
Core Java™ 2: Volume I–Fundamentals

240

java.text.NumberFormat

• Number parse(String s)

returns the numeric value, assuming the specified String represents a number.

The Class Class

While your program is running, the Java runtime system always maintains what is called
runtime type identification on all objects. This information keeps track of the class to which
each object belongs. Runtime type information is used by the virtual machine to select the
correct methods to execute.

However, you can also access this information by working with a special Java class. The class
that holds this information is called, somewhat confusingly, Class. The getClass() method
in the Object class returns an instance of Class type.

Employee e;
. . .
Class cl = e.getClass();

Just like an Employee object describes the properties of a particular employee, a Class object
describes the properties of a particular class. Probably the most commonly used method of
Class is getName. This returns the name of the class. For example, the statement

System.out.println(e.getClass().getName() + " " + e.getName());

prints

Employee Harry Hacker

if e is an employee, or

Manager Harry Hacker

if e is a manager.

You can also obtain a Class object corresponding to a string by using the static forName
method.

String className = "Manager";
Class cl = Class.forName(className);

You would use this method if the class name is stored in a string that varies at run time. This
works if className is the name of a class or interface. Otherwise, the forName method
throws a checked exception. See the sidebar on exceptions to see how you need to supply an
exception handler whenever you use this method.

Core Java™ 2: Volume I–Fundamentals

241

TIP

At startup, the class containing your main method is loaded. It loads all
classes that it needs. Each of those loaded classes loads the classes that
they need, and so on. That can take a long time for a big application,
frustrating the user. You can give users of your program the illusion of
a faster start, with the following trick. Make sure that the class
containing the main method does not explicitly refer to other classes.
First display a splash screen. Then manually force the loading of other
classes by calling Class.forName.

A third method for obtaining an object of type Class is a convenient shorthand. If T is any
Java type, then T.class is the matching class object. For example:

Class cl1 = Manager.class;
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a class. For
example, int is not a class, but int.class is nevertheless an object of type Class.

NOTE

For historical reasons, the getName method returns somewhat strange
names for array types:

System.out.println(Double[].class.getName());
 // prints [Ljava.lang.Double;
System.out.println(int[].class.getName());
 // prints [I

Catching Exceptions
We will cover exception handling fully in Chapter 11, but in the meantime you will
occasionally encounter methods that threaten to throw exceptions.

When an error occurs at run time, a program can “throw an exception.” Throwing an
exception is more flexible than terminating the program because you can provide
a handler that “catches” the exception and deals with it.

If you don't provide a handler, the program still terminates and prints a message to
the console, giving the type of the exception. You may already have seen exception
reports when you accidentally used a null reference or overstepped the bounds of
an array.

There are two kinds of exceptions: unchecked exceptions and checked exceptions.
With checked exceptions, the compiler checks that you provide a handler. However,
many common exceptions, such as accessing a null reference, are unchecked.

Core Java™ 2: Volume I–Fundamentals

242

The compiler does not check whether you provide a handler for these errors—after
all, you should spend your mental energy on avoiding these mistakes rather than
coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best efforts,
then the compiler insists that you provide a handler. The Class.forName method is
an example of a method that throws a checked exception. In Chapter 11, you will
see several exception handling strategies. For now, we'll just show you the simplest
handler implementation.

Place one or more methods that might throw checked exceptions inside a try block.
Then provide the handler code in the catch clause.

try
{
 statements that might throw exceptions
}
 catch(Exception e)
{
 handler action
}

Here is an example:

try
{
 String name = . . .;// get class name
 Class cl = Class.forName(name); // might throw exception
 . . . // do something with cl
}
catch(Exception e)
{
 e.printStackTrace();
}

If the class name doesn't exist, the remainder of the code in the try block is skipped,
and the program enters the catch clause. (Here, we print a stack trace by using
the printStackTrace method of the Throwable class. Throwable is the superclass
of the Exception class.) If none of the methods in the try block throw
an exception, then the handler code in the catch clause is skipped.

You only need to supply an exception handler for checked exceptions. It is easy to
find out which methods throw checked exceptions—the compiler will complain
whenever you call a method that threatens to throw a checked exception and you
don't supply a handler.

The virtual machine manages a unique Class object for each type. Therefore, you can use
the == operator to compare class objects, for example:

if (e.getClass() == Employee.class) . . .

Another example of a useful method is one that lets you create an instance of a class on
the fly. This method is called, naturally enough, newInstance(). For example,

Core Java™ 2: Volume I–Fundamentals

243

e.getClass().newInstance();

creates a new instance of the same class type as e. The newInstance method calls the default
constructor (the one that takes no parameters) to initialize the newly created object.

Using a combination of forName and newInstance lets you create an object from a class
name stored in a string.

String s = "Manager";
Object m = Class.forName(s).newInstance();

NOTE

If you need to provide parameters for the constructor of a class you want
to create by name in this manner, then you can't use statements like
the above. Instead, you must use the newInstance method in
the Constructor class. (This is one of several classes in
the java.lang.reflect package. We will discuss reflection in the next
section.)

C++ NOTE

The newInstance method corresponds to the idiom of a virtual
constructor in C++. However, virtual constructors in C++ are not
a language feature but just an idiom that needs to be supported by
a specialized library. The Class class is similar to the type_info class in
C++, and the getClass method is equivalent to the typeid operator.
The Java Class is quite a bit more versatile than type_info, though.
The C++ type_info can only reveal a string with the name of the type,
not create new objects of that type.

java.lang.Class

• static Class forName(String className)

returns the Class object representing the class with name className.

• Object newInstance()

returns a new instance of this class.

Core Java™ 2: Volume I–Fundamentals

244

java.lang.reflect.Constructor

• Object newInstance(Object[] args)

constructs a new instance of the constructor's declaring class.

Parameters: args the parameters supplied to the constructor. See the section on reflection for
more information on how to supply parameters.

java.lang.Throwable

• void printStackTrace()

prints the Throwable object and the stack trace to the standard error stream.

Reflection

The class Class gives you a very rich and elaborate toolset to write programs that manipulate
Java code dynamically. This feature is heavily used in JavaBeans, the component architecture
for Java (see Volume 2 for more on JavaBeans). Using reflection, Java is able to support tools
like the ones users of Visual Basic have grown accustomed to. In particular, when new classes
are added at design or run time, rapid application development tools that are JavaBeans
enabled need to be able to inquire about the capabilities of the classes that were added. (This
is equivalent to the process that occurs when you add controls in Visual Basic to the toolbox.)

A program that can analyze the capabilities of classes is called reflective. The package that
brings this functionality to Java is therefore called, naturally enough, java.lang.reflect.
The reflection mechanism is extremely powerful. As the next four sections show, you can use
it to:

• Analyze the capabilities of classes at run time
• Inspect objects at run time, for example, to write a single toString method that works

for all classes
• Implement generic array manipulation code
• Take advantage of Method objects that work just like function pointers in languages

such as C++

Reflection is a powerful and complex mechanism; however, it is of interest mainly to tool
builders, not application programmers. If you are interested in programming applications
rather than tools for other Java programmers, you can safely skip the remainder of this chapter
and return to it at a later time.

Core Java™ 2: Volume I–Fundamentals

245

Using Reflection to Analyze the Capabilities of Classes

Here is a brief overview of the most important parts of the reflection mechanism for letting
you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package
describe the fields, methods, and constructors of a class, respectively. All three classes have a
method called getName that returns the name of the item. The Field class has a method
getType that returns an object, again of type Class, that describes the field type. The Method
and Constructor classes have methods to report the return type and the types of the
parameters used for these methods. All three of these classes also have a method called
getModifiers that returns an integer, with various bits turned on and off, that describe the
modifiers used, such as public and static. You can then use the static methods in the
Modifier class in the java.lang.reflect package to analyze the integer that
getModifiers returns. For example, there are methods like isPublic, isPrivate, or
isFinal in the Modifier class that you could use to tell whether a method or constructor was
public, private, or final. All you have to do is have the appropriate method in the
Modifier class work on the integer that getModifiers returns. You can also use the
Modifier.toString method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the Class class return
arrays of the public fields, operations, and constructors that the class supports. This includes
public members of superclasses. The getDeclaredFields, getDeclaredMethods, and
getDeclaredConstructors methods of the Class class return arrays consisting of all fields,
operations, and constructors that are declared in the class. This includes private and protected
members, but not members of superclasses.

Example 5-5 shows you how to print out all information about a class. The program prompts
you for the name of a class and then writes out the signatures of all methods and constructors
as well as the names of all data fields of a class. For example, if you enter

java.lang.Double

then the program prints:

class java.lang.Double extends java.lang.Number
{
 public java.lang.Double(java.lang.String);
 public java.lang.Double(double);

 public int hashCode();
 public int compareTo(java.lang.Object);
 public int compareTo(java.lang.Double);
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 public static java.lang.String toString(double);
 public static java.lang.Double valueOf(java.lang.String);
 public static boolean isNaN(double);
 public boolean isNaN();
 public static boolean isInfinite(double);
 public boolean isInfinite();
 public byte byteValue();
 public short shortValue();

Core Java™ 2: Volume I–Fundamentals

246

 public int intValue();
 public long longValue();
 public float floatValue();
 public double doubleValue();
 public static double parseDouble(java.lang.String);
 public static native long doubleToLongBits(double);
 public static native long doubleToRawLongBits(double);
 public static native double longBitsToDouble(long);

 public static final double POSITIVE_INFINITY;
 public static final double NEGATIVE_INFINITY;
 public static final double NaN;
 public static final double MAX_VALUE;
 public static final double MIN_VALUE;
 public static final java.lang.Class TYPE;
 private double value;
 private static final long serialVersionUID;
}

What is remarkable about this program is that it can analyze any class that the Java interpreter
can load, not just the classes that were available when the program was compiled. We will use
this program in the next chapter to peek inside the inner classes that the Java compiler
generates automatically.

Example 5-5 ReflectionTest.java

 1. import java.lang.reflect.*;
 2. import javax.swing.*;
 3.
 4. public class ReflectionTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. // read class name from command line args or user input
 9. String name;
 10. if (args.length > 0)
 11. name = args[0];
 12. else
 13. name = JOptionPane.showInputDialog
 14. ("Class name (e.g. java.util.Date): ");
 15.
 16. try
 17. {
 18. // print class name and superclass name (if != Object)
 19. Class cl = Class.forName(name);
 20. Class supercl = cl.getSuperclass();
 21. System.out.print("class " + name);
 22. if (supercl != null && supercl != Object.class)
 23. System.out.print(" extends " + supercl.getName());
 24.
 25. System.out.print("\n{\n");
 26. printConstructors(cl);
 27. System.out.println();
 28. printMethods(cl);
 29. System.out.println();
 30. printFields(cl);
 31. System.out.println("}");
 32. }
 33. catch(ClassNotFoundException e) { e.printStackTrace(); }

Core Java™ 2: Volume I–Fundamentals

247

 34. System.exit(0);
 35. }
 36.
 37. /**
 38. Prints all constructors of a class
 39. @param cl a class
 40. */
 41. public static void printConstructors(Class cl)
 42. {
 43. Constructor[] constructors = cl.getDeclaredConstructors();
 44.
 45. for (int i = 0; i < constructors.length; i++)
 46. {
 47. Constructor c = constructors[i];
 48. String name = c.getName();
 49. System.out.print(Modifier.toString(c.getModifiers()));
 50. System.out.print(" " + name + "(");
 51.
 52. // print parameter types
 53. Class[] paramTypes = c.getParameterTypes();
 54. for (int j = 0; j < paramTypes.length; j++)
 55. {
 56. if (j > 0) System.out.print(", ");
 57. System.out.print(paramTypes[j].getName());
 58. }
 59. System.out.println(");");
 60. }
 61. }
 62.
 63. /**
 64. Prints all methods of a class
 65. @param cl a class
 66. */
 67. public static void printMethods(Class cl)
 68. {
 69. Method[] methods = cl.getDeclaredMethods();
 70.
 71. for (int i = 0; i < methods.length; i++)
 72. {
 73. Method m = methods[i];
 74. Class retType = m.getReturnType();
 75. String name = m.getName();
 76.
 77. // print modifiers, return type and method name
 78. System.out.print(Modifier.toString(m.getModifiers()));
 79. System.out.print(" " + retType.getName() + " " + name
 80. + "(");
 81.
 82. // print parameter types
 83. Class[] paramTypes = m.getParameterTypes();
 84. for (int j = 0; j < paramTypes.length; j++)
 85. {
 86. if (j > 0) System.out.print(", ");
 87. System.out.print(paramTypes[j].getName());
 88. }
 89. System.out.println(");");
 90. }
 91. }
 92.

Core Java™ 2: Volume I–Fundamentals

248

 93. /**
 94. Prints all fields of a class
 95. @param cl a class
 96. */
 97. public static void printFields(Class cl)
 98. {
 99. Field[] fields = cl.getDeclaredFields();
100.
101. for (int i = 0; i < fields.length; i++)
102. {
103. Field f = fields[i];
104. Class type = f.getType();
105. String name = f.getName();
106. System.out.print(Modifier.toString(f.getModifiers()));
107. System.out.println(" " + type.getName() + " " + name
108. + ";");
109. }
110. }
111. }

java.lang.Class

• Field[] getFields()
• Field[] getDeclaredFields()

The getFields method returns an array containing Field objects for the public fields.
The getDeclaredField method returns an array of Field objects for all fields. The
methods return an array of length 0 if there are no such fields, or if the Class object
represents a primitive or array type.

• Method[] getMethods()
• Method[] getDeclaredMethods()

return an array containing Method objects that give you all the public methods (for
getMethods) or all methods (for getDeclaredMethods) of the class or interface. This
includes those inherited from classes or interfaces above it in the inheritance chain.

• Constructor[] getConstructors()
• Constructor[] getDeclaredConstructors()

return an array containing Constructor objects that give you all the public
constructors (for getConstructors) or all constructors (for
getDeclaredConstructors) of the class represented by this Class object.

Core Java™ 2: Volume I–Fundamentals

249

java.lang.reflect.Field

java.lang.reflect.Method

java.lang.reflect.Constructor

• Class getDeclaringClass()

returns the Class object for the class that defines this constructor, method, or field.

• Class[] getExceptionTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the exceptions thrown by
the method.

• int getModifiers()

returns an integer that describes the modifiers of this constructor, method, or field. Use
the methods in the Modifier class to analyze the return value.

• String getName()

returns a string that is the name of the constructor, method, or field.

• Class[] getParameterTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the parameters.

java.lang.reflect.Modifier

• static String toString(int modifiers)

returns a string with the modifiers that correspond to the bits set in modifiers.

Core Java™ 2: Volume I–Fundamentals

250

Using Reflection to Analyze Objects at Run Time

In the preceding section, we saw how we can find out the names and types of the data fields of
any object:

• Get the corresponding Class object.
• Call getDeclaredFields on the Class object.

In this section, we go one step further and actually look at the contents of the data fields. Of
course, it is easy to look at the contents of a specific field of an object whose name and type
are known when you write a program. But reflection lets you look at fields of objects that
were not known at compile time.

The key method to achieve this is the get method in the Field class. If f is an object of type
Field (for example, one obtained from getDeclaredFields) and obj is an object of the class
of which f is a field, then f.get(obj) returns an object whose value is the current value of
the field of obj. This is all a bit abstract, so let's run through an example.

Employee harry = new Employee("Harry Hacker", 35000,
 10, 1, 1989);
Class cl = harry.getClass();
 // the class object representing Employee
Field f = cl.getField("name");
 // the name field of the Employee class
Object v = f.get(harry);
 // the value of the name field of the harry object
 // i.e. the String object "Harry Hacker"

Actually, there is a problem with this code. Since the name field is a private field, the get
method will throw an IllegalAccessException. You can only use the get method to get the
values of accessible fields. The security mechanism of Java lets you find out what fields any
object has, but it won't let you read the values of those fields unless you have access
permission.

The default behavior of the reflection mechanism is to respect Java access control. However,
if a Java program is not controlled by a security manager that disallows it, it is possible to
override access control. To do this, invoke the setAccessible method on a Field, Method,
or Constructor object, for example:

f.setAccessible(true);
 // now OK to call f.get(harry);

The setAccessible method is a method of the AccessibleObject class, the common
superclass of the Field, Method, and Constructor. This feature is provided for debuggers,
persistent storage, and similar mechanisms. We will use it for a generic toString method
later in this section.

There is another issue with the get method that we need to deal with. The name field is a
String, and so it is not a problem to return the value as an Object. But suppose we want to
look at the salary field. That is a double, and in Java, number types are not objects. To
handle this, you can either use the getDouble method of the Field class, or you can call get,

Core Java™ 2: Volume I–Fundamentals

251

where the reflection mechanism automatically wraps the field value into the appropriate
wrapper class, in this case, Double.

Of course, you can also set the values that you can get. The call f.set(obj, value) sets the
field represented by f of the object obj to the new value.

Example 5-6 shows how to write a generic toString method that works for any class. It uses
getDeclaredFields to obtain all data fields. It then uses the setAccessible convenience
method to make all fields accessible. For each field, it obtains the name and the value. Each
value is turned into a string by invoking its toString method. The toString method
examines all superclass fields until it reaches the Object class.

class ObjectAnalyzer
{
 public static String toString(Object obj)
 {
 Class cl = obj.getClass();
 String r = cl.getName();

 // inspect the fields of this class and all superclasses
 do
 {
 r += "[";
 Field[] fields = cl.getDeclaredFields();
 AccessibleObject.setAccessible(fields, true);

 // get the names and values of all fields
 for (int i = 0; i < fields.length; i++)
 {
 Field f = fields[i];
 r += f.getName() + "=";
 try
 {
 Object val = f.get(obj);
 r += val.toString();
 }
 catch (Exception e) { e.printStackTrace(); }
 if (i < fields.length - 1)
 r += ",";
 }
 r += "]";
 cl = cl.getSuperclass();
 }
 while (cl != Object.class);

 return r;
 }
 . . .
}

You can use this toString method to peek inside any object. For example, here is what you
get when you look inside the System.out object:

java.io.PrintStream[autoFlush=true,trouble=false,
textOut=java.io.BufferedWriter@8786b,
charOut=java.io.OutputStreamWriter@19c082,
closing=false][out=java.io.BufferedOutputStream@2dd2dd][]

Core Java™ 2: Volume I–Fundamentals

252

In Example 5-6, the generic toString method is used to implement the toString of the
Employee class:

public String toString()
{
 return ObjectAnalyzer.toString(this);
}

This is a hassle-free method for supplying a toString method, and it is highly recommended,
especially for debugging. The same recursive approach can also be used to define a generic
equals method. See the code in the example program Example 5-6 for details.

Example 5-6 ObjectAnalyzerTest.java

 1. import java.lang.reflect.*;
 2. import java.util.*;
 3.
 4. public class ObjectAnalyzerTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. // test toString method of Employee
 9. Employee harry = new Employee("Harry Hacker", 35000,
 10. 1996, 12, 1);
 11. System.out.println("harry=" + harry);
 12.
 13. // test equals method of Employee
 14. Employee coder = new Employee("Harry Hacker", 35000,
 15. 1996, 12, 1);
 16. System.out.println(
 17. "Before raise, harry.equals(coder) returns "
 18. + harry.equals(coder));
 19. harry.raiseSalary(5);
 20. System.out.println(
 21. "After raise, harry.equals(coder) returns "
 22. + harry.equals(coder));
 23.
 24. Manager carl = new Manager("Carl Cracker", 80000,
 25. 1987, 12, 15);
 26. Manager boss = new Manager("Carl Cracker", 80000,
 27. 1987, 12, 15);
 28. boss.setBonus(5000);
 29. System.out.println("boss=" + boss);
 30. System.out.println(
 31. "carl.equals(boss) returns " + carl.equals(boss));
 32. }
 33. }
 34.
 35. class ObjectAnalyzer
 36. {
 37. /**
 38. Converts an object to a string representation that lists
 39. all fields.
 40. @param obj an object
 41. @return a string with the object's class name and all
 42. field names and values
 43. */

Core Java™ 2: Volume I–Fundamentals

253

 44. public static String toString(Object obj)
 45. {
 46. Class cl = obj.getClass();
 47. String r = cl.getName();
 48.
 49. // inspect the fields of this class and all superclasses
 50. do
 51. {
 52. r += "[";
 53. Field[] fields = cl.getDeclaredFields();
 54. AccessibleObject.setAccessible(fields, true);
 55.
 56. // get the names and values of all fields
 57. for (int i = 0; i < fields.length; i++)
 58. {
 59. Field f = fields[i];
 60. r += f.getName() + "=";
 61. try
 62. {
 63. Object val = f.get(obj);
 64. r += val.toString();
 65. }
 66. catch (Exception e) { e.printStackTrace(); }
 67. if (i < fields.length - 1)
 68. r += ",";
 69. }
 70. r += "]";
 71. cl = cl.getSuperclass();
 72. }
 73. while (cl != Object.class);
 74.
 75. return r;
 76. }
 77.
 78. /**
 79. Tests whether two objects are equal by checking if all
 80. field values are equal
 81. @param a an object
 82. @param b another object
 83. @return true if a and b are equal
 84. */
 85. public static boolean equals(Object a, Object b)
 86. {
 87. if (a == b) return true;
 88. if (a == null || b == null) return false;
 89. Class cl = a.getClass();
 90. if (cl != b.getClass()) return false;
 91.
 92. // inspect the fields of this class and all superclasses
 93. do
 94. {
 95. Field[] fields = cl.getDeclaredFields();
 96. AccessibleObject.setAccessible(fields, true);
 97. for (int i = 0; i < fields.length; i++)
 98. {
 99. Field f = fields[i];
100. // if field values don't match, objects aren't equal
101. try
102. {
103. if (!f.get(a).equals(f.get(b)))
104. return false;

Core Java™ 2: Volume I–Fundamentals

254

105. }
106. catch (Exception e) { e.printStackTrace(); }
107. }
108. cl = cl.getSuperclass();
109. }
110. while (cl != Object.class);
111.
112. return true;
113. }
114. }
115.
116. class Employee
117. {
118. public Employee(String n, double s,
119. int year, int month, int day)
120. {
121. name = n;
122. salary = s;
123. GregorianCalendar calendar
124. = new GregorianCalendar(year, month - 1, day);
125. // GregorianCalendar uses 0 for January
126. hireDay = calendar.getTime();
127. }
128.
129. public String getName()
130. {
131. return name;
132. }
133.
134. public double getSalary()
135. {
136. return salary;
137. }
138.
139. public Date getHireDay()
140. {
141. return hireDay;
142. }
143.
144. public void raiseSalary(double byPercent)
145. {
146. double raise = salary * byPercent / 100;
147. salary += raise;
148. }
149.
150. public String toString()
151. {
152. return ObjectAnalyzer.toString(this);
153. }
154.
155. public boolean equals(Object b)
156. {
157. return ObjectAnalyzer.equals(this, b);
158. }
159.
160. private String name;
161. private double salary;
162. private Date hireDay;
163. }
164.

Core Java™ 2: Volume I–Fundamentals

255

165. class Manager extends Employee
166. {
167. public Manager(String n, double s,
168. int year, int month, int day)
169. {
170. super(n, s, year, month, day);
171. bonus = 0;
172. }
173.
174. public double getSalary()
175. {
176. double baseSalary = super.getSalary();
177. return baseSalary + bonus;
178. }
179.
180. public void setBonus(double b)
181. {
182. bonus = b;
183. }
184.
185. private double bonus;
186. }

java.lang.reflect.AccessibleObject

• void setAccessible(boolean flag)

sets the accessibility flag for this reflection object. A value of true indicates that Java
language access checking is suppressed, and that the private properties of the object
can be queried and set.

• boolean isAccessible()

gets the value of the accessibility flag for this reflection object.

• static void setAccessible(AccessibleObject[] array, boolean flag)

is a convenience method to set the accessibility flag for an array of objects.

Using Reflection to Write Generic Array Code

The Array class in the java.lang.reflect package allows you to create arrays dynamically.
For example, when you use this feature with the arrayCopy method from Chapter 3, you can
dynamically expand an existing array while preserving the current contents.

The problem we want to solve is pretty typical. Suppose you have an array of some type that
is full and you want to grow it. And suppose you are sick of writing the grow-and-copy code
by hand. You want to write a generic method to grow an array.

Core Java™ 2: Volume I–Fundamentals

256

Employee[] a = new Employee[100];
. . .
// array is full
a = (Employee[])arrayGrow(a);

How can we write such a generic method? It helps that an Employee[] array can be converted
to an Object[] array. That sounds promising. Here is a first attempt to write a generic
method. We simply grow the array by 10% + 10 elements (since the 10% growth is not
substantial enough for small arrays).

static Object[] arrayGrow(Object[] a) // not useful
{
 int newLength = a.length * 11 / 10 + 10;
 Object[] newArray = new Object[newLength];
 System.arraycopy(a, 0, newArray, 0, a.length);
 return newArray;
}

However, there is a problem with actually using the resulting array. The type of array that this
code returns is an array of objects (Object[]) because we created the array using the line of
code:

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]). Java would
generate a ClassCast exception at run time. The point is, as we mentioned earlier, that a Java
array remembers the type of its entries, that is, the element type used in the new expression
that created it. It is legal to cast an Employee[] temporarily to an Object[] array and then
cast it back, but an array that started its life as an Object[] array can never be cast into an
Employee[] array. To write this kind of generic array code, we need to be able to make a new
array of the same type as the original array. For this, we need the methods of the Array class
in the java.lang.reflect package. The key is the static newInstance method of the Array
class that constructs a new array. You must supply the type for the entries and the desired
length as parameters to this method.

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and component type of the new array.

The length is obtained by calling Array.getLength(a). The static getLength method of the
Array class returns the length of any array. To get the component type of the new array:

1. First, get the class object of a.
2. Confirm that it is indeed an array.
3. Use the getComponentType method of the Class class (which is defined only for

class objects that represent arrays) to find the right type for the array.

Why is getLength a method of Array but getComponentType a method of Class? We don't
know—the distribution of the reflection methods seems a bit ad hoc at times.

Here's the code:

Core Java™ 2: Volume I–Fundamentals

257

static Object arrayGrow(Object a) // useful
{
 Class cl = a.getClass();
 if (!cl.isArray()) return null;
 Class componentType = cl.getComponentType();
 int length = Array.getLength(a);
 int newLength = length * 11 / 10 + 10;
 Object newArray = Array.newInstance(componentType,
 newLength);
 System.arraycopy(a, 0, newArray, 0, length);
 return newArray;
}

Note that this arrayGrow method can be used to grow arrays of any type, not just arrays of
objects.

int[] ia = { 1, 2, 3, 4 };
ia = (int[])arrayGrow(ia);

To make this possible, the parameter of arrayGrow is declared to be of type Object, not an
array of objects (Object[]). The integer array type int[] can be converted to an Object, but
not to an array of objects!

Example 5-7 shows both array grow methods in action. Note that the cast of the return value
of badArrayGrow will throw an exception.

Example 5-7 ArrayGrowTest.java

 1. import java.lang.reflect.*;
 2. import java.util.*;
 3.
 4. public class ArrayGrowTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. int[] a = { 1, 2, 3 };
 9. a = (int[])goodArrayGrow(a);
10. arrayPrint(a);
11.
12. String[] b = { "Tom", "Dick", "Harry" };
13. b = (String[])goodArrayGrow(b);
14. arrayPrint(b);
15.
16. System.out.println
17. ("The following call will generate an exception.");
18. b = (String[])badArrayGrow(b);
19. }
20.
21. /**
22. This method attempts to grow an array by allocating a
23. new array and copying all elements.
24. @param a the array to grow
25. @return a larger array that contains all elements of a.
26. However, the returned array has type Object[], not
27. the same type as a
28. */

Core Java™ 2: Volume I–Fundamentals

258

29. static Object[] badArrayGrow(Object[] a)
30. {
31. int newLength = a.length * 11 / 10 + 10;
32. Object[] newArray = new Object[newLength];
33. System.arraycopy(a, 0, newArray, 0, a.length);
34. return newArray;
35. }
36.
37. /**
38. This method grows an array by allocating a
39. new array of the same type and copying all elements.
40. @param a the array to grow. This can be an object array
41. or a fundamental type array
42. @return a larger array that contains all elements of a.
43.
44. */
45. static Object goodArrayGrow(Object a)
46. {
47. Class cl = a.getClass();
48. if (!cl.isArray()) return null;
49. Class componentType = cl.getComponentType();
50. int length = Array.getLength(a);
51. int newLength = length * 11 / 10 + 10;
52.
53. Object newArray = Array.newInstance(componentType,
54. newLength);
55. System.arraycopy(a, 0, newArray, 0, length);
56. return newArray;
57. }
58.
59. /**
60. A convenience method to print all elements in an array
61. @param a the array to print. can be an object array
62. or a fundamental type array
63. */
64. static void arrayPrint(Object a)
65. {
66. Class cl = a.getClass();
67. if (!cl.isArray()) return;
68. Class componentType = cl.getComponentType();
69. int length = Array.getLength(a);
70. System.out.print(componentType.getName()
71. + "[" + length + "] = { ");
72. for (int i = 0; i < Array.getLength(a); i++)
73. System.out.print(Array.get(a, i)+ " ");
74. System.out.println("}");
75. }
76. }

Method Pointers!

On the surface, Java does not have method pointers—ways of giving the location of a method
to another method so that the second method can invoke it later. In fact, the designers of Java
have said that method pointers are dangerous and error-prone and that Java interfaces
(discussed in the next chapter) are a superior solution. However, it turns out that Java now
does have method pointers, as a (perhaps accidental) byproduct of the reflection package.

Core Java™ 2: Volume I–Fundamentals

259

NOTE

Among the nonstandard language extensions that Microsoft added to its
Java derivative J++ (and its successor, C#) is another method pointer
type that is different from the Method class that we discuss in this
section. However, as you will see in chapter 6, inner classes are a more
useful and general mechanism.

To see method pointers at work, recall that you can inspect a field of an object with the get
method of the Field class. Similarly, the Method class has an invoke method that lets you
call the method that is wrapped in the current Method object. The signature for the invoke
method is:

Object invoke(Object obj, Object[] args)

The first parameter is the implicit parameter, and the array of objects provides the explicit
parameters. For a static method, the first parameter is ignored—you can set it to null. If the
method has no explicit parameters, you can pass null or an array of length 0 for the args
parameter. For example, if m1 represents the getName method of the Employee class,
the following code shows how you can call it:

String n = (String)m1.invoke(harry, null);

As with the get and set methods of the Field type, there's a problem if the parameter or
return type is not a class but a basic type. You must wrap any of the basic types into their
corresponding wrappers before inserting them into the args array. Conversely, the invoke
method will return the wrapped type and not the basic type. For example, suppose that m2
represents the raiseSalary method of the Employee class. Then, you need to wrap the
double parameter into a Double object.

Object[] args = { new Double(5.5) };
m2.invoke(harry, args);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and
search through the returned array of Method objects until you find the method that you want.
Or, you can call the getMethod method of the Class class. This is similar to the getField
method that takes a string with the field name and returns a Field object. However, there may
be several methods with the same name, so you need to be careful that you get the right one.
For that reason, you must also supply an array that gives the correct parameter types. For
example, here is how you can get method pointers to the getName and raiseSalary methods
of the Employee class.

Method m1 = Employee.class.getMethod("getName", null);
Methodm2 = Employee.class.getMethod("raiseSalary",
 new Class[] { double.class });

The second parameter of the getMethod method is an array of Class objects. Since the
raiseSalary method has one parameter of type double, we must supply an array with a
single element, double.class. It is usually easiest to make that array on the fly, as we did in
the example above. The expression

Core Java™ 2: Volume I–Fundamentals

260

new Class[] { double.class }

denotes an array of Class objects, filled with one element, namely, the class object
double.class.

Now that you have seen the syntax of Method objects, let's put them to work. Example 5-8 is a
program that prints a table of values for a mathematical function such as Math.sqrt or
Math.sin. The printout looks like this:

public static native double java.lang.Math.sqrt(double)
 1.0000 | 1.0000
 2.0000 | 1.4142
 3.0000 | 1.7321
 4.0000 | 2.0000
 5.0000 | 2.2361
 6.0000 | 2.4495
 7.0000 | 2.6458
 8.0000 | 2.8284
 9.0000 | 3.0000
 10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual function that is being
tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
 double y = f(x);
 // where f is the function to be tabulated
 // not the actual syntax--see below
 System.out.println(x + " | " + y);
}

We want to write a generic printTable method that can tabulate any function. We will pass
the function as a parameter of type Method.

static void printTable(double from, double to, int n, Method f)

Of course, f is an object and not a function, so we cannot simply write f(x) to evaluate it.
Instead, we must supply x in the parameter array (suitably wrapped as a Double), use the
invoke method, and unwrap the return value.

Object[] args = { new Double(x) };
Double d = (Double)f.invoke(null, args);
double y = d.doubleValue();

The first parameter of invoke is null because we are calling a static method.

Here is a sample call to printTable that tabulates the square root function.

printTable(1, 10, 10,
 java.lang.Math.class.getMethod("sqrt",
 new Class[] { double.class }));

Core Java™ 2: Volume I–Fundamentals

261

The hardest part is to get the method object. Here, we get the method of the java.lang.Math
class that has the name sqrt and whose parameter list contains just one type, double.

Example 5-8 shows the complete code of the printTable method and a couple of test runs.

Example 5-8 MethodPointerTest.java

 1. import java.lang.reflect.*;
 2. import java.text.*;
 3.
 4. public class MethodPointerTest
 5. {
 6. public static void main(String[] args) throws Exception
 7. {
 8. // get method pointers to the square and sqrt methods
 9. Method square = MethodPointerTest.class.getMethod("square",
10. new Class[] { double.class });
11. Method sqrt = java.lang.Math.class.getMethod("sqrt",
12. new Class[] { double.class });
13.
14. // print tables of x- and y-values
15.
16. printTable(1, 10, 10, square);
17. printTable(1, 10, 10, sqrt);
18. }
19.
20. /**
21. Returns the square of a number
22. @param x a number
23. @return x squared
24. */
25. public static double square(double x)
26. {
27. return x * x;
28. }
29.
30. /**
31. Prints a table with x- and y-values for a method
32. @param from the lower bound for the x-values
33. @param to the upper bound for the x-values
34. @param n the number of rows in the table
35. @param f a method with a double parameter and double
36. return value
37. */
38. public static void printTable(double from, double to,
39. int n, Method f)
40. {
41. // print out the method as table header
42. System.out.println(f);
43.
44. // construct formatter to print with 4 digits precision
45.
46. NumberFormat formatter = NumberFormat.getNumberInstance();
47. formatter.setMinimumFractionDigits(4);
48. formatter.setMaximumFractionDigits(4);
49. double dx = (to - from) / (n - 1);
50.

Core Java™ 2: Volume I–Fundamentals

262

51. for (double x = from; x <= to; x += dx)
52. {
53. // print x-value
54. String output = formatter.format(x);
55. // pad with spaces to field width of 10
56. for (int i = 10 - output.length(); i > 0; i--)
57. System.out.print(' ');
58. System.out.print(output + " |");
59.
60. try
61. {
62. // invoke method and print y-value
63. Object[] args = { new Double(x) };
64. Double d = (Double)f.invoke(null, args);
65. double y = d.doubleValue();
66.
67. output = formatter.format(y);
68. // pad with spaces to field width of 10
69. for (int i = 10 - output.length(); i > 0; i--)
70. System.out.print(' ');
71.
72. System.out.println(output);
73. }
74. catch (Exception e) { e.printStackTrace(); }
75. }
76. }
77. }

As this example shows clearly, you can do anything with Method objects that you can do with
function pointers in C. Just as in C, this style of programming is usually quite inconvenient
and always error-prone. What happens if you invoke a method with the wrong parameters?
The invoke method throws an exception.

Also, the parameters and return values of invoke are necessarily of type Object. That means
you must cast back and forth a lot. As a result, the compiler is deprived of the chance to check
your code. Therefore, errors surface only during testing, when they are more tedious to find
and fix. Moreover, code that uses reflection to get at method pointers is significantly slower
than simply calling methods directly.

For that reason, we suggest that you use Method objects in your own programs only when
absolutely necessary. Using interfaces and inner classes (the subject of the next chapter) is
almost always a better idea. In particular, we echo the developers of Java and suggest not
using Method objects for callback functions. Using interfaces for the callbacks (see the next
chapter as well) leads to code that runs faster and is a lot more maintainable.

Design Hints for Inheritance

We want to end this chapter with some hints for using inheritance that we have found useful.

1. Place common operations and fields in the superclass.

This is why we put the name field into the Person class, rather than replicating it in
Employee and Student.

