CHAPTER 15

Two JOGL Programming Frameworks

This chapter introduces JOGL (https://jogl.dev.java.net/), aJava wrapper for the 3D (and 2D)
graphics library OpenGL (http://www.opengl.org/). I'll implement a simple example, a rotating
multicolored cube, using two programming frameworks, one employing callbacks, the other utiliz-
ing active rendering. One way that I compare them is by seeing how well they handle different frame
rates for the cube’s animation.

The next chapter explores JOGL features in more detail when I develop an application contain-
ing many of the elements you've already seen coded in Java 3D, including a checkerboard floor, a
rotating textured sphere, a skybox, a billboard, overlays, and keyboard navigation. Chapter 17
examines how to load OBJ models, implement collision detection, and play 3D sound.

What Is JOGL?

JOGL is one of the open-source technologies initiated by the Game Technology Group at Sun
Microsystems back in 2003 (the others are JInput and JOAL, which I cover in Chapters 11 through
14). JOGL provides full access to the APIs in the OpenGL 2.0 specification, as well as vendor exten-
sions, and can be combined with AWT and Swing components. It supports both of the main shader
languages, GLSL and Nvidia’s Cg.

JOGL has the same focus as OpenGL on 2D and 3D rendering. It doesn’t include support for
gaming elements such as sound or input devices, which are nicely dealt with by JOAL and JInput.

Most features of the popular OpenGL GLU and GLUT libraries are present in JOGL. GLU (the
OpenGL Utility Library) includes support for rendering spheres, cylinders, disks, camera position-
ing, tessellation, and texture mipmaps. The JOGL version of GLUT (OpenGL Utility Toolkit) doesn't
include its windowing functionality, which is handled by Java, but does offer geometric primitives
(both in solid and wireframe mode). JOGLs utility classes include frame-based animation, texture
loading, file IO, and screenshot capabilities.

JOGL has evolved into the reference implementation for the JSR-231 specification for binding
OpenGL to Java (http://jcp.org/en/jsr/detail?id=231). JOGL 1.1.1 was superseded by JSR-231 in
October 2005, and the current JSR-231 release candidate, 1.1.0-rc2, came out in January 2007. I'll be
using that version in the following chapters, but will keep using the name JOGL.

To become JSR-231 compliant, many JOGL classes, methods, and packages have been modi-
fied, mostly in minor ways. This means that older examples need some tweaking to get them to
compile and run. Details about the changes can be found in the JOGL forum thread
http://www.javagaming.org/forums/index.php?topic=11189.0.

The new GLDrawable and GLContext classes are the most important for this chapter since they
allow direct access to OpenGLs drawing surface and state information. These new classes support a
new style of coding, called active rendering, which I use as the basis of the second programming
framework.

377

378

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

The OpenGL API is accessed via Java Native Interface (JNI) calls, leading to a very direct map-
ping between the API's C functions and JOGL's Java methods. As a consequence, it’s extremely easy
to translate most OpenGL examples into JOGL. The drawback is that the OpenGL programming
style is based around affecting a global graphics state, which makes it difficult to structure Java code
into meaningful classes and objects. JOGL does provide class structuring for the OpenGL API, but
the vast majority of its methods are in the very large GL and GLU classes.

OpenGL is a vast, complex, and powerful API, with entire books dedicated to its explanation.
In the next three chapters, I'll only explain the OpenGL features I need for my examples. For an
all-around knowledge, you'll need other sources, and I point you toward some at the end of this
chapter.

Installing JOGL

JOGL will work with J2SE 1.4.2 or later; I used Java 1.6.0 for my tests and downloaded the JSR-231
1.1.0 release candidate 2 of JOGL from https://jogl.dev.java.net/.I chose the Windows build
from January 23, 2007, jogl-1.1.0-rc2-windows-i586.zip, which contains a lib\ subdirectory holding
two JAR files (jogl.jar and gluegen-rt.jar) and four DLLs (jogl.dll, gluegen-rt.dll, jogl_awt.dll, and
jogl_cg.dll).

The JOGL user guide (which is part of the ZIP file) recommends that the JARs and DLLs should
be installed in their own directory rather than inside the JRE directories. Consequently, I extracted
the lib\ directory, renamed it to jogl\, and stored it on my test machine’s d: drive (d:\jogl\).

The JARs and DLLs can be utilized at compile time and runtime by supplying suitable classpath
and java.library.path parameters on the command line. For example, when I compile the JOGL
demo PrintExt.java, I type the following:

javac -classpath "d:\jogl\jogl.jar;d:\jogl\gluegen-rt.jar;." PrintExt.java

Its execution requires the following:

java -cp "d:\jogl\jogl.jar;d:\jogl\gluegen-rt.jar;."
-Djava.library.path="d:\jogl"
-Dsun.java2d.noddraw=true PrintExt

The java.exe command is a single line, which I've reformatted so it’s easier to read.

The sun.java2d.noddraw property disables Java 2D’s use of DirectDraw on Windows. This
avoids any nasty interactions between DirectDraw and OpenGL, which can cause application
crashes, poor performance, and flickering. The property is only needed if you're working on a
Windows platform.

Another useful command-line option is -Dsun.java2d.opengl=true, which switches on the
Java2D OpenGL pipeline. The pipeline provides hardware acceleration for many Java 2D rendering
operations (e.g., text, images, lines, fills, complex transforms, composites, clips). It’s essential when
JOGLs GLJPanel class is employed as a drawing surface (as explained in the “Rotating a GLJPanel
Cube with Callbacks” section). Unfortunately, -Dsun.java2d.opengl=true may cause crashes on
older graphics hardware and drivers. If you don't like lengthy command-line arguments, another
approach is to modify the CLASSPATH environment variable and PATH (Windows),
LD_LIBRARY_PATH (Solaris and Linux), or DYLD_LIBRARY_PATH (Mac OS X). More details can be
found in the JOGL user guide.

I packaged up the compilation command line in compileGL.bat:

@echo off

echo Compiling %1 with JOGL...
javac -classpath "d:\jogl\jogl.jar;d:\jogl\gluegen-rt.jar;." %1

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

echo Finished.

The call to java.exe is in runGL.bat:

@echo off

echo Executing %1 with JOGL...

java -cp "d:\jogl\jogl.jar;d:\jogl\gluegen-rt.jar;."
-Djava.library.path="d:\jogl"
-Dsun.java2d.noddraw=true %1 %2

echo Finished.

The batch variables (%1 and %2) allow up to two arguments to be passed to runGL.bat.

The Callback Framework

The two main JOGL GUI classes are GL.Canvas and GLJPanel, which implement the GLAutoDrawable
interface, allowing them to be utilized as drawing surfaces for OpenGL commands.

GLCanvas is employed in a similar way to AWT’s Canvas class. It’s a heavyweight component,
so care must be taken when combining it with Swing. However, it executes OpenGL operations very
quickly due to hardware acceleration.

GLJPanel is a lightweight widget that works seamlessly with Swing. In the past, it’s gained a
reputation for being slow since it copies the OpenGL frame buffer into a BufferedImage before
displaying it. However, its speed has improved significantly in Java SE 6, as I show with some timing
tests later in the “Timing the GLJPanel” section of this chapter.

A key advantage of GLJPanel over GLCanvas is that it allows 3D graphics (courtesy of OpenGL)
and 2D elements in Swing to be combined in new, exciting ways.

Using GLCanvas

A GLCanvas object is paired with a GLEventListener listener, which responds to changes in the
canvas and to drawing requests.

When the canvas is first created, GLEventListener’s init() method is called; this method can be
used to initialize the OpenGL state.

Whenever the canvas is resized, including when it’s first drawn, GLEventListener’s reshape() is
executed. It can be overridden to initialize the OpenGL viewport and projection matrix (i.e., how the
3D scene is viewed). reshape() is also invoked if the canvas is moved relative to its parent compo-
nent.

Whenever the canvas’ display() method is called, the display() method in GLEventListener is
executed. Code for rendering the 3D scene should be placed in that method.

Aside from the canvas and listener, most games will need a mechanism for triggering regular
updates to the canvas. This functionality is available through JOGLs FPSAnimator utility class,
which can schedule a call to the canvas’ display() method with a frequency set by the user. All these
elements are shown in Figure 15-1.

379

380

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

FPSAnimator
GLCanvas GLEventListener
Listener

Call display()
repeatedly Callbacks:
at specified init()
intervals \\ reshape()
JFrame JPanel display()
(Container for displayChanged()

the Canvas)

Figure 15-1. A callback application with GLCanvas

The GLCanvas can be placed directly inside the JFrame, but by wrapping it in a JPanel the
JFrame can contain other (lightweight) GUI components as well.

The GLEventListener callbacks include displayChanged(), which should be called when the
display mode or device has changed. This might occur when the monitor’s display settings are
changed or when the application is dragged to another monitor in a multidisplay configuration.
displayChanged() is not currently implemented in JOGL.

Missing from Figure 15-1 is how user interactions, such as mouse and keyboard activity, affect
the canvas. The basic technique is to set up mouse and keyboard listeners in the usual Java manner
and have them change global variables in GLEventListener. When its display() method is called, it
can check these globals to decide how to act. The next chapter has an extended example that
employs this approach.

A common source of coding errors with JOGL is to have a mouse or keyboard listener call
OpenGL functions directly, which usually results in the application crashing. The OpenGL state
can only be safely manipulated via the GLAutoDrawable interface, which is exposed in
GLEventListener’s callback methods. Many vendors’ OpenGL drivers aren’t that reliable when
faced with multithreading so should not be accessed from listener threads.

Using GLJPanel

Since the GLJPanel is a lightweight Swing component, it can be added directly to the enclosing
JFrame, as shown in Figure 15-2.

FPSAnimator
GLJPanel GLEventListener
Listener

Call display()
repeatedly Callbacks:
at specified init()
intervals \\ reshape()
JFrame Added display()
directly to displayChanged()
the JFrame

Figure 15-2. A callback application with GL]Panel

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

The rest of the callback framework is identical to Figure 15-1: FPSAnimator drives the anima-
tion, and GLEventListener catches changes to the drawing area. This means that it’s just a matter
of changing a few lines of code to switch between GLCanvas and GLJPanel, as I show in the rotating
cube example in the following sections.

A commonly used variant of Figure 15-2 is to place GLJPanel inside a JPanel, which renders
a “background” image such as a gradient fill or picture. For the background to be visible, GLJPanel’s
own background must be made transparent. I'll explain how to do this for the rotating cube
application.

Rotating a GLCanvas Cube with Callbacks

The GLCanvas and callback technique outlined in the last section is used in the CubeGL application
to rotate a colored cube around the x-, y-, and z- axes. Figure 15-3 shows a screenshot of the cube in
action.

CubeGL (Callback)

‘Rotations: (57.9, 222.7, 302.6)

Figure 15-3. CubeGL with GLCanvas and callbacks

The window consists of a JPanel in the center holding the GLCanvas and a text field at the
bottom that reports the current x-, y-, and z-axis rotations of the cube.
Class diagrams for the application are given in Figure 15-4, showing only public methods.

381

382

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

CubeGL CubeGLListener
® CubeGLL.) B CubeGLListenar(.)
& main(...) H display(.)
Bl setRots(..) H displayChanged(.)
H init(..)
® reshape.)
[<<Unknown>>::JFrame |
<nterface>>
s<<Unknown>>::GLEventListener

Figure 15-4. Class diagrams for CubeGL with GLCanvas and callbacks

CubeGL is the top-level JFrame that creates the GLCanvas and FPSAnimator objects.
CubeGLListener is the canvas’ listener, a subclass of GLEventListener that implements the
callbacks init(), reshape(), and display(). (displayChanged() is empty since JOGL doesn’t support it.)

CubeGL is an example of the GLCanvas callback coding style illustrated by Figure 15-1.

Building the Top-Level Window

CubeGLs constructor builds the GUT and sets up a window listener for responding to a window
closing event:

// globals
private FPSAnimator animator;
private JTextField rotsTF; // displays cube rotations

public CubeGL(int fps)

{
super("CubeGL (Callback)");

Container ¢ = getContentPane();
c.setlayout(new Borderlayout());
c.add(makeRenderPanel(fps), BorderLayout.CENTER);

rotsTF = new JTextField("Rotations: ");
rotsTF.setEditable(false);
c.add(rotsTF, BorderLayout.SOUTH);

addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e)
{ new Thread(new Runnable() {
public void run() {
animator.stop();
System.exit(0);

}).start();
} // end of windowClosing()

};

pack();
setVisible(true);

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

animator.start();
} // end of CubeGL()

The frame/second (FPS) input argument comes from the command line, or a default value of
80 is used. The aim is to update the rotating cube at the specified rate.

The windowClosing() terminates the FPSAnimator object (animator) and makes the applica-
tion exit. The code is carried out in its own thread instead of the one associated with the window
listener to ensure that the animator stops before System.exit() is called.

Connecting the Canvas

The GLCanvas is embedded inside a JPanel by makeRenderPanel() and connected to its animator
and listener:

// globals
private static final int PWIDTH = 512; // initial size of panel
private static final int PHEIGHT = 512;

private CubeGLListener listener;

private JPanel makeRenderPanel(int fps)

{
JPanel renderPane = new JPanel();
renderPane.setlayout(new BorderLayout());
renderPane.setOpaque(false);
renderPane.setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

GLCanvas canvas = new GLCanvas(); // the canvas
listener = new CubeGLListener(this, fps); // the listener
canvas.addGLEventListener(listener);

animator = new FPSAnimator(canvas, fps, true);
// the animator uses fixed rate scheduling

renderPane.add(canvas, BorderLayout.CENTER);
return renderPane;
} // end of makeRenderPanel()

The canvas’ enclosing JPanel is given an initial size (512 by 512 pixels), but the window can be
resized later, affecting the canvas.

The FPSAnimator constructor takes a reference to the GLAutoDrawable instance (i.e., the
canvas). Its display() method will be called with a frequency set by the fps argument. FPSAnimator’s
third argument (set to true) indicates that fixed-rate scheduling will be used. Each task is scheduled
relative to the scheduled execution time of the initial task. If a task is delayed for any reason (such as
garbage collection), two or more tasks will occur in rapid succession to catch up.

Building the Listener

The rotating colored cube is implemented with OpenGL function calls inside the GLEventListener
callback methods init(), reshape(), and display().

The listener also includes statistics-gathering code to report how well the application meets
the requested frame rate.

The CubeGLListener constructor creates various statistics data structures. It then waits for the
canvas to be displayed, which triggers a call to init().

383

384

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

Initializing OpenGL

The OpenGL initialization code in init() typically includes the setup of the z- (depth) buffer, the cre-
ation of lights, texture loading, and display-list building. This example doesn’t use lights or textures:

// globals
private static final float INCR_MAX = 10.0f; // rotation increments

private GLU glu;
private int cubeDList; // display list for displaying the cube

// rotation variables
private float rotX, rotY, rotZ; // total rotations in x,y,z axes
private float incrX, incrY, incrZ; // increments for x,y,z rotations

public void init(GLAutoDrawable drawable)

GL gl = drawable.getGL(); // don't make this gl a globall
glu = new GLU(); /* this is okay as a global, but
only use it in callbacks */

// gl.setSwapInterval(0);
// switch off vertical synchronization, for extra speed (maybe)

// initialize the rotation variables

rotX = 0; rotY = 0; rotZ = 0;

Random random = new Random();

incrX = random.nextFloat()*INCR_MAX; // 0 - INCR_MAX degrees
incrY = random.nextFloat()*INCR_MAX;

incrZ = random.nextFloat()*INCR_MAX;

gl.glClearColor(0.17f, 0.65f, 0.92f, 0.0f); //sky color background

// z- (depth) buffer initialization for hidden surface removal
gl.glEnable(GL.GL DEPTH_TEST);

// create a display list for drawing the cube
cubeDList = gl.glGenlists(1);
gl.glNewList(cubeDList, GL.GL_COMPILE);
drawColourCube(gl);
gl.glEndList();
} // end of init()

init()’s GLAutoDrawable input argument is the programmer’s entry point into OpenGL. The
GLAutoDrawable.getGL() call returns a GL object that can be employed to call OpenGL routines.

The JOGL documentation advises against making the GL instance global, since it might tempt
programmers into calling OpenGL functions from mouse and keyboard listeners or other threads.
This would almost certainly cause the application to crash, since the OpenGL context (its internal
state) is tied to the GLEventListener. However, it is OK to make the GLU instance a global, but it
should only be utilized in the callback methods.

The GL.setSwaplInterval() call switches off vertical synchronization, which may increase the
frame rate, depending on the display card and its settings. It makes no discernable difference on
my three test machines, so is commented out here.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS 385

The cube’s current x-, y-, and z- rotations are stored in the globals rotX, rotY, and rotZ. The rota-
tion increments are randomly generated but have values somewhere between 0 and 10 degrees.

An OpenGL display list acts as a storage space for OpenGL rendering and state commands. The
commands are compiled into an optimized form, which allows them to be executed more quickly.
The benefit of a display list is that it can be called multiple times without OpenGL having to recom-
pile the commands, thereby saving processing time. The cubeDList display list created in init()
groups the commands that draw the cube.

Drawing the Colored Cube

The colored cube is made from six differently colored squares—an unchanging rendering task that’s
a good choice for a display list.

Figure 15-5 shows the cube’s vertices, which are positioned so the box is centered on the origin,
and has sides of length 2. Each vertex is assigned a number, which is used in the code that follows.

+y -Z
L 1L-D(5) ® 1,1,-1)
-LLDQ® 2|, 1,1)
- +
T L-L (@) @(1,-1,-1)X
-L-LDH©® ®a,-1,1)
+z
-y

Figure 15-5. The colored cube’s numbered vertices

The vertices are stored in a global array:

private float[][] verts = {

{-1.0f,-1.0f, 1.0f}, // vertex 0
.0f, 1.0f, 1.0f}, //
.of, 1.0f, 1.0f}, //
.of,-1.0f, 1.0f}, //
.0f,-1.0f,-1.0f}, //
.of, 1.0f,-1.0f}, //
.of, 1.0f,-1.0f}, //
.0f,-1.0f,-1.0f}, //

P e e e e
1
PR R R R R R
~NoOuvhs, W N R

};

The array positions of the vertices are used by drawPolygon() to draw a cube face. drawPoly-
gon() is called six times from drawColourCube():

private void drawColourCube(GL gl)
// six-sided cube, with a different color on each face
{
gl.glColor3f(1.0f, 0.0f, 0.0f); // red
drawPolygon(gl, 0, 3, 2, 1); // front face

gl.glColor3f(o.of, 1.0f, 0.0f); // green
drawPolygon(gl, 2, 3, 7, 6); // right

386 CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

gl.glColor3f(o.of, o0.0f, 1.0f); // blue
drawPolygon(gl, 3, 0, 4, 7); // bottom

gl.glColor3f(1.0f, 1.0f, 0.0f); // yellow
drawPolygon(gl, 1, 2, 6, 5); // top

gl.glColor3f(o.of, 1.0f, 1.0f); // light blue
drawPolygon(gl, 4, 5, 6, 7); // back

gl.glColor3f(1.0f, o0.0f, 1.0f); // purple
drawPolygon(gl, 5, 4, 0, 1); // left
} // end of drawColourCube()

private void drawPolygon(GL gl, int vIdxo, int vIdxi,
int vIdx2, int vIdx3)
// the polygon vertices come from the verts[] array

gl.glBegin(GL.GL_POLYGON);

gl.glVertex3f(verts[vIdxo][0],verts[vIdxo][1], verts[vIdxo][2]);
gl.glVertex3f(verts[vIdx1][0],verts[vIdx1][1], verts[vIdx1][2]);
gl.glVertex3f(verts[vIdx2][0],verts[vIdx2][1], verts[vIdx2][2]);
gl.glVertex3f(verts[vIdx3][0],verts[vIdx3][1], verts[vIdx3][2]);

gl.glEnd();
} // end of drawPolygon()

GL.glIBegin() and GL.glEnd() bracket a sequence of vertex definitions, and glBegin()’s argument
specifies the vertices’ collective shape. Other modes include GL.GL_POINTS (a collection of points)
and GL.GL_LINES (a set of lines).

Reshaping the Canvas

reshape() is called when the canvas is moved or resized, which includes when it’s first drawn
onscreen. That makes reshape() the natural place to hold OpenGL commands for setting the
viewport and projection matrix:

public void reshape(GLAutoDrawable drawable, int x, int vy,
int width, int height)

GL gl = drawable.getGL();

if (height == 0)
height = 1; // to avoid division by 0 in aspect ratio below

gl.glviewport(x, y, width, height); // size of drawing area

gl.glMatrixMode(GL.GL_PROJECTION);

gl.glloadIdentity();

glu.gluPerspective(45.0, (float)width/(float)height, 1, 100);
// FOV, aspect ratio, near & far clipping planes

gl.glMatrixMode(GL.GL_MODELVIEW);
gl.glloadIdentity();
} // end of reshape()

reshape()’s (%, y) input arguments specify the canvas’ position relative to its enclosing con-
tainer. In this example, they're always (0, 0).

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

A GL object is freshly created from the GLAutoDrawable input argument.

The GL.glViewport() call defines the size of 3D drawing window (viewport) in terms of a lower-
left corner (x, y), width, and height.

The matrix mode is switched to PROJECTION (OpenGLs projection matrix) so the mapping
from the 3D scene to the 2D screen can be specified. GL.glLoadIdentity() resets the matrix, and
GLU.gluPerspective() creates a mapping with perspective effects (which mirrors what happens in a
real-world camera). FOV is the camera’s angle of view.

The matrix mode is switched to MODELVIEW at the end of reshape() so OpenGLs model-view
matrix can be utilized from then on. It defines the scene’s coordinate system, used when position-
ing, or moving, 3D objects. It’s set up at the end of reshape() since display(), which draws the scene,
will be called next.

Scene Rendering

As FPSAnimator ticks, it calls display() in the canvas, triggering a call to display() in
CubeGLListener. Its display() method holds code that updates and redraws the scene:

// global
private static final double Z_DIST = 7.0; // for camera position

public void display(GLAutoDrawable drawable)
{
// update the rotations
rotX = (rotX + incrX) % 360.0f;
rotY = (rotY + incrY) % 360.0f;
rotZ = (rotZ + incrZ) % 360.0f;
top.setRots(rotX, rotY, rotZ); // report at top-level

GL gl = drawable.getGL();

// clear color and depth buffers
gl.glClear(GL.GL_COLOR BUFFER BIT | GL.GL DEPTH BUFFER BIT);
gl.glloadIdentity();

glu.gluLookAt(0,0,Z DIST, 0,0,0, 0,1,0); // position camera

// apply rotations to the x,y,z axes

gl.glRotatef(rotX, 1.0f, 0.0f, 0.0f);

gl.glRotatef(roty, 0.0f, 1.0f, 0.0f);

gl.glRotatef(rotz, o.of, 0.0f, 1.0f);

gl.glCalllist(cubeDList); //execute display list for drawing cube
// drawColourCube(gl);

reportStats();
} // end of display

The cube’s x-, y-, and z- rotations in rotX, rotY, and rotZ are updated. The new values are
reported onscreen by writing them to the text field in the top-level JFrame (see Figure 15-3).

After the new rotations have been applied to the world coordinates, the cube is drawn via its
display list. Alternatively, display() could call drawColourCube() directly.

387

388

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

Measuring FPS Accuracy

reportStats() is called at the end of display(). It prints an average frame rate value roughly every sec-
ond, as shown in the following CubeGL execution:

> runGL CubeGL
Executing CubeGL with JOGL...
fps: 80
period: 12 ms
54.4

64.18

68.42

70.93

72.63

73.84

74.78

75.53

76.13
Finished.

The average is calculated from the previous ten FPS values (or less, if ten numbers haven't been
calculated yet). This weighted approach discounts earlier slow frame rate data.

In the previous example, CubeGL is started with a requested frame rate of 80, which is con-
verted into a millisecond time period using integer division:

int period = (int) 1000.0/fps; // in ms

This is later converted back to a frame rate of 1000/12, which is 83.333. This means an opti-
mally running application should report an average frame rate of around 83 FPS. The example is
slowly approaching that and reaches 83 after about 30 seconds.

The implementation of reportStats() doesn’t have anything to do with JOGL or OpenGL, so I'll
skip its explanation.

Table 15-1 shows the reported average FPS on different versions of Windows when the
requested FPS are 20, 50, 80, and 100. Windows XP appears twice since I ran the tests on two
different machines using XP.

Table 15-1. Average FPS for GLCanvas CubeGL with FPSAnimator (Fixed Rate Scheduling)

Requested FPS 20 50 80 100
Windows 2000 20 50 79 80
Windows XP (1) 20 50 83 100
Windows XP (2) 20 50 81 99

Each test was run three times on a lightly loaded machine running for a few minutes.

The average frame rates are excellent for 80 FPS, although the average hides the fact that it
takes a minute or so for the frame rate to rise toward the average. Also, JVM garbage collection
reduces the FPS for a few seconds every time it occurs.

The Windows 2000 machine is not capable of achieving 100 FPS, due to its slow hardware.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

The FPSAnimator constructor can also be instructed to use a fixed period scheduler rather than
fixed-rate scheduling. This only requires the change of the boolean argument in FPSAnimator’s
constructor in makeRenderPanel():

// makeRenderPanel() in CubeGL
animator = new FPSAnimator(canvas, fps, false);
// the animator uses fixed period scheduling

The timing tests were run again on the same machines under the same load conditions. The
results are shown in Table 15-2.

Table 15-2. Average FPS for GLCanvas CubeGL and FPSAnimator (Fixed Period Scheduling)

Requested FPS 20 50 80 100
Windows 2000 19 49 49 98
Windows XP (1) 16 32 63 62
Windows XP (2) 16 31 62 62

The results show a wide variation in FPS accuracy, but the results for the 80 FPS request (the
refresh rate on my test machines) are quite poor.

The fixed period scheduler in FPSAnimator uses java.util. Timer.schedule() to repeatedly trigger
actions. Unfortunately, the timer’s frequency can drift because of extra delays introduced by the
garbage collector or long-running game updates and rendering.

Best results are obtained by using FPSAnimator’s fixed rate scheduler, as Table 15-1 shows.

Rotating a GLJPanel Cube with Callbacks

An alternative to GLCanvas is GLJPanel, a lightweight widget. Its interface is almost the same as
GLCanvas, so the two components can be interchanged easily. This is illustrated by the callback
frameworks for GLCanvas and GLJPanel in Figures 15-1 and 15-2.

GLJPanel has historically been much slower than GLCanvas, but its speed has significantly
improved in J2SE 5 and Java SE 6. Its key advantage over GLCanvas is that it allows Java 2D and
JOGL to be combined in new ways.

Figure 15-6 shows one such combination, a GLJPanel with a background supplied by an
enclosing JPanel.

I
JPanel
GLJPanel

Call display() Listener
repeatedly Callbacks:
at specified \ init()
intervals \\ reshape()

JFrame Added to display()

a ‘background’ displayChanged()
JPanel

Figure 15-6. A callback application with GL]Panel and JPanel background

389

390

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

The callback framework is the same as in Figure 15-2; only the background JPanel is new.
Figure 15-7 shows the rotating cube example again, implemented using the Figure 15-6
approach. The 3D parts are rendered in a GLJPanel with a transparent background. The gradient

fill and “Hello World” text are drawn by Java 2D in the JPanel enclosing the GLJPanel.

_la/x]

Rotations: (151.2, 29,6, 281.7)

Figure 15-7. Rotating cube inside a GL]Panel and JPanel background

The required code changes to convert from a GLCanvas to the GLJPanel are quite small, as
I outline in the next three subsections.

A very important command-line change is to include -Dsun.java2d.opengl=true to switch on
the Java2D OpenGL pipeline and so increase Java 2D’s rendering speed. The application will still
run without -Dsun.java2d.opengl=true but much slower. My runGL.bat batch file becomes the
following:

@echo off

echo Executing %1 with JOGL...

java -cp "d:\jogl\jogl.jar;d:\jogl\gluegen-rt.jar;."
-Djava.library.path="d:\jogl"
-Dsun.java2d.noddraw=true
-Dsun.java2d.opengl=true %1 %2

echo Finished.

There have been reports of problems with -Dsun.java2d.opengl=true at the JOGL forum at
javagaming.org. For example, it appears to affect rendering speeds when the window is maximized
and sometimes crashes the application. On my oldest test machine, which uses a Radeon 9000 PRO
AGP graphics chip, the -Dsun.java2d.opengl=true argument causes the gradient fill to disappear,
and the application crashes when the window is closed.

The most common response from forum readers is to suggest that people update their graph-
ics cards and drivers. This lack of backward-compatibility is an important concern when using
GLJPanel in games aimed at older machines.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

Building the Panels

makeRenderPanel() in CubeGL now creates a GLJPanel object rather than a GLCanvas instance and
embeds it inside a background panel:

private JPanel makeRenderPanel(int fps)

// JPanel renderPane = new JPanel();
JPanel renderPane = createBackPanel(); // for the GLJPanel

renderPane.setlayout(new BorderlLayout());
renderPane.setOpaque(false);
renderPane.setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

// GLCanvas canvas = new GLCanvas();

// create the GLJIPanel

GLCapabilities caps = new GLCapabilities();
caps.setAlphaBits(8);

GLJPanel canvas = new GLJPanel(caps);
canvas.setOpaque(false);

listener = new CubeGLListener(this, fps);
canvas.addGLEventListener(listener);

animator = new FPSAnimator(canvas, fps, true);

renderPane.add(canvas, BorderLayout.CENTER);
return renderPane;
} // end of makeRenderPanel()

The old code for creating the GLCanvas object and its JPanel have been commented out.
A transparent GLJPanel requires a nonzero alpha depth, set using a GLCapabilities object
and a call to GLJPanel.setOpaque().

The Background Panel
The JPanel acting as the background draws a gradient fill and text:

// global
private Font font;

private JPanel createBackPanel()
font = new Font("SansSerif", Font.BOLD, 48);

JPanel p = new JPanel() {

public void paintComponent(Graphics g)

{
Graphics2D ga2d = (Graphics2D) g;
int width = getWidth();
int height = getHeight();
g2d.setPaint(new GradientPaint(0, 0, Color.YELLOW,

width, height, Color.BLUE));

g2d.fillRect(0, 0, width, height);

g2d.setPaint(Color.BLACK);
g2d.setFont(font);
g2d.drawString("Hello World", width/4, height/4);

391

392

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

} // end of paintComponent()
};
return p;
} // end of createBackPanel()

The gradient fill and text change position when the application is resized since they utilize the
panel’s current width and height values.

Making the 3D Background Transparent

The OpenGL background drawn into the GLJPanel must be transparent (or at least translucent)
so the background JPanel’s gradient fill and text will be visible.

The rotating cube’s background (a light-blue color) is set up inside init() inside
CubeGLListener. It is changed to be transparent (or translucent).

The effect shown in Figure 15-7 is achieved with the following:

gl.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // no OpenGL background

The important argument is the fourth, which sets the alpha value for the RGB color preceding
it. 0.0f means fully transparent; 1.0fis opaque. The 0.0f value in the example means that all the
background color comes from the background panel.

A translucent effect (a mix of the background panel and OpenGL’s background colors) is
obtained with the following:

gl.glClearColor(0.17f, 0.65f, 0.92f, 0.3f);
// translucent OpenGL sky

The 0.3f alpha value makes the OpenGL sky translucent.
The result is shown in Figure 15-8.

_lolx]

Rotations: (30.2, 6.6, 351.7)

Figure 15-8. Rotating cube inside a GL]Panel with a bluish JPanel background

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

The effect is hard to see (especially when rendered in shades of gray), but the yellow parts of
the JPanel’s gradient fill have turned green due to the blue OpenGL background.

Timing the GLJPanel

Timing tests were run using the same Windows XP machines under the same load conditions as the
GLCanvas callback code with fixed rate scheduling. The results are shown in Table 15-3.

Table 15-3. Average FPS for GL]Panel CubeGL and FPSAnimator (Fixed Rate Scheduling)

Requested FPS 20 50 80 100
Windows XP (1) 20 50 71 87
Windows XP (2) 20 50 75 90

The results are very good but slower at higher frame rates than the GLCanvas code.

The speeds are substantially less when the OpenGL pipeline is not enabled (i.e., when -
Dsun.java2d.opengl=true isn’t part of the command line). For instance, the application only
manages about 25 FPS when 80 FPS are requested.

No results are shown for my antiquated Windows 2000 machine since the background render-
ing didn’'t work with its old ATI graphics card; the background was always drawn in black.

More Visual Effects with GLJPanel

Chris Campbell’s blog entry, “Easy 2D/3D Mixing in Swing” (http://weblogs.java.net/blog/
campbell/archive/2006/10/easy 2d3d_mixin.html), is a good starting point for more examples
of how to integrate 2D and 3D effects in a GUL

His PhotoCube application includes a CompositeGLJPanel class that offers methods for
common types of 2D/3D mixing (e.g., render2DBackground(), render3DScene(), and
render2DForeground()). There are also pointers to other articles and online code.

Callback Summary

The callback technique (for GLCanvas and GLJPanel) delivers great frame rates, as long as fixed rate
scheduling is utilized and the hardware is fast enough. GLJPanel’s successful operation is particu-
larly sensitive to the underlying hardware and graphics driver.

An important advantage of the JOGL callback coding style is its similarity to the callback
mechanism used in OpenGL's GLUT. This allows numerous OpenGL examples to be ported over to
JOGL with minimal changes.

One drawback of the callback approach is the way that the application life cycle (initialization,
resizing, frame-based animation, and termination) is divided across multiple disjoint methods.
Also, the use of a timer (inside the animator class) makes it difficult to vary the application’s timing
behavior at runtime and to separate the frame rate (FPS) from the application’s update rate (UPS).
The active rendering framework described in the next section addresses these concerns.

The Active Rendering Framework

The active rendering framework utilizes the new features in JSR-231 for directly accessing the draw-
ing surface and context (OpenGLs internal state). This means that there’s no longer any need to
utilize GUI components that implement the GLAutoDrawable interface, such as GLCanvas. An

393

394

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

application can employ a subclass of AWT’s Canvas, with its own rendering thread, as illustrated by
Figure 15-9.

Canvas

Rendering
| Thread

\
JFrame JPanel
(Container for
the Canvas)

Figure 15-9. An active rendering application

The rendering thread can be summarized using the following pseudocode:

make the context current for this thread;
initialize rendering;
while game isRunning {

update game state;

render scene;

put the scene onto the canvas;

sleep a while;
maybe do game updates without rendering them;
gather statistics;

}

discard the rendering context;
print the statistics;

exit;

The tricky aspect of this code is remembering that OpenGL should be manipulated from the
rendering thread only. Any mouse, key, or window events must be processed there, rather than in
separate listeners.

The OpenGL callback code, located inside GLEventListener’s init(), reshape(), and display()
methods, can be moved without many changes into the active rendering thread. The init() code is
carried out in the “initialize rendering” stage, while reshape() and display() are handled inside
“render scene.”

The principal advantage of the active rendering approach is that it allows the programmer to
more directly control the application’s execution. For example, it’s straightforward to add code that
suspends updates when the application is iconified or deactivated (i.e., when it’s not the topmost
window). Also, access to the timing code inside the animation loop permits a separation of frame
rate processing from application updates. I'll illustrate these points by implementing the rotating
cube application once again.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

Rotating a Cube with Active Rendering

The active rendering CubeGL looks the same as the GLCanvas callback version, as shown in
Figure 15-10.

CubeGL (Active)

Rotations: (42.8, 1801, 33.6)

Figure 15-10. CubeGL with active rendering

The application has new functionality, courtesy of active rendering; when the window is

iconified or deactivated, the cube stops rotating until the window is deiconified or activated again.

The class diagrams for this version of CubeGL are given in Figure 15-11.

CubeGL

CubeCanvasGL
] .
= En;?:(e;(m) B addhotify(..) :¢<<Unknown>>:Canvas
= ¥ CubeCanvasGL(.)
R A 0 E paint(..)
windowActivated|...

X %E‘ auseGame(..)
H windowClosed(..) R

X ; ® reshapel.) — :
H windowClosingf...) «interface>>

]

H windowDeactivated(...) & :Er?(ur;eGame(__) ::<<Unknown>>::Runnable
H windowDeiconified(.) ® sin ..Game()
® windowlconifiedt..) ™~ - |my Efate(T
H windowOpened(.) . P

J7 .
A

s<<Unknown>>::JFrame <nterface>>
<<Unknown>>WindowListener

Figure 15-11. Class diagrams for CubeGL with active rendering

395

396

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

CubeGL creates the GUI, embedding the threaded canvas, CubeCanvasGL, inside a JPanel. It
also captures window events and component resizes and calls methods in CubeCanvasGL to deal
with them.

Building the Application
CubeGL creates the threaded canvas inside makeRenderPanel():

// globals
private static final int PWIDTH = 512; // size of panel
private static final int PHEIGHT = 512;

private CubeCanvasGL canvas;

private JPanel makeRenderPanel(long period)
// construct the canvas inside a JPanel

{
JPanel renderPane = new JPanel();
renderPane.setlayout(new BorderlLayout());
renderPane.setOpaque(false);
renderPane.setPreferredSize(new Dimension(PWIDTH, PHEIGHT));

canvas = makeCanvas(period);
renderPane.add(canvas, BorderLayout.CENTER);

canvas.setFocusable(true);
canvas.requestFocus(); //canvas has focus, so receives key events

// detect window resizes, and reshape the canvas accordingly
renderPane.addComponentListener(new ComponentAdapter() {
public void componentResized(ComponentEvent evt)
{ Dimension d = evt.getComponent().getSize();
canvas.reshape(d.width, d.height);
}
D;

return renderPane;
} // end of makeRenderPanel()

The panel has two roles: it surrounds the canvas, protecting lightweight GUI widgets from the
heavyweight AWT Canvas and is a convenient place to connect a component listener to detect win-
dow resizes. A resize generates a call to CubeCanvasGL.reshape(), which triggers a recalculation of
the OpenGL viewport and perspective.

The period input to makeRenderPanel() comes from the frame rate supplied on the command
line. It’s calculated as the following:

long period = (long) 1000.0/fps;

makeCanvas() obtains an optimal graphics configuration for the canvas. It passes this informa-
tion to an instance of the threaded canvas, CubeCanvasGL:

private CubeCanvasGL makeCanvas(long period)

{

// get a configuration suitable for an AWT Canvas
GLCapabilities caps = new GLCapabilities();

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

AWTGraphicsDevice dev = new AWTGraphicsDevice(null);
AWTGraphicsConfiguration awtConfig =
(AWTGraphicsConfiguration)GLDrawableFactory.getFactory().
chooseGraphicsConfiguration(caps, null, dev);

GraphicsConfiguration config = null;
if (awtConfig != null)
config = awtConfig.getGraphicsConfiguration();

return new CubeCanvasGL(this, period, PWIDTH, PHEIGHT,
config, caps);
} // end of makeCanvas()

Dealing with Window Events
CubeGL is a window listener:

public void windowActivated(WindowEvent e)
{ canvas.resumeGame(); }

public void windowDeactivated(WindowEvent e)
{ canvas.pauseGame(); }

public void windowDeiconified(WindowEvent e)
{ canvas.resumeGame(); }

public void windowIconified(WindowEvent e)
{ canvas.pauseGame(); }

public void windowClosing(WindowEvent e)
{ canvas.stopGame(); }

public void windowClosed(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}

pauseGame(), resumeGame(), and stopGame() trigger extra processing inside CubeCanvasGL's
rendering loop to pause, resume, or terminate the application.

Preparing the Canvas

Before the rendering thread can start inside CubeCanvasGL, the rendering surface and context for
the canvas need to be accessed. This is done in CubeCanvasGLs constructor:

// globals
private GLDrawable drawable; // the rendering 'surface’
private GLContext context;

// the rendering context (holds rendering state info)

// in the CubeCanvasGL constructor:
drawable =

GLDrawableFactory.getFactory().getGLDrawable(this, caps, null);
context = drawable.createContext(null);

The GLCapabilities instance, caps, comes from CubeGLs makeCanvas(), which creates the
canvas object.

397

398 CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

Rendering should be delayed until the canvas is visible onscreen, which occurs once the can-
vas calls its addNotify() method. This behavior can be implemented by starting the thread from
addNotify() in CubeCanvasGL:

// global
private Thread animator; // thread that performs the animation

public void addNotify()

// wait for the canvas to be added to the JPanel before starting

{
super.addNotify(); // make the component displayable
drawable.setRealized(true); // canvas can now be used for rendering

// initialize and start the animation thread

if (animator == null || !isRunning) {
animator = new Thread(this);
animator.start();

}
} // end of addNotify()

Thread Rendering

The run() method in CubeCanvasGL follows the pseudocode given earlier. This is the first version;
I describe a slightly modified version later in this section:

public void run()
// initialize rendering and start frame generation; first version

{

makeContentCurrent();

initRender();
renderLoop();

// discard the rendering context and exit
context.release();
context.destroy();
System.exit(0);
} /7 end of run()

private void makeContentCurrent()
// make the rendering context current for this thread
{
try {
while (context.makeCurrent() == GLContext.CONTEXT NOT_CURRENT) {
System.out.println("Context not yet current...");
Thread.sleep(100);

}

catch (InterruptedException e)
{ e.printStackTrace(); }
} // end of makeContentCurrent()

makeCurrentContext() calls GLContext.makeCurrent(), which should immediately succeed
since no other thread is using the context. The while-loop around the GLContext.makeCurrent() call

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

is extra protection since the application will crash if OpenGL commands are called without the
thread holding the current context.

When execution returns from the rendering loop inside renderLoop(), the context is released
and destroyed and the application exits.

This coding approach means that the context is current for the entire duration of the thread’s
execution. This causes no problems on most platforms (e.g., it’s fine on Windows), but unfortu-
nately there’s an issue when using X11. On X11 platforms, a AWT lock is created between the
GLContext.makeCurrent() and GLContext.release() calls, stopping mouse and keyboard input from
being processed.

The only solution is to periodically release the context, giving the JRE under X11 time to act on
mouse and keyboard events.

This means that run() must have its calls to makeCurrentContext() and GLContext.release()
commented out. This leads to a second version of the code:

public void run()
// initialize rendering and start frame generation; 2nd version

{

// makeContentCurrent(); // commented out due to X11

initRender();
renderLoop();

// discard the rendering context and exit
// context.release(); // commented out due to X11
context.destroy();
System.exit(0);
} // end of run()

Instead, the context will be made current and released inside initRender() and renderLoop().

Rendering Initialization

The initRender() method in CubeCanvasGL corresponds to the init() callback in GLEventListener
with one important OpenGL-related change:

// globals
private GL gl;
private GLU glu;

private void initRender()
{

makeContentCurrent();

gl = context.getGL(); // gl is now global
glu = new GLU();

resizeView();
gl.glClearColor(0.17f, 0.65f, 0.92f, 0.0f); // sky color backgrnd

// z- (depth) buffer initialization for hidden surface removal
gl.glEnable(GL.GL_DEPTH TEST);

// create a display list for drawing the cube
cubeDList = gl.glGenlists(1);

399

400

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

gl.glNewList(cubeDList, GL.GL COMPILE);
drawColourCube(gl);
gl.glEndList();

/* release the context, otherwise the AWT lock in X11
will not be released */
context.release();
} // end of initRender()

The recommended coding style in GLEventListener callbacks, such as init(), is to obtain a fresh
GL reference inside each method via the GLAutoDrawable input argument. This is unnecessary in
the active rendering approach since there’s only a single thread executing inside the canvas. There-
fore, the GL instance is made global and initialized once at the start of initRender().

The initialization of the rotation variables has been moved to CubeCanvasGLs constructor so
only OpenGL code is left in initRender().

The color cube drawing code in drawColourCube() (and its helper method drawPolygon()) are
unchanged from the callback version of CubeGL, so I'll skip them here.

resizeView() sets the viewpoint and perspective and corresponds to the initial call to the
reshape() callback in GLEventListener:

// globals
private int panelWidth, panelHeight;

private void resizeView()

{
gl.glviewport(0, 0, panelWidth, panelHeight); // drawing area

gl.glMatrixMode(GL.GL_PROJECTION);
gl.glloadIdentity();
glu.gluPerspective(45.0, (float)panelWidth/(float)panelHeight, 1, 100);
// fov, aspect ratio, near & far clipping planes
} // end of resizeView()

panelWidth and panelHeight are assigned their initial values in CubeCanvasGL's constructor.
I explain how resizeView() is called in the “Rendering the Scene” section when I describe how
the application’s window is resized.

The Rendering Loop
renderLoop() implements the while-loop in the active rendering pseudocode:

while game isRunning {
update game state;
render scene;
put the scene onto the canvas;

sleep a while;
maybe do game updates without rendering them;

gather statistics;

The loop is complicated by having to calculate the amount of time it takes to do the update-
render pair. The sleep time that follows must be adjusted so the time to complete the iteration is as
close to the desired frame rate as possible.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

If an update-render takes too long, it may be necessary to carry out some game updates with-
out rendering their changes. The result is a game that runs close to the requested frame rate by
skipping the time-consuming rendering of the updates.

The timing code distinguishes between two rates: the actual frame rate that measures the
number of renders/second (FPS), and the update rate that measures the number of updates/
second (UPS).

FPS and UPS aren't the same. It’s quite possible for a slow platform to limit the FPS value, but
the program performs additional updates (without rendering) so that its UPS number is close to the
requested frame rate.

This separation of FPS and UPS makes the animation loop more complicated, but it’s one of
the standard ways to create reliable animations. It’s especially good for games where the hardware is
unable to render at the requested frame rate.

The following is the code for renderLoop():

// constants
private static final int NO_DELAYS_PER_YIELD = 16;
/* Number of iterations with a sleep delay of 0 ms before the
animation thread yields to other running threads. */

private static int MAX RENDER SKIPS = 5;
/* no. of renders that can be skipped in any one animation loop;
i.e. the games state is updated but not rendered. */

// globals

private long prevStatsTime;
private long gameStartTime;
private long rendersSkipped = OL;

private long period; // period between drawing in nanosecs
private volatile boolean isRunning = false;
// used to stop the animation thread

private void renderlLoop()
{
// timing-related variables
long beforeTime, afterTime, timeDiff, sleepTime;
long overSleepTime = OL;
int noDelays = 0;
long excess = OL;

gameStartTime = System.nanoTime();
prevStatsTime = gameStartTime;
beforeTime = gameStartTime;

isRunning = true;

while(isRunning) {
makeContentCurrent();

gameUpdate();
renderScene(); // rendering
drawable.swapBuffers(); // put the scene onto the canvas
// swap front and back buffers, making the rendering visible

afterTime = System.nanoTime();

401

402 CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

timeDiff = afterTime - beforeTime;
sleepTime = (period - timeDiff) - overSleepTime;

if (sleepTime > 0) { // some time left in this cycle
try {
Thread.sleep(sleepTime/1000000L); // nano -> ms

}
catch(InterruptedException ex){}
overSleepTime = (System.nanoTime() - afterTime) - sleepTime;

else { // sleepTime <= 0; this cycle took longer than the period
excess -= sleepTime; // store excess time value
overSleepTime = OL;

if (++noDelays >= NO DELAYS PER_YIELD) {
Thread.yield(); // give another thread a chance to run
noDelays = 0;
}
}

beforeTime = System.nanoTime();

/* If the rendering is taking too long,
then update the game state without rendering it, to
get the UPS nearer to the required frame rate. */

int skips = 0;

while((excess > period) &% (skips < MAX_RENDER SKIPS)) {
excess -= period;
gameUpdate(); // update state but don't render
skips++;

}

rendersSkipped += skips;

/* release the context, otherwise the AWT lock in X11
will not be released */
context.release();

storeStats();
}

printStats();
} // end of renderlLoop()

The “sleep a while” code in the loop is complicated by dealing with inaccuracies in
Thread.sleep(). sleep()’s execution time is measured and the error (stored in overSleepTime) adjusts
the sleeping period in the next iteration.

The if-test involves Thread.yield():

if (++noDelays >= NO DELAYS PER YIELD) {
Thread.yield();
noDelays = 0;

}

It ensures that other threads get a chance to execute if the animation loop hasn't slept for a
while.

renderLoop calls makeContentCurrent() and GLContext.release() at the start and end of each
rendering iteration. This allows the JRE under X11 some time to process AWT events.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

Updating the Game

gameUpdate() should contain any calculations that affect gameplay, which for CubeGL are only the
X-, ¥-, and z- rotations used by the cube:

// globals
private volatile boolean gameOver = false;
private volatile boolean isPaused = false;

private CubeGL top; // reference back to the top-level JFrame

// rotation variables
private float rotX, rotY, rotZ; // total rotations in x,y,z axes
private float incrX, incrY, incrZ; // increments for x,y,z rotations

private void gameUpdate()

{ if (!isPaused &3 !gameOver) {
// update the rotations
rotX = (rotX + incrX) % 360.0f;
rotY = (rotY + incrY) % 360.0f;
rotZ = (rotZ + incrZ) % 360.0f;
top.setRots(rotX, rotY, rotZ);

}
} // end of gameUpdate()

The isPaused and gameOver booleans allow the updates to be skipped when the game is
paused or has finished

Rendering the Scene

The scene generation carried out by renderScene() is similar to what display() does in the callback
version of CubeGL:

// global
private boolean isResized = false; // for window resizing

private void renderScene()

if (context.getCurrent() == null) {
System.out.println("Current context is null");
System.exit(0);

if (isResized) { // resize the drawable if necessary
resizeView();
isResized = false;

}

// clear color and depth buffers
gl.glClear(GL.GL_COLOR_BUFFER BIT | GL.GL DEPTH BUFFER BIT);

gl.glMatrixMode(GL.GL_MODELVIEW);
gl.glloadIdentity();

glu.glulookAt(0,0,Z DIST, 0,0,0, 0,1,0); // position camera

403

404

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

// apply rotations to the x,y,z axes

gl.glRotatef(rotX, 1.0f, 0.0f, 0.0f);

gl.glRotatef(roty, 0.0f, 1.0f, 0.0f);

gl.glRotatef(rotz, o.of, 0.0f, 1.0f);

gl.glCalllist(cubeDList); // execute display list for drawing cube
// drawColourCube(gl);

if (gameOver)
System.out.println("Game Over"); //report that the game is over
} // end of renderScene()

One of the new things that renderScene() does is to check that the thread still has the current
context; if it doesn’t, the application exits. A more robust response would be to try to regain the con-
text by calling GLContext.makeCurrent() again, reinitializing the scene, and restarting the
animation loop.

renderScene() calls resizeView() to update the OpenGL view if isResized is true. The boolean is
set to true by CubeGL calling reshape() in CubeCanvasGL when the window is resized:

public void reshape(int w, int h)

/* Called by the JFrame's ComponentListener when the window
is resized. */

{
isResized =
if (h == 0)

h =1; // to avoid div by 0 in aspect ratio in resizeView()

panelWidth = w; panelHeight = h;

} // end of reshape()

true;

This illustrates the single-threaded coding style needed for OpenGL. reshape() does not call
OpenGL routines itself since it’s being executed by a component listener in CubeGL. Instead, it sets
isResized and lets the rendering thread handle the resizing.

renderScene() finishes by checking the gameOver boolean and printing a simple message. In a
real game, the output would be more complicated.

The Game Life Cycle Methods

Window events detected in CubeGL are processed by calling CubeCanvasGL methods:

public void resumeGame()
// called when the JFrame is activated / deiconified
{ isPaused = false; }

public void pauseGame()
// called when the JFrame is deactivated / iconified
{ isPaused = true; }

public void stopGame()
// called when the JFrame is closing
{ isRunning = false; }

In the same way as reshape(), these methods do not call OpenGL functions since theyre being
executed by the window listener in CubeGL. Instead, they set global booleans checked by the ren-
dering thread.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

Statistics Reporting

CubeCanvasGL utilizes two statistics methods: storeStats() and printStats(). storeStats() collects a
range of data, and printStats() prints a summary just before the application exits. Neither method
utilizes JOGL features, so I won't explain their implementation here. Typical output from printStats()
is shown here:

> runGL CubeGL

Executing CubeGL with JOGL...
fps: 80; period: 12 ms
Average FPS: 82.47

Average UPS: 83.28

Time Spent: 33 secs

Finished.

The averages are calculated from the last ten recorded FPS and UPS values. If the FPS and UPS
numbers are the same, the game was able to match the requested frame rate without skipping the
rendering of any updates.

Table 15-4 shows the average FPS and UPS figures for different requested FPS on different
versions of Windows.

Table 15-4. Average FPS/UPS for CubeGL with Active Rendering

Requested FPS 20 50 80 100

Windows 2000 20/20 43/50 73/83 79/100
Windows XP (1) 20/20 50/50 80/83 95/100
Windows XP (2) 20/20 50/50 81/83 97/100

Each test was run three times on a lightly loaded machine, executing for a few minutes.

The numbers are very good for the machines hosting Windows XP, but the frame rates on the
Windows 2000 machine plateau at about 80. This behavior is due to the age of the machine.

The Windows 2000 figures show that active rendering can deal with slow hardware. The pro-
cessing power of the machine isn’t able to deliver the requested frame rate, but the application
doesn’t seem slow since the UPS stays near to the request FPS. When 80 FPS are requested, about
12% of the updates aren’t rendered ((83-73)/83). This isn't apparent when the cube is rotating, which
shows the benefit of decoupling updates from rendering.

Java 3D and JOGL

Most of the examples in this book utilize Java 3D, so it’s natural to wonder whether Java 3D and
JOGL can be used together. The news as of March 2007 was disappointing, but matters may improve
in the future.

A posting to the Java Desktop 3D forum in 2004 (http://forums.java.net/jive/
thread. jspa?threadID=5465) describes the use of JOGLs GLCanvas to create a HUD (heads-up
display) within a Java 3D application. The canvas was manipulated in the pre- and postrendering
phases of Java 3D’s immediate mode (or mixed mode) to allow JOGL-generated objects to appear
in the background and foreground of the scene.

When I tried to duplicate this approach, the objects had a tendency to disappear when the
camera position was moved, and sometimes the Java 3D parts of the scene didn't appear.

405

406

CHAPTER 15 " TWO JOGL PROGRAMMING FRAMEWORKS

(For readers unfamiliar with Java 3D’s immediate and mixed modes, Chapter 8 explains how to
use mixed mode to draw purely Java 3D backgrounds and overlays.)

On a brighter note, Java 3D 1.6 is scheduled for release early in 2008. One of its stated aims is to
allow Java 3D and JOGL code to be utilized together. The first steps have already been taken in ver-
sion 1.5, which offers three versions of Java 3D implemented on top of OpenGL, DirectX, and JOGL.

One of the reasons for using JOGL is its access to shading languages for special effects such as
fish eyes, shadow textures, and spherization. However, both GLSL and Cg are already supported in
Java 3D.

A user who needs scene graph functionality and OpenGL functions today may want to look at
Xith3D (http://xith.org/).

More Information on JOGL and OpenGL

The JOGL web site (https://jogl.dev.java.net/) hosts the latest software releases together with
demos, presentation slides, and a user guide.

The principal source for JOGL help is its forum site at http://www.javagaming.org/forums/
index.php?board=25.0. A good (but old) JOGL introduction by Gregory Pierce is at
http://www.javagaming.org/forums/index.php?topic=1474.0. Another introductory article,
“Jumping into JOGL” by Chris Adamson in 2003, is at http://today.java.net/pub/a/today/2003/
09/11/jogl2d.html.

A minor drawback of the forum is that search results will include informationfor the out-of-
date JOGL 1.1. However, it’s possible to date-limit the searches to exclude older threads. JSR-231
implementations started appearing in October 2005.

The first stop for information on OpenGL is http://www.opengl.org/, which offers a lot of
documentation, coding resources, and links to applications, games, and code samples.

The NeHe site (http://nehe.gamedev.net/) is an excellent place to start learning OpenGL. It
contains an extensive collection of tutorials, articles, examples, and other programming materials.
The tutorial, starting from first principles, consists of 48 lessons and has been ported to a variety of
languages, including JOGL/JSR-231. The tutorial examples were ported to JOGL by Kevin Duling,
Pepijn Van Eeckhoudt, Abdul Bezrati, and Nicholas Cambel. Van Eeckhoudt placed them in a com-
mon framework and ported them to JSR-231. The examples are available at
http://pepijn.fab4.be/?page_id=34.

There are a growing number of textbooks on OpenGL (e.g., see http://www.opengl.org/
documentation/books/). For a quick overview that covers the basics without a great deal of computer
graphics theory you could try OpenGL: A Primer (Second Edition) by Edward Angel (Pearson, 2005).
The book’s code is available at http://www.cs.unm.edu/~angel/BOOK/PRIMER/SECOND_EDITION/
PROGRAMS/.

If you don’t have a background in computer graphics you should probably switch to Angel’s
more technical book, Interactive Computer Graphics: A Top-Down Approach Using OpenGL (Fourth
Edition) (Addison Wesley, 2005).

A good OpenGL text with a gaming slant is OpenGL Game Programming by Kevin Hawkins and
David Astle (Premier Press, 2001). The examples use the complex Microsoft windowing library, wgl,
but they're still fun and informative. The online support page is http://glbook.gamedev.net/
oglgp.asp.

Astle and Hawkins have released two more recent books: Beginning OpenGL Game Program-
ming (Course Technology, 2004) and More OpenGL Game Programming (Course Technology, 2005),
which cover similar ground and more advanced topics, such as programmable shaders. Details are
available at http://glbook.gamedev.net/.

CHAPTER 15 TWO JOGL PROGRAMMING FRAMEWORKS

The ultimate OpenGL programming text, OpenGL Programming Guide: The Official Guide to
Learning OpenGL Version 2 (Fifth Edition) by the OpenGL Architecture Review Board (Addison-
Wesley, 2005), is known as the “red book” in OpenGL circles. An early version, for OpenGL 1.0, is
online at http://www.opengl.org/documentation/red_book/ in PDF and HTML formats and at
http://www.gamedev.net/download/redbook.pdf.

Summary

Tintroduced JOGL in this chapter by coding a simple rotating multicolored cube using several
approaches.

The callback framework utilizes an animator, an event listener, and a drawing surface. I coded
two variants of it—one with the fast GLCanvas class, the other using GLJPanel. Their speeds were
roughly equivalent, but GLJPanel’s performance depends on the suitability of the hardware, graph-
ics driver, and Java version. Its main advantage is its ability to closely integrate with other Swing
components to create novel, fun 2D/3D GUIs. An important issue is that the
-Dsun.java2d.opengl=true argument needed for GLJPanel’s speed may cause crashes on
older graphics hardware and drivers.

The cube application was also implemented using active rendering, a technique only made
possible with the recent extensions to JOGL to make it JSR-231 compliant. Active rendering is as fast
as the callback approach and allows finer control over the application’s timing behavior. For exam-
ple, a poor frame rate on a slow machine can be compensated for by performing updates without
the slow rendering. The downside is the increased complexity of the rendering loop and the fact
that most JOGL/OpenGL examples use the callback approach, offering more help to novice pro-
grammers.

407

