross-platform
Berkeley Sockets Interface. In this tutorial, he picks up with further explanation of
User Datagram Protocol (UDP), and continues with a discussion of writing scalable

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 22

mailto:mertz@gnosis.cx
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock-i.html
http://www.ibm.com/legal/copytrade.shtml

socket servers.

Prerequisites

This tutorial is best suited for readers with at least a basic knowledge of C and
Python. However, readers who are not familiar with either programming language
should be able to make it through with a bit of extra effort; most of the underlying
concepts will apply equally to other programming languages, and calls will be quite
similar in most high-level scripting languages like Ruby, Perl, TCL, etc.

Although this tutorial introduces the basic concepts behind IP (Internet Protocol)
networks, some prior acquaintance with the concept of network protocols and layers
will be helpful (see the Resources at the end of this tutorial for background
documents).

Section 2. Understanding network layers and protocols

What is a network?

Figure 1. Network layers

developerWorks® ibm.com/developerWorks

Using UDP
Page 2 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This section recaps the discussion in Part 1 of this tutorial -- if you've already read it,
you can skip forward to Writing UDP applications (in Python) .

A computer network is composed of a number of "network layers," each providing a
different restriction and/or guarantee about the data at that layer. The protocols at
each network layer generally have their own packet formats, headers, and layout.

The seven traditional layers of a network (please see the Resources section for a
link to a discussion of these) are divided into two groups: upper layers and lower
layers. The sockets interface provides a uniform API to the lower layers of a
network, and allows you to implement upper layers within your sockets application.
And application data formats may themselves constitute further layers.

What do sockets do?

While the sockets interface theoretically allows access to protocol families other than
IP, in practice, every network layer you use in your sockets application will use IP.
For this tutorial we only look at IPv4; in the future IPv6 will become important also,

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 22

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock-i.html
http://www.ibm.com/legal/copytrade.shtml

but the principles are the same. At the transport layer, sockets support two specific
protocols: TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

Sockets cannot be used to access lower (or higher) network layers; for example, a
socket application does not know whether it is running over ethernet, token ring,
802.11b, or a dial-up connection. Nor does the sockets pseudo-layer know anything
about higher-level protocols like NFS, HTTP, FTP, and the like (except in the sense
that you might yourself write a sockets application that implements those
higher-level protocols).

At times, the sockets interface is not your best choice for a network programming
API. Many excellent libraries exist (in various languages) to use higher-level
protocols directly, without your having to worry about the details of sockets. While
there is nothing wrong with writing your own SSH client, for example, there is no
need to do so simply to let an application transfer data securely. Lower-level layers
than those sockets address fall pretty much in the domain of device driver
programming.

IP, TCP, and UDP

As mentioned, when you program a sockets application, you have a choice between
using TCP and using UDP. Each has its own benefits and disadvantages.

TCP is a stream protocol, while UDP is a datagram protocol. In other words, TCP
establishes a continuous open connection between a client and a server, over which
bytes may be written (and correct order guaranteed) for the life of the connection.
However, bytes written over TCP have no built-in structure, so higher-level protocols
are required to delimit any data records and fields within the transmitted bytestream.

UDP, on the other hand, does not require that any connection be established
between client and server; it simply transmits a message between addresses. A nice
feature of UDP is that its packets are self-delimiting; that is, each datagram indicates
exactly where it begins and ends. A possible disadvantage of UDP, however, is that
it provides no guarantee that packets will arrive in order, or even at all. Higher-level
protocols built on top of UDP may, of course, provide handshaking and
acknowledgments.

A useful analogy for understanding the difference between TCP and UDP is the
difference between a telephone call and posted letters. The telephone call is not
active until the caller "rings" the receiver and the receiver picks up. On the other
hand, when you send a letter, the post office starts delivery without any assurance
the recipient exists, nor any strong guarantee about how long delivery will take. The
recipient may receive various letters in a different order than they were sent, and the

developerWorks® ibm.com/developerWorks

Using UDP
Page 4 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

sender may receive mail interspersed in time with those she sends. Unlike with the
postal service (ideally, anyway), undeliverable mail always goes to the dead letter
office, and is not returned to sender.

Peers, ports, names, and addresses

Beyond the protocol, TCP or UDP, there are two things a peer (a client or server)
needs to know about the machine it communicates with: an IP address and a port.
An IP address is a 32-bit data value, usually represented for humans in "dotted
quad" notation, such as 64.41.64.172. A port is a 16-bit data value, usually simply
represented as a number less than 65536, most often one in the tens or hundreds
range. An IP address gets a packet to a machine; a port lets the machine decide
which process or service (if any) to direct it to. That is a slight simplification, but the
idea is correct.

The above description is almost right, but it misses something. Most of the time
when humans think about an Internet host (peer), we do not remember a number
like 64.41.64.172, but instead a name like gnosis.cx. Part 1 of this tutorial
demonstrated the use of DNS and local lookups to find IP addresses from domain
names.

Section 3. Writing UDP applications (in Python)

The steps in writing a socket application

As in Part 1 of this tutorial, the examples for both clients and servers will use one of
the simplest possible applications: one that sends data and receives the exact same
thing back. In fact, many machines run an "echo server" for debugging purposes;
this is convenient for our initial client, since it can be used before we get to the
server portion (assuming you have a machine with echod running).

I would like to acknowledge the book TCP/IP Sockets in C by Donahoo and Calvert
(see Resources). I have adapted several examples that they present. I recommend
the book -- but admittedly, echo servers and clients will come early in most
presentations of sockets programming.

Readers of the first part of the tutorial have already seen a TCP echo client in detail.

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 22

http://www.ibm.com/developerworks/edu/l-dw-linux-sock-i.html
http://www.ibm.com/developerworks/edu/l-dw-linux-sock-i.html
http://www.ibm.com/legal/copytrade.shtml

So let's jump into a similar client based on UDP instead.

A high-level Python server

We will get to clients and servers in C a bit later. But it is easier to start with far less
verbose versions in Python, so we can see the overall structure. The first thing we
need before we can test a client UDPecho application is to get a server running, for
the client to talk to. Python, in fact, gives us the high-level SocketServer module
that lets us write socket servers with minimal customization needed:

#!/usr/bin/env python
"USAGE: %s <port>"
from SocketServer import DatagramRequestHandler, UDPServer
from sys import argv

class EchoHandler(DatagramRequestHandler):
def handle(self):

print "Client connected:", self.client_address
message = self.rfile.read()
self.wfile.write(message)

if len(argv) != 2:
print __doc__ % argv[0]

else:
UDPServer(('',int(argv[1])), EchoHandler).serve_forever()

The various specialized SocketServer classes all require you to provide an
appropriate .handle() method. But in the case of DatagramRequestHandler,
you get convenient pseudo-files self.rfile and self.wfile to read and write,
respectively, from the connecting client.

A Python UDP echo client

Writing a Python client generally involves starting with the basic socket module.
Fortunately, it is so easy to write the client that there would hardly be any purpose in
using a higher-level starting point. Note, however, that frameworks like Twisted
include base classes for these sorts of tasks, almost as a passing thought. Let's look
at a socket-based UDP echo client:

#!/usr/bin/env python
"USAGE: %s <server> <word> <port>"
from socket import * # import *, but we'll avoid name conflict
from sys import argv, exit
if len(argv) != 4:

print __doc__ % argv[0]
exit(0)

sock = socket(AF_INET, SOCK_DGRAM)
messout = argv[2]
sock.sendto(messout, (argv[1], int(argv[3])))
messin, server = sock.recvfrom(255)
if messin != messout:

developerWorks® ibm.com/developerWorks

Using UDP
Page 6 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

print "Failed to receive identical message"
print "Received:", messin
sock.close()

If you happen to recall the TCP echo client from Part 1, you will notice a few
differences here. The socket created in this case is of type SOCK_DGRAM rather than
SOCK_STREAM. But more interesting is the connectionless nature of UDP. Rather
than make a connection and call the .send() and .recv() methods repeatedly
until the transmission is complete, for UDP we use just one .sendto() and one
.recvfrom() to send and fetch a message (a datagram).

Since there is no connection involved, you need to pass the destination address as
part of the .sendto() call. In Python, the socket object keeps track of the
temporary socket number over which the message actually passes. We will see later
that in C you will need to use this number from a variable returned by sendto().

The client and server in action

Running the server and the client are straightforward. The server is launched with a
port number:

$./UDPechoserver.py 7 &
[1] 23369

The client gets three arguments: server address, string to echo, and the port.
Because Python wraps up more in its standard modules than do roughly equivalent
C libraries, you can specify a named address just as well as an IP address. In C you
would need to perform a lookup yourself, perhaps first testing whether the argument
looked like a dotted quad or a domain name:

$./UDPechoclient.py
USAGE: ./UDPechoclient.py <server> <word> <port>
$./UDPechoclient.py 127.0.0.1 foobar 7
Client connected: ('127.0.0.1', 51776)
Received: foobar
$./UDPechoclient.py localhost foobar 7
Client connected: ('127.0.0.1', 51777)
Received: foobar

There is something else interesting to notice in this client session. Of course, since I
launched the server and client in the same terminal, the output of both are
interspersed. But more interesting is the client_address that is echo'd. Each new
connection establishes a new socket number (they could be reused, but the point is
you do not know in advance). Port 7 is merely used to recognize the request to send
a message, a new ad hoc socket is used for the actual data.

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 22

http://www.ibm.com/developerworks/edu/l-dw-linux-sock-i.html
http://www.ibm.com/legal/copytrade.shtml

A lower-level Python server

It does not take any more lines of code to write a Python UDP server using the
socket module than it did with SocketServer, but the coding style is much more
imperative (and C-like, actually):

#!/usr/bin/env python
"USAGE: %s <server> <word> <port>"
from socket import * # import *, but we'll avoid name conflict
from sys import argv

if len(argv) != 2:
print __doc__ % argv[0]

else:
sock = socket(AF_INET, SOCK_DGRAM)
sock.bind(('',int(argv[1])))
while 1: # Run until cancelled

message, client = sock.recvfrom(256) # <=256 byte datagram
print "Client connected:", client
sock.sendto(message, client)

Usage and behavior are exactly the same as the prior UDPechoserver.py, but we
manage the loop and the client connections ourselves rather than having a class
take care of it for us. As before, ad hoc ports are used to transmit the actual
message -- the client returned from sock.recvfrom() contains the temporary
port number:

$./UDPechoserver2.py 8 &
[2] 23428
$./UDPechoclient.py localhost foobar 8
Client connected: ('127.0.0.1', 51779)
Received: foobar

Section 4. A UDP echo client in C

Client setup

The first few lines of our UDP client are identical to those for the TCP client. Mostly
we just use some includes for socket functions, or other basic I/O functions.
#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>

developerWorks® ibm.com/developerWorks

Using UDP
Page 8 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

#include <unistd.h>
#include <netinet/in.h>

#define BUFFSIZE 255
void Die(char *mess) { perror(mess); exit(1); }

There is not too much to the setup. It is worth noticing that the buffer size we
allocate is much larger than it was in the TCP version (but still finite in size). TCP
can loop through the pending data, sending a bit more over an open socket on each
loop. For this UDP version, we want a buffer that is large enough to hold the entire
message, which we send in a single datagram (it can be smaller than 255, but not
any larger). A small error function is also defined.

Declarations and usage message

At the very start of the main() function, we allocate two sockaddr_in structures, a
few integers to hold string sizes, another int for the socket handle, and a buffer to
hold the returned string. After that, we check that the command-line arguments look
mostly correct.

int main(int argc, char *argv[]) {
int sock;
struct sockaddr_in echoserver;
struct sockaddr_in echoclient;
char buffer[BUFFSIZE];
unsigned int echolen, clientlen;
int received = 0;

if (argc != 4) {
fprintf(stderr, "USAGE: %s <server_ip> <word> <port>\n", argv[0]);
exit(1);

}

A contrast with the Python code comes up already here. For this C client, you must
use a dotted-quad IP address. In Python, all the socket module functions handle
name resolution behind the scenes. If you wanted to do a lookup in the C client, you
would need to program a DNS function -- such as the one presented in the first part
of this tutorial.

In fact, it would not be a terrible idea to check that the IP address passed in as the
server IP address really looks like a dotted-quad address. If you forgetfully pass in a
named address, you will probably receive the somewhat misleading error: "Mismatch
in number of sent bytes: No route to host". Any named address amounts to the same
thing as an unused or reserved IP address (which a simple pattern check could not
rule out, of course).

Create the socket and configure the server structure

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 22

http://www.ibm.com/legal/copytrade.shtml

The arguments to the socket() call decide the type of socket: PF_INET just
means it uses IP (which you always will); SOCK_DGRAM and IPPROTO_UDP go
together for a UDP socket. In preparation for sending the message to echo, we
populate the intended server's structure using command-line arguments.

/* Create the UDP socket */
if ((sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) {

Die("Failed to create socket");
}
/* Construct the server sockaddr_in structure */
memset(&echoserver, 0, sizeof(echoserver)); /* Clear struct */
echoserver.sin_family = AF_INET; /* Internet/IP */
echoserver.sin_addr.s_addr = inet_addr(argv[1]); /* IP address */
echoserver.sin_port = htons(atoi(argv[3])); /* server port */

The value returned in the call to socket() is a socket handle and is similar to a file
handle; specifically, if the socket creation fails, it will return -1 rather than a positive
numbered handle. Support functions inet_addr() and htons() (and atoi())
are used to convert the string arguments into appropriate data structures.

Send the message to the server

For what it does, this UDP client is a bit simpler than was the similar TCP echo client
presented in Part 1 of this tutorial series. As we saw with the Python versions,
sending a message is not based on first establishing a connection. You simply send
it to a specified address using sendto(), rather than with send() on an
established connection. Of course, this requires an extra couple of arguments to
indicate the intended server address.

/* Send the word to the server */
echolen = strlen(argv[2]);
if (sendto(sock, argv[2], echolen, 0,

(struct sockaddr *) &echoserver,
sizeof(echoserver)) != echolen) {

Die("Mismatch in number of sent bytes");
}

The error checking in this call usually establishes that a route to the server exists.
This is the message raised if a named address is used by mistake, but it also occurs
for valid-looking but unreachable IP addresses.

Receive the message back from the server

Receiving the data back works pretty much the same way as it did in the TCP echo
client. The only real change is a substitute call to recvfrom() for the TCP call to
recv().

developerWorks® ibm.com/developerWorks

Using UDP
Page 10 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/edu/l-dw-linux-sock-i.html
http://www.ibm.com/legal/copytrade.shtml

/* Receive the word back from the server */
fprintf(stdout, "Received: ");
clientlen = sizeof(echoclient);
if ((received = recvfrom(sock, buffer, BUFFSIZE, 0,

(struct sockaddr *) &echoclient,
&clientlen)) != echolen) {

Die("Mismatch in number of received bytes");
}
/* Check that client and server are using same socket */
if (echoserver.sin_addr.s_addr != echoclient.sin_addr.s_addr) {

Die("Received a packet from an unexpected server");
}
buffer[received] = '\0'; /* Assure null-terminated string */
fprintf(stdout, buffer);
fprintf(stdout, "\n");
close(sock);
exit(0);

}

The structure echoserver had been configured with an ad hoc port during the call
to sendto(); in turn, the echoclient structure gets similarly filled in with the call
to recvfrom(). This lets us compare the two addresses -- if some other server or
port sends a datagram while we are waiting to receive the echo. We guard at least
minimally against stray datagrams that do not interest us (we might have checked
the .sin_port members also, to be completely certain).

At the end of the process, we print out the datagram that came back, and close the
socket.

Section 5. A UDP echo server in C

Server setup

Even more than with TCP applications, UDP clients and servers are quite similar to
each other. In essence, each consists mainly of some sendto() and recvfrom()
calls mixed together. The main difference for a server is simply that it usually puts its
main body in an indefinite loop to keep serving.

Let's start out with the usual includes and error function:
#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 22

http://www.ibm.com/legal/copytrade.shtml

#define BUFFSIZE 255
void Die(char *mess) { perror(mess); exit(1); }

Declarations and usage message

Again, not much is new in the UDP echo server's declarations and usage message.
We need a socket structure for the server and client, a few variables that will be
used to verify transmission sizes, and, of course, the buffer to read and write the
message.

int main(int argc, char *argv[]) {
int sock;
struct sockaddr_in echoserver;
struct sockaddr_in echoclient;
char buffer[BUFFSIZE];
unsigned int echolen, clientlen, serverlen;
int received = 0;

if (argc != 2) {
fprintf(stderr, "USAGE: %s <port>\n", argv[0]);
exit(1);

}

Create, configure, and bind the server socket

The first real difference between UDP client and server comes in the need to bind
the socket on the server side. We saw this already with the Python example, and the
situation is the same here. The server socket is not the actual socket the message is
transmitted over; rather, it acts as a factory for an ad hoc socket that is configured in
the recvfrom() call we will see soon.

/* Create the UDP socket */
if ((sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) {

Die("Failed to create socket");
}
/* Construct the server sockaddr_in structure */
memset(&echoserver, 0, sizeof(echoserver)); /* Clear struct */
echoserver.sin_family = AF_INET; /* Internet/IP */
echoserver.sin_addr.s_addr = htonl(INADDR_ANY); /* Any IP address */
echoserver.sin_port = htons(atoi(argv[1])); /* server port */

/* Bind the socket */
serverlen = sizeof(echoserver);
if (bind(sock, (struct sockaddr *) &echoserver, serverlen) < 0) {

Die("Failed to bind server socket");
}

Readers will also notice that the echoserver structure is configured a bit
differently. In order to allow connection on any IP address the server hosts, we use
the special constant INADDR_ANY for the member .s_addr.

developerWorks® ibm.com/developerWorks

Using UDP
Page 12 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The receive/send loop

The heavy lifting -- such as it is -- in the UDP sever is its main loop. Basically, we
perpetually wait to receive a message in a recvfrom() call. When this happens,
the echoclient structure is populated with relevant members for the connecting
socket. We then use that structure in the subsequent sendto() call.

/* Run until cancelled */
while (1) {

/* Receive a message from the client */
clientlen = sizeof(echoclient);
if ((received = recvfrom(sock, buffer, BUFFSIZE, 0,

(struct sockaddr *) &echoclient,
&clientlen)) < 0) {

Die("Failed to receive message");
}
fprintf(stderr,

"Client connected: %s\n", inet_ntoa(echoclient.sin_addr));
/* Send the message back to client */
if (sendto(sock, buffer, received, 0,

(struct sockaddr *) &echoclient,
sizeof(echoclient)) != received) {

Die("Mismatch in number of echo'd bytes");
}

}
}

And that's it! We can receive and send messages forever, reporting connections to
the console as we go along. Of course, as we will see in the next section, this
arrangement does only one thing at a time, which might be a problem for a server
handling many clients (probably not for this simple echo server, but something more
complicated might introduce poor latencies).

Section 6. Servers that scale

Complexity in the server's job

The servers we have looked at -- that do nothing but echo a message -- can handle
each client request extremely quickly. But more generally, we might expect servers
to perform potentially lengthy actions like database lookups, accessing remote
resources, or complex computations in order to determine the response for a client.
Our "one thing at a time" model does not scale well to multiple clients.

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 22

http://www.ibm.com/legal/copytrade.shtml

To demonstrate the point, let's look at a slightly modified Python server, one that
takes some time to do its job. And just to make the point that it is processing the
request, we (trivially) modify the message string along the way too:

#!/usr/bin/env python
from socket import *
from sys import argv

def lengthy_action(sock, message, client_addr):
from time import sleep
print "Client connected:", client_addr
sleep(5)
sock.sendto(message.upper(), client_addr)

sock = socket(AF_INET, SOCK_DGRAM)
sock.bind(('',int(argv[1])))
while 1: # Run until cancelled

message, client_addr = sock.recvfrom(256)
lengthy_action(sock, message, client_addr)

Stressing the server

To give the server some work to do, we can modify the client to make multiple
requests (one per thread) that would like to be serviced as quickly as possible:

#!/usr/bin/env python
from socket import *
import sys, time
from thread import start_new_thread, get_ident

start = time.time()
threads = {}
sock = socket(AF_INET, SOCK_DGRAM)

def request(n):
sock.sendto("%s [%d]" % (sys.argv[2],n),

(sys.argv[1], int(sys.argv[3])))
messin, server = sock.recvfrom(255)
print "Received:", messin
del threads[get_ident()]

for n in range(20):
id = start_new_thread(request, (n,))
threads[id] = None
#print id,

while threads: time.sleep(.1)
sock.close()
print "%.2f seconds" % (time.time()-start)

Run against our new "lengthy action" server, the threaded client gets something like
the following (abridged) output; note the time it takes, in particular:

$./UDPechoclient2.py localhost "Hello world" 7
Received: HELLO WORLD [7]
Received: HELLO WORLD [0]
...
Received: HELLO WORLD [18]

developerWorks® ibm.com/developerWorks

Using UDP
Page 14 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Received: HELLO WORLD [2]
103.96 seconds

Against one of the earlier servers, this client will run in a few seconds (but will not
capitalize the returned string, of course); a version without the threading overhead
will be even faster against the earlier servers. Assuming our hypothetical server
process is not purely CPU-bound, we should be able to be much more responsive
than 100+ seconds. Notice also that the threads are not generally serviced in the
same order they are created in.

A threading server

The way we have set up the "lengthy action" server, we guarantee that it takes at
least five seconds to service any given client request. But there is no reason that
multiple threads cannot be running during those same five seconds. Again, clearly a
CPU-bound process is not going to be faster through threading, but more often in a
real server, those five seconds are spent doing something like a database query
against another machine. In other words, we should be able to parallelize serving
the several client threads.

An obvious approach here is to thread the server, just as the client is threaded:
#!/usr/bin/env python
from socket import *
from sys import argv
from thread import start_new_thread
...definition of 'lengthy_action()' unchanged...
sock = socket(AF_INET, SOCK_DGRAM)
sock.bind(('',int(argv[1])))
while 1: # Run until cancelled

message, client_addr = sock.recvfrom(256)
start_new_thread(lengthy_action, (sock, message, client_addr))

On my test system (using localhost, as before), this brings the client runtime down to
about 9 seconds -- 5 of those spent in the call to sleep(), the rest with threading
and connection overhead (roughly).

A forking server

On UNIX-like systems, forking is even easier than threading. Processes are
nominally "heavier" than threads, but on popular Posix systems like Linux, FreeBSD,
and Darwin, process creation is still quite efficient.

In Python, a forking version of our "lengthy action" server can be as simple as:
#!/usr/bin/env python
from socket import *

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 22

http://www.ibm.com/legal/copytrade.shtml

from sys import argv, exit
from os import fork

def lengthy_action(sock, message, client_addr):
from time import sleep
print "Client connected:", client_addr
sleep(5)
sock.sendto(message.upper(), client_addr)
exit()

sock = socket(AF_INET, SOCK_DGRAM)
sock.bind(('',int(argv[1])))
while 1: # Run until cancelled

message, client_addr = sock.recvfrom(256)
if fork():

lengthy_action(sock, message, client_addr)

On my test system, I actually found this forking version a couple of seconds faster
than the threaded server. As a slight difference in behavior, after servicing a
collection of client threads, the main process in the while loop winds up as a
background process, even if the server was launched in the foreground. In the usual
case where you launch the server in the background, the difference is irrelevant,
though.

An asynchronous server

Another technique called asynchronous or non-blocking sockets is potentially even
more efficient than are threading or forking approaches. The concept behind
asynchronous programming is to keep execution within a single thread, but poll each
open socket to see if it has more data waiting to be read or written. However,
non-blocking sockets are really only useful for I/O-bound processes. The simulation
of a CPU-bound server that we created using sleep() sort of misses the point.
Moreover, non-blocking sockets make a bit more sense for TCP connections than
for UDP ones, since the former retain an open connection that may still have
pending data.

In overview, the structure of an asynchronous peer (client or server) is a polling loop
-- usually using the function select() or some higher-level wrapper to it such as
Python's asyncore. At each pass through the loop, you check all the open sockets
to see which ones are currently readable and which ones are currently writeable.
This is quick to check, and you can simply ignore any sockets that are not currently
ready for I/O actions. This style of socket programming avoids any overhead
associated with threads or processes.

A client with slow socket connections

To simulate a low-bandwidth connection, we can create a client that introduces

developerWorks® ibm.com/developerWorks

Using UDP
Page 16 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

artificial delays in sending data, and dribbles out its message byte by byte. To
simulate many such connections, we thread multiple connections (each slow).
Generally, this client is similar to the UDPechoclient2.py we saw above, but in a
TCP version:

#!/usr/bin/env python
from socket import *
import sys, time
from thread import start_new_thread, get_ident

threads = {}
start = time.time()

def request(n, mess):
sock = socket(AF_INET, SOCK_STREAM)
sock.connect((sys.argv[1], int(sys.argv[3])))
messlen, received = len(mess), 0
for c in mess:

sock.send(c)
time.sleep(.1)

data = ""
while received < messlen:

data += sock.recv(1)
time.sleep(.1)
received += 1

sock.close()
print "Received:", data
del threads[get_ident()]

for n in range(20):
message = "%s [%d]" % (sys.argv[2], n)
id = start_new_thread(request, (n, message))
threads[id] = None

while threads:
time.sleep(.2)

print "%.2f seconds" % (time.time()-start)

We need a "traditional" TCP server to test our slow client against. In essence, the
following is identical to the second (low-level) Python server presented in Part 1 of
this tutorial. The only real difference is that the maximum connections are increased
to 20.

#!/usr/bin/env python
from socket import *
import sys

def handleClient(sock):
data = sock.recv(32)
while data:

sock.sendall(data)
data = sock.recv(32)

newsock.close()

if __name__=='__main__':
sock = socket(AF_INET, SOCK_STREAM)
sock.bind(('',int(sys.argv[1])))
sock.listen(20)
while 1: # Run until cancelled

newsock, client_addr = sock.accept()
print "Client connected:", client_addr
handleClient(newsock)

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 22

http://www.ibm.com/developerworks/edu/l-dw-linux-sock-i.html
http://www.ibm.com/legal/copytrade.shtml

A client with slow socket connections, concluded

Let's try running the "slow connection" client against the "one thing at a time" server
(abridged output, as before):

$./echoclient2.py localhost "Hello world" 7
Received: Hello world [0]
Received: Hello world [1]
Received: Hello world [5]
...
Received: Hello world [16]
37.07 seconds

As with the UDP stress-test client, the threads do not necessarily connect in the
order they are launched. Most significantly, however, is to notice that the time it
takes to serve all 20 threads is basically the same as the sum of all the introduced
delays in writing bytes over the sockets. Nothing is parallelized here, since we need
to wait for each individual socket connection to complete.

Using select() to multiplex sockets

Now we are ready to see how the function select() can be used to bypass I/O
delays of the sort we just introduced (or of the kind that arise "in the wild" because of
genuinely slow connections). Previously, the general concept was discussed; let's
look at the specific code:

#!/usr/bin/env python
from socket import *
import sys, time
from select import select

if __name__=='__main__':
while 1:

sock = socket(AF_INET, SOCK_STREAM)
sock.bind(('',int(sys.argv[1])))
print "Ready..."
data = {}
sock.listen(20)
for _ in range(20):

newsock, client_addr = sock.accept()
print "Client connected:", client_addr
data[newsock] = ""

last_activity = time.time()
while 1:

read, write, err = select(data.keys(), data.keys(), [])
if time.time() - last_activity > 5:

for s in read: s.shutdown(2)
break

for s in read:
data[s] = s.recv(32)

for s in write:

developerWorks® ibm.com/developerWorks

Using UDP
Page 18 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

if data[s]:
last_activity = time.time()
s.send(data[s])
data[s] = ""

This server is fragile in that it always waits for exactly 20 client connections before it
select()'s among them. But we still demonstrate the basic concept of using a tight
polling loop, and reading/writing only when data is available on a particular socket.
The return value of select() is a tuple of lists of sockets that are readable,
writeable, and in error, respectively. Each of these types is handled within the loop,
as needed.

Using this asynchronous server, by the way, lets the "slow connection" client
complete all 20 connections in about 6 seconds, rather than 37 seconds (at least on
my test system).

Scalable servers in C

The examples presented for more scalable servers have all used Python. In truth,
the quality of Python's libraries mean that these will not be significantly slower than
analogous servers written in C. And for this tutorial, relative brevity of presentation is
important.

In presenting the above Python servers, I have stuck to relatively low-level facilities
within Python. Some of the higher-level modules like asyncore or SocketServer
-- or even threading rather than thread -- might provide more "Pythonic"
techniques. These low-level facilities I used, however, remain quite close in structure
to the ways you would program the same things in C. Python's dynamic typing and
concise syntax still save quite a few lines, but a C programmer should be able to use
my examples as outlines for similar C servers.

Section 7. Summary

The server and client presented in this tutorial are simple, but they show everything
essential to writing UDP sockets applications in C and in Python. A more
sophisticated client or server is, at heart, just one that transmits more interesting
data back and forth; the sockets-level code is not much different for these.

The general outlines of performing threading, forking, and asynchronous socket
handling are similarly applicable to more advanced servers. Your servers and clients

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 22

http://www.ibm.com/legal/copytrade.shtml

themselves are likely to do more, but your strategies towards scalability will always
be one of these three approaches (or a combination of them).

developerWorks® ibm.com/developerWorks

Using UDP
Page 20 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Programming Linux sockets, Part 1: Using TCP/IP, the previous tutorial in this
series, shows you how to begin programming with sockets by guiding you
through the creation of an echo server and client, which connect over TCP/IP.

• A good introduction to sockets programming in C is TCP/IP Sockets in C , by
Michael J. Donahoo and Kenneth L. Calvert (Morgan-Kaufmann, 2001).
Examples and more information are available on the book's Author pages.

• The UNIX Systems Support Group document Network Layers explains the
functions of the lower network layers.

• Learn more abut Berkeley sockets and the TCP/IP protocol suite at Wikipedia.

• Code examples in this tutorial are in Python and C but translate well to other
languages.

• In this tutorial we are working with IPv4, but IPv6 will eventually replace it. Learn
more about it, again at Wikipedia.

• Python frameworks like Twisted offer base classes for things like socket
programming.

• David has also written a series on "Network programming with Twisted"
(developerWorks, June 2003).

• Find more tutorials for Linux developers in the developerWorks Linux one.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Download IBM trial software directly from developerWorks.

Discuss

• Read developerWorks blogs, and get involved in the developerWorks community.

About the author

David Mertz, Ph.D.

ibm.com/developerWorks developerWorks®

Using UDP
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 22

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-sock-i.html
http://books.elsevier.com/us//mk/us/subindex.asp?maintarget=&isbn=1558608265
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/
http://www.ussg.iu.edu/usail/network/nfs/layers.html
http://en.wikipedia.org/wiki/Berkely_sockets
http://en.wikipedia.org/wiki/TCP/IP
http://www.python.org/
http://www.gnu.org/software/libc/libc.html
http://en.wikipedia.org/wiki/IPv6
http://twistedmatrix.com/projects/core/
http://www.ibm.com/developerworks/linux/library/l-twist1.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?type_by=Tutorials&S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=TUT
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

David Mertz has been writing the developerWorks columns Charming Python and XML
Matters since 2000. Check out his book Text Processing in Python . For more on
David, see his personal Web page.

developerWorks® ibm.com/developerWorks

Using UDP
Page 22 of 22 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://gnosis.cx/TPiP/
http://gnosis.cx/dW/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Prerequisites

	Understanding network layers and protocols
	What is a network?
	What do sockets do?
	IP, TCP, and UDP
	Peers, ports, names, and addresses

	Writing UDP applications (in Python)
	The steps in writing a socket application
	A high-level Python server
	A Python UDP echo client
	The client and server in action
	A lower-level Python server

	A UDP echo client in C
	Client setup
	Declarations and usage message
	Create the socket and configure the server structure
	Send the message to the server
	Receive the message back from the server

	A UDP echo server in C
	Server setup
	Declarations and usage message
	Create, configure, and bind the server socket
	The receive/send loop

	Servers that scale
	Complexity in the server's job
	Stressing the server
	A threading server
	A forking server
	An asynchronous server
	A client with slow socket connections
	A client with slow socket connections, concluded
	Using select() to multiplex sockets
	Scalable servers in C

	Summary
	Resources
	About the author

