
 

 

 

CHAP T ER  6 

Light and Shadow 

Lighting effects can great y enhance the three-dimensional nature 
of a scene, as illustrated in Figure 6.1, which illustrates a light source 

and shaded objects, specular highlights, bump map textures that simulate 
surface detail, a postprocessing efect to simulate a glowing sun, and shad-
ows cast from objects onto other objects. 

When using lights, the colors on a surface may be brighter or dimer, 
depending on the angle at which the light rays meet the surface. Tis efect 
is called shading and enables viewers to observe the 3D nature of a shape 
in a rendered image, without the need for vertex colors or textures, as illus-
trated in Figure 6.2. 

FIGURE 6.1 Rendered scene with lighting efects. 
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268 ◾ Developing Graphics Frameworks with Python and OpenGL 

FIGURE 6.2 Four techniques to visualize a sphere: wireframe, vertex colors, 
texture, and shading. 

In this chapter, you will learn how to calculate the efects of difer-
ent types of light, such as ambient, difuse, and specular, as well as how 
to simulate diferent light sources such as directional lights and point 
lights. Ten, you will create new types of light objects to store this data, 
update various geometric classes to store additional related data, create 
a set of materials to process this data, and incorporate all these elements 
into the rendering process. Finally, you will learn about and implement 
the advanced topics illustrated by Figure 6.1, including bump mapping to 
simulate surface details, additional postprocessing techniques to generate 
light bloom and glow efects, and shadow mapping, which enables objects 
to cast shadows on other objects. 

6.1 INTRODUCTION TO LIGHTING 
Tere are many diferent types of lighting that may be used when render-
ing an object. Ambient lighting afects all points on all geometric surfaces 
in a scene by the same amount. Ambient light simulates light that has 
been refected from other surfaces and ensures that objects or regions not 
directly lit by other types of lights remain at least partially visible. Difuse 
lighting represents light that has been scattered and thus will appear lighter 
or darker in various regions, depending on the angle of the incoming light. 
Specular lighting creates bright spots and highlights on a surface to simu-
late shininess: the tendency of a surface to refect light. Tese three types 
of lighting applied to a torus-shaped surface are illustrated in Figure 6.3. 
(A fourth type of lighting is emissive lighting, which is light emitted by 
an object that can be used to create a glow-like efect, but this will not be 
covered here.) 

An illumination model is a combination of lighting types used to 
determine the color at each point on a surface. Two of the most com-
monly used illumination models are the Lambert model and the Phong 
model, illustrated in Figure 6.4. Te Lambert model uses a combination of 
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FIGURE 6.3 Ambient, difuse, and specular lighting on a torus-shaped surface. 

FIGURE 6.4 Te Lambert and Phong illumination models on a torus-shaped 
surface. 

ambient and difuse lighting, particularly appropriate for simulating the 
appearance of matte or rough surfaces, where most of the light rays meet-
ing the surface are scattered. Te Phong model uses ambient, difuse, and 
specular lighting, and is particularly appropriate for refective or shiny 
surfaces. Due to the additional lighting data and calculations required, 
the Phong model is more computationally intensive than the Lambert 
model. Te strength or sharpness of the shine in the Phong model can 
be adjusted by parameters stored in the corresponding material, and if 
the strength of the shine is set to zero, the Phong model generates results 
identical to the Lambert model. 

Te magnitude of the efect of a light source at a point depends on the 
angle at which a ray of light meets a surface. Tis angle is calculated as 
the angle between two vectors: the direction vector of the light ray, and a 
normal vector: a vector perpendicular to the surface. Figure 6.5 illustrates 
normal vectors for multiple surfaces as short line segments. When cal-
culating normal vectors to a surface, one has the option of using either 
vertex normal vectors or face normal vectors. Face normal vectors are 
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FIGURE 6.5 Normal vectors to a box, a sphere, and a torus. 

perpendicular to the triangles in the mesh used to represent the surface. 
Vertex normal vectors are perpendicular to the geometric surface being 
approximated; the values of these vectors do not depend on the triangula-
tion of the surface and can be calculated precisely when the parametric 
function defning the surface is known. For a surface defned by fat sides 
(such as a box or pyramid), there is no diference between vertex normals 
and face normals. 

Diferent types of light objects will be used to simulate diferent sources 
of light, each of which emits light rays in diferent patterns. A point light 
simulates rays of light being emitted from a single point in all directions, 
similar to a lightbulb, and incorporates attenuation: a decrease in intensity 
as the distance between the light source and the surface increases. A direc-
tional light simulates a distant light source such as the sun, in which all the 
light rays are oriented along the same direction and there is no attenuation. 
(As a result, the position of a directional light has no efect on surfaces that 
it lights.) Tese light ray direction patterns are illustrated in Figure 6.6. 
For simplicity, in this framework, point lights and directional lights will 
only afect difuse and specular values, and ambient light contributions 

FIGURE 6.6 Directions of emitted light rays for point light (lef) and directional 
light (right). 
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FIGURE 6.7 Rendering a sphere using fat shading (lef) and Phong shading 
(right). 

will be handled by a separate ambient light structure, although there is no 
physical analog for this object. 

Te choice of using face normal vectors or vertex normal vectors, and 
the part of the shader program in which light-related calculations appear 
defne diferent shading models. Te original and simplest is the fat 
shading model, in which face normal vectors are used, calculations take 
place in the vertex shader, and light contribution values are passed along to 
the fragment shader. Te result is a faceted appearance, even on a smooth 
surface such as a sphere, as illustrated in Figure 6.7. Te Gouraud shading 
model uses vertex normal vectors and calculates the efect of light at each 
vertex in the vertex shader; these values are passed through the graphics 
pipeline to the fragment shader, leading to interpolated values for each 
fragment and resulting in a smoother overall appearance (although there 
may be visual artifacts along the edges of some triangles). Te most com-
putationally intensive example that will be implemented in this frame-
work, and the one that provides the smoothest and most realistic results, is 
the Phong shading model (not to be confused with the Phong illumination 
model), also illustrated in Figure 6.7. In this shading model, the normal 
vector data is passed from the vertex shader to the fragment shader, nor-
mal vectors are interpolated for each fragment, and the light calculations 
are performed at that stage. 

6.2 LIGHT CLASSES 
To incorporate lighting efects into the graphics framework, the frst step 
is to create a series of light objects that store the associated data. For sim-
plicity, a base Light class will be created that stores data that could be 
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needed by any type of light, including a constant that specifes the type of 
light (ambient, directional, or point). Some lights will require position or 
direction data, but since the Light class will extend the Object3D class, 
this information can be stored in and retrieved from the associated trans-
formation matrix. Extensions of the Light class will represent the difer-
ent types of lights, and their constructors will store values in the relevant 
felds defned by the base class. 

To begin, in the main project folder, create a new folder named light. 
In this folder, create a new fle named light.py with the following 
code: 

from core.object3D import Object3D 
class Light(Object3D):

 AMBIENT = 1
 DIRECTIONAL = 2
 POINT = 3
 def __init__(self, lightType=0):

 super().__init__()
 self.lightType = lightType
 self.color = [1, 1, 1]
 self.attenuation = [1, 0, 0] 

As previously mentioned and alluded to by the constant values in the 
Light class, there will be three extensions of the class that represent dif-
ferent types of lights: ambient light, directional light, and point light. To 
implement the class representing ambient light, the simplest of the three, 
as it only uses the color data, in the light folder create a new fle named 
ambientLight.py with the following code: 

from light.light import Light 
class AmbientLight(Light):

 def __init__(self, color=[1,1,1]):
 super().__init__(Light.AMBIENT)
 self.color = color 

Next, you will implement the directional light class. However, you frst 
need to add some functionality to the Object3D class that enables you 
to get and set the direction an object is facing, also called the forward 

http:ambientLight.py
http:light.py
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direction, which is defned by the orientation of its local negative z-axis. 
Tis concept was originally introduced in the discussion of the look-at 
matrix in Chapter 5. Te setDirection function is efectively a local 
version of the lookAt function. To calculate the direction an object is 
facing, the getDirection function requires the rotation component of 
the mesh’s transformation matrix, which is the top-lef 3-by-3 submatrix; 
this functionality will be provided by a new function called getRota-
tionMatrix. To proceed, in the fle object3D.py in the core folder, 
add the following import statement: 

import numpy 

Ten, add the following three functions to the class: 

# returns 3x3 submatrix with rotation data 
def getRotationMatrix(self):

 return numpy.array( [ self.transform[0][0:3], 
self.transform[1][0:3], 
self.transform[2][0:3] ] ) 

def getDirection(self):
 forward = numpy.array([0,0,-1])
 return list( self.getRotationMatrix() @ forward ) 

def setDirection(self, direction):
 position = self.getPosition()
 targetPosition = [ position[0] + direction[0],

 position[1] + direction[1], 
position[2] + direction[2] ]

 self.lookAt( targetPosition ) 

With these additions, you are ready to implement the class that 
represents directional lights. In the light folder, create a new fle named 
directionalLight.py with the following code: 

from light.light import Light 
class DirectionalLight(Light):

    def __init__(self, color=[1,1,1], direction=[0, 
-1, 0]): 

http:directionalLight.py
http:object3D.py
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 super().__init__(Light.DIRECTIONAL)
 self.color = color
 self.setDirection( direction ) 

Finally, you will implement the class that represents point lights. Te 
variable attenuation stores a list of parameters that will be used when 
calculating the decrease in light intensity due to increased distance, which 
will be discussed in more detail later. In the light folder, create a new fle 
named pointLight.py with the following code: 

from light.light import Light 
class PointLight(Light):

 def __init__(self, color=[1,1,1], 
position=[0,0,0], attenuation=[1,0,0.1]):

 super().__init__(Light.POINT)
 self.color = color
 self.setPosition( position )
 self.attenuation = attenuation 

6.3 NORMAL VECTORS 
Just as working with textures required the addition of a new attribute 
(representing UV coordinates) to geometry classes, working with lights 
also requires new attributes, as discussed in the beginning of this chap-
ter, representing vertex normal vectors and face normal vectors. Te next 
step will be to add new attributes containing these two types of vectors to 
the previously created geometry classes: rectangles, boxes, polygons, and 
parametric surfaces. Te shader code that will be created later in this chap-
ter will access this data through shader variables named vertexNormal 
and faceNormal. In the case of rectangles, boxes, and polygons, since 
the sides of these shapes are fat, these two types of normal vectors are 
the same. Curved surfaces defned by parametric functions will require 
slightly more efort to calculate these two types of normal vectors. 

6.3.1 Rectangles 

Since a rectangle is a fat shape aligned with the xy-plane, the normal vec-
tors at each vertex all point in the same direction: ⟨0, 0, 1⟩, aligned with the 
positive z-axis, as illustrated in Figure 6.8. 

To implement normal vectors for rectangles, in the fle rectang-
leGeometry.py in the geometry folder, add the following code: 

http:leGeometry.py
http:pointLight.py
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FIGURE 6.8 Normal vectors for a rectangle. 

normalVector = [0, 0, 1] 
normalData = [ normalVector ] * 6 
self.addAttribute("vec3", "vertexNormal", normalData) 
self.addAttribute("vec3", "faceNormal", normalData) 

6.3.2 Boxes 

To begin, recall the alignment of the vertices in a box geometry, illustrated 
in Figure 6.9. 

Since a box has six fat sides, there will be six diferent normal vectors 
required for this shape. Te right and lef sides, as they are perpendicular 
to the x-axis, will have normal vectors ⟨1, 0, 0⟩ and ⟨−1, 0, 0⟩. Te top and 
bottom sides, perpendicular to the y-axis, will have normal vectors ⟨0, 1, 0⟩ 
and ⟨0, −1, 0⟩. Te front and back sides, perpendicular to the z-axis, will 
have normal vectors ⟨0, 0, 1⟩ and ⟨0, 0, −1⟩. Observe that each corner point 
is part of three diferent sides; for example, point P6 is part of the lef, top, 
and front sides. Tus, each corner of the cube may correspond to one of 
three normal vectors, depending on the triangle being generated in the 

FIGURE 6.9 Vertices in a box geometry. 
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rendering process. To add normal vector data for this shape, in the fle 
boxGeometry.py in the geometry folder, add the following code: 

# normal vectors for x+, x-, y+, y-, z+, z-
N1, N2 = [1, 0, 0], [-1,  0,  0] 
N3, N4 = [0, 1, 0], [ 0, -1,  0] 
N5, N6 = [0, 0, 1], [ 0,  0, -1] 
normalData = [N1]*6 + [N2]*6 + [N3]*6 + [N4]*6 + 
[N5]*6 + [N6]*6 

self.addAttribute("vec3", "vertexNormal", normalData) 
self.addAttribute("vec3", "faceNormal", normalData) 

6.3.3 Polygons 

Just as was the case for rectangles, since polygons are fat shapes aligned 
with the xy-plane, the normal vectors at each vertex are ⟨0, 0, 1⟩. To add 
normal vector data for polygons, in the fle polygonGeometry.py in 
the geometry folder, you will need to add code in three diferent parts. 
First, before the for loop, add the following code: 

normalData = [] 
normalVector = [0, 0, 1] 

Within the for loop, the same line of code is repeated three times 
because each triangle has three vertices; as with the other attributes, three 
vectors are appended to the corresponding data array. 

normalData.append( normalVector ) 
normalData.append( normalVector ) 
normalData.append( normalVector ) 

Afer the for loop, add the following code: 

self.addAttribute("vec3", "vertexNormal", normalData) 
self.addAttribute("vec3", "faceNormal", normalData) 

Tis completes the necessary additions to the Polygon class. 

6.3.4 Parametric Surfaces 

Finally, you will add normal vector data for parametric surfaces. Unlike 
the previous cases, this will involve some calculations. To calculate the face 
normal vectors for each triangle, you will use the cross product operation, 

http:polygonGeometry.py
http:boxGeometry.py
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FIGURE 6.10 Calculating the normal vector for a triangle. 

which takes two vectors as input and produces a vector perpendicular to 
both of the input vectors. Since each triangle is defned by three points 
P0, P1, and P2, one can subtract these points in pairs to create two vectors 
v = P1–P0 and w = P2–P0 aligned with the edges of the triangle. Ten, the 
cross product of v and w results in the desired face normal vector n. Tis 
calculation is illustrated in Figure 6.10. 

To calculate the vertex normal vector at a point P0 on the surface 
involves the same process, except that the points P1 and P2 used for this 
calculation are chosen to be very close to P0 in order to more precisely 
approximate the exact normal to the surface. In particular, assume that 
the surface is defned by the parametric function S and that P0 = S u v ( , ). 
Let h be a small number, such as h = 0.0001. Ten, defne two additional 
points P1 = S u  h v  ( + ,  and P2 = S u v h  ) ( , + ). With the three points P0, P1, 
and P2, one may then proceed exactly as before to obtain the desired 
vertex normal vector. 

To implement these calculations, in the fle parametricGeometry. 
py in the geometry directory, begin by adding the following import 
statement: 

import numpy 

Ten, afer the for loop that calculates the contents of the uvs list, add 
the following code, which implements a function to calculate a normal 
vector from three points as previously described, and populates a list with 
vertex normal vectors at the position of each vertex. 

def calcNormal(P0, P1, P2):
 v1 = numpy.array(P1) - numpy.array(P0)
 v2 = numpy.array(P2) - numpy.array(P0) 
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 normal = numpy.cross( v1, v2 )
 normal = normal / numpy.linalg.norm(normal)
 return normal 

vertexNormals = [] 
for uIndex in range(uResolution+1):

 vArray = []
 for vIndex in range(vResolution+1):

 u = uStart + uIndex * deltaU
 v = vStart + vIndex * deltaV
 h = 0.0001
 P0 = surfaceFunction(u, v)
 P1 = surfaceFunction(u+h, v)
 P2 = surfaceFunction(u, v+h)
 normalVector = calcNormal(P0, P1, P2)
 vArray.append( normalVector )

 vertexNormals.append(vArray) 

Ten, immediately before the nested for loop that groups the vertex 
data into triangles, add the following code: 

vertexNormalData = [] 
faceNormalData = [] 

Within the nested for loop, afer data is appended to the uvData list, 
add the following code: 

# vertex normal vectors 
nA = vertexNormals[xIndex+0][yIndex+0] 
nB = vertexNormals[xIndex+1][yIndex+0] 
nD = vertexNormals[xIndex+0][yIndex+1] 
nC = vertexNormals[xIndex+1][yIndex+1] 
vertexNormalData += [nA,nB,nC, nA,nC,nD] 

# face normal vectorsfn0 = calcNormal(pA, pB, pC) 
fn1 = calcNormal(pA, pC, pD) 
faceNormalData += [fn0,fn0,fn0, fn1,fn1,fn1] 

Finally, afer the nested for loop, add the following two lines of code 
before the countVertices function is called: 
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self.addAttribute("vec3", "vertexNormal", 
vertexNormalData) 

self.addAttribute("vec3", "faceNormal", 
faceNormalData) 

Another related change that needs to be made is in the Geometry class 
applyMatrix function, which currently transforms only the position-
related data stored in an attribute of a geometry. When transforming a 
geometry, the normal vector data should also be updated, but only by the 
rotational part of the transformation (as normal vectors are assumed to 
be in standard position, with initial point at the origin). Tis functional-
ity is especially important for cylinder-based shapes, as they include both 
a parametric geometry component and one or two transformed polygon 
geometry components. To implement this, in the fle geometry.py in 
the geometry folder, in the applyMatrix function, add the following 
code directly before the uploadData function is called. 

# extract the rotation submatrix 
rotationMatrix = numpy.array( [ matrix[0][0:3], 

matrix[1][0:3], 
matrix[2][0:3] ] ) 

oldVertexNormalData = self.attributes["vertexNormal"]. 
data 

newVertexNormalData = [] 
for oldNormal in oldVertexNormalData:

 newNormal = oldNormal.copy()
 newNormal = rotationMatrix @ newNormal
 newVertexNormalData.append( newNormal ) 

self.attributes["vertexNormal"].data = 
newVertexNormalData 

oldFaceNormalData = self.attributes["faceNormal"]. 
data 

newFaceNormalData = [] 
for oldNormal in oldFaceNormalData:

 newNormal = oldNormal.copy()
 newNormal = rotationMatrix @ newNormal
 newFaceNormalData.append( newNormal ) 

self.attributes["faceNormal"].data = newFaceNormalData 

http:geometry.py
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With these additions to the graphics framework, all geometric objects 
now include the vertex data that will be needed for lighting-based 
calculations. 

6.4 USING LIGHTS IN SHADERS 
Te next major step in implementing lighting efects is to write a shader 
to perform the necessary calculations, which will require the data stored 
in the previously created Light class. Since scenes may feature multiple 
light objects, a natural way to proceed is to create a data structure within 
the shader to group this information together, analogous to the Light 
class itself. Afer learning how data is uploaded to a GLSL structure and 
updating the Uniform class as needed, the details of the light calculations 
will be explained. You will then implement three shaders: the fat shad-
ing model, the Lambert illumination model, and the Phong illumination 
model. While the frst of these models uses face normal data in the vertex 
shader, the latter two models will use Phong shading, where vertex normal 
data will be interpolated and used in the fragment shader. 

6.4.1 Structs and Uniforms 

In GLSL, data structures are used to group together related data variables 
as a single unit, thus defning new types. Tese are created using the key-
word struct, followed by a list of member variable types and names. For 
example, a structure to store light-related data will be defned as follows: 

struct Light 
{

 int lightType;
 vec3 color;
 vec3 direction;
 vec3 position;
 vec3 attenuation; 

}; 

Following the defnition of a struct, variables of this type may be 
defned in the shader. Fields within a struct are accessed using dot nota-
tion; for example, given a Light variable named sun, the information 
stored in the direction feld can be accessed as sun.direction. 
Te data for a uniform struct variable cannot all be uploaded by a single 
OpenGL function, so there will be a signifcant addition to the Uniform 
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class corresponding to light-type objects. When storing such an object, 
the Uniform class variable variableRef will not store a single uni-
form variable reference, but rather a dictionary object whose keys are the 
names of the struct felds and whose values are the corresponding variable 
references. When uploading data to the GPU, multiple glUniform-type 
functions will be called. 

To add this functionality, in the fle uniform.py in the core folder, 
change the locateVariable function to the following: 

# get and store reference(s) for program variable with 
given name 

def locateVariable(self, programRef, variableName):
 if self.dataType == "Light":

 self.variableRef = {}
 self.variableRef["lightType"] =

 glGetUniformLocation(programRef, 
              variableName + ".lightType")

 self.variableRef["color"] =
            glGetUniformLocation(programRef, 

variableName + ".color")
 self.variableRef["direction"] =

 glGetUniformLocation(programRef, 
              variableName + ".direction")

 self.variableRef["position"] =
 glGetUniformLocation(programRef, 

              variableName + ".position")
 self.variableRef["attenuation"] =

 glGetUniformLocation(programRef, 
              variableName + ".attenuation")

 else:
        self.variableRef = glGetUniformLocation 

(programRef, variableName) 

Also in the Uniform class, in the uploadData function if-else 
block, add the following code: 

elif self.dataType == "Light":
    glUniform1i( self.variableRef["lightType"], self. 

data.lightType )
 glUniform3f( self.variableRef["color"], 

http:uniform.py
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        self.data.color[0], self.data.color[1], self. 
data.color[2] )

 direction = self.data.getDirection()
 glUniform3f( self.variableRef["direction"],

 direction[0], direction[1], direction[2] )
 position = self.data.getPosition()
 glUniform3f( self.variableRef["position"],

 position[0], position[1], position[2] )
 glUniform3f( self.variableRef["attenuation"], 

self.data.attenuation[0], 
self.data.attenuation[1], 
self.data.attenuation[2] ) 

6.4.2 Light-Based Materials 

In each of the three materials that will be created in this section, key 
features will be the Light struct previously discussed, the declaration 
of four uniform Light variables (this will be the maximum supported 
by this graphics framework), and a function (named lightCalc) to 
calculate the efect of light sources at a point. In the fat shading material, 
these elements will be added to the vertex shader, while in the Lambert 
and Phong materials, these elements will be added to the fragment 
shader instead. 

To begin, you will create the fat shader material. In the material 
directory, create a new fle called flatMaterial.py containing the fol-
lowing code; the code for the vertex and fragment shaders and for adding 
uniform objects will be added later. 

from material.material import Material 
from OpenGL.GL import * 
class FlatMaterial(Material):

 def __init__(self, texture=None, properties={}):

 vertexShaderCode = """
 // (vertex shader code to be added)
 """

 fragmentShaderCode = """
 // (fragment shader code to be added)
 """ 

http://OpenGL.GL
http:flatMaterial.py
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super().__init__(vertexShaderCode, 
fragmentShaderCode)

 // (uniforms to be added)
 self.locateUniforms()

 # render both sides?
 self.settings["doubleSide"] = True
 # render triangles as wireframe?
 self.settings["wireframe"] = False
 # line thickness for wireframe rendering
 self.settings["lineWidth"] = 1

 self.setProperties(properties)

 def updateRenderSettings(self):

 if self.settings["doubleSide"]:
 glDisable(GL_CULL_FACE)

 else:
 glEnable(GL_CULL_FACE)

 if self.settings["wireframe"]:
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

 else:
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

 glLineWidth(self.settings["lineWidth"]) 

In the fat shading model, lights are processed in the vertex shader. 
Tus, in the vertex shader code area, add the following code: 

struct Light 
{

 // 1 = AMBIENT, 2 = DIRECTIONAL, 3 = POINT
 int lightType;
 // used by all lights
 vec3 color;
 // used by directional lights
 vec3 direction;
 // used by point lights
 vec3 position; 
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 vec3 attenuation; 
}; 

uniform Light light0; 
uniform Light light1; 
uniform Light light2; 
uniform Light light3; 

Next, you will implement the lightCalc function. Te function will 
be designed so that it may calculate the contributions from a combination 
of ambient, difuse, and specular light. In the fat shading and Lambert 
materials, only ambient and difuse light contributions are considered, 
and thus, the only parameters required by the lightCalc function are 
the light source itself, and the position and normal vector for a point on 
the surface. Values for the contributions from each type of light are stored 
in the variables ambient, diffuse, and specular, each of which is 
initially set to zero and then modifed as necessary according to the light 
type. 

The calculations for the diffuse component of a directional light and 
a point light are quite similar. One difference is in the calculation of 
the light direction vector: for a directional light, this is constant, but 
for a point light, this is dependent on the position of the light and the 
position of the point on the surface. Once the light direction vector is 
known, the contribution of the light source at a point can be calculated. 
The value of the contribution depends on the angle between the light 
direction vector and the normal vector to the surface. When this angle 
is small (close to zero), the contribution of the light source is close to 
100%. As the angle approaches 90°, the contribution of the light source 
approaches 0%. This models the observation that light rays meeting 
a surface at large angles are scattered, which reduces the intensity of 
the ref lected light. Fortunately, this mathematical relationship is eas-
ily captured by the cosine function, as ( ) 1 and ) 0.cos 0° = (cos 90° =
Furthermore, it can be proven that the cosine of the angle between two 
unit vectors (vectors with length 1) is equal to the dot product of the 
vectors, which can be calculated with the GLSL function dot. If the 
value of the cosine is negative, this indicates that the surface is inclined 
at an angle away from the light source, in which case the contribution 
should be set to zero; this will be accomplished with the GLSL function 
max, as you will see. 
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1 1  

FIGURE 6.11 Attenuation of a light source as a function of distance. 

Finally, point lights also incorporate attenuation efects: the intensity 
of the light should decrease as the distance d between the light source 
and the surface increases. Tis efect is modeled mathematically by mul-
tiplying the difuse component by the factor 1  (a b d c d2 , where + ˝ + ˝  ) 
the coefcients a, b, c are used to adjust the rate at which the light efect 
decreases. Figure 6.11 displays a graph of this function for the default 
attenuation coefcients a= 1, b= 0, c= 0.1, which results in the function 

( 0  d 2 ). Observe that in the graph, when the distance is at + ˝ +   0.1 ̋ d 
a minimum (d= 0), the attenuation factor is 1, and the attenuation is 50% 
approximately when d= 3.2. 

To implement the lightCalc function, in the vertex shader code, add 
the following afer the declaration of the uniform light variables: 

vec3 lightCalc(Light light, vec3 pointPosition, vec3 
pointNormal) 

{
 float ambient = 0;
 float diffuse = 0;
 float specular = 0;
 float attenuation = 1;
 vec3 lightDirection = vec3(0,0,0);

 if ( light.lightType == 1 ) // ambient light
 {

 ambient = 1;
 }

    else if ( light.lightType == 2 ) // directional 
light

 {
 lightDirection = normalize(light.direction);

 }
 else if ( light.lightType == 3 ) // point light
 { 
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        lightDirection = normalize(pointPosition -
light.position);

        float distance = length(light.position -
pointPosition);

 attenuation = 1.0 / (light.attenuation[0] +
                         light.attenuation[1] * 

distance +
                         light.attenuation[2] * 

distance * distance);
 }

    if ( light.lightType > 1 ) // directional or point 
light

 {
 pointNormal = normalize(pointNormal);

        diffuse = max( dot(pointNormal, 
-lightDirection), 0.0 );

 diffuse *= attenuation;
 }

    return light.color * (ambient + diffuse + 
specular); 

} 

With these additions in place, you are ready to complete the vertex 
shader for the fat shading material. In addition to the standard calcula-
tions involving the vertex position and UV coordinates, you also need to 
calculate the total contribution from all of the lights. If data for a light vari-
able has not been set, then the light’s lightType variable defaults to zero, 
in which case the value returned by lightCalc is also zero. Before being 
used in the lightCalc function, the model matrix needs to be applied to 
the position data, and the rotational part of the model matrix needs to be 
applied to the normal data. Te total light contribution is passed from the 
vertex shader to the fragment shader for use in determining the fnal color 
of each fragment. In the vertex shader code, add the following code afer 
the body of the lightCalc function: 

uniform mat4 projectionMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 modelMatrix; 
in vec3 vertexPosition; 
in vec2 vertexUV; 
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in vec3 faceNormal; 
out vec2 UV; 
out vec3 light; 

void main() 
{
    gl_Position = projectionMatrix * viewMatrix * 

modelMatrix 
* vec4(vertexPosition, 1); 

UV = vertexUV;
 // calculate total effect of lights on color

    vec3 position = vec3( modelMatrix * 
vec4(vertexPosition, 1) );

    vec3 normal = normalize( mat3(modelMatrix) * 
faceNormal );

 light = vec3(0,0,0);
 light += lightCalc( light0, position, normal );
 light += lightCalc( light1, position, normal );
 light += lightCalc( light2, position, normal );
 light += lightCalc( light3, position, normal ); 

} 

Next, you need to add the code for the fat material fragment shader. In 
addition to the standard elements of past fragment shaders, this new shader 
also uses the light value calculated in the vertex shader when determining 
the fnal color of a fragment. Tis material (as well as the two that follow) 
will include an optional texture parameter that can be set. If a texture is 
passed into the material, it will also cause a shader variable useTexture 
to be set to true, in which case a color sampled from the supplied texture 
will be combined with the material’s base color. To implement this, set the 
fragment shader code in the fat material to be the following: 

uniform vec3 baseColor; 
uniform bool useTexture; 
uniform sampler2D texture; 
in vec2 UV; 
in vec3 light; 
out vec4 fragColor; 
void main() 
{

 vec4 color = vec4(baseColor, 1.0);
 if ( useTexture ) 
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 color *= texture2D( texture, UV );
 color *= vec4( light, 1 );
 fragColor = color; 

} 

Finally, you must add the necessary uniform objects to the mate-
rial using the addUniform function. To proceed, afer the fragment 
shader code and before the function locateUniforms is called, add 
the following code. (Te data for the light objects will be supplied by the 
Renderer class, handled similarly to the model, view, and projection 
matrix data.) 

self.addUniform("vec3", "baseColor", [1.0, 1.0, 1.0]) 
self.addUniform("Light", "light0", None ) 
self.addUniform("Light", "light1", None ) 
self.addUniform("Light", "light2", None ) 
self.addUniform("Light", "light3", None ) 
self.addUniform("bool", "useTexture", 0) 
if texture == None:

 self.addUniform("bool", "useTexture", False) 
else:

 self.addUniform("bool", "useTexture", True)
    self.addUniform("sampler2D", "texture", [texture. 

textureRef, 1]) 

Tis completes the code required for the FlatMaterial class. 
Next, to create the Lambert material, make a copy of the fle 

flatMaterial.py and name the copy lambertMaterial.py. 
Within this fle, change the name of the class LambertMaterial. Since 
the Phong shading model will be used in this material (as opposed to 
the Gouraud shading model), the light-based calculations will occur in 
the fragment shader. Terefore, move the code involving the defnition 
of the Light struct, the declaration of the four Light variables, and the 
function lightCalc from the vertex shader to the beginning of the frag-
ment shader. Ten, since vertex normals will be used instead of face nor-
mals, and since the position and normal data must be transmitted to the 
fragment shader for use in the lightCalc function there, change the 
code for the vertex shader to the following: 

uniform mat4 projectionMatrix; 
uniform mat4 viewMatrix; 

http:lambertMaterial.py
http:flatMaterial.py
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uniform mat4 modelMatrix; 
in vec3 vertexPosition; 
in vec2 vertexUV; 
in vec3 vertexNormal; 
out vec3 position; 
out vec2 UV; 
out vec3 normal; 
void main() 
{
    gl_Position = projectionMatrix * viewMatrix * 

modelMatrix * vec4(vertexPosition, 1);
    position = vec3( modelMatrix * 

vec4(vertexPosition, 1) );
 UV = vertexUV;

    normal = normalize( mat3(modelMatrix) * 
vertexNormal ); 

} 

In the Lambert material fragment shader, the light calculations will 
take place and be combined with the base color (and optionally, texture 
color data). Replace the fragment shader code following the declaration of 
the lightCalc function with the following: 

uniform vec3 baseColor; 
uniform bool useTexture; 
uniform sampler2D texture; 
in vec3 position; 
in vec2 UV; 
in vec3 normal; 
out vec4 fragColor; 

void main() 
{

 vec4 color = vec4(baseColor, 1.0);
 if ( useTexture )

 color *= texture2D( texture, UV );
 // calculate total effect of lights on color
 vec3 total = vec3(0,0,0);
 total += lightCalc( light0, position, normal );
 total += lightCalc( light1, position, normal );
 total += lightCalc( light2, position, normal );
 total += lightCalc( light3, position, normal ); 
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 color *= vec4( total, 1 );
 fragColor = color; 

} 

Tis completes the required code for the LambertMaterial class. 
Finally, you will create the Phong material, which includes specular 

light contributions. Tis calculation is similar to the difuse light calcula-
tion, involving the angle between two vectors (which can be calculated 
using a dot product), but in this case, the vectors of interest are the refec-
tion of the light direction vector and the vector from the viewer or virtual 
camera to the surface point. Tese elements are illustrated in Figure 6.12. 
First, the light direction vector d impacts the surface at a point. Ten, the 
vector d is refected around the normal vector n, producing the refection 
vector r. Te vector from the virtual camera to the surface is indicated by 
v. Te angle of interest is indicated by a; it is the angle between the vector 
r and the vector v. 

Te impact of specular light on an object is typically adjusted by two 
parameters: strength, a multiplicative factor which can be used to make 
the overall specular light efect appear brighter or dimmer, and shininess, 
which causes the highlighted region to be more blurry or more sharply 
defned, which corresponds to how refective the surface will be perceived. 
Figure 6.13 illustrates the efects of increasing the shininess value by a fac-
tor of 4 in each image from the lef to the right. 

To implement these changes, make a copy of the fle lambertMate-
rial.py and name the copy phongMaterial.py. Within this fle, 

FIGURE 6.12 Te vectors used in the calculation of specular highlights. 

FIGURE 6.13 Te efect of increasing shininess in specular lighting. 

http:phongMaterial.py
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change the name of the class PhongMaterial. To perform the neces-
sary calculations in the lightCalc function, it must take in additional 
data. Before the declaration of the lightCalc function, add the follow-
ing uniform declarations (so that this function can access the associated 
values): 

uniform vec3 viewPosition; 
uniform float specularStrength; 
uniform float shininess; 

Ten, within the lightCalc function, in the block of code corre-
sponding to the condition light.lightType > 1, afer the difuse 
value is calculated, add the following code that will calculate the specular 
component when needed (when there is also a nonzero difuse component): 

if (diffuse > 0) 
{
    vec3 viewDirection = normalize(viewPosition -

pointPosition);
    vec3 reflectDirection = reflect(lightDirection, 

pointNormal);
    specular = max( dot(viewDirection, 

reflectDirection), 0.0 );
    specular = specularStrength * pow(specular, 

shininess); 
} 

Finally, in the section of the material code where the uniform data is 
added, add the following two lines of code, which supplies default values 
for the specular lighting parameters. 

self.addUniform("vec3", "viewPosition", [0,0,0]) 
self.addUniform("float", "specularStrength", 1) 
self.addUniform("float", "shininess", 32) 

Tis completes the required code for the PhongMaterial class. 

6.5 RENDERING SCENES WITH LIGHTS 
In this section, you will update the Renderer class to extract the list of light 
objects that have been added to a scene, and supply that information to the 
corresponding uniforms. Following that, you will create a scene featuring 
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all three types of lights and all three types of materials. To begin, in the fle 
renderer.py in the core folder, add the following import statement: 

from light.light import Light 

Next, during the rendering process, a list of lights must be extracted 
from the scene graph structure. Tis will be accomplished in the same 
way that the list of mesh objects is extracted: by creating a flter function 
and applying it to the list of descendents of the root of the scene graph. 
Furthermore, since data for four lights is expected by the shader, if less than 
four lights are present, then default Light objects will be created (which 
result in no contribution to the overall lighting of the scene) and added to 
the list. To proceed, in the render function, afer the meshList vari-
able is created, add the following code: 

lightFilter = lambda x : isinstance(x, Light) 
lightList = list( filter( lightFilter, 
descendentList ) ) 

# scenes support 4 lights; precisely 4 must be present 
while len(lightList) < 4:

 lightList.append( Light() ) 

Next, for all light-based materials, you must set the data for the four 
uniform objects referencing lights; these materials can be identifed dur-
ing the rendering stage by checking if there is a uniform object stored with 
the key "light0". Additionally, for the Phong material, you must set the 
data for the camera position; this case can be identifed by checking for a 
uniform under the key "viewPosition". Tis can be implemented by 
adding the following code in the for loop that iterates over meshList, 
directly afer the matrix uniform data is set. 

# if material uses light data, add lights from list 
if "light0" in mesh.material.uniforms.keys():

 for lightNumber in range(4):
 lightName = "light" + str(lightNumber)
 lightObject = lightList[lightNumber]

        mesh.material.uniforms[lightName].data = 
lightObject 

# add camera position if needed (specular lighting) 

http:renderer.py
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if "viewPosition" in mesh.material.uniforms.keys():
        mesh.material.uniforms["viewPosition"].data = 

camera.getWorldPosition() 

With these additions to the graphics framework, you are ready to cre-
ate an example. To fully test all the classes you have created so far in this 
chapter, you will create a scene that includes all the light types (ambient, 
directional, and point), as well as all the material types (fat, Lambert, 
and Phong). When you are fnished, you will see a scene containing three 
spheres, similar to that in Figure 6.14. From lef to right is a sphere with a 
red fat-shaded material, a sphere with a textured Lambert material, and 
a sphere with a blue-gray Phong material. Te scene also includes a dark 
gray ambient light, a white directional light, and a red point light. Te lat-
ter two light types and their colors may be guessed by the specular light 
colors on the third sphere and the amount of the sphere that is lit by each 
of the lights; the point light illuminates less of the sphere due to its near-
ness to the sphere. 

To begin, you will frst make some additions to the test-template. 
py fle for future convenience. In this fle, add the following import 
statements: 

from geometry.sphereGeometry  import SphereGeometry 
from light.ambientLight import AmbientLight 
from light.directionalLight import DirectionalLight 
from light.pointLight import PointLight 
from material.flatMaterial  import FlatMaterial 
from material.lambertMaterial import LambertMaterial 
from material.phongMaterial import PhongMaterial 

FIGURE 6.14 Rendered scene with all light types and material types. 
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Next, make a copy of the template fle and name it test-6-1.py. In 
this new fle, in the initialize function, replace the code in that func-
tion, starting from the line where the camera object is created, with the 
following code, which will set up the main scene: 

self.camera = Camera( aspectRatio=800/600 ) 
self.camera.setPosition( [0,0,6] ) 

ambient = AmbientLight( color=[0.1, 0.1, 0.1] ) 
self.scene.add( ambient ) 
directional = DirectionalLight( 

color=[0.8, 0.8, 0.8], direction=[-1, -1, -2] ) 
self.scene.add( directional ) 
point = PointLight( 

color=[0.9, 0, 0], position=[1, 1, 0.8] ) 
self.scene.add( point ) 
sphereGeometry = SphereGeometry() 
flatMaterial = FlatMaterial( 

properties={ "baseColor" : [0.6, 0.2, 0.2] } ) 
grid = Texture("images/grid.png") 
lambertMaterial = LambertMaterial( texture=grid ) 
phongMaterial = PhongMaterial( 

properties={ "baseColor" : [0.5, 0.5, 1]} ) 
sphere1 = Mesh(sphereGeometry, flatMaterial) 
sphere1.setPosition( [-2.2, 0, 0] ) 
self.scene.add( sphere1 ) 
sphere2 = Mesh(sphereGeometry, lambertMaterial) 
sphere2.setPosition( [0, 0, 0] ) 
self.scene.add( sphere2 ) 
sphere3 = Mesh(sphereGeometry, phongMaterial) 
sphere3.setPosition( [2.2, 0, 0] ) 
self.scene.add( sphere3 ) 

Finally, change the last line of code in the fle to the following, to make 
the window large enough to easily see all three spheres simultaneously: 

Test( screenSize=[800,600] ).run() 

When you run this program, you should see an image similar to that in 
Figure 6.14. 

http:test-6-1.py
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6.6 EXTRA COMPONENTS 
In Chapter 4, the AxesHelper and GridHelper classes were 
introduced to help provide a sense of orientation and scale within a 
scene by creating simple meshes. In the same spirit, in this section 
you will create two additional classes, PointLightHelper and 
DirectionalLightHelper, to visualize the position of point lights 
and the direction of directional lights, respectively. Figure 6.15 illustrates 
the two helpers added to the scene from the previous test example. Note 
that a wireframe diamond shape is present at the location of the point 
light, and a small wireframe grid with a perpendicular ray illustrates the 
direction of the directional light. Furthermore, in both cases, the color of 
the helper objects is equal to the color of the associated lights. 

First you will implement the directional light helper, which is a grid 
helper object with an additional line segment added. To proceed, in the 
extras folder, create a new fle named directionalLightHelper. 
py containing the following code: 

from extras.gridHelper import GridHelper 
class DirectionalLightHelper(GridHelper):

 def __init__(self, directionalLight):
 color = directionalLight.color
 super().__init__(size=1, divisions=4, 

FIGURE 6.15 Objects illustrating the properties of point lights and directional 
lights. 
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 gridColor=color, centerColor=[1,1,1])
        self.geometry.attributes["vertexPosition"]. 

data += [[0,0,0], [0,0,-10]]
        self.geometry.attributes["vertexColor"].data 

+= [color, color]
        self.geometry.attributes["vertexPosition"]. 

uploadData()
        self.geometry.attributes["vertexColor"]. 

uploadData()
 self.geometry.countVertices() 

Next, you will implement the point light helper, which is a wireframe 
sphere geometry whose resolution parameters are small enough that the 
sphere becomes an octahedron. To proceed, in the extras folder, cre-
ate a new fle named pointLightHelper.py containing the following 
code: 

from geometry.sphereGeometry import SphereGeometry 
from material.surfaceMaterial import SurfaceMaterial 
from core.mesh import Mesh 

class PointLightHelper(Mesh):

    def __init__(self, pointLight, size=0.1, 
lineWidth=1):
 color = pointLight.color

        geometry = SphereGeometry(radius=size, 
radiusSegments=4, heightSegments=2)

 material = SurfaceMaterial({ 
"baseColor": color, 
"wireframe": True, 
"doubleSide": True, 
"lineWidth": linewidth

 })
 super().__init__(geometry, material) 

Next, you will test these helper objects out by adding them to the previ-
ous test example. As an extra feature, you will also illustrate the dynamic 
lighting efects of the graphics framework and learn how to keep the light 

http:pointLightHelper.py
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source and helper objects in sync. In the fle test-6-1.py, add the fol-
lowing import statements: 

from extras.directionalLightHelper import 
DirectionalLightHelper 
from extras.pointLightHelper import PointLightHelper 
from math import sin 

Next, change the code where the directional and point lights are created 
to the following; the variable declarations are changed so that the lights 
can be accessed in the update function later. 

self.directional = DirectionalLight( 
color=[0.8, 0.8, 0.8], direction=[-1, -1, -2] ) 

self.scene.add( self.directional ) 
self.point = PointLight( 

color=[0.9, 0, 0], position=[1, 1, 0.8] ) 
self.scene.add( self.point ) 

Ten, also in the initialize function afer the code that you just 
modifed, add the following. Note that the helper objects are added to their 
corresponding lights rather than directly to the scene. Tis approach takes 
advantage of the scene graph structure and guarantees that the trans-
formations of each pair will stay synchronized. In addition, the position 
of the directional light has been set. Tis causes no change in the efects 
of the directional light; it has been included to position the directional 
light helper object at a convenient location that does not obscure the other 
objects in the scene. 

directHelper = DirectionalLightHelper(self. 
directional) 

self.directional.setPosition( [3,2,0] ) 
self.directional.add( directHelper ) 
pointHelper = PointLightHelper( self.point ) 
self.point.add( pointHelper ) 

Finally, you will add some code that makes the point light move up and 
down while the directional light tilts from lef to right. In the update 
function, add the following code: 

http:test-6-1.py
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self.directional.setDirection( [ -1, sin(0.7*self. 
time), -2] ) 

self.point.setPosition( [1, sin(self.time), 0.8] ) 

When you run the program, you should see the helper objects move as 
described, and the lighting on the spheres in the scene will also change 
accordingly. 

6.7 BUMP MAPPING 
Another efect that can be accomplished with the addition of lights is 
bump mapping: a technique for simulating details on the surface of an 
object by altering the normal vectors and using the adjusted vectors in 
lighting calculations. Tis additional normal vector detail is stored in a 
texture called a bump map or a normal map, in which the (r, g, b) values 
at each point correspond to the (x, y, z) values of a normal vector. Tis 
concept is illustrated in Figure 6.16. Te lef image in the fgure shows 
a colored texture of a brick wall. Te middle image in the fgure shows 
the associated grayscale height map, in which light colors represent a large 
amount of displacement in the perpendicular direction, while dark colors 
represent a small amount. In this example, the white regions correspond to 
the bricks, which extrude slightly from the wall, while the darker regions 
correspond to the mortar between the bricks, which here appears pressed 
into the wall to a greater extent. Te right image in the fgure represents 
the normal map. Points that are shades of red represent normal vectors 
mainly oriented towards the positive x-axis, while green and blue amounts 
correspond to the y-axis and z-axis directions, respectively. Observe that 
in the normal map for this example, the top edge of each brick appears to 
be light green, while the right edge appears to be pink. 

FIGURE 6.16 A color texture, height map texture, and normal map texture for 
a brick wall. 
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FIGURE 6.17 A normal map applied to a rectangle, with point light source on the 
upper-lef (lef) and upper right (right). 

When normal map data is combined with normal data in the fragment 
shader, and the result is used in light calculations, the object in the result-
ing scene will appear to have geometric features that are not actually pres-
ent in the vertex data. Tis is illustrated in Figure 6.17, where the bump 
map from Figure 6.16 has been applied to a rectangle geometry, and is lit 
by a point light from two diferent positions. Te light and dark regions 
surrounding each brick create an illusion of depth even though the mesh 
itself is perfectly fat. 

When a color texture and a bump map are used in combination, the 
results are subtle but signifcantly increase the realism of the scene. Tis is 
particularly evident in an interactive scene with dynamic lighting – a scene 
containing lights whose position, direction, or other properties change. 

To implement bump mapping is fairly straightforward. Te following 
modifcations should be carried out for both the fles lambertMate-
rial.py and phongMaterial.py in the material directory. 

In the—init—function, add the parameter and default value 
bumpTexture=None. 

In the fragment shader, before the main function, add the following 
uniform variable declarations. 

uniform bool useBumpTexture; 
uniform sampler2D bumpTexture; 
uniform float bumpStrength; 

Similar to the way the optional texture parameter works, if the bump-
Texture parameter is set, then useBumpTexture will be set to True. 

http:phongMaterial.py
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In this case, the normal data encoded within the bump texture will be 
multiplied by the strength parameter and added to the normal vector to 
produce a new normal vector. To implement this, in the main function 
in the fragment shader, change the lines of code involving the variable 
total (used for calculating the total light contribution) to the following: 

vec3 bNormal = normal; 
if (useBumpTexture)

 bNormal += bumpStrength * vec3(texture2D( 
bumpTexture, UV )); 
vec3 total = vec3(0,0,0); 
total += lightCalc( light0, position, bNormal ); 
total += lightCalc( light1, position, bNormal ); 
total += lightCalc( light2, position, bNormal ); 
total += lightCalc( light3, position, bNormal ); 
color *= vec4( total, 1 ); 

Finally, you need to add the corresponding uniform data, which paral-
lels the structure for the texture variable. Since texture slot 1 is already 
in use by the shader, texture slot 2 will be reserved for the bump texture. 
Afer the fragment shader code and before the function locateUniforms is 
called, add the following code: 

if bumpTexture == None:
 self.addUniform("bool", "useBumpTexture", False) 

else:
 self.addUniform("bool", "useBumpTexture", True)
 self.addUniform("sampler2D", "bumpTexture", 

[bumpTexture.textureRef, 2]) 
self.addUniform("float", "bumpStrength", 1.0) 

With these additions, the graphics framework can now support bump 
mapping. To create an example, you can use the color and normal map 
image fles provided with this library; alternatively, bump maps or nor-
mal maps may be easily found with an image-based internet search, or 
produced from height maps using graphics editing sofware such as the 
GNU Image Manipulation Program (GIMP), freely available at http:// 
gimp.org. 

To proceed, make a copy of the test template fle and name it test-
6-2.py. In this new fle, in the initialize function, replace the code 

http://gimp.org
http://gimp.org


      

 

 

  

 

Light and Shadow ◾ 301 

in that function, afer the line where the camera object is created, with the 
following code: 

self.camera.setPosition( [0,0,2.5] ) 
ambientLight = AmbientLight( color=[0.3, 0.3, 0.3] ) 
self.scene.add( ambientLight ) 
pointLight = PointLight( 

color=[1,1,1], position=[1.2, 1.2, 0.3]) 
self.scene.add( pointLight ) 

colorTex = Texture("images/brick-color.png") 
bumpTex = Texture("images/brick-bump.png") 

geometry = RectangleGeometry(width=2, height=2) 
bumpMaterial = LambertMaterial( 

texture=colorTex,
 bumpTexture=bumpTex,
 properties={"bumpStrength": 1} 

) 
mesh = Mesh(geometry, bumpMaterial) 
self.scene.add(mesh) 

When you run the application, you should see a scene similar to that in 
Figure 6.18. To fully explore the efects of bump mapping, you may want to 
add a movement rig, animate the position of the light along a path (similar 
to the previous example) or apply the material to a diferent geometric sur-
face, such as a sphere. 

FIGURE 6.18 Combining color texture with normal map texture. 
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6.8 BLOOM AND GLOW EFFECTS 
In this section, you will learn how to implement light-inspired postpro-
cessing efects. Te frst of these is called light bloom, or just bloom, which 
simulates the efect of an extremely bright light overloading the sensors 
in a real-world camera, causing the edges of bright regions to blur beyond 
their natural borders. Figure 6.19 illustrates a scene containing a number 
of crates in front of a simulated light source. Te lef side of the fgure 
shows the scene without a bloom efect, and the right side shows the scene 
with the bloom efect, creating the illusion of very bright lights. 

A similar combination of postprocessing flters can be used to create a 
glow efect, in which objects appear to radiate a given color. Figure 6.20 

FIGURE 6.19 Light bloom postprocessing efect. 

FIGURE 6.20 Glow postprocessing efect. 
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illustrates a scene similar to Figure 6.19, but with the background light 
source removed, and each of the three crates appears to be glowing a dif-
ferent color. Most notably, in contrast to the bloom efect, the colors used 
for glow do not need to appear in the original scene. 

Tese techniques require three new postprocessing efects: brightness 
fltering, blurring, and additive blending. Tese efects will be created in 
the same style used in Section 5.9 on postprocessing in Chapter 5, start-
ing from the template efect fle. To prepare for testing these efects, make 
a copy of the fle test-5–12.py and name it test-6-3.py. Make sure 
that in the line of code where the renderer is created, the clear color is set 
to black by including the parameter clearColor=[0,0,0]; any other 
clear color may cause unexpected efects in the rendered results. Afer 
writing the code for each efect, you can test it in the application by add-
ing the import statement corresponding to the efect and changing the 
efect that is added to the postprocessor. Recall that if no efects are added 
to the postprocessor, then the original scene is rendered, illustrated in 
Figure 6.21; this will serve as a baseline for visual comparison with the 
postprocessing efects that follow. 

First, you will create the brightness flter efect, while only renders the 
pixels with a certain brightness, as illustrated in Figure 6.22. 

Tis efect is accomplished by only rendering a fragment if the sum of 
the red, green, and blue components is greater than a given threshold value; 
otherwise, the fragment is discarded. You will add the threshold value as 

FIGURE 6.21 Default scene with no postprocessing efects. 

http:test-6-3.py
http:test-5�12.py
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FIGURE 6.22 Brightness flter postprocessing efect. 

a parameter in the class constructor, and create a corresponding uniform 
variable in the shader and uniform object in the class. To implement this, 
in the effects folder, make a copy of the templateEffect.py fle 
and name it brightFilterEffect.py. In the new fle, change the 
name of the class to BrightFilterEffect, and change the initializa-
tion function declaration to the following: 

def __init__(self, threshold=2.4): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform float threshold; 
out vec4 fragColor; 

void main() 
{

 vec4 color = texture2D(texture, UV);
 if (color.r + color.g + color.b < threshold)

 discard;
 fragColor = color; 

} 

http:brightFilterEffect.py
http:templateEffect.py
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Finally, add the following line of code near the end of the fle, before the 
locateUniforms function is called. 

self.addUniform("float", "threshold", threshold) 

Tis completes the code for the brightness flter efect; recall that you 
may use the fle test-6-3.py to test this efect, in which case you should 
see a result similar to Figure 6.22. 

Te next efect you will create is a blur efect, which blends the colors 
of adjacent pixels within a given radius. For computational efciency, this 
is typically performed in two passes: frst, a weighted average of pixel col-
ors is performed along the horizontal direction (called a horizontal blur), 
and then, these results are passed into a second shader where a weighted 
average of pixel colors is performed along the vertical direction (called a 
vertical blur). Figure 6.23 shows the results of applying the horizontal and 
vertical blur efects separately to the base scene, while Figure 6.24 shows 
the results of applying these efects in sequence, resulting in blur in all 
directions. 

To create the horizontal blur efect, you will sample the pixels within the 
bounds specifed by a parameter named blurRadius. Since textures are 
sampled using UV coordinates, the shader will also need the dimensions of 
the rendered image (a parameter named textureSize) to calculate the 
pixel-to-UV coordinate conversion factor (which is 1/textureSize). 
Ten, within the fragment shader, a for loop will calculate a weighted 
average of colors along this line, with the greatest weight applied to the 
pixel at the original UV coordinates, and the weights decreasing linearly 

FIGURE 6.23 Horizontal blur (lef) and vertical blur (right). 

http:test-6-3.py
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FIGURE 6.24 A combined two-pass blur postprocessing efect. 

towards the ends of the sample region. Te sum of these colors is normal-
ized by dividing by the sum of the weights, which is equal to the alpha com-
ponent of the sum (since the original alpha component at each point equals 
1). To implement this, in the effects folder, make a copy of the tem-
plateEffect.py fle and name it horizontalBlurEffect.py. In 
the new fle, change the name of the class to HorizontalBlurEffect, 
and change the initialization function declaration to the following: 

def __init__(self, textureSize=[512,512], 
blurRadius=20): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform vec2 textureSize; 
uniform int blurRadius; 
out vec4 fragColor; 
void main() 
{

 vec2 pixelToTextureCoords = 1 / textureSize;
 vec4 averageColor = vec4(0,0,0,0);

    for (int offsetX = -blurRadius; offsetX <= 
blurRadius; offsetX++) 

http:horizontalBlurEffect.py
http:plateEffect.py
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 { 
float weight = blurRadius - abs(offsetX) + 1;

        vec2 offsetUV = vec2(offsetX, 0) * 
pixelToTextureCoords; 

        averageColor += texture2D(texture, UV + 
offsetUV) * weight;

 } 
averageColor /= averageColor.a;
 fragColor = averageColor; 

} 

Finally, add the following code near the end of the fle, before the loca-
teUniforms function is called. 

self.addUniform("vec2", "textureSize", textureSize) 
self.addUniform("int", "blurRadius", blurRadius) 

Tis completes the code for the horizontal blur efect. Te vertical blur 
efect works in the same way, except that the texture is sampled along 
vertical lines. To create this efect, make a copy of the horizontal-
BlurEffect.py fle and name it verticalBlurEffect.py. In the 
new fle, change the name of the class to VerticalBlurEffect. Te 
only change that needs to be made is the for loop in the fragment shader, 
which should be changed to the following: 

for (int offsetY = -blurRadius; offsetY <= 
blurRadius; offsetY++) 

{ 
float weight = blurRadius - abs(offsetY) + 1;

    vec2 offsetUV = vec2(0, offsetY) * 
pixelToTextureCoords;

    averageColor += texture2D(texture, UV + offsetUV) 
* weight; 

} 

At this point, the blur shader efects are complete and can be applied 
individually or in sequence to create images with efects similar to those 
seen in Figures 6.23 and 6.24. 

Te next efect you will create is an additive blend efect, where an addi-
tional texture is overlaid on a rendered scene, using a weighted sum of the 
individual pixel colors. In some applications, color values are multiplied 

http:verticalBlurEffect.py
http:BlurEffect.py
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FIGURE 6.25 Additive blending postprocessing efect. 

together; this is particularly useful for shading, as the component values 
of a color are between 0 and 1, and multiplying by values in this range 
decreases values and darkens the associated colors. Alternatively, adding 
color components increases values and brightens the associated colors, 
which is particularly appropriate when simulating light-based efects. Tis 
efect is illustrated in Figure 6.25, where the original scene is additively 
blended with the grid texture. 

To implement this, in the effects folder, make a copy of the tem-
plateEffect.py fle and name it additiveBlendEffect.py. In 
the new fle, change the name of the class to AdditiveBlendEffect, 
and change the initialization function declaration to the following: 

def __init__(self, blendTexture=None, 
originalStrength=1, blendStrength=1): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform sampler2D blendTexture; 
uniform float originalStrength; 
uniform float blendStrength; 
out vec4 fragColor; 

http:additiveBlendEffect.py
http:plateEffect.py
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void main() 
{

 vec4 originalColor = texture2D(texture, UV);
 vec4 blendColor = texture2D(blendTexture, UV);
 vec4 color = originalStrength * originalColor +

 blendStrength * blendColor;
 fragColor = color; 

} 

Finally, add the following code near the end of the fle, before the 
locateUniforms function is called. Note that since texture slot 1 
is used for the original texture, texture slot 2 will be reserved for the 
blended texture. 

self.addUniform("sampler2D", "blendTexture", 
[blendTexture.textureRef, 2]) 

self.addUniform("float", "originalStrength", 
originalStrength) 

self.addUniform("float", "blendStrength", 
blendStrength) 

With these additions, the additive blend shader efect is complete. 
To combine these efects to create a light bloom efect, assuming that all 

the necessary imports have been added to test-6-3.py, add efects to 
the postprocessor object as follows: 

# combined effects to create light bloom 
self.postprocessor.addEffect( BrightFilterEffect(2.4) ) 
self.postprocessor.addEffect( HorizontalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 
self.postprocessor.addEffect( VerticalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 
mainScene = self.postprocessor.renderTargetList[0]. 
texture 

self.postprocessor.addEffect( AdditiveBlendEffect(
 mainScene, originalStrength=2, blendStrength=1) ) 

Note that the results of the frst render pass (the original scene) are 
accessed through the postprocessor object and blended with the results 
of the bright fltered light afer the light has been blurred. Running this 
application will result in an image similar to that shown in Figure 6.26. 

http:test-6-3.py
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FIGURE 6.26 Light bloom postprocessing efect. 

Next, you will use these shaders to create a glow efect. One method to 
implement glow is to use a second scene, referred to here as the glow scene, 
containing only the objects that should glow. (Tis is analogous to the 
brightness flter step used in creating the light bloom efect.) Te objects in 
the glow scene should use the same geometry data and transform matrices 
as their counterparts in the original scene, but in the glow scene, they will 
be rendered with a solid colored material corresponding to the desired 
glow color. Two postprocessing objects are then used to accomplish the 
glow efect. Te frst renders the glow scene, applies a blur flter, and stores 
the result in a render target (accomplished by setting the finalRen-
derTarget parameter). Te second renders the original scene and then 
applies an additive blend efect using the results from the frst postproces-
sor. Creating a red glow efect applied to the sphere in the main scene in 
this section will produce an image similar to Figure 6.27. 

To implement this example, make a copy of the fle test-6-3.py and 
name it test-6-4.py. Add the following import statements: 

from material.surfaceMaterial import SurfaceMaterial 
from core.renderTarget import RenderTarget 

In the initialize function, make sure that the line of code that 
initializes the renderer is as follows (otherwise, your scene may appear 
oversaturated). 

http:test-6-4.py
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FIGURE 6.27 Glow postprocessing efect. 

self.renderer = Renderer( clearColor=[0,0,0] ) 

Next, in the initialize function, replace all the code involving 
postprocessing with the following: 

# glow scene 
self.glowScene = Scene() 
redMaterial = SurfaceMaterial({"baseColor": [1,0,0]}) 
glowSphere = Mesh(sphereGeometry, redMaterial) 
glowSphere.transform = self.sphere.transform 
self.glowScene.add( glowSphere ) 

# glow postprocessing 
glowTarget = RenderTarget( resolution=[800,600] ) 
self.glowPass = Postprocessor(self.renderer, 

self.glowScene, self.camera, glowTarget) 
self.glowPass.addEffect( HorizontalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 
self.glowPass.addEffect( VerticalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 

# combining results of glow effect with main scene 
self.comboPass = Postprocessor(self.renderer, 

self.scene, self.camera) 
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self.comboPass.addEffect( AdditiveBlendEffect(
    glowTarget.texture, originalStrength=1, 

blendStrength=3)) 

Finally, replace the code in the update function with the following: 

self.glowPass.render() 
self.comboPass.render() 

Running this application should produce a result similar to Figure 6.27. 
If desired, the intensity of the glow can be changed by altering the value of 
the blendStrength parameter in the additive blend efect. 

6.9 SHADOWS 
In this section, you will add shadow rendering functionality to the graph-
ics framework. In addition to adding further realism to a scene, shadows 
can also be fundamental for estimating relative positions between objects. 
For example, the lef side of Figure 6.28 shows a scene containing a ground 
and a number of crates; it is difcult to determine whether the crates are 
resting on the ground. Te right side of Figure 6.28 adds shadow efects, 
which provide visual cues to the viewer so that they may gain a better 
understanding of the arrangement of the objects in the scene. 

6.9.1 Theoretical Background 

In this graphics framework, shadows will be based on a single directional 
light. By defnition, the light rays emitted by a directional light have a 
constant direction and are not afected by distance; these qualities will also 
be present in the corresponding shadows. A point will be considered to be 

FIGURE 6.28 A scene without shadows (lef) and with shadows (right). 
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“in shadow” (or more precisely, in the shadow of another object) when 
there is another point along the direction of the light ray that is closer to 
the light source. In this case, the closer point is also said to have "cast a 
shadow" on the more distant point. Te colors corresponding to a point in 
shadow will be darkened during the rendering process, which simulates a 
reduced amount of light impacting the surface at that point. 

Te data required for creating shadows will be gathered in a rendering 
pass called a shadow pass, performed before the main scene is rendered. 
Te purpose of the shadow pass is to render the scene from the position 
and direction of the light source to determine what points are “visible” to 
the light. Te visible points are considered to be illuminated by light rays, 
and no further shading will be applied. Te points that are not visible from 
the light are considered to be in shadow and will be darkened. 

Recall that during the pixel processing stage of the graphics pipeline, 
for each pixel in the rendered image, the depth bufer stores the distance 
from the viewer to the corresponding point in the scene. Tis information 
is used during the rendering process when a fragment would correspond 
to the same pixel as a previously processed fragment, in order to determine 
whether the new fragment is closer to the viewer, in which case the new 
fragment’s data overwrites the data currently stored in the color and depth 
bufers. In the fnal rendered image of a scene, each pixel corresponds to a 
fragment that is the shortest distance from the camera, as compared to all 
other fragments that would correspond to the same pixel. Tis “shortest 
distance” information from the depth bufer can be used to generate 
shadows according to the following algorithm (called shadow mapping): 

• Render the scene from the point of view of the directional light and 
store the depth bufer values. 

• When rendering the main scene, calculate the distance from each 
fragment to the light source. If this distance is greater than the 
corresponding stored depth value, then the fragment is not closest to 
the light source, and therefore, it is in shadow. 

Te depth bufer values that are generated during the shadow pass will be 
stored in a texture called the depth texture, which will contain grayscale 
colors at each pixel based on the corresponding depth value. Due to the 
default confguration of the depth test function, depth values near 0 
(corresponding to dark colors) represent nearby points. Conversely, depth 
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FIGURE 6.29 A scene including a directional light and shadows. 

values near 1 (corresponding to light colors) represent more distant points. 
To help visualize these concepts, Figure 6.29 depicts a scene, including 
shadows cast by a directional light, rendered from the point of view of 
a perspective camera. Te position and direction of the directional light 
are indicated by a directional light helper object. On the lef side of Figure 
6.30 we see the same scene, rendered by a camera using an orthographic 
projection, from the point of view of the directional light. For convenience, 
this secondary camera will be referred to as the shadow camera. Note 
that no shadows are visible from this point of view; indeed, the defn-
ing characteristic of shadows is that they are exactly the set of points not 
visible from the shadow camera. Te right side of Figure 6.30 shows the 
corresponding grayscale depth texture that will be produced during the 
shadow pass. 

When rendering shadows with this approach, there are some limita-
tions and constraints that should be kept in mind when setting up a scene. 
First, the appearance of the shadows is afected by the resolution of the 
depth texture; low resolutions will lead to shadows that appear pixelated, 
as illustrated in Figure 6.31. Second, the points in the scene that may cast 
shadows or be in shadow are precisely those points contained in the vol-
ume rendered by the shadow camera. One could increase the viewing 
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FIGURE 6.30 A scene viewed from a directional light (lef) and the correspond-
ing depth texture (right). 

FIGURE 6.31 Shadow pixelation artifacts. 

bounds of the shadow camera to encompass a larger area, but unless the 
resolution of the depth texture is increased proportionally, there will be 
fewer pixels corresponding to each unit of world space, and the pixelation 
of the shadows will increase. To reduce shadow pixelation, one typically 
adjusts the shadow camera bounding parameters to closely ft the region 
of the scene involving shadows. 

A point will be considered to be in shadow when two conditions are 
true: the surface must be facing the light at the point in question, and the 
distance from the point to the light must be greater than the value stored 
in the depth texture (indicating that a closer point exists and is casting 
a shadow on this point). Te frst of these conditions can be checked by 
examining the angle between the light direction and the normal vector to 
the surface at that point. If the cosine of that angle is greater than 0, then 
the angle is less than 90°, indicating that the surface is indeed facing the 
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light at that point. (Since this calculation requires interpolated normal vec-
tors for each fragment, the shadow calculations will only be implemented 
for the Lambert and Phong materials in this framework.) 

To check the second condition, depth information must be extracted 
from the depth texture. Selecting the correct point from the depth tex-
ture requires us to know where a particular fragment would appear if 
it were being rendered during the shadow pass. Calculating this infor-
mation during the normal rendering pass requires access to the infor-
mation stored by the shadow camera object (its projection matrix and 
view matrix). Position calculations are most efciently handled in a ver-
tex shader, where the standard model/view/projection matrix multiplica-
tions are typically performed. Te result will be in clip space coordinates, 
where the coordinates of points in the visible region are each in the range 
from −1 to 1. Once this calculation is performed on the vertex position, 
this value (which will be called the shadow position, as it is derived from 
shadow camera data) will be transmitted to the fragment shader and 
interpolated for each fragment. 

In the fragment shader, the coordinates of the shadow position vari-
able can be used to calculate and recover the required depth values. Te 
x and y coordinates can be used to derive the coordinates of the corre-
sponding pixel in the rendered image (as viewed from the shadow cam-
era), or more importantly, the UV coordinates corresponding to that 
pixel, which are needed to retrieve a value stored in the depth texture. 
Since clip space coordinates range from −1 to 1, while UV coordinates 
range from 0 to 1, the shadow position coordinates need to be trans-
formed accordingly before sampling the texture. Recall that the value 
retrieved from the depth texture represents the distance to the closest 
point (relative to the shadow camera frame of reference) and is in the 
range from 0 to 1. Te distance from the fragment being processed to 
the shadow camera is stored in the z component of the shadow position 
variable. Afer converting this value to the range from 0 to 1, you can 
compare the distance from the fragment to the shadow camera with the 
closest stored distance to the shadow camera. If the fragment distance is 
greater, then a diferent point is closer to the shadow camera along this 
direction, in which case the fragment is considered to be in shadow and 
its color will be adjusted accordingly. 

With this knowledge, you are now prepared to add shadow efects to the 
graphics framework. 
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6.9.2 Adding Shadows to the Framework 

Te steps involved in adding shadow casting functionality to the graph-
ics framework are similar to the steps involved in adding the lighting 
efects at the beginning of this chapter. First, a special material called 
DepthMaterial will be created to generate the depth texture during 
the shadow pass. Ten, a Shadow class will be created to store the objects 
necessary for shadow calculations (including a reference to the direc-
tional light, the shadow camera, and a render target to be used during 
the shadow pass). In the LambertMaterial and PhongMaterial 
classes, a shadow struct will be defned to group related variables used in 
the shadow calculations. Ten, the vertex and fragment shaders of both 
these materials will be updated with additional uniform objects and code. 
Te Uniform class will be extended to store Shadow objects and upload 
data to the corresponding felds in a uniform shadow variable in the shad-
ers. Finally, the Renderer class will be updated with a new enableShad-
ows function, which will generate a Shadow object and cause a shadow 
pass to be performed by the render function before the main scene 
is rendered. As usual, afer the framework classes have been updated, 
you will create an interactive scene to verify that everything works as 
expected. 

To begin, you will frst create the DepthMaterial class. In the 
material folder, create a new fle named depthMaterial.py con-
taining the following code. Note the use of the built-in GLSL variable 
gl _ FragCoord, whose z coordinate stores the depth value. Since 
the fragment shader is using grayscale colors to encode depth values in 
the texture, any component of the texture color may be used later on to 
retrieve this “closest distance to light” information. 

from material.material import Material 

class DepthMaterial(Material): 

def __init__(self):
 # vertex shader code
 vertexShaderCode = """
 in vec3 vertexPosition; 
uniform mat4 projectionMatrix;
 uniform mat4 viewMatrix;
 uniform mat4 modelMatrix; 

http:depthMaterial.py
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 void main()
 {

            gl_Position = projectionMatrix * 
viewMatrix *
 modelMatrix * vec4(vertexPosition, 1);

 }
 """

 # fragment shader code
 fragmentShaderCode = """
 out vec4 fragColor;
 void main()
 {

 float z = gl_FragCoord.z;
 fragColor = vec4(z, z, z, 1);

 }
 """

 # initialize shaders
        super().__init__(vertexShaderCode, 

fragmentShaderCode)
 self.locateUniforms() 

Next, you will create a Shadow class to store the objects necessary for 
the shadow mapping algorithm previously described. For points in the 
scene that do not map to pixels within the depth texture, the pixel should 
be colored white, which will prevent shadows from being generated at 
that point. For this reason, it is important to use the texture parameter 
wrap setting CLAMP_TO_BORDER; the default texture border color was 
already set to white in the Texture class. In the light folder, create a 
new fle named shadow.py with the following code: 

from core.camera import Camera 
from core.renderTarget import RenderTarget 
from material.depthMaterial import DepthMaterial 
from OpenGL.GL import * 

class Shadow(object):

 def __init__(self, lightSource, strength=0.5, 
resolution=[512,512], 

http:OpenGL.GL
http:shadow.py
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                 cameraBounds=[-5,5, -5,5, 0,20], 
bias=0.01):

 super().__init__()

 # must be directional light
 self.lightSource = lightSource

        # camera used to render scene from perspective 
of light

 self.camera = Camera()
        left, right, bottom, top, near, far = 

cameraBounds
 self.camera.setOrthographic(left, right, bottom,

 top, near, far)
 self.lightSource.add( self.camera )
 # target used during the shadow pass,
 # contains depth texture 
self.renderTarget = RenderTarget( resolution, 

properties={"wrap": GL_CLAMP_TO_BORDER} )
 # render only depth data to target texture
 self.material = DepthMaterial()
 # controls darkness of shadow
 self.strength = strength
 # used to avoid visual artifacts
 # due to rounding/sampling precision issues
 self.bias = bias

 def updateInternal(self):
 self.camera.updateViewMatrix()
 self.material.uniforms["viewMatrix"].data =

 self.camera.viewMatrix
        self.material.uniforms["projectionMatrix"]. 

data = self.camera.projectionMatrix 

Next, you will need to update both the Lambert and Phong materials 
to support shadow efects. Te following modifcations should be made 
to both the fles lambertMaterial.py and phongMaterial.py in the 
material directory. 

http:phongMaterial.py
http:lambertMaterial.py
http:bias=0.01
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In the __init __ function, add the parameter and default value 
useShadow=False, which will need to be set to True when the mate-
rial is created if shadow efects are desired. Since shadow-related calcula-
tions will take place in both the vertex and fragment shader, in the code for 
each, add the following struct defnition before the main function: 

struct Shadow 
{

 // direction of light that casts shadow
 vec3 lightDirection;

 // data from camera that produces depth texture
 mat4 projectionMatrix;
 mat4 viewMatrix;

    // texture that stores depth values from shadow 
camera

 sampler2D depthTexture;

 // regions in shadow multiplied by (1-strength)
 float strength;

 // reduces unwanted visual artifacts
 float bias; 

}; 

Afer the Shadow struct defnition in the vertex shader, add the follow-
ing variables: 

uniform bool useShadow; 
uniform Shadow shadow0; 
out vec3 shadowPosition0; 

In the vertex shader main function, add the following code, which cal-
culates the position of the vertex relative to the shadow camera. 

if (useShadow) 
{
    vec4 temp0 = shadow0.projectionMatrix * shadow0. 

viewMatrix *
 modelMatrix * vec4(vertexPosition, 1); 
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 shadowPosition0 = vec3( temp0 ); 
} 

Afer the Shadow struct defnition in the fragment shader, add the fol-
lowing variables: 

uniform bool useShadow; 
uniform Shadow shadow0; 
in vec3 shadowPosition0; 

In the fragment shader main function, before the value of frag-
Color is set, add the following code, which determines if the surface is 
facing towards the light direction, and determines if the fragment is in 
the shadow of another object. When both of these conditions are true, the 
fragment color is darkened by multiplying the color variable by a value 
based on the shadow strength parameter. 

if (useShadow) 
{
    // determine if surface is facing towards light 

direction
 float cosAngle = dot( normalize(normal), 

-normalize(shadow0.lightDirection) );
 bool facingLight = (cosAngle > 0.01);

 // convert range [-1, 1] to range [0, 1]
 //  for UV coordinate and depth information

    vec3 shadowCoord = ( shadowPosition0.xyz + 1.0 ) 
/ 2.0;

 float closestDistanceToLight = texture2D(
      shadow0.depthTexture, shadowCoord.xy).r;
    float fragmentDistanceToLight = 

clamp(shadowCoord.z, 0, 1);
    // determine if fragment lies in shadow of another 

object
 bool inShadow = ( fragmentDistanceToLight >

         closestDistanceToLight + shadow0.bias );

 if (facingLight && inShadow)
 {

 float s = 1.0 - shadow0.strength; 
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 color *= vec4(s, s, s, 1);
 } 

} 

Finally, in the part of the class where uniform data is added and before 
the locateUniforms function is called, add the following code. Similar to 
code for adding Light uniforms, the data for the Shadow uniform will be 
supplied by the Renderer class. 

if not useShadow:
 self.addUniform("bool", "useShadow", False) 

else:
 self.addUniform("bool", "useShadow", True)
 self.addUniform("Shadow", "shadow0", None) 

Now that the contents of the Shadow class and the related struct 
are understood, you will update the Uniform class to upload this 
data as needed. In the fle uniform.py in the core folder, in the 
locateVariable function, add the following code as a new case within 
the if-else block: 

elif self.dataType == "Shadow":
 self.variableRef = {}
 self.variableRef["lightDirection"] =

 glGetUniformLocation(programRef, 
variableName + ".lightDirection")

 self.variableRef["projectionMatrix"] =
 glGetUniformLocation(programRef, 

                variableName + ".projectionMatrix")
 self.variableRef["viewMatrix"] =

        glGetUniformLocation(programRef, variableName + 
".viewMatrix")

 self.variableRef["depthTexture"] =
 glGetUniformLocation(programRef, 

                variableName + ".depthTexture")
 self.variableRef["strength"] =

        glGetUniformLocation(programRef, variableName + 
".strength")

 self.variableRef["bias"] =
        glGetUniformLocation(programRef, variableName + 

".bias") 

http:uniform.py
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Ten, in the Uniform class uploadData function, add the following 
code as a new case within the if-else block. (Te texture unit reference 
value was chosen to be a value not typically used by other textures.) 

elif self.dataType == "Shadow":

 direction = self.data.lightSource.getDirection()
 glUniform3f( self.variableRef["lightDirection"], 

direction[0], direction[1], direction[2] )

    glUniformMatrix4fv( self. 
variableRef["projectionMatrix"], 
1, GL_TRUE, self.data.camera.projectionMatrix )

    glUniformMatrix4fv( self. 
variableRef["viewMatrix"], 
1, GL_TRUE, self.data.camera.viewMatrix )

 # configure depth texture
    textureObjectRef = self.data.renderTarget.texture. 

textureRef
 textureUnitRef = 15
 glActiveTexture( GL_TEXTURE0 + textureUnitRef )
 glBindTexture( GL_TEXTURE_2D, textureObjectRef )

    glUniform1i( self.variableRef["depthTexture"], 
textureUnitRef )

    glUniform1f( self.variableRef["strength"], self. 
data.strength )

    glUniform1f( self.variableRef["bias"], self.data. 
bias ) 

Te fnal set of changes and additions involve the Renderer class. To 
begin, add the following import statement: 

from light.shadow import Shadow 
In the __init__ function, add the following line of 
code: 
self.shadowsEnabled = False 

Afer the—init—function, add the following function which will 
enable the shadow pass that will soon be added to the render function. 
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Te only required parameter is shadowLight, the directional light that 
will be used to cast shadows. 

def enableShadows(self, shadowLight, strength=0.5, 
resolution=[512,512]):

 self.shadowsEnabled = True
 self.shadowObject = Shadow(shadowLight, 

strength=strength, resolution=resolution) 

Te main addition to the Renderer class is the shadow pass. Te col-
lection of mesh objects in the scene must be gathered into a list before the 
shadow pass, therefore the corresponding block of code will be moved, as 
shown in what follows. 

During the shadow pass, the framebufer stored in the shadow render 
target will be used, and bufers cleared as normal. If there are no objects 
in the scene to generate a color for a particular pixel in the depth tex-
ture, then that pixel should be colored white, which will prevent a shadow 
from being generated at that location, and therefore, this is used as the 
clear color for the shadow pass. Much of the remaining code that follows 
is a simplifed version of a standard render pass, as only one material (the 
depth material) will be used, and only triangle-based meshes need to be 
included at this stage. To proceed, at the beginning of the render func-
tion, add the following code: 

# filter descendents 
descendentList = scene.getDescendentList() 
meshFilter = lambda x : isinstance(x, Mesh) 
meshList = list( filter( meshFilter, descendentList ) 
) 

# shadow pass 
if self.shadowsEnabled:

 # set render target properties
 glBindFramebuffer(GL_FRAMEBUFFER, 

self.shadowObject.renderTarget.framebufferRef)
    glViewport(0,0, self.shadowObject.renderTarget. 

width, self.shadowObject.renderTarget.height)

 # set default color to white,
 # used when no objects present to cast shadows 
glClearColor(1,1,1,1) 
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 glClear(GL_COLOR_BUFFER_BIT)
 glClear(GL_DEPTH_BUFFER_BIT)

    # everything in the scene gets rendered with 
depthMaterial

 # so only need to call glUseProgram & set 
matrices once

    glUseProgram( self.shadowObject.material. 
programRef ) 

self.shadowObject.updateInternal()

 for mesh in meshList:
 # skip invisible meshes
 if not mesh.visible:

 continue

 # only triangle-based meshes cast shadows
        if mesh.material.settings["drawStyle"] != 

GL_TRIANGLES:
 continue

 # bind VAO
 glBindVertexArray( mesh.vaoRef )

 # update transform data
        self.shadowObject.material. 

uniforms["modelMatrix"].data =
 mesh.getWorldMatrix()

        # update uniforms (matrix data) stored in 
shadow material

 for varName, unifObj in 
                    self.shadowObject.material. 

uniforms.items():
 unifObj.uploadData()

   glDrawArrays( GL_TRIANGLES, 0, mesh.geometry. 
vertexCount ) 

Finally, in the standard rendering part of the render function, the 
Shadow object needs to be copied into the data variable of the corre-
sponding Uniform object, if shadow rendering has been enabled and if 
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such a uniform exists in the material of the mesh being drawn at that stage. 
To implement this, in the fnal for loop that iterates over meshList, in 
the section where mesh material uniform data is set and before the uplo-
adData function is called, add the following code: 

# add shadow data if enabled and used by shader 
if self.shadowsEnabled and "shadow0" in mesh.material. 
uniforms.keys():

    mesh.material.uniforms["shadow0"].data = self. 
shadowObject 

Tis completes the additions to the Renderer class in particular and 
support for rendering shadows in the graphics framework in general. You 
are now ready to create an example to produce a scene similar to that illus-
trated in Figure 6.28. 

In your main project direction, create a new fle named test-6-5.py 
containing the following code, presented here in its entirety for simplicity. 
Note the inclusion of commented out code, which can be used to illustrate 
the dynamic capabilities of shadow rendering, render the scene from the 
shadow camera perspective, or display the depth texture on a mesh within 
the scene. 

from core.base import Base 
from core.renderer import Renderer 
from core.scene  import Scene 
from core.camera import Camera 
from core.mesh import Mesh 
from core.texture  import Texture 
from lights.ambientLight import AmbientLight 
from lights.directionalLight import DirectionalLight 
from material.phongMaterial import PhongMaterial 
from geometry.rectangleGeometry import 
RectangleGeometry 

from geometry.sphereGeometry import SphereGeometry 
from extras.movementRig import MovementRig 
from extras.directionalLightHelper import 
DirectionalLightHelper 
# testing shadows 
class Test(Base):

 def initialize(self): 

http:test-6-5.py
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 self.renderer = Renderer([0.2, 0.2, 0.2])
 self.scene  = Scene()
 self.camera = Camera( aspectRatio=800/600 )
 self.rig = MovementRig()
 self.rig.add( self.camera )
 self.rig.setPosition( [0,2,5] )

 ambLight = AmbientLight( color=[0.2, 0.2, 0.2] )
 self.scene.add( ambLight )

        self.dirLight = DirectionalLight( 
direction=[-1,-1,0] )

 self.dirLight.setPosition( [2,4,0] )
 self.scene.add( self.dirLight )

        directHelper = DirectionalLightHelper(self. 
dirLight)

 self.dirLight.add( directHelper )

 sphereGeometry = SphereGeometry()
 phongMaterial = PhongMaterial( 

            texture=Texture("images/grid.png"), 
useShadow=True )

 sphere1 = Mesh(sphereGeometry, phongMaterial)
 sphere1.setPosition( [-2, 1, 0] )
 self.scene.add( sphere1 )

 sphere2 = Mesh(sphereGeometry, phongMaterial)
 sphere2.setPosition( [ 1, 2.2, -0.5] )
 self.scene.add( sphere2 )

 self.renderer.enableShadows( self.dirLight )

        # optional: render depth texture to mesh in 
scene

 # depthTexture =
                    self.renderer.shadowObject. 

renderTarget.texture
 # shadowDisplay = Mesh( RectangleGeometry(), 

                          TextureMaterial 
(depthTexture) )

 # shadowDisplay.setPosition([-1,3,0]) 
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 # self.scene.add( shadowDisplay )

        floor = Mesh( RectangleGeometry(width=20, 
height=20), phongMaterial)

 floor.rotateX(-3.14/2)
 self.scene.add(floor)

 def update(self):

        # view dynamic shadows -- need to increase 
shadow camera range

 # self.dirLight.rotateY(0.01337, False)

 self.rig.update( self.input, self.deltaTime ) 
self.renderer.render( self.scene, self.camera )

 # render scene from shadow camera
        # shadowCam = self.renderer.shadowObject. 

camera
 # self.renderer.render( self.scene, shadowCam ) 

# instantiate this class and run the program 
Test( screenSize=[800,600] ).run() 

At this point, you can now easily include shadows in your scenes. If 
desired, you can also include them together with the other lighting-based 
efects implemented throughout this chapter, to create scenes showcasing 
a variety of techniques as illustrated in Figure 6.1. 

6.10 SUMMARY AND NEXT STEPS 
In this chapter, you learned about diferent types of lighting, light sources, 
illumination models, and shading models. Afer creating ambient, 
directional, and point light objects, you added normal vector data to 
geometric objects and used them in conjunction with light data to imple-
ment lighting with fat-shaded, Lambert, and Phong materials. You used 
normal vector data encoded in bump map textures to add the illusion of 
surface detail to geometric objects with light. Ten, you extended the set 
of postprocessing efects, enabling the creation of light bloom and glow 
efects. Finally, you added shadow rendering capabilities to the framework, 
which built on all the concepts you have learned throughout this chapter. 

While this may be the end of this book, hopefully it is just the beginning 
of your journey into computer graphics. As you have seen, Python and 
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OpenGL can be used together to create a framework that enables you 
to rapidly build applications featuring interactive, animated three-
dimensional scenes with highly sophisticated graphics. Te goal of this book 
has been to guide you through the creation of this framework, providing 
you with a complete understanding of the theoretical underpinnings and 
practical coding techniques involved, so that you can not only make use of 
this framework, but also further extend it to create any three-dimensional 
scene you can imagine. Good luck to you in your future endeavors! 


