
CS 45500 Renderer Pipeline Formulas Fall 2024

Let us follow a single vertex through all the steps of the rendering pipeline, from its original
Model coordinates to its final index in the FrameBuffer’s pixel-array.

1. Model-to-Camera Transformation (Model Coordinates to Camera Coordinates)

Let (xm, ym, zm) be a Vertex in a Model’s coordinate system and let (xt, yt, zt) be
the translation Vector that accompanies the Model in a Position. Then the vertex’s
camera coordinates are given by

xc = xm + xt, yc = ym + yt, zc = zm + zt

2. Projection Transformation (Camera Coordinates to Image-plane Coordinates)

Let (xc, yc, zc) be a vertex in camera coordinates and let (xip, yip, zip) be its perspective
projection onto the camera’s image-plane. Then

xip = −xc/zc,

yip = −yc/zc,

zip = −1.

Vertices in camera coordinates that are within the camera’s view volume will project to
vertices in the image-plane’s view rectangle with coordinates that satisfy

−1 ≤ xip ≤ 1 and − 1 ≤ yip ≤ 1.

3. Image-plane to Pixel-plane Transformation

Let (xip, yip, −1) be a vertex in the camera’s image-plane and let (xpp, ypp) be its trans-
formation to the renderer’s pixel-plane. Then

xpp = 0.5 + (wvp/2.001)(xip + 1),

ypp = 0.5 + (hvp/2.001)(yip + 1).

where wvp and hvp are the width and height of the FrameBuffer Viewport that we
are rendering into. A vertex (xip, yip, −1) from the image-plane’s view rectangle will
transform to a two-dimensional vertex (xpp, ypp) in the renderer’s logical viewport with
coordinates that satisfy

0.5 ≤ xpp < wvp + 0.5 and 0.5 ≤ ypp < hvp + 0.5.

Points in the pixel-plane with integer coordinates are called logical pixels.



4. Pixel-plane to Viewport Transformation

Let (xpp, ypp) be a vertex in the renderer’s logical viewport (in the pixel-plane). Then

(Math.round(xpp), Math.round(ypp))

is the logical pixel nearest to (xpp, ypp). Let (xvp, yvp) be its equivalent (physical) pixel
in the FrameBuffer’s Viewport. Then

xvp = (int)Math.round(xpp) − 1,

yvp = hvp − (int)Math.round(ypp).

Pixels (xvp, yvp) in a Viewport have integer coordinates that should satisfy

0 ≤ xvp ≤ wvp − 1 and 0 ≤ yvp ≤ hvp − 1

with the pixel (0, 0) being the upper left-hand corner of the Viewport. If a pixel does not
satisfy these bounds, then that pixel should be clipped (not entered into the Viewport).

5. Viewport to FrameBuffer

Suppose that a Viewport’s upper left-hand corner in the FrameBuffer is at (xul, yul).
Let (xvp, yvp) be a pixel using Viewport coordinates. Then that pixel’s coordinates in
the FrameBuffer are given by

x = xul + xvp, y = yul + yvp.

Note: The FrameBuffer will use this formula even when the pixel’s Viewport coordinates
are not within the Viewport’s width and height. This will lead to either the pixel
appearing outside of the Viewport or the pixel appearing misplaced in the Viewport or
to an ArrayIndexOutOfBoundsException.

6. FrameBuffer to pixel-array

Suppose that a FrameBuffer has width w and height h. The FrameBuffer’s pixel data
is stored in a one-dimensional, row-major, array int[w * h] that we will call the pixel-
array. Let (x, y) be a pixel using FrameBuffer coordinates. Its index in the pixel-array
is given by

index = y ∗ w + x.

Note: The FrameBuffer will use this formula even when the pixel’s FrameBuffer coor-
dinates are not within the FrameBuffer’s width and height. This will lead to either the
pixel appearing misplaced in the FrameBuffer or to an ArrayIndexOutOfBoundsException.


