
 

 

 
 

 
 

 

  

  
   

CHAP T ER  4 

A Scene Graph 
Framework 

In this chapter, you will begin to create the structure of a three-
dimensional graphics framework in earnest. At the heart of the frame-

work will be a scene graph: a data structure that organizes the contents of 
a 3D scene using a hierarchical or tree-like structure. 

In the context of computer science, a tree is a collection of node objects, 
each of which stores a value and a list of zero or more nodes called child 
nodes. If a node A has a child node B, then node A is said to be the par-
ent node of node B. In a tree, each node has exactly one parent, with the 
exception of a special node called the root, from which all other nodes can 
be reached by a sequence of child nodes. Starting with any node N, the set 
of nodes that can be reached from a sequence of child nodes are called the 
descendants of N, while the sequence of parent nodes from N up to and 
including the root node are called the ancestors of N. An abstract example 
of a tree is illustrated in Figure 4.1, where nodes are represented by ovals 
labeled with the letters from A through G, and arrows point from a node 
to its children. In the diagram, node A is the root and has child nodes B, C, 
and D; node B has child nodes E and F; node D has child node G. Nodes E, 
F, and G do not have any child nodes. 

In a scene graph, each node represents a 3D object in the scene. As 
described previously, the current position, orientation, and scale of an 
object is stored in a matrix called the model matrix, which is calculated 
from the accumulated transformations that have been applied to the object. 
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134 ◾ Developing Graphics Frameworks with Python and OpenGL 

FIGURE 4.1 A tree with seven nodes. 

For convenience, the position, orientation, and scale of an object will be 
collectively referred to as the transform of the object. Te model matrix 
stores the transform of an object relative to its parent object in the 
scene graph. Te transform of an object relative to the root of the scene 
graph, which is ofen called a world transformation, can be calculated 
from the product of the model matrix of the object and those of each 
of its ancestors. Tis structure enables complicated transformations to 
be expressed in terms of simpler ones. For example, the motion of the 
moon relative to the sun, illustrated in Figure 4.2 (gray dashed line), can 
be more simply expressed in terms of the combination of two circular 
motions: the moon relative to the Earth and the Earth relative to the sun 
(blue dotted line). 

A scene graph structure also allows for simple geometric shapes to be 
grouped together into a compound object that can then be easily trans-
formed as a single unit. For example, a simple model of a table may be 
created using a large, fat box shape for the top surface and four narrow, 
tall box shapes positioned underneath near the corners for the table legs, 
as illustrated by Figure 4.3. Let each of these objects be stored in a node, 
and all fve nodes share the same parent node. Ten, transforming the par-
ent node afects the entire table object. (It is also worth noting that each 
of these boxes may reference the same vertex data; the diferent sizes and 
positions of each may be set with a model matrix.) 

In the next section, you will learn about the overall structure of a scene 
graph-based framework, what the main classes will be, and how they 
encapsulate the necessary data and perform the required tasks to ren-
der a three-dimensional scene. Ten, in the following sections, you will 
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FIGURE 4.2 Motion of moon and Earth relative to sun. 

FIGURE 4.3 A table composed of fve boxes. 
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FIGURE 4.4 A scene containing multiple geometric shapes. 

implement the classes for the framework, building on the knowledge and 
code from earlier chapters. Te framework will enable you to rapidly create 
interactive scenes containing complex objects, such as the one illustrated 
in Figure 4.4. 

4.1 OVERVIEW OF CLASS STRUCTURE 
In a scene graph framework, the nodes represent objects located in a three-
dimensional space. Te corresponding class will be named Object3D 
and will contain three items: 

1. a matrix to store its transform data 

2. a list of references to child objects 

3. a reference to a parent object 

Many classes will extend the Object3D class, each with a diferent role 
in the framework. Te root node will be represented by the Scene class. 
Interior nodes that are only used for grouping purposes will be repre-
sented by the Group class. Nodes corresponding to objects that can be 
rendered will be represented by the Mesh class. Tere are other objects 
with 3D characteristics that afect the appearance of the scene but are 



      

 

  

  

 

 
 

 

 

A Scene Graph Framework ◾ 137 

not themselves rendered. One such object is a virtual camera from whose 
point of view the scene will be rendered; this will be represented by the 
Camera class. Another such object is a virtual light source that afects 
shading and shadows; this will be represented by the Light class (but will 
not be created until Chapter 6). 

To keep the framework code modular, each mesh will consist of a 
Geometry class object and a Material class object. Te Geometry 
class will specify the general shape and other vertex-related properties, 
while the Material class will specify the general appearance of an object. 
Since each instance of a mesh stores a transformation matrix, multiple ver-
sions of a mesh (based on the same geometry and material data) can be 
rendered with diferent positions and orientations. Each mesh will also 
store a reference to a vertex array object, which associates vertex bufers 
(whose references will be stored by attribute objects stored in the geom-
etry) to attribute variables (specifed by shaders stored in the material). 
Tis will allow geometric objects to be reused and rendered with diferent 
materials in diferent meshes. 

Te Geometry class will mainly serve to store Attribute objects, 
which describe vertex properties, such as position and color, as seen in 
examples in prior chapters. In later chapters, geometric objects will also 
store texture coordinates, for applying images to shapes, and normal 
vectors, for use in lighting calculations. Tis class will calculate the total 
number of vertices, which is equal to the length of the data array stored in 
any attribute. Extensions of the Geometry class will be created to real-
ize each particular shape. In some cases, such as rectangles and boxes, 
the data for each attribute will be listed directly. For other shapes, such as 
polygons, cylinders, and spheres, the attribute data will be calculated from 
mathematical formulas. 

Te Material class will serve as a repository for three types of 
information related to the rendering process and the appearance of an 
object: shader code (and the associated program reference), Uniform 
objects, and render settings: the properties which are set by calling 
OpenGL functions, such as the type of geometric primitive (points, lines, 
or triangles), point size, line width, and so forth. Te base Material 
class will initialize dictionaries to store uniform objects and render set-
ting data, and will defne functions to perform tasks such as compiling the 
shader program code and locating uniform variable references. Extensions 
of this class will supply the actual shader code, a collection of uniform 
objects corresponding to uniform variables defned in the shaders, and a 
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collection of render setting variables applicable to the type of geometric 
primitive being rendered. 

A Renderer class will handle the general OpenGL initialization tasks 
as well as rendering the image. Te rendering function will require a scene 
object and a camera object as parameters. For each mesh in the scene graph, 
the renderer will perform the tasks necessary before the glDrawArrays 
function is called, including activating the correct shader program, bind-
ing a vertex array object, confguring OpenGL render settings, and send-
ing values to be used in uniform variables. Regarding uniform variables, 
there are three required by most shaders whose values are naturally stored 
outside the material: the transformation of a mesh, the transformation of 
the virtual camera used to view the scene, and the perspective transforma-
tion applied to all objects in the scene. While the uniform objects will be 
stored in the material for consistency, this matrix data will be copied into 
the corresponding uniform objects by the renderer before they send their 
values to the GPU. 

Now that you have an idea of the initial classes that will be used by the 
framework, it is time to begin writing the code for each class. 

4.2 3D OBJECTS 
Te Object3D class represents a node in the scene graph tree structure, 
and as such, it will store a list of references to child objects and a par-
ent object, as well as add and remove functions to update parent and 
child references when needed. In addition, each object stores transform 
data using a numpy matrix object and will have a function called get-
WorldMatrix to calculate the world transformation. When rendering 
the scene, the nodes in the tree will be collected into a list to simplify iter-
ating over the set of nodes; this will be accomplished with a function called 
getDescendantList. To implement this, in the core folder, create a 
new fle named object3D.py containing the following code: 

from core.matrix import Matrix 

class Object3D(object):

 def __init__(self):
 self.transform = Matrix.makeIdentity()
 self.parent = None
 self.children = [] 

http:object3D.py
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 def add(self, child):
 self.children.append(child)
 child.parent = self

 def remove(self, child):
 self.children.remove(child)
 child.parent = None

 # calculate transformation of this Object3D relative
 # to the root Object3D of the scene graph
 def getWorldMatrix(self):

 if self.parent == None:
 return self.transform

 else:
            return self.parent.getWorldMatrix() @ 

self.transform

 # return a single list containing all descendants
 def getDescendantList(self):

 # master list of all descendant nodes
 descendants = []
 # nodes to be added to descendant list,
 # and whose children will be added to this list
 nodesToProcess = [self]
 # continue processing nodes while any are left
 while len( nodesToProcess ) > 0:

 # remove first node from list
 node = nodesToProcess.pop(0)
 # add this node to descendant list
 descendants.append(node)

            # children of this node must also be 
processed

            nodesToProcess = node.children + 
nodesToProcess

 return descendants 

It will also be convenient for this class to contain a set of functions 
that translate, rotate, and scale the object by creating and applying the 
corresponding matrices from the Matrix class to the model matrix. 
Recall that each of these transformations can be applied as either a local 
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transformation or a global transformation, depending on the order in 
which the model matrix and the new transformation matrix are multi-
plied. (In this context, a global transformation means a transformation 
performed with respect to the coordinate axes of the parent object in the 
scene graph.) Tis distinction – whether a matrix should be applied as a 
local transformation – will be specifed with an additional parameter. To 
incorporate this functionality, add the following code to the Object3D 
class: 

# apply geometric transformations 
def applyMatrix(self, matrix, localCoord=True):

 if localCoord:
 self.transform = self.transform @ matrix

 else:
 self.transform = matrix @ self.transform 

def translate(self, x,y,z, localCoord=True):
 m = Matrix.makeTranslation(x,y,z)
 self.applyMatrix(m, localCoord) 

def rotateX(self, angle, localCoord=True):
 m = Matrix.makeRotationX(angle)
 self.applyMatrix(m, localCoord) 

def rotateY(self, angle, localCoord=True):
 m = Matrix.makeRotationY(angle)
 self.applyMatrix(m, localCoord) 

def rotateZ(self, angle, localCoord=True):
 m = Matrix.makeRotationZ(angle)
 self.applyMatrix(m, localCoord) 

def scale(self, s, localCoord=True):
 m = Matrix.makeScale(s)
 self.applyMatrix(m, localCoord) 

Finally, the position of an object can be determined from entries in the 
last column of the transform matrix, as discussed in the previous chap-
ter. Making use of this fact, functions to get and set the position of an 
object are implemented with the following code, which you should add to 
the Object3D class. Two functions are included to get the position of an 
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object: one which returns its local position (with respect to its parent), and 
one which returns its global or world position, extracted from the world 
transform matrix previously discussed. 

# get/set position components of transform 
def getPosition(self):

 return [ self.transform.item((0,3)), 
self.transform.item((1,3)),
 self.transform.item((2,3)) ] 

def getWorldPosition(self):
 worldTransform = self.getWorldMatrix()
 return [ worldTransform.item((0,3)), 

worldTransform.item((1,3)),
 worldTransform.item((2,3)) ] 

def setPosition(self, position):
 self.transform.itemset((0,3), position[0])
 self.transform.itemset((1,3), position[1])
 self.transform.itemset((2,3), position[2]) 

Te next few classes correspond to particular types of elements in the 
scene graph, and therefore, each will extend the Object3D class. 

4.2.1 Scene and Group 

Te Scene and Group classes will both be used to represent nodes in 
the scene graph that do not correspond to visible objects in the scene. Te 
Scene class represents the root node of the tree, while the Group class 
represents an interior node to which other nodes are attached to more 
easily transform them as a single unit. Tese classes do not add any func-
tionality to the Object3D class; their primary purpose is to make the 
application code easier to understand. 

In the core folder, create a new fle named scene.py with the 
following code: 

from core.object3D import Object3D 

class Scene(Object3D):

 def __init__(self):
 super().__init__() 

http:scene.py
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Ten, create a new fle named group.py with the following code. 

from core.object3D import Object3D 

class Group(Object3D):

 def __init__(self):
 super().__init__() 

4.2.2 Camera 

Te Camera class represents the virtual camera used to view the scene. 
As with any 3D object, it has a position and orientation, and this informa-
tion is stored in its transform matrix. Te camera itself is not rendered, 
but its transform afects the apparent placement of the objects in the ren-
dered image of the scene. Understanding this relationship is necessary to 
creating and using a Camera object. Fortunately, the key concept can be 
illustrated by a couple of examples. 

Consider a scene containing multiple objects in front of the camera, and 
imagine that the camera shifs two units to the lef. From the perspective 
of the viewer, all the objects in the scene would appear to have shifed two 
units to the right. In fact, these two transformations (shifing the camera 
lef versus shifing all world objects right) are equivalent, in the sense that 
there is no way for the viewer to distinguish between them in the rendered 
image. As another example, imagine that the camera rotates 45° clockwise 
about its vertical axis. To the viewer, this appears equivalent to all objects 
in the world having rotated 45° counterclockwise around the camera. 
Tese examples illustrate the general notion that each transformation of 
the camera afects the scene objects in the opposite way. Mathematically, 
this relationship is captured by defning the view matrix, which describes 
the placement of objects in the scene with respect to the camera, as the 
inverse of the camera’s transform matrix. 

As cameras are used to defne the position and orientation of the viewer, 
this class is also a natural place to store data describing the visible region 
of the scene, which is encapsulated by the projection matrix. Terefore, the 
Camera class will store both a view matrix and a projection matrix. Te 
view matrix will be updated as needed, typically once during each itera-
tion of the application main loop, before the meshes are drawn. To imple-
ment this class, in your core folder, create a new fle named camera.py 
with the following code: 

http:camera.py
http:group.py
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from core.object3D import Object3D 
from core.matrix import Matrix 
from numpy.linalg import inv 

class Camera(Object3D):

 def __init__(self, angleOfView=60, 
aspectRatio=1, near=0.1, far=1000):

 super().__init__()
        self.projectionMatrix = Matrix.makePerspective 

(angleOfView, aspectRatio, near, far)
 self.viewMatrix = Matrix.makeIdentity()

 def updateViewMatrix(self):
 self.viewMatrix = inv( self.getWorldMatrix() ) 

4.2.3 Mesh 

Te Mesh class will represent the visible objects in the scene. It will contain 
geometric data that specifes vertex-related properties and material data 
that specifes the general appearance of the object. Since a vertex array 
object links data between these two components, the Mesh class is also a 
natural place to create and store this reference, and set up the associations 
between vertex bufers and shader variables. For convenience, this class 
will also store a boolean variable used to indicate whether or not the mesh 
should appear in the scene. To proceed, in your core folder, create a new 
fle named mesh.py with the following code: 

from core.object3D import Object3D 
from OpenGL.GL import * 

class Mesh(Object3D):

 def __init__(self, geometry, material):
 super().__init__()

 self.geometry = geometry
 self.material = material

 # should this object be rendered?
 self.visible = True 

http:OpenGL.GL
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 # set up associations between 
# attributes stored in geometry and 
# shader program stored in material
 self.vaoRef = glGenVertexArrays(1) 
glBindVertexArray(self.vaoRef)
 for variableName, attributeObject 

in geometry.attributes.items():
 attributeObject.associateVariable(
 material.programRef, variableName)

 # unbind this vertex array object
 glBindVertexArray(0) 

Now that the Object3D and the associated Mesh class have been 
created, the next step is to focus on the two main components of a 
mesh: the Geometry class and the Material class, and their various 
extensions. 

4.3 GEOMETRY OBJECTS 
Geometry objects will store attribute data and the total number of 
vertices. Te base Geometry class will defne a dictionary to store 
attributes, a function named addAttribute to simplify adding attri-
butes, a variable to store the number of vertices, and a function named 
countVertices that can calculate this value (which is the length of 
any attribute object's data array). Classes that extend the base class will 
add attribute data and call the countVertices function afer attri-
butes have been added. 

Since there will be many geometry-related classes, they will be orga-
nized into a separate folder. For this purpose, in your main folder, create a 
new folder called geometry. To create the base class, in the geometry 
folder, create a new fle called geometry.py with the following code: 

from core.attribute import Attribute 

class Geometry(object):

 def __init__(self):

 # Store Attribute objects,
 # indexed by name of associated variable in 

shader.
 # Shader variable associations set up later 

http:geometry.py
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 # and stored in vertex array object in Mesh.
 self.attributes = {}

 # number of vertices
 self.vertexCount = None

 def addAttribute(self, dataType, variableName, data):
        self.attributes[variableName] = Attribute 

(dataType, data)

 def countVertices(self):
 # number of vertices may be calculated from
 # the length of any Attribute object's array 

of data
 attrib = list( self.attributes.values() )[0]
 self.vertexCount = len( attrib.data ) 

Te next step is to create a selection of classes that extend the 
Geometry class that contain the data for commonly used shapes. Many 
applications can make use of these basic shapes or combine basic shapes 
into compound shapes by virtue of the underlying structure of the scene 
graph. 

In this chapter, these geometric objects will contain two attributes: 
vertex positions (which are needed for every vertex shader) and a default 
set of vertex colors. Until intermediate topics such as applying images to 
surfaces or lighting and shading are introduced in later chapters (along 
with their corresponding vertex attributes, texture coordinates, and nor-
mal vectors), vertex colors will be necessary to distinguish the faces of a 
three-dimensional object. For example, Figure 4.5 illustrates a cube with 
and without vertex colors applied; without these distinguishing features, 
a cube is indistinguishable from a hexagon. If desired, a developer can 
always change the default set of vertex colors in a geometric object by 
overwriting the array data in the corresponding attribute and calling its 
storeData function to resend the data to its bufer. 

4.3.1 Rectangles 

Afer a triangle, a rectangle is the simplest shape to render, as it is composed 
of four vertices grouped into two triangles. To provide fexibility when 
using this class, the constructor will take two parameters, the width and 
height of the rectangle, each with a default value of 1. Assuming that the 
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FIGURE 4.5 A cube rendered with (a) and without (b) vertex colors. 

rectangle is centered at the origin, this means that the vertex x and y coor-
dinates will be ±width / 2 and ±height / 2, as illustrated in Figure 4.6. (Te z 
coordinates will be set to 0°.) Also, with the points denoted by P0, P1, P2, 
P3 as shown in the diagram, they will be grouped into the triangles (P0, 
P1, P3) and (P0, P3, P2). Note that the vertices in each triangle are consis-
tently listed in counterclockwise order, as OpenGL uses counterclockwise 
ordering by default to distinguish between the front side and back side 
of a triangle; back sides of shapes are frequently not rendered in order to 
improve rendering speed. 

To implement this geometric shape, in the geometry folder, create 
a new fle called rectangleGeometry.py containing the following 
code: 

FIGURE 4.6 Vertex coordinates for a rectangle with width w and height h. 

http:rectangleGeometry.py
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from geometry.geometry import Geometry 

class RectangleGeometry(Geometry):

 def __init__(self, width=1, height=1):
 super().__init__()

 P0 = [-width/2, -height/2, 0]
 P1 = [ width/2, -height/2, 0]
 P2 = [-width/2,  height/2, 0]
 P3 = [ width/2,  height/2, 0]

        C0, C1, C2, C3 = [1,1,1], [1,0,0], [0,1,0], 
[0,0,1]

 positionData = [ P0,P1,P3, P0,P3,P2 ]
 colorData  = [ C0,C1,C3, C0,C3,C2 ]

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Note that the colors corresponding to the vertices, denoted by C0, C1, 
C2, C3, are listed in precisely the same order as the positions; this will cre-
ate a consistent gradient efect across the rectangle. Alternatively, to render 
each triangle with a single solid color, the color data array could have been 
entered as [C0,C0,C0, C1,C1,C1], for example. Although you are not 
able to create an application to render this data yet, when it can eventu-
ally be rendered, it will appear as shown on the lef side of Figure 4.7; the 
right side illustrates the alternative color data arrangement described in 
this paragraph. 

In the next few subsections, classes for geometric shapes of increasing 
complexity will be developed. At this point, you may choose to skip ahead 
to Section 4.4, or you may continue creating as many of the geometric 
classes below as you wish before proceeding. 

4.3.2 Boxes 

A box is a particularly simple three-dimensional shape to render. Although 
some other three-dimensional shapes (such as some pyramids) may have 
fewer vertices, the familiarity of the shape and the symmetries in the posi-
tions of its vertices make it a natural choice for a frst three-dimensional 
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FIGURE 4.7 Rendering RectangleGeometry with gradient coloring (a) and solid 
coloring (b). 

FIGURE 4.8 Vertices of a cube. 

shape to implement. A box has 8 vertices and 6 sides composed of 2 
triangles each, for a total of 12 triangles. Since each triangle is specifed 
with three vertices, the data arrays for each attribute will contain 36 ele-
ments. Similar to the Rectangle class just created, the constructor of the 
Box class will take three parameters: the width, height, and depth of the 
box, referring to lengths of the box edges parallel to the x-, y-, and z-axes, 
respectively. As before, the parameters will each have a default value of 1, 
and the box will be centered at the origin. Te points will be denoted P0 
through P7, as illustrated in Figure 4.8, where the dashed lines indicate 
parts of the lines which are obscured from view by the box. To more easily 
visualize the arrangement of the triangles in this shape, Figure 4.9 depicts 
an “unfolded” box lying in a fat plane, sometimes called a net diagram. 
For each face of the box, the vertices of the corresponding triangles will be 
ordered in the same sequence as they were in the Rectangle class. 
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FIGURE 4.9 Vertex arrangement of an unfolded cube. 

To aid with visualization, the vertices will be assigned colors (denoted 
C1–C6) depending on the corresponding face. Te faces perpendicular to 
the x-axis, y-axis, and z-axis will be tinted shades of red, green, and blue, 
respectively. Note that each of the vertices is present on three diferent 
faces: for instance, the vertex with position P7 is part of the right (x+) 
face, the top (y+) face, and the front (z+) face, and thus, each point will be 
associated with multiple colors, in contrast to the Rectangle class. To 
create this class, in the geometry folder, create a new fle called box-
Geometry.py containing the following code: 

from geometry.geometry import Geometry 

class BoxGeometry(Geometry):

 def __init__(self, width=1, height=1, depth=1): 
super().__init__()

 P0 = [-width/2, -height/2, -depth/2]
 P1 = [ width/2, -height/2, -depth/2]
 P2 = [-width/2,  height/2, -depth/2]
 P3 = [ width/2,  height/2, -depth/2]
 P4 = [-width/2, -height/2,  depth/2]
 P5 = [ width/2, -height/2,  depth/2]
 P6 = [-width/2,  height/2,  depth/2]
 P7 = [ width/2,  height/2,  depth/2]

        # colors for faces in order: x+, x-, y+, y-, 
z+, z-

C1, C2 = [1, 0.5, 0.5], [0.5, 0, 0] 

http:Geometry.py
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 C3, C4 = [0.5, 1, 0.5], [0, 0.5, 0]
 C5, C6 = [0.5, 0.5, 1], [0, 0, 0.5]

 positionData = [ P5,P1,P3,P5,P3,P7, P0,P4,P6,P0, 
P6,P2,P6,P7,P3,P6,P3,P2, 
P0,P1,P5,P0,P5,P4,P4,P5,P7, 
P4,P7,P6, P1,P0,P2,P1,P2,P3 ]

 colorData = [C1]*6 + [C2]*6 + [C3]*6 +
 [C4]*6 + [C5]*6 + [C6]*6

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Note the use of the list operators * to duplicate an array a given number 
of times and + to concatenate lists. Figure 4.10 illustrates how this box 
will appear from multiple perspectives once you are able to render it later 
in this chapter. 

4.3.3 Polygons 

Polygons (technically, regular polygons) are two-dimensional shapes 
such that all sides have the same length and all angles have equal mea-
sure, such as equilateral triangles, squares, pentagons, hexagons, and so 
forth. Te corresponding class will be designed so that it may produce a 
polygon with any number of sides (three or greater). Te coordinates of 
the vertices can be calculated by using equally spaced points on the cir-
cumference of a circle. A circle with radius R can be expressed with the 

FIGURE 4.10 Rendering BoxGeometry from multiple perspectives. 
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FIGURE 4.11 Calculating the vertices of a regular polygon. 

parametric equations x = R · cos ( )t  and y = R · sin ( )t . Note that these 
parametric equations also satisfy the implicit equation of a circle of radius 
R, x 2 + y2 = R2, which can be verifed with the use of the trigonomet-
ric identity sin  2 ( )t + cos 2 t = 1. Te key is to fnd the required values of ( )  
the angle t that correspond to these equally spaced points. Tis in turn is 
calculated using multiples of a base angle A, equal to 2π divided by the 
number of sides of the polygon being generated, as illustrated with a nona-
gon in Figure 4.11. 

Once it is understood how the vertices of a polygon can be calculated, 
one must also consider how the vertices will be grouped into triangles. 
In this case, each triangle will have one vertex at the origin (the center of 
the polygon) and two adjacent vertices on the circumference of the poly-
gon, ordered counterclockwise, as usual. In addition, the same three vertex 
colors will be repeated in each triangle for simplicity. To proceed, in the 
geometry folder, create a new fle called polygonGeometry.py with 
the following code: 

from geometry.geometry import Geometry 
from math import sin, cos, pi 

class PolygonGeometry(Geometry):

 def __init__(self, sides=3, radius=1):
 super().__init__()

 A = 2 * pi / sides
 positionData = [] 

http:polygonGeometry.py
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 colorData  = []

 for n in range(sides):
 positionData.append( [0, 0, 0] )
 positionData.append(

 [radius*cos(n*A), radius*sin(n*A), 0] )
 positionData.append( 

              [radius*cos((n+1)*A), radius*sin((n+1)*A), 
0] )

 colorData.append( [1, 1, 1] )
 colorData.append( [1, 0, 0] )
 colorData.append( [0, 0, 1] )

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Figure 4.12 illustrates a few diferent polygons that you will eventually 
be able to render with this class, with 3, 8, and 32 sides. Note that with 
sufciently many sides, the polygon closely approximates a circle. In fact, 
due to the discrete nature of computer graphics, it is not possible to ren-
der a perfect circle, and so this is how circular shapes are implemented in 
practice. 

For convenience, you may decide to extend the Polygon class to 
generate particular polygons with preset numbers of sides (or even a 
circle, as previously discussed), while still allowing the developer to 
specify a value for the radius, which will be passed along to the base 
class. For example, you could optionally create a Hexagon class with 
a fle in the geometry folder named hexagon.py containing the 
following code: 

FIGURE 4.12 Polygons with 3 sides, 8 sides, and 32 sides. 

http:hexagon.py
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from geometry.polygonGeometry import PolygonGeometry 
class HexagonGeometry(PolygonGeometry):

 def __init__(self, radius=1):
 super().__init__( sides=6, radius=radius ) 

4.3.4 Parametric Surfaces and Planes 

Similar to the two-dimensional polygons just presented, there are a variety 
of surfaces in three dimensions that can be expressed with mathematical 
functions. Te simplest type of surface arises from a function of the form 
z = f x y , but this is too restrictive to express many common surfaces, 
such as cylinders and spheres. Instead, each of the coordinates x, y, and 
z will be expressed by a function of two independent variables u and v. 
Symbolically, 

( ,  ) 

or, written in a diferent format, 

Generally, the variables u and v are limited to a rectangular domain such 
as 0 ˜ u ˜ 1 and 0 ˜ v ˜ 1, and thus, the function S can be thought of as 
transforming a two-dimensional square or rectangular region, embedding 
it in three-dimensional space. Te function S is called a parametric func-
tion. Graphing the set of output values (x, y, z) yields a surface that is said 
to be parameterized by the function S. Figure 4.13 depicts a rectangular 
region (subdivided into triangles) and the result of transforming it into the 
surface of a sphere or a cylinder. 

To incorporate this into the graphics framework you are creating, the 
frst step is to create a class that takes as inputs a parametric function 

( ,  , and the resolution— S u  v)  that defnes a surface, bounds for u and v
in this context, the number of sample values to be used between the u 

FIGURE 4.13 A rectangular region (a), transformed into a sphere (b) and a 
cylinder (c). 

x = =f u( ), ,v y  ,g u( )v z,   = h u( ),v
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and v bounds. With this data, the space between u and v coordinates 
(traditionally called deltaU and deltaV) can be calculated, and a set 
of points on the surface can be calculated and stored in a two-dimen-
sional array (called positions) for convenience. Finally, the vertex 
positions (and related vertex data, such as colors) must be grouped into 
triangles and stored in a dictionary of Attribute objects for use in the 
Geometry class. To accomplish this task, in your geometry folder, 
create a new fle named parametricGeometry.py containing the 
following code: 

from geometry.geometry import Geometry 

class ParametricGeometry(Geometry):
 def __init__(self, uStart, uEnd, uResolution, 
vStart, vEnd, vResolution, surfaceFunction):

 # generate set of points on function
 deltaU = (uEnd - uStart) / uResolution 
deltaV = (vEnd - vStart) / vResolution 
positions = []

 for uIndex in range(uResolution+1):
 vArray = []
 for vIndex in range(vResolution+1):

 u = uStart + uIndex * deltaU
 v = vStart + vIndex * deltaV
 vArray.append( surfaceFunction(u,v) )

 positions.append(vArray)

 # store vertex data
 positionData = []
 colorData  = []

 # default vertex colors
 C1, C2, C3 = [1,0,0], [0,1,0], [0,0,1]
 C4, C5, C6 = [0,1,1], [1,0,1], [1,1,0]

 # group vertex data into triangles
        # note: .copy() is necessary to avoid storing 

references
 for xIndex in range(uResolution):

 for yIndex in range(vResolution): 

http:parametricGeometry.py


      

  
   

 

 
 

 

 

  
 

    

 
 
 

  
  

 

 

 

A Scene Graph Framework ◾ 155

 # position data
 pA = positions[xIndex+0][yIndex+0]
 pB = positions[xIndex+1][yIndex+0]
 pD = positions[xIndex+0][yIndex+1]
 pC = positions[xIndex+1][yIndex+1]

                 positionData += [ pA.copy(), pB.copy(), 
pC.copy(), pA.copy(), pC.copy(), 

pD.copy() ]

 # color data
 colorData += [C1,C2,C3, C4,C5,C6]

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Te ParametricGeometry class should be thought of as an abstract 
class: it will not be instantiated directly; instead, it will be extended by 
other classes that supply specifc functions and variable bounds that yield 
diferent surfaces. Te simplest case is a plane, a fat surface that can be 
thought of as a subdivided rectangle, similar to the Rectangle class pre-
viously developed. Te equation for a plane (extending along the x and y 
directions, and where z is always 0) is 

S u( , v) = (u, v,  0 ) 

As was the case with the Rectangle class, the plane will be cen-
tered at the origin, and parameters will be included in the constructor 
to specify the width and height of the plane. Additional parameters will 
be included to allow the user to specify the resolution for the u and v 
variables, but given the more relevant variable names widthResolu-
tion and heightResolution. To create this class, create a new fle 
named planeGeometry.py in the geometry folder, containing the 
following code: 

from geometry.parametricGeometry import 
ParametricGeometry 

class PlaneGeometry(ParametricGeometry): 

http:planeGeometry.py
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 def __init__(self, width=1, height=1,
 widthSegments=8, heightSegments=8):

 def S(u,v):
 return [u, v, 0]

        super().__init__( -width/2,  width/2, 
widthSegments, -height/2, height/2, 

heightSegments, S ) 

A plane geometry with the default parameter values above will appear 
as shown in Figure 4.14. 

4.3.5 Spheres and Related Surfaces 

Along with boxes, spheres are one of the most familiar three-dimensional 
shapes, illustrated on the lef side of Figure 4.15. In order to render a sphere 
in this framework, you will need to know the parametric equations of a 
sphere. For simplicity, assume that the sphere is centered at the origin and 
has radius 1. Te starting point for deriving this formula is the parametric 
equation of a circle of radius R, since the cross-sections of a sphere are 
circles. Assuming that cross-sections will be analyzed along the y-axis, let 

= ( ) and =  ·sin u , where 0 ̃ ˜u 2° . Te radius R of the cross-z R·cos u x R ( )  
section will depend on the value of y. For example, in the central cross-
section, when y = 0, the radius is R =1. At the top and bottom of the sphere 
(where y =1  and y =   –1), the cross-sections are single points, which can 
be considered as R = 0. Since the equations for x, y, and z must also satisfy 

2 2 2the implicit equation of a unit sphere, x + y + z = 1, you can substi-
tute the formulas for x and z into this equation and simplify to get the 
equation R2 + y2 = 1. Rather than solve for R as a function of y, it is more 
productive to once again use the parametric equations for a circle, let-
ting R = cos v  and y = sin v . For R and y to have the values previously ( )  ( )  

FIGURE 4.14 Plane geometry. 



      

    

 

 

 

 

 

 

 

 

A Scene Graph Framework ◾ 157 

FIGURE 4.15 Sphere and ellipsoid. 

described, the values of v must range from –π / 2  to π /  2. Tis yields the 
full parameterization of the unit sphere: 

(x y , z) = (sin  ( )u ·cos  v , sin ( )v , cos  u ·cos ( )v,  ( )  ( ) ) 

For additional fexibility, you may scale the parametric equations for x, y, 
and z by diferent amounts, resulting in a shape called an ellipsoid, illus-
trated on the right side of Figure 4.15. Ten, a sphere can be considered as 
a special case of an ellipsoid, where the scaling amounts are equal along 
each direction. 

To implement these shapes, you will start with an ellipsoid. Te size 
parameters will be called width, height, and depth, and used in the same 
way as the corresponding parameters that defne the size of a box. In the 
geometry folder, create a new fle named ellipsoidGeometry.py, 
containing the following code: 

from geometry.parametricGeometry import 
ParametricGeometry 

from math import sin, cos, pi 

class EllipsoidGeometry(ParametricGeometry):

 def __init__(self, width=1, height=1, depth=1, 
                radiusSegments=32, heightSegments=16):

 def S(u,v):
 return [  width/2 * sin(u) * cos(v), 

height/2 * sin(v),
 depth/2 * cos(u) * cos(v) ]

 super().__init__( 0, 2*pi, radiusSegments, 
-pi/2, pi/2, heightSegments, S ) 

http:ellipsoidGeometry.py
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Next, you will extend this class to create a sphere. In the geometry 
folder, create a new fle named sphereGeometry.py, containing the 
following code: 

from geometry.ellipsoidGeometry import 
EllipsoidGeometry 

from math import sin, cos, pi 

class SphereGeometry(EllipsoidGeometry):

 def __init__(self, radius=1, 
radiusSegments=32, heightSegments=16):

 super().__init__( 2*radius, 2*radius, 2*radius,
                          radiusSegments, 

heightSegments ) 

4.3.6 Cylinders and Related Surfaces 

As was the case for spheres, the starting point for deriving the equation of 
a cylinder (illustrated in Figure 4.16) is the parametric equation of a circle, 
since the cross-sections of a cylinder are also circles. For the central axis 
of the cylinder to be aligned with the y-axis, as illustrated in Figure 4.16, 
let z = R·cos( )  and x = R u 0 ̃ ˜uu   ·sin( ), where 2° . Furthermore, for the 
cylinder to have height h and be centered at the origin, you will use the 
parameterization: 

y = h·(v –  1/ 2 ), where 0 v˜ ˜1. 

Tis parameterization yields an “open-ended” cylinder or tube; the 
parameterization does not include top or bottom sides. Te data for these 
sides can be added from polygon geometries, modifed so that the circles 

FIGURE 4.16 Cylinder. 

http:sphereGeometry.py
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FIGURE 4.17 Triangular, hexagonal, and octagonal prisms. 

FIGURE 4.18 Cone and pyramid. 

are perpendicular to the y-axis and centered at the top and bottom of the 
cylinder. Tis requires additional code which will be described later. 

To approximate a circular cross-section, a large number of radial 
segments will typically be used. Choosing a signifcantly smaller number 
of radial segments will result in a solid whose cross-sections are clearly 
polygons: these three-dimensional shapes are called prisms, three of which 
are illustrated in Figure 4.17. Note that a square prism has the shape of a 
box, although due to the way the class is structured, it will contain more 
triangles and is aligned diferently: in the BoxGeometry class, the coor-
dinates were chosen so that the sides were perpendicular to the coordinate 
axes; a square prism will appear to have been rotated by 45° (around the 
y-axis) from this orientation. 

By generalizing the cylinder equations a bit more, you gain the ability 
to produce more three-dimensional shapes, as illustrated in Figure 4.18. 
For example, cones are similar to cylinders in that their cross-sections are 
circles, with the diference that the radius of each circle becomes smaller 
the closer the cross-section is to the top of the cylinder; the top is a single 
point, a circle with radius zero. Furthermore, by replacing the circular 
cross-sections of a cone with polygon cross-sections, the result is a pyra-
mid. Square pyramids may come to mind most readily, but one may con-
sider triangular pyramids, pentagonal pyramids, hexagonal pyramids, 
and so on. To provide maximum generality, the base class for all of these 
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shapes will include parameters where the radius at the top and the radius 
at the bottom can be specifed, and the radius of each cross-section will 
be linearly interpolated from these two values. In theory, this would even 
enable frustum (truncated pyramid) shapes to be created. 

To efciently code this set of shapes, the most general class will be 
named CylindricalGeometry, and the classes that extend it will be 
named CylinderGeometry, PrismGeometry, ConeGeometry, 
and PyramidGeometry. (To create a less common shape such as a frus-
tum, you can use the CylindricalGeometry class directly.) To begin, 
in the geometry folder, create a new fle named cylindricalGeom-
etry.py, containing the following code: 

from geometry.parametricGeometry import 
ParametricGeometry 

from math import sin, cos, pi 

class CylindricalGeometry(ParametricGeometry):

    def __init__(self, radiusTop=1, radiusBottom=1, 
height=1,

 radialSegments=32, heightSegments=4, 
closedTop=True, closedBottom=True):

 def S(u,v):
            return [ (v*radiusTop + (1-v)*radiusBottom) 

* sin(u), height * (v - 0.5),
 (v*radiusTop + (1-v)*radiusBottom) 

* cos(u) ]

 super().__init__( 0, 2*pi, radialSegments, 
0, 1, heightSegments, S ) 

Te most natural way to create a top and bottom for the cylinder is to 
use the data generated by the PolygonGeometry class. For the poly-
gons to be correctly aligned with the top and bottom of the cylinder, 
there needs to be a way to transform the vertex position data of a polygon. 
Furthermore, once the data has been transformed, all the attribute data 
from the polygon objects will need to be merged into the attribute data 
for the cylindrical object. Since these operations may be useful in multiple 
situations, functions to perform these tasks will be implemented in the 
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Geometry class. In the fle geometry.py in the geometry folder, 
add the following two functions: 

# transform the data in an attribute using a matrix 
def applyMatrix(self, matrix, 
variableName="vertexPosition"): 

oldPositionData = self.attributes[variableName].data
 newPositionData = []

 for oldPos in oldPositionData:
 # avoid changing list references
 newPos = oldPos.copy()
 # add homogeneous fourth coordinate
 newPos.append(1)
 # multiply by matrix
 newPos = matrix @ newPos
 # remove homogeneous coordinate
 newPos = list( newPos[0:3] )
 # add to new data list
 newPositionData.append( newPos )

    self.attributes[variableName].data = 
newPositionData

 # new data must be uploaded
 self.attributes[variableName].uploadData() 

# merge data from attributes of other geometry into 
this object; 

# requires both geometries to have attributes with 
same names 

def merge(self, otherGeometry):

    for variableName, attributeObject in self. 
attributes.items():
 attributeObject.data +=

             otherGeometry.attributes[variableName].data
 # new data must be uploaded
 attributeObject.uploadData()

 # update the number of vertices
 self.countVertices() 

http:geometry.py
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With these additions to the Geometry class, you can now use these 
functions as described above. In the fle cylindricalGeometry. 
py, add the following code to the initialization function, afer which the 
CylindricalGeometry class will be complete. 

if closedTop:
    topGeometry = PolygonGeometry(radialSegments, 

radiusTop)
 transform = Matrix.makeTranslation(0, height/2, 0) @

          Matrix.makeRotationY(-pi/2) @ Matrix. 
makeRotationX(-pi/2)

 topGeometry.applyMatrix( transform )
 self.merge( topGeometry ) 

if closedBottom:
   bottomGeometry = PolygonGeometry(radialSegments, 

radiusBottom)
 transform = Matrix.makeTranslation(0, -height/2, 0) @

         Matrix.makeRotationY(-pi/2) @ Matrix. 
makeRotationX(pi/2)

 bottomGeometry.applyMatrix( transform )
 self.merge( bottomGeometry ) 

To create cylinders, the same radius is used for the top and bottom, 
and the top and bottom sides will both be closed (present) or not. In the 
geometry folder, create a new fle named cylinderGeometry.py, 
containing the following code: 

from geometry.cylindricalGeometry import 
CylindricalGeometry 

class CylinderGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
                 radialSegments=32, heightSegments=4, 

closed=True):

 super().__init__(radius, radius, height, 
radialSegments, heightSegments,

 closed, closed) 

To create prisms, the parameter radialSegments is replaced by 
sides for clarity in this context. In the geometry folder, create a new 
fle named prismGeometry.py, containing the following code: 

http:prismGeometry.py
http:cylinderGeometry.py
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from geometry.cylindricalGeometry import 
CylindricalGeometry 
class PrismGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
sides=6, heightSegments=4, closed=True):

 super().__init__(radius, radius, height, 
                         sides, heightSegments, 

closed, closed) 

To create cones, the top radius will always be zero, and the top polygon 
side never needs to be rendered. In the geometry folder, create a new fle 
named coneGeometry.py, containing the following code: 

from geometry.cylindricalGeometry import 
CylindricalGeometry 
class ConeGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
                 radialSegments=32, heightSegments=4, 

closed=True):

 super().__init__(0, radius, height, 
radialSegments, heightSegments,

 False, closed) 

Finally, creating pyramids is similar to creating cones, and as was the 
case for prisms, the parameter radialSegments is replaced by sides 
for clarity in this context. In the geometry folder, create a new fle named 
pyramidGeometry.py, containing the following code: 

from geometry.cylindricalGeometry import 
CylindricalGeometry 
class PyramidGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
sides=4, heightSegments=4, 

closed=True):

 super().__init__(0, radius, height, 
sides, heightSegments, False, 
closed) 

http:pyramidGeometry.py
http:coneGeometry.py
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4.4 MATERIAL OBJECTS 
Material objects will store three types of data related to rendering: shader 
program references, Uniform objects, and OpenGL render settings. As 
was the case with the base Geometry class, there will be many extensions 
of the base Material class. For example, diferent materials will exist for 
rendering geometric data as a collection of points, as a set of lines, or as a 
surface. Some basic materials will implement vertex colors or uniform base 
colors, while advanced materials (developed in later chapters) will imple-
ment texture mapping, lighting, and other efects. Te framework will also 
enable developers to easily write customized shaders in applications. 

Te tasks handled by the base Material class will include 

• compiling the shader code and initializing the program 

• initializing dictionaries to store uniforms and render settings 

• defning uniforms corresponding to the model, view, and projection 
matrices, whose values are stored outside the material (in mesh and 
camera objects) 

• defne a method named addUniform to simplify creating and 
adding Uniform objects 

• defning a method named locateUniforms that determines and 
stores all the uniform variable references in the shaders 

• defning a method named setProperties that can be used to set 
multiple uniform and render setting values simultaneously from a 
dictionary (for convenience). 

Classes that extend this class will 

• contain the actual shader code 

• add any extra uniform objects required by the shaders 

• call the locateUniforms method once all uniform objects have 
been added 

• add OpenGL render settings (as Python variables) to the settings 
dictionary 

• implement a method named updateRenderSettings, which 
will call the OpenGL functions needed to confgure the render 
settings previously specifed. 



      

   

 
   

 
 

 
 

 
 

 

 

A Scene Graph Framework ◾ 165 

4.4.1 Base Class 

Since there will be many extensions of this class, all the material-related 
classes will be organized into a separate folder. To this end, in your main 
folder, create a new folder called material. To create the base class, in 
the material folder, create a new fle called material.py with the 
following code: 

from core.openGLUtils import OpenGLUtils 
from core.uniform import Uniform 
from OpenGL.GL import * 

class Material(object):

    def __init__(self, vertexShaderCode, 
fragmentShaderCode):

        self.programRef = OpenGLUtils. 
initializeProgram(vertexShaderCode, 

fragmentShaderCode)

 # Store Uniform objects,
 # indexed by name of associated variable in  

shader.
 self.uniforms = {}

 
        # Each shader typically contains these  

uniforms;
 # values will be set during render process  

from Mesh/Camera.
        # Additional uniforms added by extending  

classes.
        self.uniforms["modelMatrix"]       =  

Uniform("mat4", None)
        self.uniforms["viewMatrix"]        =  

Uniform("mat4", None)
        self.uniforms["projectionMatrix"]  =  

Uniform("mat4", None)
 

 # Store OpenGL render settings, 
# indexed by variable name.

        # Additional settings added by extending  
classes. 

http:OpenGL.GL
http:material.py
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 self.settings = {}
 self.settings["drawStyle"] = GL_TRIANGLES

 def addUniform(self, dataType, variableName, data):
        self.uniforms[variableName] = 

Uniform(dataType, data)

 # initialize all uniform variable references
 def locateUniforms(self):

        for variableName, uniformObject in self. 
uniforms.items():
 uniformObject.locateVariable( 

self.programRef, variableName )

 # configure OpenGL with render settings
 def updateRenderSettings(self):

 pass

    # convenience method for setting multiple material 
"properties"

 # (uniform and render setting values) from a 
dictionary

 def setProperties(self, properties):
 for name, data in properties.items():

 # update uniforms
 if name in self.uniforms.keys():

 self.uniforms[name].data = data
 # update render settings
 elif name in self.settings.keys():

 self.settings[name] = data
 # unknown property type
 else:

 raise Exception( 
"Material has no property named: " + name) 

With this class completed, you will next turn your attention to creating 
extensions of this class. 

4.4.2 Basic Materials 

In this section, you will create an extension of the Material class, 
called BasicMaterial, which contains shader code and a set of 
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FIGURE 4.19 Rendering the six vertices of a Rectangle Geometry with a point 
material (a), line material (b), and surface material (c). 

corresponding uniforms. Te shaders can be used to render points, 
lines, or surfaces. Keeping modular design principles in mind, this 
class will in turn be extended into classes called PointMaterial, 
LineMaterial, and SurfaceMaterial, each of which will con-
tain the relevant OpenGL render settings for the corresponding type of 
geometric primitive. Figure 4.19 illustrates the results of rendering the 
six vertices of a Rectangle object with each of these types of materials 
using vertex colors. Note that since the bottom-lef vertex color has been 
changed to gray, it is visible against a white background and that the line 
material groups points into pairs and thus does not produce a full wire-
frame (although this will be possible with the surface material settings). 

Te shaders for the basic material will use two attributes: vertex 
positions and vertex colors. As before, attribute variables are designated 
with the type qualifer in. Te vertex color data will be sent from the ver-
tex shader to the fragment shader using the variable color. Te uniform 
variables used by the vertex shader will include the model, view, and pro-
jection matrices, as usual, which are used to calculate the fnal position 
of each vertex. Te two main options for coloring fragments are either 
to use interpolated vertex colors or to apply a single color to all vertices. 
To this end, there will be two additional uniform variables used by this 
shader. Te frst variable, baseColor, will be a vec3 containing a color 
applied to all vertices, with the default value (1,1,1), corresponding to 
white. Te second variable, useVertexColors, will be a boolean value 
that determines whether the data stored in the vertex color attribute will 
be applied to the base color. You do not need to include a boolean variable 
specifying whether base color should be used (in other words, there is no 
useBaseColor variable), because if the base color is lef at its default 
value of (1,1,1), then combining this with other colors (by multiplication) 
will have no efect. 
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To implement this basic material, in the material folder, create a new 
fle called basicMaterial.py with the following code: 

from material.material import Material 
from core.uniform import Uniform 

class BasicMaterial(Material):

 def __init__(self):

 vertexShaderCode = """
 uniform mat4 projectionMatrix;
 uniform mat4 viewMatrix;
 uniform mat4 modelMatrix;
 in vec3 vertexPosition;
 in vec3 vertexColor;
 out vec3 color;

 void main()
 {

            gl_Position = projectionMatrix * 
viewMatrix * modelMatrix 
* vec4(vertexPosition, 1.0);

 color = vertexColor;
 }
 """

 fragmentShaderCode = """
 uniform vec3 baseColor;
 uniform bool useVertexColors;
 in vec3 color;
 out vec4 fragColor;

 void main()
 {

 vec4 tempColor = vec4(baseColor, 1.0);

 if ( useVertexColors )
 tempColor *= vec4(color, 1.0);

 fragColor = tempColor;
 }
 """ 

http:basicMaterial.py
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        super().__init__(vertexShaderCode, 
fragmentShaderCode)

        self.addUniform("vec3", "baseColor", [1.0, 
1.0, 1.0])

        self.addUniform("bool", "useVertexColors", 
False)

 self.locateUniforms() 

Next, the render settings (such as drawStyle) need to be specifed, 
and the updateRenderSettings function needs to be implemented. 
As previously mentioned, this will be accomplished with three classes that 
extend the BasicMaterial class. 

Te frst extension will be the PointMaterial class, which ren-
ders vertices as points. Recall that render setting values are stored in the 
dictionary object named settings with various keys: strings, such as 
"drawStyle". Te draw style is the OpenGL constant GL_POINTS. Te 
size of the points is stored with the key "pointSize". Te points may 
be drawn in a rounded style by setting the boolean variable with the key 
"roundedPoints" to True. Finally, the class constructor contains an 
optional dictionary object named properties that can be used to eas-
ily change the default values of any of these render settings or the previ-
ously discussed uniform values, using the function setProperties. 
To implement this class, in the material folder, create a new fle called 
pointMaterial.py with the following code: 

from material.basicMaterial import BasicMaterial 
from OpenGL.GL import * 

class PointMaterial(BasicMaterial):

 def __init__(self, properties={}):
 super().__init__()

 # render vertices as points
 self.settings["drawStyle"] = GL_POINTS
 # width and height of points, in pixels
 self.settings["pointSize"] = 8
 # draw points as rounded
 self.settings["roundedPoints"] = False

 self.setProperties(properties) 

http:OpenGL.GL
http:pointMaterial.py
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 def updateRenderSettings(self):

 glPointSize(self.settings["pointSize"])

 if self.settings["roundedPoints"]:
 glEnable(GL_POINT_SMOOTH)

 else:
 glDisable(GL_POINT_SMOOTH) 

Te second extension will be the LineMaterial class, which renders 
vertices as lines. In this case, there are three diferent ways to group ver-
tices: as a connected set of points, a loop (additionally connecting the last 
point to the frst), and as a disjoint set of line segments. Tese are speci-
fed by the OpenGL constants GL_LINE_STRIP, GL_LINE_LOOP, and 
GL_LINES, respectively, but for readability will be stored under the set-
tings dictionary key "lineType" with the string values "connected", 
"loop", or "segments". Te other render setting is the thickness or 
width of the lines, stored with the key "lineWidth". To implement this 
class, in the material folder, create a new fle called lineMaterial. 
py with the following code: 

from material.basicMaterial import BasicMaterial 
from OpenGL.GL import * 

class LineMaterial(BasicMaterial):

 def __init__(self, properties={}):
 super().__init__()

        # render vertices as continuous line by 
default

 self.settings["drawStyle"] = GL_LINE_STRIP
 # line thickness
 self.settings["lineWidth"] = 1
 # line type: "connected" | "loop" | "segments"
 self.settings["lineType"] = "connected"

 self.setProperties(properties)

 def updateRenderSettings(self):

 glLineWidth(self.settings["lineWidth"]) 

http:OpenGL.GL
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        if self.settings["lineType"] == "connected":
            se�lf.settings["drawStyle"] = 

GL_LINE_STRIP 
        elif self.settings["lineType"] == "loop":
            self.settings["drawStyle"] = GL_LINE_LOOP
        elif self.settings["lineType"] == "segments":
            self.settings["drawStyle"] = GL_LINES
        else:
            ra�ise Exception("Unknown LineMaterial draw 

style.")

The third extension will be the SurfaceMaterial class, which 
renders vertices as a surface. In this case, the draw style is specified 
by the OpenGL constant GL_TRIANGLES. For rendering efficiency, 
OpenGL only renders the front side of triangles by default; the front 
side is defined to be the side from which the vertices appear to be 
listed in counterclockwise order. Both sides of each triangle can be 
rendered by changing the value stored with the key "doubleSide" 
to True. A  surface can be rendered in wireframe style by changing 
the value stored with the key "wireframe" to True, in which case 
the thickness of the lines may also be set as with line-based materi-
als with the dictionary key "lineWidth". The results of rendering a 
shape in wireframe style (with double-sided rendering set to False) are 
illustrated in Figure 4.20. To implement this class, in the material 
folder, create a new file called surfaceMaterial.py with the 
following code:

from material.basicMaterial import BasicMaterial 
from OpenGL.GL import *
 
class SurfaceMaterial(BasicMaterial):
 
    def __init__(self, properties={}):
        super().__init__()
 
        # render vertices as surface
        self.settings["drawStyle"] = GL_TRIANGLES
        # render both sides? default: front side only 
        #   (vertices ordered counterclockwise)
        self.settings["doubleSide"] = False
        # render triangles as wireframe?
        self.settings["wireframe"] = False

http:OpenGL.GL
http:surfaceMaterial.py


      

 

 

 

 

        

  
 

 

172 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 4.20 Rendering a sphere with triangles and as a wireframe. 

# line thickness for wireframe rendering
 self.settings["lineWidth"] = 1

 self.setProperties(properties)

 def updateRenderSettings(self):

 if self.settings["doubleSide"]:
 glDisable(GL_CULL_FACE)

 else:
 glEnable(GL_CULL_FACE)

 if self.settings["wireframe"]:
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

 else:
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

 glLineWidth(self.settings["lineWidth"]) 

At this point, you have completed many geometry and material classes, 
which store all the information required to render an object. In the next 
section, you will create a class that uses this information in the process of 
rendering mesh objects. 

4.5 RENDERING SCENES WITH THE FRAMEWORK 
Te fnal class required in the framework at this stage is the Renderer 
class. When initialized, this class will perform general rendering tasks, 
including enabling depth testing, antialiasing, and setting the color used 
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when clearing the color bufer (the default background color). A function 
named render will take a Scene and a Camera object as input, and 
performs all of the rendering related tasks that you have seen in ear-
lier examples. Te color and depth bufers are cleared, and the camera’s 
view matrix is updated. Next, a list of all the Mesh objects in the scene 
is created by frst extracting all elements in the scene using the get-
DescendantList function and then fltering this list using the Python 
functions filter and isinstance. Ten, for each mesh that is visible, 
the following tasks need to be performed: 

• the shader program being used must be specifed 

• the vertex array object that specifes the associations between vertex 
bufers and shader variables must be bound 

• the values corresponding to the model, view, and projection matrices 
(stored in the mesh and camera) must be stored in the corresponding 
uniform objects 

• the values in all uniform objects must be uploaded to the GPU 

• render settings are applied via OpenGL functions as specifed in the 
updateRenderSettings function 

• the glDrawArrays function is called, specifying the correct draw 
mode and the number of vertices to be rendered. 

To continue, in the core folder, create a new fle called renderer.py 
with the following code: 

from OpenGL.GL import * 
from core.mesh import Mesh 

class Renderer(object):

 def __init__(self, clearColor=[0,0,0]):

 glEnable( GL_DEPTH_TEST )
 # required for antialiasing
 glEnable( GL_MULTISAMPLE )

        glClearColor(clearColor[0], clearColor[1], 
clearColor[2], 1)

 def render(self, scene, camera): 

http:OpenGL.GL
http:renderer.py
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 # clear color and depth buffers
        glClear(GL_COLOR_BUFFER_BIT | 

GL_DEPTH_BUFFER_BIT)

 # update camera view (calculate inverse)
 camera.updateViewMatrix()

 # extract list of all Mesh objects in scene
 descendantList = scene.getDescendantList()
 meshFilter = lambda x : isinstance(x, Mesh)

        meshList = list( filter( meshFilter, 
descendantList ) )

 for mesh in meshList:

 # if this object is not visible,
 # continue to next object in list
 if not mesh.visible:

 continue

 glUseProgram( mesh.material.programRef ) 

# bind VAO
 glBindVertexArray( mesh.vaoRef )

            # update uniform values stored outside of 
material

 mesh.material.uniforms["modelMatrix"].data =
 mesh.getWorldMatrix()

 mesh.material.uniforms["viewMatrix"].data =
 camera.viewMatrix

             mesh.material. 
uniforms["projectionMatrix"].data =

 camera.projectionMatrix

 # update uniforms stored in material
 for variableName, uniformObject in 

mesh.material.uniforms.items():
 uniformObject.uploadData()

 # update render settings
 mesh.material.updateRenderSettings() 
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            glDrawArrays( mesh.material. 
settings["drawStyle"], 0,

 mesh.geometry.vertexCount ) 

At this point, you are now ready to create an application using the 
graphics framework! Most applications will require at least seven classes 
to be imported: Base, Renderer, Scene, Camera, Mesh, and at least 
one geometry and one material class to be used in the mesh. Tis exam-
ple also illustrates how a scene can be rendered in a non-square window 
without distortion by setting the aspect ratio of the camera. (If using 
the default window size, this parameter is not necessary.) To create the 
application that consists of a spinning cube, in your main project folder, 
create a new fle named test-4-1.py, containing the following code: 

from core.base import Base 
from core.renderer import Renderer 
from core.scene  import Scene 
from core.camera import Camera 
from core.mesh  import Mesh 
from geometry.boxGeometry import BoxGeometry 
from material.surfaceMaterial import SurfaceMaterial 

# render a basic scene 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 self.renderer = Renderer()
 self.scene = Scene()
 self.camera = Camera( aspectRatio=800/600 )
 self.camera.setPosition( [0, 0, 4] )

 geometry = BoxGeometry()
        material = SurfaceMaterial( 

{"useVertexColors": True} )
 self.mesh = Mesh( geometry, material )
 self.scene.add( self.mesh )

 def update(self): 

http:test-4-1.py
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 self.mesh.rotateY( 0.0514 )
 self.mesh.rotateX( 0.0337 )
 self.renderer.render( self.scene, self.camera 

) 

# instantiate this class and run the program 
Test( screenSize=[800,600] ).run() 

Running this code should produce a result similar to that illustrated in 
Figure 4.21, where the dark background is due to the default clear color in 
the renderer being used. 

Hopefully, the frst thing you noticed about the application code was 
that it is quite short, and focuses on high-level concepts. Tis is thanks 
to all the work that went into writing the framework classes in this chap-
ter. At this point, you should try displaying the other geometric shapes 
that you have implemented to confrm that they appear as expected. In 
addition, you should also try out the other materials and experiment with 
changing the default uniform values and render settings. When using a 
dictionary to set more than one of these properties, using multiline for-
matting might make your code easier to read. For example, you could con-
fgure the material in the previous example using the following code: 

FIGURE 4.21 Rendering a spinning cube with the graphics framework classes. 
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FIGURE 4.22 Rendering a cube with alternate material properties. 

material = SurfaceMaterial({
 "useVertexColors": True,
 "wireframe": True,
 "lineWidth": 8 

}) 

Tis would produce a result similar to that shown in Figure 4.22. 
Before proceeding, it will be very helpful to create a template fle contain-

ing most of this code. To this end, in your main project folder, save a copy 
of the fle named test-4-1.py as a new fle named test-template. 
py, and comment out the two lines of code in the update function that 
rotate the mesh. 

Te remaining examples in this section will illustrate how to create cus-
tom geometry and custom material objects in an application. 

4.6 CUSTOM GEOMETRY AND MATERIAL OBJECTS 
Te frst example will demonstrate how to create a custom geometry object 
by explicitly listing the vertex data, similar to the geometry classes repre-
senting rectangles and boxes; the result will be as shown in Figure 4.23. 

http:test-4-1.py
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FIGURE 4.23 A custom geometry. 

To begin, create a copy of the fle test-template.py, save it as 
test-4-2.py. Whenever you want to create your own customized 
geometry, you will need to import the Geometry class. Terefore, add 
the following import statement at the top of the fle: 

from geometry.geometry import Geometry 

Next, replace the line of code where the geometry object is initialized 
with the following block of code: 

geometry = Geometry() 
P0 = [-0.1,  0.1, 0.0] 
P1 = [ 0.0,  0.0, 0.0] 
P2 = [ 0.1,  0.1, 0.0] 
P3 = [-0.2, -0.2, 0.0] 
P4 = [ 0.2, -0.2, 0.0] 
posData = [P0,P3,P1, P1,P3,P4, P1,P4,P2] 
geometry.addAttribute("vec3", "vertexPosition", 
posData) 
R = [1, 0, 0] 
Y = [1, 1, 0] 
G = [0, 0.25, 0] 
colData = [R,G,Y, Y,G,G, Y,G,R] 
geometry.addAttribute("vec3", "vertexColor", colData) 
geometry.countVertices() 

http:test-4-2.py
http:test-template.py
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FIGURE 4.24 A custom geometry with data generated from a function. 

With these changes, save and run your fle, and you should see a result 
similar to that in Figure 4.23. 

For all but the simplest models, listing the vertices by hand can be a 
tedious process, and so you may wish to generate vertex data using func-
tions. Te next example generates the image from Figure 4.24 from vertices 
generated along the graph of a sine function. Tis particular appearance is 
generated by drawing the same geometric data twice: once using a point-
based material and once using a line-based material. 

To begin, create a copy of the fle test-template.py and save it 
as test-4-3.py. As before, you will need to import the Geometry and 
Attribute classes; in addition, you will need the sin function from the 
math package, the arange function from numpy (to generate a range of 
decimal values), and the point-based and line-based basic material classes. 
Terefore, add the following import statements at the top of the fle: 

from geometry.geometry import Geometry 
from math import sin 
from numpy import arange 
from material.pointMaterial import PointMaterial 
from material.lineMaterial import LineMaterial 

Next, in the initialize function, delete the code in that function 
that occurs afer the camera position is set, replacing it with the following: 

geometry = Geometry() 
posData = [] 
for x in arange(-3.2, 3.2, 0.3):

 posData.append([x, sin(x), 0]) 
geometry.addAttribute("vec3", "vertexPosition", 

posData) 
geometry.countVertices() 

http:test-4-3.py
http:test-template.py
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pointMaterial = PointMaterial( 
{"baseColor": [1,1,0], "pointSize": 10} ) 

pointMesh = Mesh( geometry, pointMaterial ) 

lineMaterial = LineMaterial( {"baseColor": [1,0,1], 
"lineWidth": 4} ) 

lineMesh = Mesh( geometry, lineMaterial ) 

self.scene.add( pointMesh ) 
self.scene.add( lineMesh ) 

Note that vertex color data does not need to be generated, since the 
material’s base color is used when rendering. Save and run this fle, and 
the result will be similar to Figure 4.24. 

Next, you will turn your attention to customized materials, where the 
shader code, uniforms, and render settings are part of the application 
code. In the next example, you will color the surface of an object based 
on the coordinates of each point on the surface. In particular, you will 
take the fractional part of the x, y, and z coordinates of each point and use 
these for the red, green, and blue components of the color. Te fractional 
part is used because this is a value between 0 and 1, which is the range of 
color components. Figure 4.25 shows the efect of applying this shader to 
a sphere of radius 3. 

As before, create a copy of the fle test-template.py, this time sav-
ing it with the fle name test-4-4.py. Whenever you want to create your 
own customized material, you will need to import the Material class, 
and possibly also the OpenGL functions and constants. Terefore, add the 
following import statements at the top of your new application: 

from geometry.sphereGeometry import SphereGeometry 
from material.material import Material 

Next, in the initialize function, delete the code in that function 
that occurs afer the camera object is initialized, and replace it with the 
following code. Note that there are out and in variables named posi-
tion, which are used to transmit position data from the vertex shader to 
the fragment shader (which, as usual, is interpolated for each fragment). 
Additionally, to obtain the fractional part of each coordinate, the values are 
reduced modulo 1 using the GLSL function mod. In this example, uniform 
objects do not need to be created for the matrices, as this is handled by the 
Mesh class. 

http:test-4-4.py
http:test-template.py
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FIGURE 4.25 Coloring the surface of a sphere based on point coordinates. 

self.camera.setPosition( [0, 0, 7] ) 

geometry = SphereGeometry(radius=3) 

vsCode = """ 
in vec3 vertexPosition; 
out vec3 position; 
uniform mat4 modelMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 projectionMatrix; 
void main() 
{

 vec4 pos = vec4(vertexPosition, 1.0);
 gl_Position = projectionMatrix * viewMatrix * 

modelMatrix * pos;
 position = vertexPosition; 

} 
""" 

fsCode = """ 
in vec3 position; 
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out vec4 fragColor; 
void main() 
{

 vec3 color = mod(position, 1.0);
 fragColor = vec4(color, 1.0); 

} 
""" 

material = Material(vsCode, fsCode) 
material.locateUniforms() 

self.mesh = Mesh( geometry, material ) 
self.scene.add( self.mesh ) 

It is easy to see the red and green color gradients on the rendered sphere, 
but not the blue gradient, due to the orientation of the sphere and the posi-
tion of the camera (looking along the z-axis). If desired, you may add code 
to the update function that will rotate this mesh around the y-axis, to 
get a fuller understanding of how the colors are applied across the surface. 

Te fnal example in this section will illustrate how to create animated 
efects in both the vertex shader and the fragment shader, using a custom 
material. Once again, you will use a spherical shape for the geometry. In 
the material’s vertex shader, you will add an ofset to the y-coordinate, 
based on the sine of the x-coordinate, and shif the displacement over 
time. In the material’s fragment shader, you will shif between the geom-
etry’s vertex colors and a shade of red in a periodic manner. A still image 
from this animation is shown in Figure 4.26. 

Create a copy of the fle test-template.py, and save it with the fle 
name test-4–5.py. Add the same import statements at the top of your 
new application as before: 

from geometry.sphereGeometry import SphereGeometry 
from material.material import Material 

In the initialize function, delete the code in that function that 
occurs afer the camera object is initialized, and replace it with the fol-
lowing code. Note that in this example, there is a uniform variable called 
time present in both the vertex shader and the fragment shader, for 
which a Uniform object will need to be created. Also note the creation of 
the Python variable self.time, which will be used to supply the value 
to the uniform later. 

http:test-4�5.py
http:test-template.py
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FIGURE 4.26 A sphere with periodic displacement and color shifing. 

self.camera.setPosition( [0, 0, 7] ) 

geometry = SphereGeometry(radius=3, 
radiusSegments=128, heightSegments=64) 

vsCode = """ 
uniform mat4 modelMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 projectionMatrix; 
in vec3 vertexPosition; 
in vec3 vertexColor; 
out vec3 color; 
uniform float time; 
void main() 
{
    float offset = 0.2 * sin(8.0 * vertexPosition.x + 

time); 
vec3 pos = vertexPosition + vec3(0.0, offset, 0.0); 
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    gl_Position = projectionMatrix * viewMatrix * 
modelMatrix *

 vec4(pos, 1);
 color = vertexColor; 

} 
""" 

fsCode = """ 
in vec3 color; 
uniform float time; 
out vec4 fragColor; 
void main() 
{

 float r = abs(sin(time));
 vec4 c = vec4(r, -0.5*r, -0.5*r, 0.0);
 fragColor = vec4(color, 1.0) + c; 

} 
""" 

material = Material(vsCode, fsCode) 
material.addUniform("float", "time", 0) 
material.locateUniforms() 

self.time = 0; 

self.mesh = Mesh( geometry, material ) 
self.scene.add( self.mesh ) 

Finally, to produce the animated efect, you must increment and update 
the value of the time variable. In the update function, add the following 
code before the render function is called: 

self.time += 1/60 
self.mesh.material.uniforms["time"].data = self.time 

With these additions, this example is complete. Run the code and you 
should see an animated rippling efect on the sphere, as the color shifs 
back and forth from the red end of the spectrum. 

4.7 EXTRA COMPONENTS 
Now that you are familiar with writing customized geometric objects, 
there are a number of useful, reusable classes you will add to the frame-
work: axes and grids, to more easily orient the viewer. Following this, you 
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will create a movement rig, enabling you to more easily create interactive 
scenes by moving the camera or objects in the scene in an intuitive way. 

4.7.1 Axes and Grids 

At present, there is no easy way to determine one's orientation relative to 
the scene, or a sense of scale, within a three-dimensional scene built in 
this framework. One approach that can partially alleviate these issues is to 
create three-dimensional axis and grid objects, illustrated separately and 
together in Figure 4.27. 

For convenience, each of these objects will extend the Mesh class, and 
set up their own Geometry and Material within the class. Since they are 
not really of core importance to the framework, in order to keep the fle 
system organized, in your main project folder, create a new folder called 
extras. 

First, you will implement the object representing the (positive) coordi-
nate axes. By default, the x, y, and z axes will have length 1 and be rendered 
with red, green, and blue lines, using a basic line material, although these 
parameters will be able to be adjusted in the constructor. In the extras 
folder, create a new fle named axesHelper.py with the following code: 

from core.mesh import Mesh 
from geometry.geometry import Geometry 
from material.lineMaterial import LineMaterial 

class AxesHelper(Mesh):

 def __init__(self, axisLength=1, lineWidth=4, 
axisColors=[[1,0,0],[0,1,0],[0,0,1]] 

):

 geo = Geometry() 

FIGURE 4.27 Coordinate axes (a), a grid (b), and in combination (c). 

http:axesHelper.py
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 positionData = [[0,0,0], [axisLength,0,0], 
[0,0,0], [0,axisLength,0], 
[0,0,0], [0,0,axisLength]]

 colorData = [axisColors[0], axisColors[0],
 axisColors[1], axisColors[1],
 axisColors[2], axisColors[2]]

        geo.addAttribute("vec3", "vertexPosition", 
positionData)

        geo.addAttribute("vec3", "vertexColor", 
colorData)

 geo.countVertices()

 mat = LineMaterial({
 "useVertexColors": True, 
"lineWidth": lineWidth,
 "lineType":  "segments"

 })

 # initialize the mesh
 super().__init__(geo, mat) 

Next, you will create a (square) grid object. Settings that you will be 
able to customize will include the dimensions of the grid, the number 
of divisions on each side, the color of the grid lines, and a separate color 
for the central grid line. In the extras folder, create a new fle named 
gridHelper.py containing the following code: 

from core.mesh import Mesh 
from geometry.geometry import Geometry 
from material.lineMaterial import LineMaterial 

class GridHelper(Mesh):

    def __init__(self, size=10, divisions=10, 
gridColor=[0,0,0], centerColor=[0.5,0.5,0.5], 

lineWidth=1):

 geo = Geometry() 

http:gridHelper.py


      

        

        

 

        

 

 

 
 mat = LineMaterial({

 "useVertexColors": 1, 
"lineWidth": lineWidth,
 "lineType":  "segments"

 }) 
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 positionData = []
 colorData = []

 # create range of values
 values = []
 deltaSize = size/divisions
 for n in range(divisions+1):

 values.append( -size/2 + n * deltaSize )

 # add vertical lines
 for x in values:

 positionData.append( [x, -size/2, 0] )
 positionData.append( [x,  size/2, 0] )
 if x == 0:

 colorData.append(centerColor)
 colorData.append(centerColor)

 else:
 colorData.append(gridColor)
 colorData.append(gridColor)

 # add horizontal lines
 for y in values:

 positionData.append( [-size/2, y, 0] )
 positionData.append( [ size/2, y, 0] )
 if y == 0:

 colorData.append(centerColor)
 colorData.append(centerColor)

 else:
 colorData.append(gridColor)
 colorData.append(gridColor)

        geo.addAttribute("vec3", "vertexPosition", 
positionData)

        geo.addAttribute("vec3", "vertexColor", 
colorData)

 geo.countVertices()
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 # initialize the mesh
 super().__init__(geo, mat) 

Note that the grid will by default by parallel to the xy-plane. For it to 
appear horizontal, as in Figure 4.27, you could rotate it by 90° around the 
x-axis. In order to see how these classes are used in code, to produce an 
image like the right side of Figure 4.27, make a copy of the fle test-
template.py, and save it as test-4–6.py. First, in the beginning of 
this new fle, add the following import statements: 

from extras.axesHelper import AxesHelper 
from extras.gridHelper import GridHelper 
from math import pi 

Ten, in the initialize function, delete the code in that function 
that occurs afer the camera object is initialized, and replace it with the 
following code, which adds coordinate axes and a grid to the scene, and 
demonstrates use of some of the available customization parameters. 

self.camera.setPosition( [0.5, 1, 5] ) 

axes = AxesHelper(axisLength=2) 
self.scene.add( axes ) 

grid = GridHelper(size=20, gridColor=[1,1,1], 
centerColor=[1,1,0]) 
grid.rotateX(-pi/2) 
self.scene.add(grid) 

When running this test application, you should see axes and a grid as 
previously described. 

4.7.2 Movement Rig 

As the fnal topic in this chapter, you will learn how to create a movement 
rig: an object with a built-in control system that can be used to move the 
camera or other attached objects within a scene in a natural way, simi-
lar to the way person might move around a feld: moving forwards and 
backwards, lef and right (all local translations), as well as turning lef and 
right, and looking up and down. Here, the use of the verb “look” indicates 
that even if a person’s point of view tilts up or down, their movement is still 
aligned with the horizontal plane. Te only unrealistic movement feature 

http:test-4�6.py
http:template.py
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that will be incorporated will be that the attached object will also be able 
to move up and down along the direction of the y-axis (perpendicular to 
the horizontal plane). 

To begin, this class, which will be called MovementRig, naturally 
extends the Object3D class. In addition, to support the “look” feature, 
it will take advantage of the scene graph structure, by way of including 
a child Object3D; the move and turn motions will be applied to the base 
Object3D, while the look motions will be applied to the child Object3D 
(and thus the orientation resulting from the current look angle will have 
no efect on the move and turn motions). However, in order to properly 
attach objects to the movement rig (to the child object within the rig) will 
require the Object3D functions add and remove to be overridden. For 
convenience, the rate of each motion will be able to be specifed. To begin, 
in the extras folder, create a new fle named movementRig.py with 
the following code: 

from core.object3D import Object3D 

class MovementRig(Object3D):

    def __init__(self, unitsPerSecond=1, 
degreesPerSecond=60):

 # initialize base Object3D; controls movement 
# and turn left/right
 super().__init__()

        # initialize attached Object3D; controls look 
up/down

 self.lookAttachment = Object3D()
 self.children = [ self.lookAttachment ]
 self.lookAttachment.parent = self

 # control rate of movement
 self.unitsPerSecond = unitsPerSecond
 self.degreesPerSecond = degreesPerSecond

    # adding and removing objects applies to look 
attachment;

 # override functions from Object3D class 

http:movementRig.py
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 def add(self, child):
 self.lookAttachment.add(child)

 def remove(self, child):
 self.lookAttachment.remove(child) 

Next, in order to conveniently handle movement controls, this class will 
have an update function that takes an Input object as a parameter, and if 
certain keys are pressed, transforms the movement rig correspondingly. In 
order to provide the developer the ability to easily confgure the keys being 
used, they will be assigned to variables in the class, and in theory, one could 
even disable certain types of motion by assigning the value None to any 
of these motions. Te default controls will follow the standard practice of 
using the "w" / "a" / "s" / "d" keys for movement forwards / lef / backwards / 
right. Te letters "q" and "e" will be used for turning lef and right, as they 
are positioned above the keys for moving lef and right. Movement up and 
down will be assigned to the keys “r” and “f”, which can be remembered 
with the mnemonic words "rise" and "fall", and "r" is positioned in the row 
above “f”. Finally, looking up and down will be assigned to the keys "t" and 
"g", as they are positioned adjacent to the keys for moving up and down. To 
implement this, in the—init—function, add the following code: 

# customizable key mappings 
# defaults: WASDRF (move), QE (turn), TG (look) 
self.KEY_MOVE_FORWARDS  = "w" 
self.KEY_MOVE_BACKWARDS = "s" 
self.KEY_MOVE_LEFT  = "a" 
self.KEY_MOVE_RIGHT = "d" 
self.KEY_MOVE_UP  = "r" 
self.KEY_MOVE_DOWN  = "f" 
self.KEY_TURN_LEFT  = "q" 
self.KEY_TURN_RIGHT = "e" 
self.KEY_LOOK_UP  = "t" 
self.KEY_LOOK_DOWN  = "g" 

Finally, in the MovementRig class, add the following function, which 
also calculates the amount of motion that should occur based on del-
taTime: the amount of time that has elapsed since the previous update. 

def update(self, inputObject, deltaTime): 
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 moveAmount = self.unitsPerSecond * deltaTime
 rotateAmount = self.degreesPerSecond *

 (3.1415926 / 180) * deltaTime

    if inputObject.isKeyPressed(self. 
KEY_MOVE_FORWARDS):
 self.translate( 0, 0, -moveAmount ) 

    if inputObject.isKeyPressed(self. 
KEY_MOVE_BACKWARDS):
 self.translate( 0, 0, moveAmount )

 if inputObject.isKeyPressed(self.KEY_MOVE_LEFT):
 self.translate( -moveAmount, 0, 0 )

 if inputObject.isKeyPressed(self.KEY_MOVE_RIGHT):
 self.translate( moveAmount, 0, 0 )

 if inputObject.isKeyPressed(self.KEY_MOVE_UP):
 self.translate( 0, moveAmount, 0 )

 if inputObject.isKeyPressed(self.KEY_MOVE_DOWN):
 self.translate( 0, -moveAmount, 0 )

 if inputObject.isKeyPressed(self.KEY_TURN_RIGHT):
 self.rotateY( -rotateAmount )

 if inputObject.isKeyPressed(self.KEY_TURN_LEFT):
 self.rotateY( rotateAmount )

 if inputObject.isKeyPressed(self.KEY_LOOK_UP):
 self.lookAttachment.rotateX( rotateAmount )

 if inputObject.isKeyPressed(self.KEY_LOOK_DOWN):
 self.lookAttachment.rotateX( -rotateAmount ) 

To see one way to use this class, in the previous application fle (test-
4–6.py), add the following import statement: 

from extras.movementRig import MovementRig 

Ten, in the initialize function, delete the line of code that sets the 
position of the camera, and add the following code instead: 

self.rig = MovementRig() 
self.rig.add( self.camera ) 
self.rig.setPosition( [0.5, 1, 5] ) 
self.scene.add( self.rig ) 
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FIGURE 4.28 Multiple views of the coordinate axes and grid. 

Finally, in the update function, add the following line of code: 

self.rig.update( self.input, self.deltaTime ) 

When you run this application, it will initially appear similar to the right 
side of Figure 4.27. However, by pressing the motion keys as previously 
indicated, you should easily be able to view the scene from many diferent 
perspectives, some of which are illustrated in Figure 4.28. 

Another way the MovementRig class may be used is by adding a cube 
or other geometric object to the rig, instead of a camera. While the view 
from the camera will remain fxed, this approach will enable you to move 
an object around the scene in a natural way. 

4.8 SUMMARY AND NEXT STEPS 
Building on your knowledge and work from previous chapters, in this 
chapter, you have seen the graphics framework truly start to take shape. 
You learned about the advantages of a scene graph framework and began 
by developing classes corresponding to the nodes: Scene, Group, Camera, 
and Mesh. Ten, you created many classes that generate geometric data cor-
responding to many diferent shapes you may want to render: rectangles, 
boxes, polygons, spheres, cylinders, and more. You also created classes that 
enabled these objects to be rendered as collections of points, lines, or trian-
gulated surfaces. Afer learning how to render objects in this new frame-
work, you also learned how customized geometry or material objects can be 
created. Finally, you created some extra classes representing coordinate axes 
and grids, to help the viewer to have a sense of orientation and scale within 
the scene, and a movement rig class, to help the viewer interact with the 
scene, by moving the camera or other objects with a natural control scheme. 

In the next chapter, you will move beyond vertex colors and learn about 
textures: images applied to surfaces of objects, which can add realism and 
sophistication to your three-dimensional scenes. 


