Java, Java, Java

Object-Oriented Problem Solving
Third Edition

R. Morelli and R. Walde
Trinity College
Hartford, CT

June 25, 2017

598 CHAPTER 13 e Graphical User Interfaces

13.5 The Java Event Model

As we saw in Chapter 4, whatever happens while the computer is running
is classified as an event. Every keystroke and mouse click, every time a
disk is inserted into a disk drive, an event is generated. The handling of
events are an important element of GUI programming. Therefore, before
we begin discussing how to design GUISs, it will be useful to review the
main concepts of Java’s event model.

When a Java program is running, events generated by the hardware
are passed up through the operating system (and through the browser, for
applets) to the program. Those events that belong to the program must
be handled by the program (refer to Fig. 4.18 in Chapter 4). For example,
if you click your browser’s menu bar, that event will be handled by the
browser itself. If you click a button contained in the Java program, that
event should be handled by the program.

In Java, whenever something happens within a GUI component, an
event object is generated and passed to the event listener that has been
registered to handle that component’s events. You've seen numerous ex-
amples of this process in earlier chapters, but we’ve included a simple
example to serve as a reminder.

Suppose you create a JButton in a GUI as follows:

s B\
Lprivate JButton clickme = new JButton (); J

Whenever the user clicks the JButton, an ActionEvent is generated.
In order to handle these events, the GUI must register the JBut ton with
a listener object that listens for action events. This can be done in an ap-
plet’s init () method or in an application’s constructor method, as in this
example:

public MyGUI() {

| |
‘ // Add clickme to the GUI and assign it a listener ‘
. add(clickme); \
| |

- dListener
clickme : JButton

clickme.addActionListener (this);

:)
In this case, we have designated the GUI itself (this)asan ActionListener
:MyApplet

for clickme (Fig. 13.5). A listener is any object that implements a listener
interface, which is one of the interfaces derived from java.util.Event-

Listener. AnActionListener isan object that listens for and receives
ActionEvents.

Figure 13.5: The GUI listens for
action events on the JButton.

SECTION 13.5 e The Java Event Model 599

In order to complete the event-handling code, the GUI must imple-
ment the ActionListener interface. As Figure 13.6 shows, implement-
ing an interface is a matter of declaring the interface in the class heading
and implementing the methods contained in the interface, in this case the
actionPerformed () method.

import javax.swing.x;
import java .awt.event.x;

public class MyGUI extends JFrame
implements ActionListener {
private JButton clickme = new JButton ();

public MyGUI() {

// Add clickme to the GUI and assign it a listener
getContentPane ().add(clickme);
clickme.addActionListener (this);
setSize (200,200);
setVisible (true);

} // init ()
public void actionPerformed (ActionEvent e) {
if (e.getSource() == clickme) {
clickme .setText (clickme. getText()+);
}

} // actionPerformed ()
public static void main(String args[]) {

MyGUI gui = new MyGUI();
¥

} 7/ MyaGul

Figure 13.6: A simple GUI application that handles action events on a
JButton.

Now that we have implemented the code in Figure 13.6, whenever the
user clicks c1ickme, that action is encapsulated within an ActionEvent
object and passed to the actionPerformed () method. This method
contains Java code that will handle the user’s action in an appropriate
way. For this example, it modifies the button’s label by appending an
asterisk to it each time it is clicked. Figure 13.7 depicts the sequence of
actions and events that occur when the the user clicks a button.

Figure 13.7: A UML depiction of
the sequence of actions and events
that take place when a button is
clicked. The vertical lines repre-
sent time lines, with time running
from top to bottom. The arrows
between lines represent messages
passing between objects.

EventObject

+ EventObject(in src : Object)
+ getSource() : Object
+ toString() : String

Figure 13.8: An EventObject.
The getSource () method is
used to get the object that caused
the event.

600 CHAPTER 13 o Graphical User Interfaces

clickMe : JButton :ActionEvent

[[
[[
[[
User } jvm : JVM } ‘ Objectl : MyApplet
[[[T
' Click _| | | |
[[[
} ClickEvent } } }
\
—> \ ‘
| create() | |

[
actionPerformed(e:ActionEvent)
| | n!

7l

\ \
| |

| | D showStatus(s:String)
\ \ |

\ \ i

! \

The methods used to handle the ActionEvent are derived from the
java.util.EventObject class, the root class for all events (Fig. 13.8).
Our example (Fig. 13.6) uses the get Source () method to get a reference
to the object that generated the event. To see what information is con-
tained in an event object, we can use the toString () method to print
a string representation of the event that was generated. Here’s what it
displays:

| java.awt.event. ActionEvent [ACTION PERFORMED, cmd=ClickMe] |
on javax.swing.]JButton[,58,5,83x27, \
layout=javax.swing.OverlayLayout] J

As you can see, the event generated was an ACTION_PERFORMED event,
in response to the ClickMe command. The source of the event was the
JButton.

13.5.1 Event Classes

Although the event model is the same for both AWT and Swing classes,
the Swing package introduces many additional events. Table 13.1 lists
the events that are generated by both AWT and Swing components. You
already have worked with some of these. We have written GUIs that
handled ActionEvents for JButtons and JTextFields in preceding
chapters.

In viewing Table 13.1, it’s important to remember that the classes listed
there are arranged in a hierarchy. This will affect the events that a par-
ticular object can generate. For example, a JButton is a JComponent
(Fig. 13.2), so in addition to generating ActionEvents when the user
clicks on it, it can also generate MouseEvents when the user moves the
mouse over it. Similarly, because a JTextFieldis also a JComponent, it
can generate KeyEvents as well as ActionEvents.

Note that the more generic events, such as those that involve moving,
focusing, or resizing a component, are associated with the more generic
components. For example, the JComponent class contains methods that
are used to manage ComponentEvents. Because they are subclasses
of JComponent, JButtons and JTextFields can also use these meth-

SECTION 13.5 o

The Java Event Model

601

TABLE 13.1 Java’s AWTEvents for each Component type (Original source: David Flanagan,
Java in a Nutshell, 2d ed., O'Reilly Associates, 1997. Modified for Swing components.)

Components Events Description
Button, JButton ActionEvent User clicked button
CheckBox, JCheckBox ItemEvent User toggled a checkbox
CheckboxMenuItem, JCheckboxMenultem ItemEvent User toggled a checkbox
Choice, JPopupMenu ItemEvent User selected a choice
Component, JComponent ComponentEvent Component was moved or resized
FocusEvent Component acquired or lost focus
KeyEvent User typed a key
MouseEvent User manipulated the mouse
Container, JContainer ContainerEvent Component added /removed from container
List, JList ActionEvent User double-clicked a list item
ItemEvent User clicked a list item
Menu, JMenu ActionEvent User selected menu item
Scrollbar, JScrollbar AdjustmentEvent User moved scrollbar
TextComponent, JTextComponent TextEvent User edited text
TextField, JTextField ActionEvent User typed Enter key
Window, JWindow WindowEvent User manipulated window

ods. Defining the more generic methods in the JComponent superclass is
another example of the effective use of inheritance.

JAVA EFFECTIVE DESIGN
defined in the inheritance hierarchy, the broader is its use.

Inheritance. The higher a method is

Table 13.2 lists events that are new with the Swing classes. Some of
the events apply to new components. For example, JTable and JTree
do not have AWT counterparts. Other events provide Swing components
with capabilities that are not available in their AWT counterparts. For ex-
ample, a CaretEvent allows the programmer to have control over mouse
clicks that occur within a text component.

TABLE 13.2 Some of the events that are defined in the Swing library.

Component Events Description
JPopupMenu PopupMenuEvent User selected a choice
JComponent AncestorEvent An event occurred in an ancestor
JList ListSelectionEvent User double-clicked a list item
ListDataEvent List’s contents were changed
JMenu MenuEvent User selected menu item
JTextComponent CaretEvent Mouse clicked in text
UndoableEditEvent An undoable edit has occurred
JTable TableModelEvent Items added /removed from table
TableColumnModelEvent A table column was moved
JTree TreeModelEvent Items added /removed from tree
TreeSelectionEvent User selected a tree node
TreeExpansionEvent User expanded or collapsed a tree node
JWindow WindowEvent User manipulated window

602 CHAPTER 13 o Graphical User Interfaces

Tables 13.1 and 13.2 provide only a brief summary of these classes and
Swing components. For further details you should consult the JDK online
documentation at

Lhttp://java .sun.com/j2se /1.5.0/ docs/api/

SELF-STUDY EXERCISES

EXERCISE 13.2 Is it possible to register a component with more than
one listener?

EXERCISE 13.3 Is it possible for a component to have two different
kinds of listeners?

13.6 CASE STUDY: Designing a Basic GUI

What elements make up a basic user interface? If you think about all of
the various interfaces you've encountered—and don’t just limit yourself
to computers—they all have the following elements:

Some way to provide help/guidance to the user.

Some way to allow input of information.

Some way to allow output of information.

Some way to control the interaction between the user and the device.

Think about the interface on a beverage machine. Printed text on the ma-
chine will tell you what choices you have, where to put your money, and
what to do if something goes wrong. The coin slot is used to input money.
There’s often some kind of display to tell you how much money you've
inserted. And there’s usually a bunch of buttons and levers that let you
control the interaction with the machine.

These same kinds of elements make up the basic computer interface.
Designing a Graphical User Interface is primarily a process of choos-
ing components that can effectively perform the tasks of input, output,
control, and guidance.

AN S @INNAEBIERIEN) User Interface. A user interface must
effectively perform the tasks of input, output, control, and guidance.

In the programs we designed in the earlier chapters, we used two dif-
ferent kinds of interfaces. In the command-line interface, we used printed
prompts to inform the user, typed commands for data entry and user
control, and printed output to report results. Our GUI interfaces used
JLabels to guide and prompt the user, JTextFields and JTextAreas
as basic input and output devices, and either JButtons or JTextFields
for user control.

Let’s begin by building a basic GUI in the form of a Java applica-
tion. To keep the example as close as possible to the GUIs we’ve already
used, we will build it out of the following Swing components: JLabel,
JTextField, JTextArea, and JButton.

