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Outline For Today
 Scene Graphs
 Shapes
 Tessellation
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Modeling by writing a program
 First two projects: Scene hard-coded in the model
 The scene exists only in the drawScene() method
 Advantages:

 Simple,
 Direct

 Problems
 Code gets complex
 Special-purpose, hard to change
 Special-purpose, hard to make many variants
 Can’t easily examine or manipulate models

• Can only “draw”
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Sample Scene
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Schematic Diagram (Top View)
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Top view with Coordinates
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Hierarchical Transforms
 Last week, introduced hierarchical transforms
 Scene hierarchy:
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Data structure for hierarchical scene
 Want:

 Collection of individual models/objects
 Organized in groups
 Related via hierarchical transformations

 Use a tree structure
 Each node:

 Has associated local coordinates
 Can define a shape to draw in local coordinates
 Can have children that inherit its local coordinates

 Typically, different classes of nodes:
 “Transform nodes” that affect the local coordinates
 “Shape nodes” that define shapes
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Scene Tree
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Node base class
 A Node base class might support:

 getLocalTransform() -- matrix puts node’s frame in parent’s coordinates
 getGeometry() -- description of geometry in this node (later today)
 getChild(i) -- access child nodes

• addChild(), deleteChild() -- modify the scene

 Subclasses for different kinds of transforms, shapes, etc.
 Note: many designs possible

 Concepts are the same, details differ
 Optimize for: speed (games), memory (large-scale visualization),

editing flexibility (modeling systems), rendering flexibility
(production systems), …

 In our case: optimize for pedagogy & projects
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Node base class
class Node {

// data
Matrix localTransform;
Geometry *geometry;
Node *children[N];
int numChildren;

   // methods:
getLocalTransform() { return localTransform; }
getGeometry() { return geom; }
getChild(i) { return children[i]; }
addChild(Node *c) { children[numChildren++] = c; }

}
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Draw by traversing the tree
draw(Node node) {

 PushCTM();
  Transform(node.getLocalTransform());
  drawGeometry(node.getGeometry());
  for (i=0; i<node.numChildren; ++i) {
     draw(node.child[i]);
  }
  PopCTM();
}

 Effect is same hierarchical transformation as last week
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Modify the scene
 Change tree structure

 Add nodes
 Delete nodes
 Rearrange nodes

 Change tree contents
 Change transform matrix
 Change shape geometry data

 Define subclasses for different kinds of nodes
 Subclass has parameters specific to its function
 Changing parameter causes base info to update
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Example: Translation Node
class Translation(Transformation) {
   private:

   float x,y,z;
   void update() {
      localTransfom.MakeTranslation(x,y,z);
   }

   public:
  void setTranslation(float tx, float ty, float tz) {
     x = tx; y = ty; z = tz;
     update();
  }
  void setX(float tx) { x = tx; update(); }
  void setY(float ty) { y = ty; update(); }
  void setZ(float tz) { z = tz; update(); }

}
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Example: Rotation Node
class Rotation(Transformation) {
   private:

   Vector3 axis;
   float angle;
   void update() {
      localTransfom.MakeRotateAxisAngle(axis,angle);
   }

   public:
  void setAxis(Vector3 v) {
     axis = v;
     axis.Normalize();
     update();
  }
  void setAngle(float a) {
     angle = a;
     localTransfom.MakeRotateAxisAngle(axis,angle);
  }
}
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More detailed scene graph
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Building this scene
WORLD = new Node();
table1Trans = new Translation(…);  WORLD.addChild(table1Trans);
table1Rot = newRotation(…); table1Trans.addChild(table1Rot);
table1 = makeTable(); table1Rot.addChild(table1);
top1Trans = new Translation(…); table1Rot.addChild(top1Trans);

lampTrans = new Translation(…); top1Trans.addChild(lampTrans);
lamp = makeLamp(); lampTrans.addChild(lamp);

book1Trans = new Translation(…);  top1Trans.addChild(book1Trans);
book1Rot = newRotation(…); book1Trans.addChild(book1Rot);
book1 = makebook(); book1Rot.addChild(book1);

book2Trans = new Translation(…);  top1Trans.addChild(book2Trans);
book2Rot = newRotation(…); book2Trans.addChild(book2Rot);
book2 = makebook(); book2Rot.addChild(book1);

table2Trans = new Translation(…);  WORLD.addChild(table2Trans);
table2Rot = newRotation(…); table2Trans.addChild(table2Rot);
table2 = makeTable(); table2Rot.addChild(table2);
top2Trans = new Translation(…); table2Rot.addChild(top2Trans);
…

 Still building the scene hardwired in the program
 But now can more easily manipulate it…
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Change scene
 Change a transform in the tree:

 table1Rot.setAngle(23);
 Table rotates, everything on the table moves with it

 Allows easy animation
 Build scene once at start of program
 Update parameters to draw each frame
 e.g. Solar system:

drawScene() {
  sunSpin.setAngle(g_Rotation);
  earthSpin.setAngle(3*g_Rotation);
  earthOrbit.setAngle(2*g_Rotation);
  moonOrbit.setAngle(8*g_Rotation);
  draw(WORLD);
}

 Allows interactive model manipulation tools
 e.g. button to add a book

• Create subtree with transforms and book shape
• Insert as child of table
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Not just transform nodes
 Shape nodes

 Contain geometry:
• cube, sphere (later today)
• curved surfaces (next week)
• Etc…

 Can have nodes that control structure
 Switch/Select: parameters choose whether or which children to enable
 Group nodes that encapsulate subtrees
 Etc…

 Can have nodes that define other properties:
 Color
 Material
 Lights
 Camera
 Etc…

 Again, different details for different designs
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Java3D Scene Graph
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OpenInventor Scene Graph
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Maya “Hypergraph”
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Scene vs. Model
 No real difference between a scene and a model

 A scene is typically a collection of “models” (or “objects”)
 Each model may be built from “parts”

 Use the scene graph structure
 Scene typically includes cameras, lights, etc. in the graph;

Model typically doesn’t (but can)
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Parameteric models
 Parameters for:

 Relationship between parts
 Shape of individual parts

 Hierarchical relationship between parts
 Modeling robots

 separate rigid parts
 Parameters for joint angles
 Hierarchy:

• Rooted at pelvis: Move pelvis, whole body moves
• Neck & Head: subtree; move neck and head, or just move head
• Arms: Shoulder, Elbow, Wrist joints
• Legs: Hips, Knee, Ankle joints

 This model idiom is known as: an Articulated figure
 Often talk about degrees of freedom (DOFs)

• Total number of float parameters in the model
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Robot
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Screen Graph, not Tree
 Repetition:

 A scene might have many copies of a model
 A model might use several copies of a part

 Multiple Instantiation
 One copy of the node or subtree
 Inserted as a child of many parents
 A directed acyclic graph (DAG), not a tree
 Traversal will draw object each time, with different coordinates

 Saves memory
 Can save time also, depending on cacheing/optimization

 Change parameter once, affects all instances
 This can be good or bad, depending on what you want
 Some scene graph designs let other properties inherit from parent
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Instantiation - scene
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Instantiation - model parts
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Instantiation (OpenInventor)
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Fancier things to do with scene graphs

 Skeletons, skin, deformations
 Robot-like jointed rigid skeleton
 Shape nodes that put surface across multiple joint nodes
 Nodes that change shape of geometry

 Computations:
 Properties of one node used to define values for other nodes
 Sometimes can include mathematical expressions
 Examples:

• Elbow bend angle -> bicep bulge
• Our scene has translation to put objects on table…

• But how much should that translation be?
• What if the table changes?
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Linked parameters
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Linked parameters
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Other things to do with scene graphs

 Names/paths
 Unique name to access any node in the graph
 e.g. “WORLD/table1Trans/table1Rot/top1Trans/lampTrans”

 Compute Model-to-world transform
 Walk from node through parents to root, multiplying local transforms

 Bounding box or sphere
 Quick summary of extent of object
 Useful for culling (next class)
 Compute hierarchically:

• Bounding box is smallest box that encloses all children’s boxes
 Collision/contact calculation
 Picking

 Click with cursor on screen, determine which node was selected
 Edit: build interactive modeling systems
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Project 3 Scene Graph
 Just the basics…
 Transform nodes

 Rotation
 Translation

 Shapes
 Cube
 Sphere

 Traversal/drawing
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Outline For Today
 Scene Graphs
 Shapes
 Tessellation
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Basic shapes
 Geometry objects for primitive shape types
 Various exist.
 We’ll focus on fundamental: Collection of triangles

 AKA Triangle Set
 AKA Triangle Soup

 How to store triangle set?
 …simply as collection of triangles?
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 12 triangles:
 (-1,-1,1) (1,-1,1) (1,1,1)
 (-1,-1,1) (1,1,1) (-1,1,1)
 (1,-1,1) (1,-1,-1) (1,1,-1)
 (1,-1,1) (1,1,-1) (1,1,1)
 (1,-1,-1) (-1,-1,-1) (-1,1,-1)
 (1,-1,-1) (-1,1,-1) (1,1,-1)
 (-1,-1,-1) (-1,-1,1) (-1,1,1)
 (-1,-1,-1) (-1,1,1) (-1,1,-1)
 (-1,1,1) (1,1,1) (1,1,-1)
 (-1,1,1) (1,1,-1) (-1,1,-1)
 (1,-1,1) (-1,-1,-1) (1,-1,-1)
 (1,-1,1) (-1,-1, 1) (-1,-1,-1)

 12*3=36 vertices

Cube - raw triangles
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But….

 A cube only has 8 vertices!
 36 vertices with x,y,z = 36*3 floats = 108 floats.

 Would waste memory to store all 36 vertices
 Would be slow to send all 36 vertices to GPU
 (Especially when there is additional data per-vertex)

 Usually each vertex is used by at least 3 triangles--often 4 to 6 or more
 Would use 4 to 6 times as much memory as needed, or more

 Instead: Specify vertex data once, then reuse it
 Assign a number to each vertex
 Specify triangles using vertex numbers
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 8 vertices:
 P0: ( 1,-1, 1)
 P1: ( 1,-1,-1)
 P2: ( 1, 1,-1)
 P3: ( 1, 1, 1)
 P4: (-1,-1, 1)
 P5: (-1,-1,-1)
 P6: (-1, 1,-1)
 P7: (-1, 1, 1)

 8 vertices*3 floats = 24 floats
12 triangles*3 points= 36 integers

Cube - indexed triangles
 12 triangles:

 P4 P0 P3
 P4 P3 P7
 P0 P1 P2
 P0 P2 P3
 P1 P5 P6
 P1 P6 P2
 P5 P4 P7
 P5 P7 P6
 P7 P3 P2
 P7 P2 P6
 P0 P5 P1
 P0 P4 P5
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Indexed Triangle set
 Array of vertex locations, array of Triangle objects:

Point3 vertices[] = {
  ( 1,-1, 1),
  ( 1,-1,-1),
  ( 1, 1,-1),
  ( 1, 1, 1),
  (-1,-1, 1),
  (-1,-1,-1),
  (-1, 1,-1),
  (-1, 1, 1)};
class Triangle {short p1, p2, p3) triangles[] = {
   (4, 0, 3),
   (4, 3, 7),
   (0, 1, 2),
   (0, 2, 3),
   (1, 5, 6),
   (1, 6, 2),
   (5, 4, 7),
   (5, 7, 6),
   (7, 3, 2),
   (7, 2, 6),
   (0, 5, 1),
   (0, 4, 5)};

 Triangles refer to each vertex by its index in the vertex array
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Benefits of indexing

 Saves memory
 Saves data transmission time
 Save rendering time: lighting calculation can be done just one for each vertex
 Easy model deformation

 Change vertex position data
 Triangles automatically follow

 Topology (point connectivity) separate
from shape (point locations)
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(Index vs. pointer)

 Triangle stores indexes into the vertex array.
 Could also use pointer rather than index

 Can be easier to work with
 But uses more memory (if pointer is larger than short integer)
 Can be fragile: if vertex array is reallocated pointers will dangle
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Normals
 Normal = perpendicular to surface
 The normal is essential to lighting

 Shading determined by relation of normal to eye & light
 Collection of triangles with their normals: Facet Normals

 Store & transmit one normal per triangle
 Normal constant on each triangle--but discontinuous at triangle edges
 Renders as facets
 Good for faceted surfaces, such as cube

 For curved surface that is approximated by triangles: Vertex Normals
 Want normal to the surface, not to the triangle approximation
 Don’t want discontinuity: share normal between triangles
 Store & transmit one normal per vertex
 Each triangle has different normals at its vertices

• Lighting will interpolate (a few weeks)
• Gives illusion of curved surface
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Facet normals vs. Vertex normals
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Color
 Color analogous to normal

 One color per triangle:  faceted
 One color per vertex: smooth colors
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Indexed Triangle Set with Normals &Colors

 Arrays:
Point3 vertexes[];
Vector3 normals[];
Color colors[];
Triangle triangles[];

   int numVertexes, numNormals, numColors, numTriangles;

 Single base class to handle both:
 Facets

• one normal & color per triangle
• numNormals = numColors = numTriangles

 Smooth
• one normal & color per vertex
• numNormals = numColors = numVertexes
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Geometry objects base class
 (For our design) Base class supports indexed triangle set

 class Geometry {
    Point3 vertices[];
    Vector3 normals[];
    Color colors[];
    Triangle triangles[];
    int numVerices,numNormals,numColors,numTriangles;
 };
 class Triangle {
    int vertexIndices[3];
    int normalIndices[3];
    int colorIndices[3];
 };

 Triangle indices:
 For facet normals, set all three normalIndices of each triangle to same value
 For vertex normals, normalIndices will be same as vertexIndices
 Likewise for color
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Cube class
class Cube(Geometry) {

Cube() {
    numVertices = 8;
    numTriangles = numNormals = 12;
    vertices = {
         ( 1,-1, 1),  ( 1,-1,-1), ( 1, 1,-1), ( 1, 1, 1),
         (-1,-1, 1),  (-1,-1,-1), (-1, 1,-1), (-1, 1, 1) };
    triangles = {
         (4, 0, 3), (4, 3, 6),
         (0, 1, 2), (0, 2, 3),
         (1, 5, 6), (1, 6, 2),
         (5, 4, 7), (5, 7, 6),
         (7, 3, 2), (7, 2, 6),
         (0, 5, 1), (0, 4, 5) };
    normals = {
         ( 0, 0, 1), ( 0, 0, 1),
         ( 1, 0, 0), ( 1, 0, 0),
         ( 0, 0,-1), ( 0, 0,-1),
         (-1, 0, 0), (-1, 0, 0),
         ( 0, 1, 0), ( 0, 1, 0),
         ( 0,-1, 0), ( 0,-1, 0) };
}

}
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Smooth surfaces
 Tesselation: approximating a smooth surface with a triangle mesh

 Strictly speaking, “tesselation” refers to regular tiling patterns
 In computer graphics, often used to mean any triangulation

 E.g. Sphere class fills in triangle set (will get to this shortly…)
  class Sphere(Geom) {

  private:
     float radius;

        void tesselate() {
        vertices = …
        triangles = …
        normals=…
     }
  public:
    Sphere(float r) { radius = r; tesselate(); }
    void setRadius(float r) { radius = r; tesselate(); }
}

 Other smooth surface types
 Bezier patch (next week)
 NURBS
 Subdivision surface
 Implicit surface
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Drawing the indexed triangle set
 OpenGL supports “vertex arrays”

 But it’s awkward to use
 So for project 3:

 Use indexed triangle set for base storage
 Draw by sending all vertex locations for each triangle:

  for (i=0; i<numTriangles; i++) {
   glVertex3fv(vertexes[triangles[i].p1]);
   glVertex3fv(vertexes[triangles[i].p2]);
   glVertex3fv(vertexes[triangles[i].p3]);
}

 So we get memory savings in Geometry class
 We don’t get speed savings when drawing.
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 Basic indexed triangle set is unstructured: “triangle soup”
 GPUs & APIs usually support slightly more elaborate structures
 Most common: triangle strips, triangle fans

 Store & transmit ordered array of vertex indexes.
• Each vertex index only sent once, rather than 3 or 4-6 or more

 Even better: store vertexes in proper order in array
• Can draw entire strip or fan by just saying which array and how many vertexes
• No need to send indexes at all.

 Can define triangle meshes using adjacent strips
• Share vertexes between strips
• But must use indexes

v0
v1

v2
v4

v6 v8

v7
v5v3

v0
v1

v2

v3v4
v5

v6

v7

Triangles, Strips, Fans
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Vertex Buffers
 Graphics hardware systems often support for vertex buffer

 Memory on the GPU side
 (AKA other things too)

 Particularly useful if model doesn’t deform
 Send vertex array data to GPU once

 Includes per-vertex color or normal data
 Once data is on GPU, can be reused quickly

 More than one triangle set or strips/fans  referring to shared points
 For animation: don’t need to send vertex data each frame!

 Index buffers too:
 Store vertex index arrays in GPU memory
 Don’t need to transmit index array each frame
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Model I/O
 Usually have the ability to load data from some sort of file
 There are a variety of 3D model formats, but no

universally accepted standards
 More formats for mostly geometry (e.g. indexed triangle

sets) than for complete complex scene graphs
• File structure unsurprising: List of vertex data, list(s) of triangles

referring to the vertex data by name or number
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Modeling Operations
 Surface of Revolution
 Sweep/Extrude
 Mesh operations

 Stitching
 Simplification -- deleting rows or vertices
 Inserting new rows or vertices

 Filleting
 Boolean combinations
 Digitize
 Procedural modeling, scripts…

*Could be some interesting final projects here
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Materials & Grouping
 Usually models are made up from several different

materials
 The triangles are usually grouped and drawn by material

 Minimize changes to “graphics state”--typically expensive to
change

 Using scene graph:
• Geometry nodes with same material grouped together
•  “Material” nodes that define surface properties



55

Outline For Today
 Scene Graphs
 Shapes
 Tessellation
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Tessellation
 Given a description of a surface
 Construct a triangle set (typically a mesh)
 Triangle set is an approximation

 Fewer triangles: Faster, but less accurate
• Polygonal artifacts
• Especially at silhouettes

 More triangles: slower, but more accurate
 In the extreme, make each triangle the size of a pixel (or less)

 Fancy algorithms: adaptive
 E.g., Make smaller triangles near silhouettes
 E.g., Use fewer triangles when objects are far away
 But must update/recompute tessellation each frame

• Balance between cost of adaptive tessellation vs. rendering savings
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Tessellating a sphere
 Various ways to do it
 We’ll pick a straightforward one:

 North & South poles
 Latitude circles
 Triangle strips between latitudes
 Fans at the poles
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Latitude circles
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Points on each latitude circle
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Topological structure
P
ij
! P (i-1)N+1+j[ ]
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Normals
 For a sphere, normal per vertex is easy!

 Radius vector from origin to vertex is perpendicular to surface
 I.e., use the vertex coordinates as a vector, normalize it
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Algorithm Summary
 Fill vertex array and normal array:

 South pole = (0,0,-R);
 For each latitude i, for each point j in the circle at that latitude

• Compute coords, put in vertexes
• Put points in vertices[0]..vertices[M*N+1] as per previous slides

 North pole = (0,0,R)
 Normals coords are same as point coords, normalized

 Fill triangle array:
 N triangles between south pole and Lat 1
 2N triangles between Lat 1 & Lat 2, etc.
 N triangles between Lat M and north pole.


