5
OpenGL Programming in Java:
JOGL

Chapter Objectives:

e Set up Java, JOGL programming environments

e Understand simple JOGL programs

5.1 Introduction

JOGL implements Java bindings for OpenGL. It provides hardware-supported 3D
graphics to applications written in Java. It is part of a suite of open-source
technologies initiated by the Game Technology Group at Sun Microsystems. JOGL
provides full access to OpenGL functions and integrates with the AWT and Swing
widget sets.

First, let’s spend some time to set up our working environment, compile
J1_0_Point.java, and run the program. The following file contains links to all the
example programs in this book and detailed information for setting up working
environments on different platforms for the most recent version:

http://cs.gmu.edu/~jchen/graphics/setup.html

Since JOGL has been changed significantly over time, it is better to download and
update the sample programs from the web instead of typing in examples from the
book.

J.X. Chen, Guide to Graphics Software Tools, doi: 10.1007/978-1-84800-901-1_5, 127
© Springer-Verlag London Limited 2008

128 5 OpenGL Programming in Java: JOGL

5.2 Setting Up Working Environment

JOGL provides full access to the APIs in the OpenGL specification as well as nearly
all vendor extensions. To install and run JOGL, we need to install Java Development
Kit. In addition, a Java IDE is also preferred to help coding. The following steps will
guide you through installing Java, JOGL, and Eclipse or JBuilder IDE.

1. Installing Java Development Kit

Java Development Kit (JDK) contains a compiler, interpreter, and debugger. If you
have not installed JDK, it is freely available from Sun Microsystems. You can
download the latest version from the download section at http://
java.sun.com. Make sure you download the JDK Java SE (Standard Edition) not
the JRE (runtime environment) that matches the platform you use. After
downloading the JDK, you can run the installation executable file. During the
installation, you will be asked the directory "Install to:". You need to know where it
is installed. For example, you can put it under: "C:\myJDK\". In default, it is put
under "C:\Program Files\Java\jdkxxx\".

2. Installing JOGL

We need to obtain the JOGL binaries in order to compile and run applications
from: https://jogl.dev.java.net/. Download the current release build
binaries that match the platform you use. After that, you can extract and put all
these files (jar and dll files) in the same directory with the Java (JOGL) examples
and compile all them on the command line in the current directory with:

"C:\myJdDK\bin\javac" -classpath jogl.jar *.java
After that, you can run the sample program with (the command in one line):

"C:\mydDK\bin\java" -classpath .;jogl.jar;gluegen-rt.jar;

Djava.library.path=. J1 0 Point

That is, you need to place the "*jar" files in the CLASSPATH of your build
environment in order to be able to compile an application with JOGL and run, and
place "*.dll" files in the directory listed in the "java.library.path" environment
variable during execution. Java loads the native libraries (such as the dll files for
Windows) from the directories listed in the "java.library.path" environment
variable. For Windows, placing the dll files under "C:\WINDOWS\system32\"
directory works. This approach gets you up running quickly without worrying
about the "java.library.path" setting.

5.2 Setting Up Working Environment 129

3. Installing a Java IDE (Eclipse, JGRASP, or JBuilder)

Installing a Java IDE (Integrated Development Environment) is strongly
recommended. Without an IDE, you can edit Java program files using any text
editor, compile and run Java programs using the commands we introduced above
after downloading JOGL, but that would be very difficult and slow. Java IDEs such
as JBuilder, Eclipes, and JGRASP are development environments that make Java
programming much faster and easier.

If you like to use jGRASP, you can download it from http://
www.jgrasp.org/. In the project under "Settings->PATH/CLASSPATH-
>Workspace", you can add the directory of the *.dll files to the system PATH
window, and add "*.jar" files with full path to the CLASSPATH window.

If you like to use Eclipse, you can download from http://eclipse.org the
latest version of Eclipse that matches the platform you use. Expand it into the
folder where you would like Eclipse to run from, (e.g., "C:\eclipse\"). There is no
installation to run. You can put "* jar" files under "Project->Properties->Libraries".
To remove Eclipse you simply delete the directory, because Eclipse does not alter
the system registry.

As another alternative, you can download a free version of JBuilder from http://
www.borland.com/jbuilder/. JBuilder comes with its own JDK. If you use
JBuilder as the IDE and want to use your downloaded JDK, you need to start
JBuilder, go to "Tools->Configue JDKs", and click "Change" to change the "JDK
home path:" to where you install your JDK. For example, "C:\myJDK\". Also,
under "Tools->Configue JDKs", you can click "Add" to add "*.jar" files from
wherever you save it to the JBuilder environment.

4. Creating a Sample Program in Eclipse

As an example, here we introduce using Eclipse. After downloading it, you can run
it to start programming. Now in Eclipse you click on "File->New->Project" to
create a new Java Project at a name you prefer. Then, you click on "File->New-
>Class" to create a new class with name: "J1 0 Point". After that, you can copy
the following code into the space, and click on "Run->Run As->Java Application"
to start compiling and running. You should see a window with a very tiny red pixel
at the center. In the future, you can continue creating new classes, as we introduce
each example as a new class. Alternatively, you can download all the examples
from the web.

130 5 OpenGL Programming in Java: JOGL

[* draw a point */

/* Java’'s supplied classes are “imported”. Here the awt
(Abstract Windowing Toolkit) is imported to provide “Frame”
class, which includes windowing functions */

import java.awt.*;

// JOGL: OpenGL functions
import javax.media.opengl.*;

/* Java class definition: “extends” means “inherits”. So

J1l 0 Point is a subclass of Frame, and it inherits Frame’s
variables and methods. “implements” means GLEventListener is
an interface, which only defines methods (init (), reshape(),
display (), and displaychanged()) without implementation.These
methods are actually callback functions handling events.

J1l 0 Point will implement GLEventListener’s methods and use
them for different events. */

public class J1 0 Point extends Frame implements
GLEventListener

static int HEIGHT = 600, WIDTH = 600;

static GL gl; //interface to OpenGL

static GLCanvas canvas; // drawable in a frame
static GLCapabilities capabilities;

public J1 0 Point () {

//1l. specify a drawable: canvas
capabilities = new GLCapabilities() ;
canvas = new GLCanvas () ;

//2. listen to the events related to canvas: reshape
canvas.addGLEventListener (this) ;

//3. add the canvas to fill the Frame container

add (canvas, BorderLayout.CENTER) ;
/* In Java, a method belongs to a class object.
Here the method “add” belongs to Jl1 0 Point'’s
instantiation, which is frame in “main” function.
It is equivalent to use “this.add(canvas, ...)" */

//4. interface to OpenGL functions
gl = canvas.getGL() ;

public static void main(String[] args) {

5.2 Setting Up Working Environment

131

J1l 0 Point frame = new J1 0 Point();

//5. set the size of the frame and make it visible
frame.setSize (WIDTH, HEIGHT) ;
frame.sgetVisible (true) ;

// called once for OpenGL initialization
public void init (GLAutoDrawable drawable) {

//6. specify a drawing color: red
gl.glColor3f(1.0f, 0.0f, 0.0f);

// called for handling reshaped drawing area
public void reshape (

GLAutoDrawable drawable,

int x,

int vy,

int width,

int height) {

WIDTH = width; // new width and height saved
HEIGHT = height;

//7. specify the drawing area (frame) coordinates
gl.glMatrixMode (GL.GL PROJECTION) ;
gl.glLoadIdentity () ;

gl.glOrtho(0, width, 0, height, -1.0, 1.0);

// called for OpenGL rendering every reshape
public void display (GLAutoDrawable drawable) {

//8. specify to draw a point
//g9l.glPointSize (10) ;
gl.glBegin(GL.GL_POINTS) ;
gl.glvertex2i (WIDTH/2, HEIGHT/2);
gl.glEnd() ;

// called if display mode or device are changed
public void displayChanged (

GLAutoDrawable drawable,

boolean modeChanged,

132 5 OpenGL Programming in Java: JOGL

boolean deviceChanged) {

5.3 Drawing a Point

The above JI (0 Point.java is a Java application that draws a red point using JOGL. If
you are a C/C++ programmer, you should read all the comments in the sample
program carefully, because they include explanations about Java-specific
terminologies and coding. Our future examples are built on top of this one. Here we
explain in detail. The program is complex to us at this point of time. We only need to
understand the following:

1. Class GLCanvas is an Abstract Window Toolkit (AWT) component that provides
OpenGL rendering support. Therefore, the GLCanvas object, canvas, corresponds
to the drawing area that will appear in the Frame object £rame, which corresponds
to the display window. Here object means an instance of a class in object-oriented
programming, not a 3D object. In the future, we omit using a class name and
underline its object name in our discussion. In many cases, object names are
lowercases of the corresponding class names to facilitate understanding.

2. An event is a user input or a system state change, which is queued with other events
to be handled. Event handling is to register an object to act as a listener for a
particular type of event on a particular component. Here £rame is a listener for the
GL events on canvas. When a specific event happens, it sends canvas to the
corresponding event handling method and invokes the method. GLEventListener
has four event-handling methods:

e init() is called immediately after the OpenGL context is initialized for the first
time, which is a system event. It can be used to perform one-time OpenGL
initialization;

e reshape() is called if canvas has been resized, which happens when the user
changes the size of the window. The listener also passes the drawable canvas and
the display area’s lower-left corner (x, y) and size (width, height) to the method. At
this time, (x, y) is always (0, 0), and the canvas’ size is the same as the display
window’s frame. The client can update the coordinates of the display

5.3 Drawing a Point 133

corresponding to the resized window appropriately. reshape() is called at least
once when program starts. Whenever reshape() is called, display() is called as
well;

e display() is called to initiate OpenGL rendering when program starts. It is called
afterwards when reshape event happens;

e displayChanged() is called when the display mode or the display device has been
changed. Currently we do not use this event handler.

. canvas is added to frame to cover the whole display area. canvas will reshape
with frame.

. gl is an interface handle to OpenGL methods. All OpenGL commands are prefixed
with “gl” as well, so you will see OpenGL method like glgiColor(). When we
explain the OpenGL command, we often omit the interface handle.

. Here we set the physical size of frame and make its contents visible. Here the
physical size corresponds to the number of pixels in x and y direction. The actual
physical size also depends on the resolution of the display, which is measured in
number of pixels per inch. At this point, the window frame appears. Depending on
the JOGL version, the physical size may include the boarders, which is a little
larger than the visible area that is returned as w and /4 in reshape().

. The foreground drawing color is specified as a vector (red, green, blue). Here (1, 0,
0) represents a red color.

. These methods specify the logical coordinates. For example, if we use the
command g/Ortho(0, width, 0, height, —1.0, 1.0), then the coordinates in frame (or
canvas) Will be 0 < x < width from the left side to the right side of the window, 0 <
v < height from the bottom side to the top side of the window, and —1 <z <1 in the
direction perpendicular to the window. The z direction is ignored in 2D
applications. It is a coincidence that the logical coordinates correspond to the
physical (pixel) coordinates, because width and height are initially from frame’s
WIDTH and HEIGHT. We can specify glOrtho(0, 100*WIDTH, 0, 100*HEIGHT,
—1.0, 1.0) as well, then point (WIDTH/2, HEIGHT/2) will appear at the lower-left
corner of the frame instead of the center of the frame.

134 5 OpenGL Programming in Java: JOGL

8. These methods draw a point at (WIDTH/2, HEIGHT/2). The coordinates are logical
coordinates not directly related to the canvas’ size. The width and height in
glOrtho() are actual window size. It is the same as WIDTH and HEIGHT at the
beginning, but if you reshape the window, they will be different, respectively.
Therefore, if we reshape the window, the red point moves.

In summary, when Frame is instantiated, constructor JI 0 Point() will create a
drawable canvas, add event listener to it, attach the display to it, and get a handle to g1
methods from it. reshape() will set up the display’s logical coordinates in the window
frame. display() will draw a point in the logical coordinates. When program starts,
main() will be called, then frame instantiation, JI 0 Point(), setSize(), setVisible(),
init(), reshape(), and dsplay(). reshape() and dsplay() will be called again and again if
the user changes the display area. You may not find it, but a red point appears in the
window.

5.4 Drawing Randomly Generated Points

J1 1 Point extends JI_0_Point, so it inherits all the methods from JI (0 Point that
are not private. We can reuse the constructor and some of the methods.

I* draw randomly generated points */

import javax.media.opengl.*;
import com.sun.opengl.util.Animator;
import java.awt.event.*;

//built on J1 O Point class

public class J1_1 Point extends J1_0 Point {
static Animator animator; // drive display() in a loop
public J1 1 Point () {

// use super's constructor to initialize drawing

//1. specify using only a single buffer
capabilities.setDoubleBuffered(false) ;

//2. add a listener for window closing

5.4 Drawing Randomly Generated Points 135

addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e)
animator.stop(); // stop animation
System.exit (0) ;

N
L

// called one-time for OpenGL initialization
public void init (GLAutoDrawable drawable) {

// specify a drawing color: red
gl.glColor3f(1.0£f, 0.0f, 0.0f);

//3. clear the background to black
gl.glClearColor(0.0£f, 0.0f, 0.0f, 0.0f);
gl.glClear (GL.GL_COLOR BUFFER BIT) ;

//4. drive the display() in a loop
animator = new Animator (canvas) ;
animator.start(); // start animator thread

// called for OpenGL rendering every reshape
public void display (GLAutoDrawable drawable) {
//5. generate a random point
double x = Math.random() *WIDTH;
double y = Math.random() *HEIGHT;

// specify to draw a point
gl.glBegin (GL.GL_POINTS) ;
gl.glVvertex2d(x, V) ;
}gl.glEnd();

public static void main(Stringl[] args) {
Jl 1 Point f = new J1 1 Point();

//6. add a title on the frame
f.setTitle ("JOGL Jl_l_Point ")

f.setSize (WIDTH, HEIGHT) ;
f.setVisible (true) ;

136 5 OpenGL Programming in Java: JOGL

1. JI 1 Point is built on (extends) the super (previous) class, so we can reuse its
methods. The super class’s constructor is automatically called to initialize drawing
and event handling. Here we specify using a single frame buffer. Frame buffer
corresponds to the display, which will be discussed in the next section.

2. The drawing area corresponding to the display is the frame buffer. JOGL in default
is using double-buffering for animation. Here we just need a single buffer that
corresponds to the frame buffer.

3. In order to avoid window hanging, we add a listener for window closing and stop
animation before exit. Animation (animator) will be discussed later.

4. glClearColor() specifies the background color. OpenGL is a state machine, which
means that if we specify the color, unless we change it, it will always be the same.
Therefore, whenever we call g/Clear(), the background will be black unless we call
glCearClor() to set it differently.

5. Object animator is attached to canvas to drive its display() method in a loop.
When animator is started, it will generate a thread to call display repetitively. A
thread is a process or task that runs with current program concurrently. Java is a
multi-threaded programming language that allows starting multiple threads.
animator is stopped before window closing.

6. A random point is generated. Because animator will run disp/ay() again and again
in its thread, randomly generated points are displayed.

In summary, the super class’ constructor, which is called implicitly, will create a
drawable canvas, add event listener to it, and attach the display to it. reshape() will set
up the display’s logical coordinates in the window frame. animator.start() will call
display() multiple times in a thread. display() will draw a point in logical coordinates.
When program starts, main() will be called, then red points appear in the window.

5.5 Building an Executable JAR File

To facilitate sharing and deployment, we can generate an executable jar file for use
with our JOGL applications as follows.

1. Set up a working directory to build your jar file.

5.5 Building an Executable JAR File 137

2. Move all the necessary java class files into this directory, including all inheritance
class files. For example, if you are to run program J1 1 Point, you should have
your directory as follows:

2008-01-07 08:31 <DIR>
2008-01-07 08:31 <DIR>

2008-01-07 09:19 1,766 J1_1 Point.class

2008-01-06 18:10 2,190 J1 0 Point.class

2008-01-07 09:19 736 J1 1 Point$l.class
3 File(s) 4,692 bytes

3. Create a text file “manifest-info.txt” in the same directory that contains the
following information with a carriage return at the last line:

Class-Path: gluegen-rt.jar jogl.jar
Main-Class: Jl1_1 Point

The Class-Path entry should include any jar files needed to run this program (jogl.jar
and gluegen-rt.jar). When you run your program, you must make sure that these jar
files are in the same directory. The Main-Class entry tells Java system which file
contains your main method.

4. Execute the following in the same directory from the command line:
> "C:\myJdDK\bin\jar" -cfm myexe.jar manifest-info.txt *.class

This will create your jar file with the specified manifest information and all of the
* class files in this directory.

5. Run your executable jar file:

You should now have your executable jar file in this directory (myexe.jar). To run the
file, you need to put the library jar files (jogl.jar and gluegen-rt.jar) in the same
directory. You may want to put all the dll files in the same directory as well if they are
not installed in the system. Your directory will contain the following files as in our
example:

2008-01-07 08:31 <DIR>

2008-01-07 09:19 1,766 J1_1 Point.class
2008-01-06 18:10 2,190 J1_ 0 Point.class
2008-01-07 09:19 736 J1_1 Points$l.class
2008-01-07 09:46 61 manifest-info.txt
2008-01-07 09:46 3,419 myexe.jar

2007-04-22 02:00 1,065,888 jogl.jar

138 5 OpenGL Programming in Java: JOGL

2007-04-22 02:
2007-04-22 02:
2007-04-22 02:
2007-04-22 02:

10 File(s)

00
00
00
00

17,829 gluegen-rt.jar
20,480 gluegen-rt.dll
315,392 jogl.dll
20,480 jogl awt.dll

1,448,241 bytes

Now you can either double-click on the jar file in Windows interface environment or
execute it on a command line with:

> "C:\myJDK\bin\java"

-jar myexe.jar

To get additional help or learn more on this topic you may visit the following place:

http://java.sun.com/docs/books/tutorial/deployment/jar/

index.html

5.6 Review Questions

1. What is provided by the Animator class in JOGL?

a. calling reshape()

c. calling display() repetitively

b. implementing interface functions
d. transforming the objects

2. What are provided by the JOGL’s GLUT class?

a. bitmap and stroke font methods b. antialiasing

c. calling reshape() or display()

d. handling display area

5.7 Programming Assignments

1. Draw a point that moves slowly along a circle. You may
want to draw a circle first, and a point that moves on the

circle with a different color.
2. Draw a point that bounces slowly in a square or circle.

3. Draw a star in a circle that rotates, as shown on the
right. You can only use glBegin(GL_POINTS) to draw the

star.

4. Write down “Bitmap” using Glut bitmap font function
and “Stroke” using Glut stroke font function in the center

of the display.

5.7

Programming Assignments

139

5. With the star rotating in the circle, implement the clip-
ping of a window as shown on the right.

6. Implement an antialiasing line algorithm that works
with the background that has a texture. The method is to
blend the background color with the foreground color. You
can get the current pixel color in the frame buffer using
glGet() with GL_CURRENT_RASTER_COLOR.

7. Implement a triangle filling algorithm for
J1_3_Triangle class that draws a randomly generated tri-
angle. Here you can only use glBegin(GL_POINTS) to
draw the triangle.

8. Draw (and animate) the star with antialiasing and clip-
ping. Add a filled circle inside the star using the subdivi-
sion method discussed in this chapter. You should use your
own triangle filling algorithm. Also, clipping can be trick-
ily done by checking the point to be drawn against the clip-
ping window.

—_ N

—
- \\

-
Bitmap
Stroke

=]

