
#3: Hierarchical Transforms.
Geometric Calculations

CSE167: Computer Graphics
Instructor: Ronen Barzel

UCSD, Winter 2006

2

Object and World Coordinates
 In project1, constructed matrix to transform points of cube

 Cube defined using (-1,1,1), …
 Transformed each point to final position

3

Object Coordinates
 Each object is defined using some convenient coordinates

 Often “Axis-aligned”. (when there are natural axes for the object)
 Origin of coordinates is often in the middle of the object
 Origin of coordinates is often at the “base” or corner of the object
 E.g. cube in project1 was -1,-1,1… could also use just 0,1 Axes

could be lined up any way.
• Model of a book: put the Z axis along the spine? Front-to-back?

 No “right” answer. Just what’s most convenient for
whomever builds model

 Notice: build, manipulate object in object coordinates
 Don’t know (or care) where the object will end up in the scene.

 Also called
 Object space
 Local coordinates

4

World Coordinates
 The common coordinate system for the scene
 Also called World Space
 Also chosen for convenience, no “right” answer.

 Typically if there’s a ground plane, it’s XY horizontal and Z up
• That’s most common for people thinking of models
• I tend to use it a lot

 Aside: Screen Coordinates
 X to the right, Y up, Z towards you

• That’s the convention when considering the screen (rendering)
• Handy when drawing on the blackboard, slides
• In project1, World Coordinates == Screen Coordinates

5

Placing object in the world
 Bundle together a single composite transform.
 Known as:

 Model Matrix
 Model Transform
 World Matrix
 World Transform
 Model-to-World Transform
 Local-to-World Matrix
 In OpenGL: included in MODELVIEW matrix (composed model &

view matrix)
 Transforms each point

6

Placing object coordinates in the world

 Place the coordinate frame for the object in the world
 Don’t know or care about the shape of the object
 World matrix columns = object’s frame in world coordinates

7

Relative Transformations
 Until now, used a separate world matrix to place each

object into the world separately.
 But usually, objects are organized or grouped together in

some way
 For example…

 A bunch of moons and planets orbiting around in a solar system
 Several objects sitting on a tray that is being carried around
 A hotel with 1000 rooms, each room containing a bed, chairs,

table, etc.
 A robot with torso and jointed arms & legs

 Placement of objects is described more easily relative to
each other rather than always in world space

8

Sample Scene

9

Schematic Diagram (Top View)

10

Top view with Coordinates

11

Relative Transformations
 Put the objects on the tables

 Each table has a simple coordinate system
 E.g. Book1 at (3.75,1,0) on Table1’s top
 E.g. Keyboard at (3,.5,0) on Table2’s top
 Don’t care where the tables are in order to do this part

 Put the tables in the room
 Books etc. should end up in the right place

 How do we do this…?

12

Current coordinate system
 In our code, we maintain a “current coordinate system”
 Everything we draw will be in those coordinates
 I.e. we keep a variable with a matrix known as the

“current transformation matrix” (CTM)
 Everything we draw we will transform using that matrix
 Transforms from current coordinates to world coordinates

13

Drawing with a CTM
 Old drawCube:

drawCube(Matrix M) {
p1 = M*Point3(1,-1, 1);
p2 = M*Point3(1,-1,-1);
p3 = M*Point3(1, 1,-1);
p4 = M*Point3(1, 1, 1);
p5 = M*Point3(-1,-1, 1);
p6 = M*Point3(-1,-1,-1);
p7 = M*Point3(-1, 1,-1);
p8 = M*Point3(-1, 1, 1);
 .

 .
 .

}

 New drawCube:
// global CTM
drawCube() {

p1 = CTM*Point3(1,-1, 1);
p2 = CTM*Point3(1,-1,-1);
p3 = CTM*Point3(1, 1,-1);
p4 = CTM*Point3(1, 1, 1);
p5 = CTM*Point3(-1,-1, 1);
p6 = CTM*Point3(-1,-1,-1);
p7 = CTM*Point3(-1, 1,-1);
p8 = CTM*Point3(-1, 1, 1);
 .

 .
 .

}

14

Using a CTM
 As we go through the program, we incrementally update

the CTM
 Start with the current coordinates=world coordinates

 CTM = I
 Before we draw an object, we update the CTM

 from the current location to the object’s location
 We perform a relative transformation.
 The CTM accumulates the full current-to-world transformation.

 Draw from the outside in.
 Draw containers before the things they contain.

15

Top view, just frames

16

Table1 and Book1

17

Draw Table1 and Book1
 // Start in World coords, on floor of room

CTM = Matrix::IDENTITY;

// Move to Table1 position, draw table
CTM = CTM*Matrix.MakeTranslate(2,8,0);
drawTable();

// Move up to tabletop height
CTM = CTM*Matrix.MakeTranslate(0,0,3);

// Move to Book1 position & orientation, draw
CTM = CTM*Matrix.MakeTranslate(3.75,1,0);
CTM = CTM*Matrix.MakeRotateZ(90);
drawBook();

18

Simplify the idiom
 Routines that affect the CTM:

 LoadIdentity () { CTM = Matrix::IDENTITY }
 Translate(V) { CTM = CTM*Matrix::MakeTranslate(V) }
 RotateZ(angle) { CTM = CTM*Matrix::MakeRotateZ(angle) }
 Etc…
 Transform(M) { CTM = CTM*M }

19

Draw Table1 and Book, redux
 // Start in World coords, on floor of room

LoadIdentity();

// Move to Table1 position, draw table
Translate(2,8,0);
drawTable();

// Move up to tabletop height
Translate(0,0,3);

// Move to Book1 position & orientation, draw
Translate(3.75,1,0);
RotateZ(90);
drawBook();

20

Table2 and Keyboard

21

Draw Table2 and Keyboard
 // Start in World coords, on floor of room

LoadIdentity();

// Move to Table2 position & orientation, draw
Translate(2,8,0);

 RotateZ(-81);
drawTable();

// Move up to tabletop height
Translate(0,0,3);

// Move to Keyboard position, draw
Translate(3,0.5,0);
drawKeyboard();

22

What about drawing entire scene?
 After we drew Book1 or Keyboard, our coordinate system

had moved deep into the world somewhere.
 How do we get back…?

 To the tabletop coordinates so we can place another book?
 To the room coordinates so we can place another table?

 Don’t want to start over at the beginning for each object.
 At each stage, need to remember where we are so we

can get back there

23

Keep a Stack for the CTM
 Add two more routines:

 PushCTM() -- saves a copy of the CTM on the stack
 PopCTM() -- restores the CTM from the stack

24

Draw whole scene, hierarchically
PushCTM();
 Translate(2,8,0);
 drawTable()
 Translate(0,0,3);
 PushCTM();
 Translate(3.75,1,0);
 RotateZ(90);
 drawBook()
 PopCTM();
 PushCTM();
 Translate(…);
 Rotate(…);
 drawBook();
 PopCTM();
 …etc…
PopCTM()
…etc…

25

Hierachical grouping within a model
 Model can be composed of parts

 Draw parts using Push & Pop CTM

drawTable(){
 PushCTM() // save
 PushCTM() // draw leg1
 Translate(…);
 drawLeg();
 PopCTM();
 PushCTM() // draw leg2
 Translate(…);
 drawLeg();
 PopCTM();
 …etc leg3 & leg4…
 PushCTM(); // draw top
 Translate(…);
 drawTableTop();
 PopCTM();
 PopCTM() // restore
}

 Has no effect outside this routine.

26

Access something in the middle?
 CTM always contains the complete Local-to-world transform for what

we’re currently drawing.
 Sometimes need to hold on to copy of CTM in the middle

pushCTM();
 …stuff…
pushCTM();
 …transform…
 Book1Matrix = CTM;
 drawBook();
popCTM();
…stuff…

popCTM();

 Later in code, mosquito lands on Book1
pushCTM();

LoadMatrix(Book1Matrix);
Translate(…);
drawMosquito();

popCTM();

27

CTM and matrix stack in OpenGL
 OpenGL provides

 glTranslatef(…)
 glRotatef(…)
 glPushMatrix()
 glPopMatrix()

 (But don’t use them for proj2--need to know how to do it
yourself)

 Actually, other properties, such as color, are also part of
“current state” and can be pushed and popped.

28

Thinking top-down vs bottom-up
 Transforms for World-to-Keyboard (ignoring pushes, pops, etc.):

1. Translate(2,8,0)
2. RotateZ(-81)
3. Translate(0,0,3)
4. Translate(3,0.5,0)
5. drawKeyboard()

 Top-down: transform the coordinate frame:
 Translate the frame, then rotate it, then translate twice more, then draw

the object
 Bottom-up: transform the object:

 Create a keyboard, translate it in X&Y, then in Z, then rotate about the
origin, then translate again

 Both ways give same result
 Both ways useful for thinking about it.

29

Another example:
 Sample sequence:

1. RotateZ(45)
2. Translate(0,5,0)
3. Scale(2,1,1)
4. drawCube()

 Top-down: transform a coordinate frame:
 rotate it 45 degrees about its origin, then translate it along its Y,

then stretch it in X, then draw the primitive.
 Bottom-up: transform the object

 create a square, then scale it in X then translate it along the Y
axis, then rotate 45 degrees about the origin.

 Both ways useful

