CHAPTER 11

Connecting to Processes Near
and Far
Servers and Sockets

& e I

—

OBJECTIVES
Ideas and Skills

The client/server model

Using pipes for two-way communication
Coroutines

The file/process similarity

Sockets: Why, What, How?

Network services

Using sockets for client/server programs

System Calls and Functions

fdopen
popen
socket
bind
listen
accept

connect

348

11.2 Introductory Metaphor: A Beverage Interface 349
PRODUCTS AND SERVICES

Unix programmers use pipes to create digital assembly lines, the way manufacturers
use conveyor belts to carry products from one worker to the next.

Not all businesses are factories, and some forms of communication are bidirec-
tional. Consider dry cleaners, lawyers, and veterinarians. You drop off clothes at the
cleaner, you send your pet to the vet, you mail documents to a lawyer, and, unlike a
worker in the automobile factory who passes the car to the next worker, you expect to
get something back. In these examples, we consider work done by the other person to
be a service, and we consider ourselves clients for that service.

What does this have to do with Unix? Unix pipes carry data from one process to
another. Processes and pipes can simulate not only an assembly line, producing fin-
ished goods, but also a service industry. In this chapter, we focus on interprocess data
flow as the basis for client/server programming.

INTRODUCTORY METAPHOR: A BEVERAGE INTERFACE

Programs consume information. Some people consume soft drinks. Imagine a vending
machine that dispenses cups of carbonated beverage, as shown in Figure 11.1. You in-
sert a coin, push a button, and beverage emerges. What happens inside the dispenser?
There might be a tank of carbonated water and a separate tank of drink concentrate,
and pressing the button would activate a process to mix the raw materials and deliver
dynamically generated beverage. On the other hand, there could be a single bottle of
premixed beverage attached to a simple pump, and pressing the button simply trans-
fers beverage to the cup.

/ mixer , pump

/ /
L, r
Bl B

mixed on demand delivered from storage

FIGURE 11.1

Dynamically generated or static beverage?

Unix, like the soda dispenser, presents one interface, even though data come
from different types of sources (see Figure 11.2):

350

11.3

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

~—— 1] f Four types of

data sources

L [T T T T T T 1 1. Disk files
2. Devices

3. Pipes
3 4. Sockets

One I/0

interface
1 i 2
4

FIGURE 11.2

One interface, different sources.

(1,2) Disk/Device Files

Use open to connect, use read and write to transfer data.
(3) Pipes

Use pipe to create, use fork to share, and use read and write to transfer data.
(4) Sockets

Use socket, listen, and connect to connect, use read and write to transfer data.

Unix encapsulates in the file abstraction both the source and the means of pro-
duction of data. In Chapter 2, we looked at reading data from files. In Chapter 5, we ex-
tended the idea of a file to include devices. Now we see how reading data from
processes is similar to reading data from files.

be: A UNIX CALCULATOR

Every version of Unix includes a version of the bc calculator. be has variables, loops,
and functions, and, as we saw in Chapter 1, bc handles very long numbers:

$ bc

174123
22142024630120207359320573764236957523345603216987331732240497016947\
29282299663749675090635587202539117092799463206393818799003722068558\
0536286573569713

The trailing backslashes indicate continuation.

But be Is Not a Calculator

A calculator program parses its input, performs the operations, and then prints the re-
sult. Most versions of be parse the input but do not perform the operations.! Instead, be

"The GNU version of bc does the math, too.

11.3 Dbc: A Unix Calculator 351

runs the dc calculator program and communicates with it through pipes. dc is a stack-
based calculator requiring the user to enter both values before specifying the opera-
tion. For example, the user writes 2 2 + to add 2 and 2.

2 + 2 22 +p
> ———- r
b dc
€ L FIGURE 11.3
~C—— ~C——
7 4 4 be and de as coroutines.

Figure 11.3 shows how bc processes 2+2. The user types 2+2 then presses the
Enter key. be reads that expression from standard input, parses out the values and the
operation, then sends the sequence of commands “2”, “2”, “+”, and “p” to dc, which
stacks up the two values, applies the plus operation, and then prints to standard output
the value on the top of the stack.

be reads the result through the pipe it attached to the standard output of dc and
then forwards that message to the user. bc does not even keep variables; if the user
types x=2+2, then be tells dc to do the math and store the result in register x in dc. The
command bc -c shows what the parser sends to the calculator. Even the GNU version
of be converts user input into stack-based expressions.

Ideas from bc

1. Client/Server Model

The be/dc pair of programs is an example of the client/server model of program
design. dc provides a service: calculation. dc has a well-defined language, reverse
Polish notation, and the two processes communicate through stdin and stdout.
be provides a user interface and uses the services dc provides. be is called a client
of dc.

These two components are completely separate programs. You could replace the
version of dc, and bc would still work. Similarly, you could create a nice graphical
interface instead of bc and still use dc as the calculation engine. You could even
replace dc with a program that parses the dc language and then passes the work
to yet another program, perhaps on another, faster computer.

2. Bidirectional Communication

Unlike the assembly-line model of data processing, the client/server model often
requires one process to communicate with both the standard input and the stan-
dard output of another process. Traditional Unix pipes carry data in one direction
only.> Figure 11.3 shows two pipes from bc to dc. The top pipe carries calculator
commands to the standard input of dc, and the bottom pipe carries the standard
output of dc back to be.

?Some pipes can carry data in two directions. (See exercise 11.11.)

352 Chapt
3.
11.3.1 Cod

er 11 Connecting to Processes Near and Far: Servers and Sockets

Persistent Service

Unlike the shell we wrote, in which each user command creates a new process, the
bc program keeps a single dc process running. be uses that same instance of dc
over and over again by sending it commands in response to each line of user input.
This relationship differs from the standard call-return mechanism we use in func-
tion calls.

The bc/dc pair are called coroutines to distinguish them from subroutines. Both
processes continue to run, but control passes from one to the other as each com-
pletes its part of the job. be has the job of parsing and printing, and dc has the job
of computing.

ing bc: pipe, fork, dup, exec

FIGURE 11.4

be, de, and kernel.

Figure 11.4 shows the data connections in the kernel that join the user to bc and be to
dc. We use the figure as a guide for building the code as follows:

(a)
(b)
(c)
(d)

and

/

Create two pipes.
Create a process to run de.
In the new process, redirect stdin and stdout to the pipes, then exec dc.

In the parent, read and parse user input, write commands to dc, read response
from dc, and send response to user.

Here is code for tinybc.c, a simple version of be that uses sscanf to parse input

speaks with dc through two pipes:

bl tinybc.c * a tiny calculator that uses dc to do its work
** * demonstrates bidirectional pipes

el * input looks like number op number which

*x tinybc converts into number \n number \n op \n p

**

**

* %

* *

* %

*

* %

**

* %k

* K

* %

**

* %

* %

**

* K

* %

**

* %

11.3 Dbc: A Unix Calculator 353

and passes result back to stdout

e —— + B +
stdin >0 >== pipetodc ====> |
| tinybc | | dec - |
stdout <1 <== pipefromdc ==< |
e —— + e ——— +

* program outline
a. get two pipes
b. fork (get another process)
c. in the dc-to-be process,
connect stdin and out to pipes
then execl dc
d. in the tinybc-process, no plumbing to do
just talk to human via normal i/o
and send stuff via pipe
e. then close pipe and dc dies
* note: does not handle multiline answers

**/
#include <stdio.h>
#define oops (m, x) { perror (m); exit(x); }
main ()
{
int pid, todc[2], fromdc([2]; /* equipment */
/* make two pipes */
if (pipe(todc) == -1 || pipe(fromdc) == -1)
oops ("pipe failed", 1);
/* get a process for user interface */
if ((pid = fork()) == -1)
oops ("cannot fork", 2);
if (pid == 0) /* child is dc */
be_dc (todc, fromdc) ;
else {
be_bc (todc, fromdc) ; /* parent is ui */
wait (NULL) ; /* wait for child */
}
}
be dc(int in[2], int out[2])
/*
* set up stdin and stdout, then execl dc
*/
{

/* setup stdin from pipein */

if (dup2(in[0],0) == -1) /* copy read end to 0 */
oops ("dc: cannot redirect stdin",3);

354 Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

close(in[0]) ; /* moved to fd 0 */
close(in[1]); /* won't write here */

/* setup stdout to pipeout */

if (dup2(out[l], 1) == -1) /* dupe write end to 1 */
oops ("dc: cannot redirect stdout",4);

close(out[l]); /* moved to fd 1 */

close(out[0]) ; /* won't read from here */

/* now execl dc with the - option */
execlp("dc", "dC", ||_u, NULL);
oops ("Cannot run dc", 5);

}
be_bc(int todc[2], int fromdc[2])
/*
* read from stdin and convert into to RPN, send down pipe
* then read from other pipe and print to user
* Uses fdopen() to convert a file descriptor to a stream
*/
{
int numl, num2;
char operation[BUFSIZ], message[BUFSIZ], *fgets();

FILE *fpout, *fpin, *fdopen() ;

/* setup */

close(todc[0]) ; /* won't read from pipe to dc */
close(fromdc[1]) ; /* won't write to pipe from dc */
fpout = fdopen(todc[l1], "w" o) ; /* convert file desc- */
fpin = fdopen(fromdc[0], "r"); /* riptors to streams */
if (fpout == NULL || fpin == NULL)

fatal ("Error converting pipes to streams");

/* main loop */
while (printf("tinybc: "), fgets (message,BUFSIZ,stdin) != NULL) {

/* parse input */
if (sscanf (message, "$d%[-+*/"]1%d", &numl, operation,
&num2) !=3) {
printf ("syntax error\n") ;
continue;

}

if (fprintf(fpout , "%d\n%d\n%c\np\n", numl, num2,
*operation) == EOF)
fatal ("Error writing") ;
fflush(fpout);
if (fgets(message, BUFSIZ, fpin) == NULL)
break;

printf ("%d %c %d = %s", numl, *operation , num2, message) ;
}
fclose (fpout) ; /* close pipe */

11.3.2

11.3.3

11.3 Dbc: A Unix Calculator 355

fclose (fpin) ; /* dc will see EOF */
}

fatal(char mess[])

{
fprintf (stderr, "Error: %$s\n", mess);
exit(1l);

Here is tinybc in action:

$ cc tinybc.c -o tinybc ; ./tinybc
tinybc: 2+2

2+ 2 =14

tinybc: 5545

55 ~ 5 = 503284375

tinybc:

Look at this output carefully and identify which parts come from which programs.
tinybc generates the prompt and the restatement of the arithmetic expression. The re-
sult of the computation is a string generated by dc; tinybc only reads that string from
the pipe and includes it in the output.

Remarks on Coroutines

What other Unix tools can be used as coroutines? Can the sort utility be used as a
coroutine for a program? No. sort reads all the data until end of file before it can gener-
ate output. The only way to send end of file through a pipe is to close the writing end.
Once you close the writing end, though, you cannot send another lot of data to be sorted.

dc, on the other hand, processes data and commands line by line. Interaction with
dc is simple and predictable. When you ask dc to print a value, you get back one line of
text. When you tell dc to push a value, you get no response.

For a program to be part of a client-server coroutine system, the program must
have a clear way of indicating the end of a message, and the program must use simple,
predictable requests and replies.

fdopen: Making File Descriptors Look like Files

In tinybc.c we introduce the library function fdopen. fdopen works like fopen, return-
ing a FILE *,but takes a file descriptor, not a filename, as an argument.

Use fopen to open something with a filename. fopen opens device files as well as
regular disk files. Use fdopen when you have a file descriptor but no filename, as in the
case of a pipe, and want to convert that connection into a FILE * so you can use stan-
dard, buffered I/O operations. Notice how tinybc.c uses fprintf and fgets to send
data through the pipes to dc.

Using fdopen makes a remote process feel even more like a file. In the next sec-
tion, we examine popen, a function that, by encapsulating calls to pipe, fork, dup, and
exec, completes the illusion that programs and files are pretty much the same thing.

356

1.4

11.4.1

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

popen: MAKING PROCESSES LOOK LIKE FILES

In this section, we continue to study how a program can obtain services by connecting
to another process. We examine the popen library function. We see what popen does
and how popen works, and then we write our own version.

What popen Does

fopen opens a buffered connection to a file:

FILE *fp; /* a pointer to a struct */

fp = fopen("filel", "r"); /* args are filename, connection type */
c = getc(fp); /* read char by char */

fgets (buf, len, fp); /* line by line */

fscanf (fp, "8d%d%s", &%, &y, X) ; /* token by token */

fclose(fp) ; /* close when done */

fopen takes two string arguments: the name of the file and the type of connection (e.g.,

r”,“w”,“a”, ...).popen looks and works very much like fopen. popen opens a buffered
connection to a process:

FILE *fp; /* same type of struct */

fp = popen("ls", "r"); /* args are program name, connection type */
fgets (buf, len, fp); /* exactly the same functions */
pclose(fp) ; /* close when done */

Figure 11.5 shows similarities between popen and fopen. Both functions use the same
syntax, and both functions return the same type of value. The first argument to popen is
the name of the command to open; it can be any shell command. The second argument

€699

can be either “r” or “w”, but never “a”.

i P

N

popen("ls", "r")
! y FIGURE 11.5

fopen("file", "r")

fopen and popen.

popen examples
The following program, in which the who | sort command is a source of data, uses popen
to obtain a sorted list of current users:

/* popendemo.c

* demonstrates how to open a program for standard i/o

* important points:

* 1. popen() returns a FILE *, just like fopen()

11.4.2

11.4 popen: Making Processes Look like Files 357

* 2. the FILE * it returns can be read/written
* with all the standard functions
* 3. you need to use pclose() when done
*/
#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE *fp;
char buf[1007];
int i=0;
fp = popen("who|sort", "r"); /* open the command */
while (fgets(buf, 100, fp) != NULL) /* read from command */
printf ("%$3d %s", i++, buf); /* print data */
pclose(fp); /* IMPORTANT! */
return 0;

This second example uses popen to connect to the mail program and notify some users
of system trouble:

/* popen_ex3.c

* shows how to use popen to write to a process that
* reads from stdin. This program writes email to
* two users. Note how easy it is to use fprintf
* to format the data to send.
*/
#include <stdio.h>
main ()
{
FILE *fp;

fp = popen("mail admin backup", "w");
fprintf(fp, "Error with backup!!\n");
pclose(fp);

pclose is Required

When you are done reading from or writing to the connection created by popen, use
pclose, not fclose. A process needs to be waited for, or it becomes a zombie. pclose
calls wait.

Writing popen: Using £fdopen

How does popen work, and how do we write it? popen runs a program and returns a
connection to the standard input or standard output of that program.

358

Chapter 11

Connecting to Processes Near and Far: Servers and Sockets

We need a new process to run the program, so we use fork. We need a connection
to that process, so we use pipe. We need to make a file descriptor into a buffered
stream, so we use fdopen. Finally, we need to be able to run any shell command in that
process, SO we use exec, but what do we execute?. The only program that can run any
shell command is the shell itself: /bin/sh. Conveniently, sh supports a -c option that
tells the shell to run a command and then exit. For example,

sh -c "who|sort"

tells sh to run the single command line who|sort. (See also Figure 11.6.)
We combine pipe, fork, dup2, and exec as shown in this flowchart:

pipe (p)
fork ()
!

t - - t -———+
close(pl[l]); close(p[0]);
fp = fdopen(p[0],"r") dup (p[1],1);
return fp; close(pl1l]);

execl ("/bin/sh","sh","-c",cmd, NULL) ;

popen("ls",

nypn

—

sh -c "l1ls"

[

buffer

\ file descriptors

\

FIGURE 11.6

— Reading from a shell command.

An implementation of that flowchart is popen. c:

/* popen.c -
FILE *popen(char *command, char *mode)

*

*

* % % oF

*/

#include
#include

#define READ
#define WRITE

a version of the Unix popen() library function

command is a regular shell command

mode is "r" or "w"

returns a stream attached to the command, or NULL
execls "sh" "-c" command

todo: what about signal handling for child process?

<stdio.h>
<signal.h>
0

1

FILE *popen (const char *command, const char *mode)

{

int

pfpl2], pid; /* the pipe and the process

*/

11.4.3

11.4 popen: Making Processes Look like Files 359

FILE *fdopen (), *fp; /* fdopen makes a fd a stream */
int parent_end, child _end; /* of pipe */
if (*mode == 'r'){ /* figure out direction */

parent_end = READ;

child_end = WRITE ;
} else if (*mode == 'w'){

parent_end = WRITE;

child_end = READ ;
} else return NULL ;

if (pipe(pfp) == -1) /* get a pipe */
return NULL;

if ((pid = fork()) == -1){ /* and a process */
close (pfpl0]); /* or dispose of pipe */
close(pfpll]);

return NULL;

[* mmmmmm e parent code here —----------———————- */
/* need to close one end and fdopen other end */

if (pid > 0){

if (close(pfplchild end]) == -1)
return NULL;
return fdopen(pfplparent_end] , mode); /* same mode */
}
[* e child code here —————--------------— */
/* need to redirect stdin or stdout then exec the cmd */
if (close(pfplparent_end]) == -1) /* close the other end */
exit (1) ; /* do NOT return */
if (dup2 (pfplchild_end], child_end) == -1)
exit (1) ;
if (close(pfplchild_end]) == -1) /* done with this one */
exit(1l);

/* all set to run cmd */
execl("/bin/sh", "sh", "-c", command, NULL);
exit (1) ;

This version of popen does not do anything about signals. Is that a problem?
Access to Data: Files, APIs, and Servers

fopen gets data from a file, and popen gets data from a process. Let us focus on the gen-
eral question of getting data and compare three methods. As an example, we compare
three methods for getting the list of people logged on to a system.

Method 1: Getting Data from Files You can get data by reading from a file. In
Chapter 2, we wrote a version of who that reads the list of current users from the utmp file.

360

11.5

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

File-based information services are not perfect. Client programs rely on a particular
file format and specific member names in structures. The lines

/* Backwards compatibility hacks. */
#define ut_name ut_user

in the Linux header file for the utmp structure show what happens.

Method 2: Getting Data from Functions You can get data by calling a function.
A library function hides data formats and file locations behind a standard function in-
terface. Unix provides a function interface to the utmp file. The manual page for
getutent describes functions that read the utmp database. The underlying storage
structure may change, but programs that use the interface still work.

Application programming interface (API)-based information services are not al-
ways the right solution, either. There are two methods for using system library functions.
A program might use static linking and include the actual function code. Those functions
may use filenames or file formats that are no longer correct. On the other hand, a pro-
gram might call functions in shared libraries, but these libraries are not always installed
on a system, or the version on a system may not match the version the program needs.

Method 3: Getting Data from Processes A third method is to get data by read-
ing from a process. The bc/dc and popen examples showed how to create a connection
to another process. A program that wants the list of users can call popen to connect to
the who program. The who command, not your program, is responsible for knowing the
correct filename and file format and for using the appropriate libraries.

Calling separate programs for data provides other benefits. Server programs can
be written in any language: shell scripts, compiled C code, Java, Perl. The most dramat-
ic benefit of implementing system services as separate programs is that the client pro-
gram can run on one machine and the server program can run on a different machine.
All we need is some way of connecting to a process on a different computer.

SOCKETS: CONNECTING TO REMOTE PROCESSES

Pipes allow processes to send data to other processes as easily as they send data to files,
but pipes have two significant limitations. A pipe is created in one process and is shared
by calling fork. Therefore, pipes can only connect related processes, and pipes can only
connect processes on the same computer. Unix provides another method of inter-
process communication—sockets:

process — | T T 11 [process

=— — socket

socket

—F - |

network connection

FIGURE 11.7

Connecting to a remote process.

11.5.1

11.5 Sockets: Connecting to Remote Processes 361

Sockets allow processes to create pipelike connections to unrelated processes
and even to processes on other computers. (See Figure 11.7.) In this section, we study
the basic ideas of sockets and see how to use sockets to connect clients and servers on
different computers. The idea is as simple as calling a telephone number to get the time
of day.

An Analogy: “At the Tone, the Time Will Be...”

Many cities have a time telephone number. You dial that number, and the machine that
picks up the call tells you the time in that city. How does it work? What if you wanted
to set up your own time service? You could use the low-tech solution depicted in
Figure 11.8. In the figure, that’s you on the right in the office. You are the server pro-
viding the time service. You put a clock on the wall. The steps you follow to set up your
time service match exactly the steps a Unix program follows to set up a socket-based
service. Therefore, we describe these steps carefully.

[te b [k
. ™~ A telephone number
line | identifies this line.
\ line —_—
client: server:
sets up service
finds a phone waits for a call €=
calls time number e e eeccccccccccccccccccs < accepts a call |
receives data g sends the time
hangs up hangs up —_—
FIGURE 11.8

A time service.

Setting Up and Operating the Service

How do you set up and operate a time service once you buy and install your clock?

Serting Up the Service Setting up your service consists of three steps:

1. Get a phone line

First, you need to have a line run from the telephone network to a jack on the
wall by your desk. This wire and the jack allow you to connect to the network so
that calls can be routed to your desk. In fancier language, the jack is an endpoint
of communication. The next time you have a phone line installed in your home,
tell the company or electrician that you need an endpoint of communication.

362

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

2.

Get a phone number for that line

Clients need a number to call to reach your endpoint of communication. The tele-
phone network identifies each wall jack with a telephone number. For the pur-
poses of this analogy, it is important to imagine that you are in a large business
that offers several services in addition to your time service. Therefore, your jack is
identified by a telephone number and an extension number.

For example, your number might be 617-999-1234, extension 8080. The tele-
phone number identifies the building that contains your office, and the extension
(8080) identifies your particular telephone in that building. Got that part? One
number for the building, a second number for your service. This is important.

3. Arrange for incoming calls

You may have used pay telephones marked no incoming calls. Your service does
not want that type of telephone. You tell the telephone network your line should
accept incoming calls. You might set up a queue for incoming calls. You could
have a message that tells callers how important their calls are to you and then
plays music. The queue idea applies to sockets, the music does not.

Operating the Service Operating the time service consists of a loop with the fol-

lowing three steps:

4.

Wait for a call

Sit there doing nothing until a call comes in. In technical terms, you block on a
call. When a call arrives, you unblock and accept the call.

Provide the service

In your case, you look at the clock, then you send that number down the wire by
speaking.

Hang up

Your work is done for this call, so you hang up.

Those six steps, three steps of setup and three steps per call, are the details of run-

ning a time service over a telephone network.

Using the Service

How does a client use your service? A client follows these four steps:

1.

Get a phone line

The client also needs an endpoint of communication. The client orders a phone line
from the telephone network.

Connect to your number

The client now uses the line to request a connection through the telephone net-
work to your line. The client connects to the business number and extension that
identifies your service. The combination of business number and extension is called
the network address of your service. In technical terms, the telephone number of

11.5 Sockets: Connecting to Remote Processes 363

the business is the host address, and your extension is the port number or just port.
In the preceding example, the host address is 617-999-1234, and the port is 8080.

3. Use the service

The two endpoints of communication (the client’s and the server’s) are now con-
nected. Either party may send data through this connection to the other endpoint.
In the case of a time service, the server sends data through the connection, and the
client receives the information. A more complicated service, such as a catalog-
order line, requires a more complicated interaction between client and server. We
explore more complex services later.

4. Hang up
The interaction is complete. The client hangs up.

Important Concepts

The time-server example includes four concepts we use in socket programming:

client and server

We discussed these ideas several times. The server is the program that provides a ser-
vice. A server, in Unix terms, is a program, not a computer. Typical names for a com-
puter are computer, host, system, machine, and box. A server process waits for a request,
processes the request, then loops back to take the next request. A client process, on the
other hand, does not loop. A client makes a connection, exchanges some data with the
server, and then continues.

hostname and port

A server on the Internet is a process running on some computer. The computer is
called the host. Machines often are assigned names like sales.xyzcorp.com; this is called
the hostname of the machine. The server has a port number on that host. The combina-
tion of host and port identifies a server.

address family

Your time service has a telephone number. It might also have a street address and zip
code. It also has a longitude and latitude, another set of numbers. Each of these sets of
numbers is an address for your service. It would not work, though, to use your longi-
tude and latitude as telephone number and extension.

Each of these addresses belongs to an address family. The telephone number and ex-
tension have a meaning inside the telephone-network address family, which we could
symbolize as AF_PHONE. Similarly, the longitude and latitude make sense in the global-
coordinate-system address family, which we could symbolize as AF_GLOBAL.

protocol

A protocol is the rules of interaction between the client and the server. In the time ser-
vice, the protocol is simple: the client calls, the server answers, the server states the time,
and the server hangs up.

364

11.5.2

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

What if you ran a directory-assistance service instead? The protocol would be a little
more complicated. You, the server, would answer and send an initial greeting
(“Phoneco directory assistance. What city?”). The client would respond with the name
of a city. The server then asks for a name (“What listing?”’). The client responds with the
name of a person or business. The server then sends back the telephone number or a
message that no such listing exists in that city. Some directory-assistance servers will
offer, for a fee, to dial the number for you. That exchange of messages follows the
directory-assistance protocol, known as DAP to readers of this paragraph.

Every client/server system must define a protocol.

Internet Time, DAP, and Weather Servers

The dial-the-time and directory-assistance server examples are more than pedagogical
metaphors; they have exact equivalents on the Internet. Try this:

S telnet mit.edu 13

Trying 18.7.21.69...

Connected to mit.edu.

Escape character is '~]'.

Mon Aug 13 22:36:44 2001
Connection closed by foreign host.

$

Somewhere on a machine at MIT is a time server waiting to take calls on port 13. When
we call that server using the telnet program, the server picks up the call, checks the
clock on the system, sends the current time back over the wire, and then hangs up. Ex-
actly like your dial-the-time service. It even uses the same simple protocol. Try con-
necting to port 13 on other hosts. You can find out what time it is on machines around
the world.

The telnet program is like a telephone. It makes a connection to a port on a re-
mote host, and then it transfers bytes from your keyboard to the connection and from
the connection to your display.

What about directory assistance? The directory-assistance server usually listens
for calls on port 79. For example, we might have

S telnet princeton.edu 79
Trying 128.112.128.81...
Connected to princeton.edu.
Escape character is '~]'.
smith

alias: 000012345
name: Waldo Smith
department: Special Student
email: waldos@Princeton.EDU
emailbox: waldos@mail.Princeton.EDU
netid: waldos

11.5.3

11.5 Sockets: Connecting to Remote Processes 365

alias: 000333333
name: Ignatz E Smith
department: Undergraduate Class of 1997
email: ismith@Princeton.EDU
emailbox: ismith@mail.Princeton.EDU
netid: ismith

When a call comes in, the server picks up the call. The protocol specifies that the client
type a name and then press the return key. The server sends back all matching entries,
then hangs up.

What about the weather? Try the following:

telnet rainmaker.wunderground.com 3000

The protocol for this weather server is more complicated but friendlier.

Lists of Services: Well-Known Ports

How did I know to use port 13 for the time and port 79 for directory assistance? The
same way people in the United States know to dial 911 for emergencies and 411 for di-
rectory assistance—these are well-known ports. The file /etc/services is a list of well-
known services and their port numbers:

$ more /etc/services

SNetBSD: services,v 1.18 1996/03/26 00:07:58 mrg Exp $

#

Network services, Internet style

#

Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, most entries here have two entries
even if the protocol doesn't support UDP operations.

Updated from RFC 1340, "Assigned Numbers" (July 1992). Not all ports
are included, only the more common ones.

#

from: @ (#)services 5.8 (Berkeley) 5/9/91

#

tcpmux 1/tcp # TCP port service multiplexer

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

daytime 13/tcp

daytime 13 /udp

—--More--(13%)

366

1154

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

You can see in this listing that the daytime service uses port 13. Explore this file to see
the standard services on Internet machines. Look for the ftp, telnet, finger, and http
entries.

All these servers running on Internet hosts are based on the ideas and steps we
saw in the telephone-based time service. We now translate these ideas into Unix system
calls to write our own version of the time server and time client.

Writing timeserv.c: A Time Server

Our telephone-based time server involved six steps. Each step corresponds to a system
call. This table shows the translation:

action syscall
1. Get a phone line socket
2. Assign a number bind
3. Allow incoming calls listen
4. Wait for a call accept
5.Transfer data read/write
6. Hang up close

Here is the code:

/* timeserv.c - a socket-based time of day server

*/

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <time.h>

#include <strings.h>

#define PORTNUM 13000 /* our time service phone number */
#define HOSTLEN 256

#define oops (msg) { perror (msg) ; exit(l) ; }

int main(int ac, char *av[])

{

struct sockaddr_in saddr; /* build our address here */
struct hostent *hp; /* this is part of our */
char hostname [HOSTLEN] ; /* address */
int sock_id, sock_f£fd; /* line id, file desc */
FILE *sock_fp; /* use socket as stream */
char *ctime () ; /* convert secs to string */
time_t thetime; /* the time we report */
/*

* Step 1l: ask kernel for a socket
*/

11.5 Sockets: Connecting to Remote Processes 367

sock_id = socket(PF_INET, SOCK_STREAM, 0); /* get a socket */
if (sock_id == -1)
oops ("socket");

/*

* Step 2: bind address to socket. Address is host,port

*/

bzero((void *)&saddr, sizeof (saddr)); /* clear out struct */
gethostname (hostname, HOSTLEN) ; /* where am I ? */
hp = gethostbyname (hostname) ; /* get info about host */

/* f£ill in host part */
bcopy ((void *)hp->h_addr, (void *)&saddr.sin_addr, hp->h_length) ;

saddr.sin_port = htons (PORTNUM) ; /* £ill in socket port */
saddr.sin_family = AF INET ; /* £ill in addr family */
if (bind(sock_id, (struct sockaddr *)&saddr, sizeof(saddr)) != 0)

oops("bind");

/*
* Step 3: allow incoming calls with Qsize=1 on socket
*/
if (listen(sock_id, 1) != 0)
oops("listen");
/*
* main loop: accept(), write(), close()
*/

while (1){
sock_fd = accept (sock_id, NULL, NULL); /* wait for call */
printf ("Wow! got a call!\n");

if (sock_fd == -1)
oops("accept"); /* error getting calls */
sock_fp = fdopen(sock_fd, "w"); /* we'll write to the */
if (sock_fp == NULL) /* socket as a stream */
oops ("fdopen") ; /* unless we can't */
thetime = time (NULL) ; /* get time */

/* and convert to strng */
fprintf(sock_fp, "The time here is ..");
fprintf(sock_fp, "%s", ctime(&thetime));
fclose(sock _fp); /* release connection */

And here is an explanation of how the program works:

368

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

Step 1: Ask kernel for a socket

A socket is an endpoint of communication. Like the telephone jack at the wall, a sock-
et is a place from which calls can be made and a place to which calls can be directed.
The socket system call creates a socket:

socket
PURPOSE Create a socket
INCLUDE #include <sys/types.h>

#include <sys/socket.h>

USAGE sockid = socket (int domain, int type, int protocol)
ARGS domain communication domain.
PF_INET is for Internet sockets
type type of socket.

SOCK_STREAM looks like a pipe
protocol protocol used within the socket.
0 is default.

RETURNS -1 if error
sockid a socket id if successful

socket creates an endpoint for communication and returns an identifier for that socket.
There are various sorts of communication systems, each of which is called a domain of
communication. The Internet is one domain. We shall see later that the Unix kernel is
another domain. Linux supports communication in several other domains.

The type of a socket specifies the type of data flow the program plans to use. The
SOCK_STREAM type works like a bidirectional pipe. Data written in one end can be read
from the other end as a continuous sequence of bytes. We examine SOCK_DGRAM in a
later chapter.

The last argument, protocol, refers to the protocol used within the network code
in the kernel, not the protocol between the client and server. A value of 0 selects the
standard protocol.

Step 2: Bind address to socket. Address is host, port

The next step is to assign a network address to our socket. In the Internet domain, an
address consists of a host and a port number. We cannot use port 13; that is reserved for
the real time server. Instead, we use port 13000. You can select any port number you
like for a server, as long as it is not too low and not already in use. Low-numbered ports
may be used only by system services, not by regular users. Check your system for the
restricted range. Port numbers are 16-bit quantities, so there are a lot of them. bind is
summarized as follows:

11.5 Sockets: Connecting to Remote Processes 369

bind
PURPOSE Bind an address to a socket
INCLUDE #include <sys/types.h>

#include <sys/socket.h>

USAGE result = bind(int sockid, struct sockaddr *addrp,
socklen t addrlen)

ARGS sockid the id of the socket
addrp a pointer to a struct containing the address
addrlen the length of the struct

RETURNS -1 if error
0 if success

bind assigns an address to a socket. This address works like the telephone number as-
signed to the jack on the wall in your office; other processes use that address when they
want to connect to your server. Each address family has its own format. The Internet
address family (aF_INET) uses host and port. An address is a struct with the host and
port number as members. Our program first zeros the struct, then fills in the host ad-
dress, then fills in the port number, and, finally, fills in the address family. Consult the
manual pages for the functions used to construct each of these numbers.

When all those parts are filled in, the address is attached to the socket. Other
types of sockets use addresses with different members.

Step 3: Allow incoming calls with queue size=1 on socket

A server accepts incoming calls, so our program must call 1isten:

listen

PURPOSE Listen for connections on a socket
INCLUDE #include <sys/socket.h>
USAGE result = listen(int sockid, int gsize)
ARGS sockid socket that will accept calls

gsize backlog of incoming connections
RETURNS -1 if error

0 if success

listen asks the kernel to allow the specified socket to receive incoming calls. Not all
types of sockets can receive incoming calls. SOCK_sTREAM can. The second argument
specifies the size of the queue for incoming calls. In our code, we request a queue of
one call. The maximum queue size depends on the socket implementation.

370 Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

Step 4: Wait For/Accept a Call

Once the socket is created, assigned an address, and set up to receive incoming calls,
the program is ready to begin its work. The server now waits until a call comes in. It
uses accept:

accept
PURPOSE Accept a connection on a socket
INCLUDE #include <sys/types.h>

#include <sys/socket.h>

USAGE fd = accept (int sockid, struct sockaddr *callerid,
socklen_t *addrlenp)

ARGS sockid accept a call on this socket

callerid pointer to struct for address of caller

addrlenp pointer to storage for length of address of caller
RETURNS -1 if error

el a file descriptor open for reading and writing

accept suspends the current process until an incoming connection on the specified
socket is established. accept returns a file descriptor opened for reading and writing.
That file descriptor is a connection to a file descriptor in the calling process.

The accept call supports a form of caller ID. The socket in the caller has an ad-
dress. For Internet connections, the address is a host and port number. If the callerid
and addrlenp pointers are not null, the kernel puts the address of the caller into the
struct pointed to by callerid and puts the length of that struct into the value pointed to
by addrlenp.

Just as a human can use caller-ID information to decide how to handle an incom-
ing call, a network program can use the address of the calling process to decide how to
handle an incoming connection.

Step 5: Transfer Data

The file descriptor returned by accept is a regular file descriptor, the sort of thing we
have been using since we learned about open back in Chapter 2. In timeserv.c, we use
fdopen to make this file descriptor into a buffered data stream so we can use fprintf.
We could have used plain old write.

Step 6: Close Connection

The file descriptor returned by accept may be closed with the standard close system
call. When one process closes its end of the socket, the process on the other end will see
an end-of-file result if it tries to read data. Pipes work the same way.

11.5 Sockets: Connecting to Remote Processes 371

11.5.5 Testing timeserv.c

11.5.6

We can now compile and run our time server:

S cc timeserv.c -o timeserv
S timeserva

29362

$

We started our server with a trailing ampersand, so the shell runs it but does not call
wait.The server is blocked at the accept system call. We can connect to it with telnet:

S telnet “hostname™ 13000

Trying 123.123.123.123

Connected to somesite.net

Escape character is '~]'.

Wow! got a call!

The time here is ..Tue Aug 14 11:36:30 2001
Connection closed by foreign host.

$

S telnet “hostname™ 13000

Trying 123.123.123.123

Connected to somesite.net

Escape character is '~]'.

Wow! got a call!

The time here is ..Tue Aug 14 11:36:53 2001
Connection closed by foreign host.

$

We have made two connections, and the server responded both times. The server will
continue to run until we kill it:

$ kill 29362

telnet works as a client for this server, but it is not always a suitable way to connect to
a server. We now write a special client for this server.

Writing timeclnt.c: A Time Client

Our telephone-based time client uses four steps, each corresponding to a system call:

action syscall
1. Get a phone line socket
2. Call the server connect
3.Transfer data read/write

4. Hang up close

372 Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

Here is the code:

/* timeclnt.c - a client for timeserv.c

usage: timeclnt hostname portnumber

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define oops (msg) { perror (msg); exit(l); }

main(int ac, char *avl[])

{

/*

*

*/

/*
*

*

*/

/*

*

*/

struct sockaddr_in servadd; /* the number to call */
struct hostent *hp; /* used to get number */
int sock_id, sock_fd; /* the socket and fd */
char message [BUFSIZ] ; /* to receive message */
int messlen; /* for message length */

Step 1: Get a socket

sock_id = socket(AF_INET, SOCK_STREAM, 0); /* get a line */
if (sock_id == -1)
oops ("socket"); /* or fail */

Step 2: connect to server
need to build address (host,port) of server first

bzero(&servadd, sizeof(servadd)); /* zero the address */
hp = gethostbyname(av[1]); /* lookup host's ip # */
if (hp == NULL)

oops (av[1l]); /* or die */
beopy (hp->h_addr, (struct sockaddr *)&servadd.sin_addr, hp->h_length) ;

servadd.sin_port = htons(atoi(av([2])); /* fill in port number */

servadd.sin_family = AF INET ; /* fill in socket type */
/* now dial */

if (connect (sock_id, (struct sockaddr *)&servadd, sizeof (servadd)) !=0)

oops ("connect");

Step 3: transfer data from server, then hangup

messlen = read(sock_id, message, BUFSIZ); /* read stuff */
if (messlen == - 1)
oops ("read")

11.5 Sockets: Connecting to Remote Processes 373

if (write(1, message, messlen) != messlen) /* and write to */
oops ("write"); /* stdout */
close(sock_id);

And here is an explanation of how the program works:

Step 1: Ask Kernel for a Socket

The client needs a socket to connect to the network, just as a client for your telephone
time service needs a phone line to connect to the phone network. The socket for the
client also has to be an Internet socket (aF_INET) and has to be a stream socket
(SOCK_STREAM).

Step 2: Connect to Server

The client connects to the time server. The connect system call is the network equivalent
of making a telephone call.

connect
PURPOSE Connect to a socket
INCLUDE #include <sys/types.h>

#include <sys/socket.h>

USAGE result = connect (int sockid, struct sockaddr *serv_addrp,
socklen_t addrlen);

ARGS sockid socket to use for connection
serv_addrp pointer to struct containing server address
addrlen length of that struct

RETURNS -1 if error
0 if success

connect attempts to connect the socket specified by sockid to the socket identified by
the socket address pointed to by serv_addrp. If the attempt succeeds, connect returns
0. In that case, the sockid is now a valid file descriptor open for reading and writing.
Data written into this file descriptor are sent to the socket at the other end of the con-
nection, and data written into the other end may be read from this file descriptor.

Steps 3 and 4: Transfer Data and Then Hang Up

After a successful connect, a process may read and write data from this file descriptor
as though it were connected to a regular file or pipe. In the time client/server system,
timeclnt simply reads one line from the server.

After reading the time, the client closes the file descriptor and exits. The client
could have just exited, and the kernel would have closed this open file descriptor.

374 Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

11.5.7 Testing timeclnt.c

We have not seen any pictures for several pages, so you may have forgotten what all
this code is supposed to do. A look at Figure 11.9 will remind you. The server process
runs on one computer. A client process on another computer connects to the server
over the network. The server sends data to the client by calling write. The client re-
ceives that message by calling read.

client server

computer 14 computer

< 21l [Taa] [

4J

network

FIGURE 11.9

Processes on different computers.

A real test of our software involves running the two programs on different com-
puters. I am not sure how clear this looks in a book, but here goes:

$ hostname # check current machine
computerl.mysite.net # the first machine

S cc timeserv.c -o timeserv # build server

S ./timeserv & # and run it

[1] 10739

$

S scp timeclnt.c bruce@computer2:# send client code elsewhere
bruce@computers2's password:
timeclnt.c | 1 KB | 1.8 kB/s | ETA: 00:00:00 | 100%

$ ssh bruce@computer2

bruce@computer2's password:

No mail.

computer?2:bruce$ cc timeclnt.c -o timeclnt
computer?2:bruce$./timeclnt computerl 13000Wow! got a call!
The time here is ..Tue Aug 14 02:44:31 2001

computer? :bruce$

The server is compiled and set running on computerl. I then copy the client code to
computer2 and log in to computer2. On computer2, I compile the client and ask it to
connect to the server running on computerl listening at port 13000. The message I see

11.5.8

11.5 Sockets: Connecting to Remote Processes 375

is sent over the network from the server on computeri to the client on computer2. That
client sends the message to standard output.

Am I really seeing the output on computer2? I am connected to computer2 from
computerl, so the terminal on which the message appears is actually attached to
computerl. See the exercise that asks you to think about what is really going on.

These timeserv/timeclnt programs let us see what time it is on another computer.
Checking the time on another computer also allows computers to keep their clocks
synchronized. One machine on a network can serve as the authority on time. Other
machines can use this sort of client/server system to reset their clocks periodically.

Another Server: remote 1ls

Our next project is to write a program that lists files on a remote computer. You may
have accounts on two systems. What if you wanted to list files you have on the other
machine? You could log in to the other machine and run 1s. A quicker, more conve-
nient method would be a remote Is program, we can call it r1s. You would specify a
hostname and a directory:

$ rls computer2.site.net /home/me/code

Of course, r1s needs a server process running on the other machine to receive the request,
do the work, and return the result. The system looks like that shown in Figure 11.10. A
server runs on one computer. A client on another computer connects to the server and
sends the name of a directory. The server sends back to the client a list of the files in
that directory. The client displays the list by writing to standard output. This two-
process system provides access to directories on a different computer.

client server

computer computer
\ rls \ rlsd / / P

gl sockets

network

FIGURE 11.10

A remote 1s system.

Planning the remote 1s System
We need three things to implement the rls system:

(a) aprotocol
(b) aclient program
(c) aserver program

376 Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

The Protocol

The protocol consists of a request and a reply. First, the client sends a single line con-
taining the name of a directory. The server reads that line. Next, the server opens and
reads that directory and sends back to the client the list of files. The client reads the list
of files, line by line, until the server closes the connection, which generates an end-of-
file condition.

The Client: r1s

/* rls.c - a client for a remote directory listing service

* usage: rls hostname directory
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#define oops (msg) { perror (msg); exit(l); }
#define PORTNUM 15000

main(int ac, char *avl[])

{

struct sockaddr_in servadd; /* the number to call */
struct hostent *hp; /* used to get number */
int sock_1id, sock_ fd; /* the socket and fd */
char buffer [BUFSIZ]; /* to receive message */
int n_read; /* for message length */

if (ac !'= 3) exit(l);

/** Step 1: Get a socket **/

sock_id = socket(AF_INET, SOCK_STREAM, 0); /* get a line */
if (sock_id == -1)
oops ("socket"); /* or fail */

/** Step 2: connect to server **/

bzero(&servadd, sizeof (servadd)); /* zero the address */
hp = gethostbyname(av[1l]); /* lookup host's ip # */
if (hp == NULL)

oops (av[1l]); /* or die */

becopy (hp->h_addr, (struct sockaddr *)&servadd.sin_addr, hp->h_length) ;

servadd.sin_port = htons (PORTNUM) ; /* f£ill in port number */
servadd.sin_family = AF _INET ; /* £ill in socket type */

if (connect (sock_id, (struct sockaddr *)&servadd, sizeof (servadd)) !=0)
oops ("connect");

/** Step 3: send directory name, then read back results **/

11.5 Sockets: Connecting to Remote Processes 377

if (write(sock_id, av[2], strlen(av([2])) == -1)
oops ("write") ;
if (write(sock_id, "\n", 1) == -1)

oops ("write") ;

while((n_read = read(sock_id, buffer, BUFSIZ)) > 0)
if (write(l, buffer, n_read) == -1)
oops ("write") ;
close(sock_id);

Note the differences between this client and the time client. The r1s client first writes
the directory name into the socket. Our protocol states that the client sends a line, so
we append a newline character. Next, the client enters a loop, copying data from the
socket to standard output until end of file. r1s.c uses low-level write and read to
transfer data to and from the server. The loop uses a standard buffer size to be effi-
cient. Next, we write the server.

The Server: r1sd

The server has to get a socket, bind, listen, and then accept a call. After accepting a call,
the server reads the name of a directory from the socket and then lists the contents of
that directory. How does the server list a directory? We could copy our version of 1s
from Chapter 3, but we can use a simpler method: Just use popen to read the output
from the regular version of 1s. (See Figure 11.11.)

client / server
/

1s

request from client

"lg"

—

output from Is

FIGURE 11.11

Using popen ("1s") to list remote directories.
The following code uses popen toward that end:

/* rlsd.c - a remote ls server - with paranoia
*/

#include <stdio.h>

378

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <time.h>
#include <strings.h>

#define PORTNUM 15000 /* our remote ls server port */
#define HOSTLEN 256
#define oops (msg) { perror (msg) ; exit(l) ; }

int main(int ac, char *av[])

{
struct sockaddr_in saddr; /* build our address here
struct hostent *hp; /* this is part of our
char hostname [HOSTLEN] ; /* address
int sock_id, sock_f£fd; /* line id, file desc
FILE *sock_fpi, *sock fpo; /* streams for in and out
FILE *pipe_fp; /* use popen to run ls
char dirname [BUFSIZ] ; /* from client
char command [BUFSIZ] ; /* for popen()
int dirlen, c;

/** Step 1: ask kernel for a socket **/

sock_id = socket(PF_INET, SOCK_STREAM, 0); /* get a socket */
if (sock_ id == -1)
oops("socket");

/** Step 2: bind address to socket. Address is host,port **/
bzero((void *)&saddr, sizeof (saddr)); /* clear out struct
gethostname (hostname, HOSTLEN) ; /* where am I ?
hp = gethostbyname (hostname) ; /* get info about host
becopy ((void *)hp->h_addr, (void *)&saddr.sin_addr, hp->h_length) ;
saddr.sin_port = htons (PORTNUM) ; /* £i1ll in socket port
saddr.sin_family = AF_INET ; /* fill in addr family
if (bind(sock_id, (struct sockaddr *)&saddr, sizeof(saddr)) != 0)

oops("bind");

/** Step 3: allow incoming calls with Qsize=1 on socket **/

if (listen(sock_id, 1) != 0)
oops("listen");
/*
* main loop: accept(), write(), close()
*/
while (1){
sock_fd = accept (sock_id, NULL, NULL); /* wait for call */

if (sock _fd == -1)
oops ("accept") ;

*/
*/
*/
*/
*/
*/
*/
*/

11.5 Sockets: Connecting to Remote Processes 379

/* open reading direction as buffered stream */
if((sock_fpi = fdopen(sock_fd,"r")) == NULL)
oops ("fdopen reading") ;

if (fgets(dirname, BUFSIZ-5, sock_fpi) == NULL)
oops ("reading dirname") ;
sanitize (dirname) ;

/* open writing direction as buffered stream */
if ((sock_fpo = fdopen(sock_ fd,"w")) == NULL)
oops ("fdopen writing");

sprintf (command, "1s %s", dirname) ;
if ((pipe_fp = popen(command, "r")) == NULL)
oops ("popen") ;

/* transfer data from ls to socket */

while((c = getc(pipe_fp)) != EOF)
putc(c, sock_fpo) ;

pclose (pipe_fp) ;

fclose(sock_fpo) ;

fclose (sock_fpi)

7

}

sanitize(char *str)

/*
* it would be very bad if someone passed us an dirname like
* ", rm *" and we naively created a command "ls ; rm *"

* g0..we remove everything but slashes and alphanumerics
* There are nicer solutions, see exercises

char *src, *dest;

for (src = dest = str ; *src ; src++)
if (*src == '/' || isalnum(*src))
*dest++ = *src;
*dest = '\0';

Notice that our server uses standard buffered streams for reading and for writing. The
server uses fgets to read the directory name from the client. After calling popen, the
server transfers data using getc and putc just as though it were copying a file. Of
course, the server is actually copying data from one process to a process on another
computer.

Note the sanitize function. Any server that runs commands based on arguments
and data it receives over the Internet must be written extremely carefully. Our server
expects to receive the name of a directory from the client. The server appends that

380

11.6

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

string to the command 1s. For example, if the client sends the string " /bin", our server
creates and executes the string "1s /bin", which is fine. If, though, someone sends the
string "; rm *" to our server, our server would create and execute the string "1s; rm *".
To reduce the risk of damage, our program makes sure the string it receives does
not overflow the input buffer, does not overflow the buffer for the command, and does
not allow any special characters in the directory name, although limiting the directory
name to alphanumeric is too restrictive. The popen function is too risky for network
services because it passes a string to a shell. It is a poor idea to write any network
servers that pass strings to a shell. I included this example for two reasons: first, to show
another use of popen, and second, to alert you to this danger. It is a serious one.

SOFTWARE DAEMONS

Unix server programs, like most Unix programs, have short, concise names. Many serv-
er programs have names that end in the letter d, such as httpd, inetd, syslogd, atd.
The d in these names stands for daemon, so the name syslogd identifies the program as
the system log daemon. A daemon is a term for an attendant spirit, sort of a supernat-
ural helper that floats around waiting to help out. On your system, type ps -el or ps
-ax and look for processes running programs with names that end in the letter d.
You can then read the manual pages about those commands. By doing so, you can
learn more about the way Unix uses client/server programming to manage many
basic operations.

Most daemon processes are started when the system comes up. Shell scripts in a
directory with a name like /etc/rc.d? start these servers in the background, where
they run detached from any terminals, ready to provide data or services.

SUMMARY
MAIN IDEAS

e Some programs are constructed as separate processes that send data back and forth.
In a client/server system, a server process provides processing or data to client
processes.

e A client/server system consists of a communication system and a protocol. Clients
and servers can communicate through pipes or sockets. A protocol is a set of rules
for the structure of a conversation.

e The popen library function can make any shell command into a server program and
makes access to the server look like access to buffered files.

e A pipe is a connected pair of file descriptors. A socket is an unconnected communi-
cation endpoint, a potential file descriptor. A client process creates a communica-
tion link by connecting its socket to a server socket.

e Connections between sockets may extend from one computer to another. Each
socket is identified by a machine number and a port number.

3The exact directory name depends on the version of Unix.

Programming Exercises 381

e Connections to pipes and sockets use file descriptors. File descriptors provide pro-
grams with a single interface for communication with files, devices, and other
processes.

WHAT NEXT?

In this chapter, we looked at the client/server model of program design. We saw two
methods for connecting processes: pipes and sockets. In the next chapter, we focus on
the design principles of client/server programming, and we write more complex appli-
cations. In particular, we combine socket programming with our knowledge of file sys-
tems and process control to write a Web server.

EXPLORATIONS

11.1

11.2

11.3

11.4

11.5

The pizza-delivery-order protocol What if you ran a pizza-delivery service instead of a
time or directory-assistance service? The protocol would be more complicated. Describe
the sequence of messages passed between server and client for a pizza-delivery service.
Note that this protocol contains a loop that allows the client to add several items to the
order.

popen and signals The version of popen provided in the text does not do anything about sig-
nals. Is that correct? A child inherits the signal-handling settings from its parent. Answer
this question by considering the three cases of signal handling for the parent: terminate,
ignore, and call a function.

Data flow in testing timeserv The sample run of the time server and time client showed
that I used ssh to log in to computer2 from computerl. I was still logged into computerl,
but I was running a shell on computer2. From that shell, I compiled and ran the time
client.

My terminal is really connected to computerl. Redraw figure 11.11 so it includes my shell
on computerl, my shell on computer2, my terminal, and the correct flow of data from
timeclnt to my terminal. Pretty complex data flow, isn’t it?

Sockets are not files We saw earlier that disk files and device files both support the stan-
dard file interface, but connections to disk files have one set of properties, and connections
to device files have a very different set of properties. What special properties do sockets
have? Look at the manual page for setsockopt for details.

stderr and servers The remote directory lister runs the 1s command. What happens when
1s encounters an error? For example, the directory specified may not exist or may not be
readable by the server. What happens to the error messages 1s generates? Consider two
ways to handle error messages from 1s. First, how would you send error messages back to
the client? Second, how would you record error messages in a log and tell the user about
the problem?

PROGRAMMING EXERCISES

11.6

11.7

Add the -c option to tinybc. Once you have added this option, the following command
should work:

printf "2 + 2\n4 * 4\n" | tinybc -c | dc

Add the -c option to your shell. What changes do you need to make?

382

Chapter 11 Connecting to Processes Near and Far: Servers and Sockets

11.8

11.9

11.10

11.11

11.12

Write pclose. The function takes as an argument the FILE * returned from popen. The
fdopen function has allocated memory for the buffer and for bookkeeping details. The
fclose function deallocates that memory and closes the underlying file descriptor. What
else does pclose have to do? What if another child process dies between the call to popen
and pclose?

caller ID Our time server does not use the caller-ID feature the accept system call provides.
Modify timeserv.c so that it prints a message such as, Got a call from 123.123.123.123
(computer2.mysite.net) when it receives a request.

Read the manual and header files to learn about the functions and structures you need for
this project.

Write a program that uses sort as a subroutine. Your program should read lines of data
into an array of strings. The program should then create two pipes and then create a
process to run sort. Send the sequence of lines of input to sort through one pipe, then
close that pipe. Read the results from sort through the other pipe, and put the results back
into the array. Print the array.

Bidirectional pipes Versions of Unix based on System V provide bidirectional pipes. You
can test if a version of Unix supports these by running this program:

/*
* testbpd.c - test bidirectional pipes
*/
main()
{
int pl2];
if (pipe(p) == -1) exit(l);
if (write(p[O], "hello", 5) == -1)
perror ("write into pipe[0] failed");
else

printf ("write into pipel[0] worked\n") ;

}

Internally, a bidirectional pipe contains two queues, one from pipe[0] to pipe[1] and one
going the other way. Writing data into one end of a pipe adds it to the queue that goes to
the other end, and reading data from one end of a pipe pulls bytes from the queue leading
from the other end.

If your system does not support bidirectional pipes, you can create a pair using this call:

#include <sys/types.h>

#include <sys/socket.h>

int apipe[2]; /* a pipe */

socketpair (AF_UNIX, SOCK_STREAM, PF_UNSPEC, apipe);

Recode tinybc.c so it uses a single bidirectional pipe rather than using two unidirectional
pipes.

1P blocking Modify timeserv.c so it only responds to clients calling from a specific host IP
number. The server accepts the call and checks the address of the client. If the client is not
at the specified IP number, the server hangs up, otherwise, the server sends back the time
message.

Enhance this blocking feature so the server reads a list of acceptable IP numbers from a
file. Describe some practical applications of this technique.

11.13

11.14

11.15

11.16

11.17

11.18

11.19

Programming Exercises 383

More secure Using popen in a server is extremely risky. There are two ways to address the
risks. The first is to write a more flexible, but still secure version of the sanitize function.
For example, there is no problem with directory names that contain periods, dashes,
spaces, and many other characters. A directory name can contain asterisks and semicolons.
It is just that the shell assigns special meanings to those characters. Write a more useful,
but still safe string-cleaning function.

The other method is to drop popen and use fork, exec, dup, etc. Rewrite rlsd.c using this
method. Do you need to use wait? Why or why not?

A finger server Write a version of the directory-assistance server we saw running at port
79.The server should accept a username as a single line of input and then send back to the
client a list of matching records from the local user list.

Time-server proxy A proxy is a program that accepts your request, forwards it to another
server, and then sends the response from that server back to you. Like a dry cleaner store-
front, the shop does not do the cleaning; it just transfers the clothes to and from the clean-
ing plant.

Write a time-server proxy. Your program should accept connections on the standard port.
To process the connection, your program should then open a connection to a “real” time
server, get the time from that server, and send the response back to your client.

Caches and proxies Read about proxy servers in the previous problem. The time only
changes once per second, so if your proxy server gets lots of connections milliseconds
apart, there is no reason for your proxy to call a server for the time. Write a caching proxy
time server that stores the time it read from the server and only makes a new call when
that string is more than a second old. (See gettimeofday.)

More caches and proxies Admittedly, the caching time server in the previous exercise is a
silly idea. Explain why using a cache for a finger server makes sense. Write a finger server
that keeps a cache of user information.

The time server has a natural lifetime for items in the cache, but how do you decide how
long to keep user information in the finger-server cache?

A bakery number server Some bakery shops have a machine that dispenses numbers to
customers. A sign over the counter that says “Now Serving” displays the number of the
next customer to be served. Devise a client-server pair to implement the bakery number
system. The server issues sequential numbers. A user runs the client program to obtain a
number from the server.

Using popen Every C programmer knows that argv[0] usually contains the name of the
program being run. There is another, slightly roundabout, way a process can obtain its
name. A program can use popen and search the output of the ps command for its own
process ID number. Write a program that uses this method.

