
6. Matrices: Tools for Manipulating Space 

Matrices in Computer Graphics 

Matrices are used in 2D and 3D computer graphic systems to perform the standard 
affine transformations of translation, scaling and rotation that form part of the 
modelling, viewing and coordinate changing processes. Perspective viewing can also 
be described by a matrix method ('matrix' is the singular of 'matrices'). These 
different operations can be dealt with in a unified way through their representation as 
matrix operations, simplifying the code used for these purposes. Matrices, used in 
conjunction with homogeneous coordinate methods, also enable sequences of 
transformations to be 'concatenated' into a single operation, thus offering 
considerable time saving. A matrix maps directly into the two-dimensional array 
data structure that is readily available in most computer languages. It is a compact 
method of storing several numbers. These are all reasons for matrix methods to lie 
at the heart of most computer graphics systems. 

The following sections define and develop laws controlling matrices and explain 
their properties before describing explicitly their main applications to computer 
graphics. It is hoped that this justification will give readers enough motivation to 
pursue the chapter through the properties and definitions until the importance of the 
use of matrices for computer graphics is made clear. Only those properties that are 
useful in the context of computer graphics are explained. 

Definition and Notation 

A matrix is a rectangular array of elements. For our purposes, the elements are real 
numbers, although there is no reason why they cannot be other entities, even 
matrices themselves. The array is a structure that holds elements of interest. The 
word 'matrix' can mean the womb or a cavity in which things are embedded. These 
include the structure of claws which hold jewels in a ring or brooch, the base 
material within which nuggets of ore or precious materials are located in geology or 
the mould from which type is cast. The rectangular form of a mathematical matrix 
means that elements appear in complete rows and columns. 

Most of the notation concerning matrices is made clear by a single statement. 

all a l2 all a ln 
A = a 21 a 22 a 2l a 2n 

The matrix itself is denoted by an upper case (capital) character, with its elements, 
enclosed within square brackets, carrying the same lower case character. Some texts 
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use round brackets '(' and ')'. This is not an important issue; curly braces '{' and '}' 
or plain vertical lines should, however, not be used as they can have different 
meanings. Each element has a pair of suffixes, indicating its row and column 
position. The (horizontal) row is always denoted before the (vertical) column. The 
general example given above has m rows and n columns and is said to have order 
(m x n) - pronounced 'm by n'. Again, rows before columns is the rule. For 
example, if we have 

[ 
3 8 -4 0] 

B= 2-885 
1 1 4 11 

and [ 4 1 7] 
C = -3 1 -5 , 

2 -4 1 

matrix B has order (3 x 4), with bl3 = -4 and b31 = 1, and C has order (3 x 3), with 
C13 = 7 and C31 = 2. 

The simplest matrix operation is to find a transpose. The transpose A T of a 
matrix A is found by writing the rows of A as the columns of AT. Some texts use 
- T 
A or A' for transpose. If matrix P has order (m x n) and Q = P , then Q has order 
(n x m) and qij = Pji for all i and j (that is, for i = 1 to n and j = 1 to m). For 
example, the transposes of the example matrices B and C given above are 

[ 3 2 1] 
BT= 8-81 

-4 8 4 
o 5 11 

and [ 4 -3 2] 
CT = 1 1 -4 . 

7 -5 1 

Forms of Matrices 

Many of the matrices used in computer graphics have the same number of rows as 
columns. Such matrices are known as square matrices. C above is an example of a 
'square matrix of order 3', which means the same as a 'matrix of order (3 x 3)'. 

Particularly for a square matrix, the set of elements whose row and column 
numbers are equal is known as the leading diagonal. For our example matrix C, the 
elements cII' C22 and C33 are emboldened to show the leading diagonal below. 

[ 4 1 7] 
C = -3 1 -5 . 

2 -4 1 

For reasons that should be obvious on inspection, the matrices D, E, F and G below 
are known as diagonal, upper triangular, lower triangular and symmetric 
respectively. 

D=[ ~~~], 
005 

[ -2 2 -1] 
E= 0-43, 

005 
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[ 4 0 0] 
F = -3 -3 0 , 

2 -4 -1 
[ 3 1 -2] 

G = 1 -5 -5 . 
-2 -5 1 

More formally stated, the rules for such square matrices are 
• D is diagonal if and only if: dij = 0 whenever i f. j; 
• E is upper triangular if and only if: eij = 0 whenever i > j; 
• F is lower triangular if and only if: iij = 0 whenever i < j; 
• G is symmetric if and only if: gij = &i for all i and j. 

Operations on Matrices: Addition 

There is no point in merely defining and describing several forms of matrices and 
looking at them in wonder, as one might admire the jewels held in a brooch. 
Matrices were developed in the mid to late nineteenth century, particularly by Arthur 
Cayley and James Joseph Sylvester, because they were useful in a number of topical 
problems. Werner Heisenberg developed some methods in the mid 1920s in 
advancing the topic of quantum mechanics; he was advised by Max Born that he 
had redeveloped some results from matrix theory. We now look at laws for 
comparing, manipulating and combining matrices that are useful in the context of 
computer graphics. 

For two matrices to be equal, they have to be identical in all aspects. Equality of 
two matrices implies that they have the same orders and all pairs of corresponding 
elements are equal. Matrices also have to be of the same form before they can be 
added. Two matrices are conformable for addition if and only if they have the same 
orders. If this is the case, their sum has the same order and is formed by filling its 
elements with the sums of corresponding elements from the matrices to be added. 
Addition of matrices is a binary operator, as it takes in two matrices and blends 
them to give one as a result. Both addition and equality are illustrated in the 
statement 

o -4 -5 + -4 
3 -1 

-4 4 4 = -12 -4 0 -1, H 
-2 8 1] [-2 
303 5 1 3 

0] [2 1 7 1] 
-3 10 4 3 0 

but no sum can be formed from two matrices that are not compatible for addition, 
such as 

[ 4 -2 8 1] [-2 3 -1] -8 0 -4 -5 and -4 -4 4. 
5303 513 

If a matrix is added to itself (this is always possible as the order must be the same), 
the effect is to multiply each element by 2. Similar repeated addition gives 
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multiples by 3, 4, and so on. This suggests the rule for multiplying a matrix by a 
scalar (a scalar is simply a single real valued number; this term is used to 
distinguish it from other mathematical 'objects' such as matrices and vectors). To 
multiply a matrix A by a scalar value A, simply multiply all elements of A by A. 
For example, 

[
-5 

-4 3 
-4 

-2] [20 8] 1 = -12 -4. 
3 16 -12 

Operations on Matrices: Multiplication 

We have seen how to multiply a matrix by a scalar; now we consider the binary 
operation that mUltiplies a matrix by another matrix. This is not as straightforward 
as the operations described above. It may seem bewildering why a relatively 
complex operation is performed, when an easier one could have been defined. The 
reason is its usefulness. Defining an easy operation that has no obvious uses serves 
no purpose. A relatively complicated definition is used because it is useful across a 
wide range of potential applications. It is worth persevering to master the skill of 
multiplying matrices. 

As in the case of addition, it is not always possible to mUltiply a pair of 
matrices. Matrices A and B can be multiplied only if they are conformable for 
multiplication, which occurs when the number of columns of A is equal to the 
number of rows of B. Thus, if A has order (m x p) and B has order (p x n), 
multiplication is allowed. Note that the row length of A is the same as the column 
length ofB; they are both equal to p. This is essential for the multiplication process 
described below. For example, when 

[ 2 -2 1] [-3 A = 4 4 -1 and B = -1 
-2 0 5 0 

the order of A is (3 x 3) and that of B is (3 x 2), so A and B are compatible for 
multiplication. The rows of A and the columns of B contain three elements. To 
decide on compatibility for multiplication, write down the orders of both matrices 
next to each other, as '(3 x 3) (3 x 2)'. If the central numbers can be equally 'linked', 
as in 

(3 xQIillx 2) 

then the matrices are conformable for multiplication. The numbers outside the 
linking box are also significant. They give the order of the matrix that results from 
the multiplication, (3 x 2) in this example. Thus, in general, if A has order (m x p) 
and B has order (p x n), multiplication is allowed and the resulting product matrix, 
C say, has order (m x n). 



6. Matrices: Tools for Manipulating Space 151 

Now we need to find the elements of C. The ith row of A and j'h column of B 
have elements 

and 

respectively (remember that the first suffix indicates the row position and the second 
indicates the column position). To find the element Cij of C, these elements are 
multiplied together pair by pair, the resulting values being summed to give 

The' .. .' can be avoided using more formal mathematical notation as 

This is be interpreted as 'the sum of all values of aikbkj when k changes from I to p'. 
The Greek equivalent of capital S, '~', is used to denote that a sum is being found. 
This form of sum of repeated products is sometimes called an 'inner product' in 
mathematical texts. 

For example, to find element C32 of the product C of our example matrices A and 
B, 

[ 2 -2 1] [-3 3] A = 4 4 -1 and B = -1 -5 , 
-2 0 5 0 4 

we take the third row of A and the second column of B, 

-2 0 5 

multiply pair-wise as 

-2 x 3 =-6 
Ox -5 = 0 
5 x 4 = 20 

and add to give 

and 

C32 = -6 + 0 + 20 = 14. 

3 
-5 
4, 
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This is done for all six elements of C to give 

[ 2 -2 1] [ -3 3] [-4 20] 4 4 -1 -1 -5 = -16 -12 . 
-2 0 5 0 4 6 14 

This rather unpleasant, but useful, process has a number of consequences. Matrix 
multiplication is not commutative; in general AB t- BA. Even if AB can be formed, 
it may not be possible to find the product BA. This is the case in the example 
above, where A has order (3 x 3) and B has order (3 x 2). A and B are compatible for 
multiplication, but B and A are not. In a product AB, A is said to pre-multiply B 
and B is said to post-multiply A. 

Given matrices A order (m x p), Border (p x q) and Corder (q x n), the product 
AB can be formed, having order (m x q). This is conformable for multiplication 
with C, and the permitted product (AB)C has order (m x n). In (AB)C, the brackets 
indicate that the product AB is the first to be performed in time. Alternatively, we 
could form the product BC with order (p x n) and then pre-multiply by A to give 
A(BC) with order (m x n). Both (AB)C and A(BC) are valid sequences of 
multiplication; both give matrices of the same order (m X n) and both end up giving 
exactly the same result. Thus, we can write both forms as ABC, the order of 
performing the multiplication being irrelevant. No proof is offered, but readers can 
justify this by trying a few examples. This appears to imply that the order of 
multiplication does not matter, whereas the last paragraph stressed that it does. The 
apparent paradox is due to different interpretations of the word 'order'. It is 
important to maintain positional order when multiplying matrices, but change of 
time order does not affect the outcome. This result will be useful later when we 
consider matrix operations to perform sequences of transformations on points. 

The product AB involves the rows of A associated with the columns of B. In 
forming a transpose as defined above, rows and columns are exchanged, leading to 
the following rule for transpose of a product: 

This, and the multiple product rule described above, can be verified by trying out a 
few examples. 

The Identity Matrix 

In number theory, the identity element for any binary operation leaves the other 
value concerned unchanged. For example, zero has this role for addition (adding zero 
to any value leaves it unchanged) and 1 has this role for multiplication. An identity 
element for matrix multiplication is known as the identity matrix or unit matrix, 
designated by the symbol I. There is more than one form of identity matrix, 
depending on the order of the matrix needed to perform the multiplication. I is 
always a square diagonal matrix. If required, it can be designated as In, where n 
indicates its order. It is easy to verify that 
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[ 1 0... 0] 
I = . ~ .. 1. : :: . ~ , 

o 0... 1 

with all elements zero except the unit values in the leading diagonal, satisfies these 
requirements.IfI pre-multiplies or post-multiplies a matrix, the product leaves the 
other matrix unchanged. 

The identity matrix is closely tied to the idea of an inverse matrix. In number 
theory, the inverse of the number x for addition is -x, as 

x+(-x)=O, 

the identity for addition. The inverse of the number x for multiplication is I/x, as 

x*(1/x) = I, 

the identity for multiplication. Note that we must exclude x = 0 from this 
definition, it has no inverse as we are not allowed to divide by zero. In terms of 
function theory, we must exclude the value zero from the domain of the 
multiplicative inverse function. In general, an inverse 'undoes' the effect of an 
operation. If A is a square matrix, it may have an inverse - some matrices are 
excluded, as for multiplication of numbers. If such an inverse exists, it is designated 
as Al and has the property 

AAI = A-IA = I. 

For square matrices of order two, the inverse can be easily stated. If 

then 

provided (alla22 _ aI2a21), known as the determinant of A, is not zero. This can be 
checked by multiplying A and AI. All square matrices have a determinant, a single 
value calculated from the elements of the matrix. For square matrices of order 2, the 
determinant is formed as shown here, multiplying the elements on the leading 
diagonal and subtracting the product of the two remaining elements. For square 
matrices of order 3 or more, the calculation of determinant and inverse is more 
complicated. This will be revisited later. The value of the determinant indicates 
whether a square matrix has an inverse. If the determinant is non-zero, an inverse 
exists and the matrix is said to be non-singular. A square matrix with no inverse (in 
other words with zero determinant) is singular, it has no 'partner'. 



154 Computer Graphics through Key Mathematics 

Matrices and Equations 

One of the major uses of matrices in general applications is in the solution of 
systems of equations. This is not the main use of matrices in computer graphics, 
but can be useful in some circumstances, for example in solving the systems of 
equations produced in the radiosity shading method (chapter 10) or solving some 
intersection problems in vector work (chapter 7). This section and the section 
following on general methods for calculating matrix inverses can therefore be 
considered as optional - they can be returned to if needed but may be skipped at 
first reading. For those who take this option, it would be sensible to restart, without 
penalty, at the section on 'Matrices, transformations and homogeneous coordinates' 
(page 160). 

The ability to solve simple systems of linear equations (containing only single 
powers and no products of unknown quantities) is a skill learned at secondary 
school. For example, consider the two-variable system 

2x + 5y =-1 
3x - 4y = 10 

(1) 
(2). 

The system contains two equations with two unknowns. Generally, if we have the 
same number of distinct equations as unknown values, the system can be solved. If 
plotted as graphs in a Cartesian plane, equations (1) and (2) represent straight lines 
(hence the description as linear equations). Many points separately satisfy each of 
the equations, for example equation (1) is satisfied by (x, y) pairs (-0.5, 0), (2, -1) 
and (-8, 3). A similar list of values can be generated to satisfy (2). The problem is 
to find the one point that satisfies both equations, if such a value exists. Interpreting 
the problem graphically, this involves finding the point at which the lines intersect. 
Some pairs of lines may have no intersection (they may be parallel), others may 
have an infinite number of common points (the two equations represent the same 
line). One way (not the only one) of approaching this problem is as follows. 

Multiply both sides of equation (1) by 3 and both sides of equation (2) by 2 
(these are the 'coefficients' of x in the alternate equation). Such multiplication 
involves multiplying all parts of the equation, both left-hand and right-hand sides, 
by the required constant. If the same operation is performed on both sides of an 
equation, the balance of the equation is unchanged. This gives 

6x + 15y =-3 
6x - 8y = 20 

(3) 
(4). 

Note that (3) and (4) are simply disguised versions of (1) and (2), with the 
coefficients of x made the same in both equations; the multiplying values for the 
original equations were chosen so that this should occur. The x terms can now be 
removed by subtracting equation (4) from equation (3). This involves subtracting 
left-hand side from left-hand side and right-hand side from right-hand side to 
maintain the balance, to give 

23y = -23 (5). 



6. Matrices: Tools for Manipulating Space 155 

The number of unknown values and the number of equations is reduced by one, 
leaving one equation for one unknown, y. Note that if the equations represented 
parallel or coincident lines, the y term would also have disappeared, indicating that 
no single solution is possible. Equation (5) is solved by dividing both sides by 23, 
the coefficient ofy, to give 

y =-1. 

We can substitute this value - this means replacing y wherever it occurs by the 
particular value -1, into either of the original equations to find x. Using (1) for this 
purpose gives 

2x - 5 = -1, 

which can be rearranged by adding 5 to both sides, to give 

2x = 4. 

Dividing both sides by 2 (equivalent to the operation used to solve equation (5», 

x = 2. 

Thus our final solution is x = 2, Y = -1. This is the only pair of values of x and y 
that simultaneously satisfy both equations (1) and (2) and represent the intersection 
point of the two lines represented by these equations. 

This relatively simple problem has been dealt with in some detail to illustrate 
some of the processes used in solving systems of equations. The validity of an 
equation is maintained if the same operation is performed on both sides of the 
equation. An exception to this rule is division by zero, which must be checked for 
in any computer routine. Useful operations on a system of equations, used in the 
general algorithm described later, are: 

• multiplication of any equation by a constant; 
• addition of a multiple of any equation to any other equation; 
• swapping the positions of any two equations within the system. 

The second of these could be replaced by the two operations of multiplying one 
equation by a constant and then adding it to another equation, which is effectively 
what was done in the above example. 

Matrices have not yet been mentioned in this section. Systems of linear 
equations can be represented in matrix form as 

AX=B. 

For equations (1) and (2), A, X and B take the form 

A = [ ~ ~] , X = [ ;] and B = [ ;~] . 
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Multiplying out AX, this gives 

[ 2x + 5Y] = [ -1] 
3x-4y 10· 

Equating individual elements of these two matrices gives us the original equations 
(l) and (2). The structure AX = B suggests a solution using the inverse of matrix A. 
If that inverse exists, we can pre-multiply both sides of this by AI to give 

A·IAX=AIB. 

AIAX can be 'grouped' as (AIA)X = IX = X, so the left-hand side is simply the 
matrix of unknowns. Thus, a complete solution is given as 

Ifthe inverse AI does not exist (the determinant of A is zero), then there is no 
single solution of the system of equations. This method seems attractive, but the 
cost in evaluating AI can be prohibitively expensive, particularly for large systems 
of equations with several unknowns, so we investigate another method below. 

All values involved in the problem can be placed in a single matrix M, 
combining the elements of A and B, 

M - [2 5 -1] 
3 -4 10' 

where each row of M contains all information from one of the original equations. 
The process of solving the system can be performed using the three equation 
operations defined above on rows of the matrix. The method described here, known 
as 'Gaussian elimination with partial pivoting', was developed by Gauss l and uses 
'partial pivoting' to ensure rounding errors do not make computer-generated 
solutions unreliable. The procedure, which gives a standard method for dealing with 
any set of equations, is demonstrated on this limited system before a general 
algorithm is stated. It is important to keep in mind that we have a system of two 
equations for two unknown quantities (there are two rows of M). Pivoting is the 
first stage of this process, which starts by searching column 1 of M for its 
numerically largest element. This is 3, in row 2. (Note that in finding a 
'numerically largest' element, the sign is ignored. For this purpose, -3 would be 
selected before 2, although 2 is strictly larger than -3.) The 'pivot' for column 1 is 
found in row 2, so we swap rows 1 and 2 to place the pivot in position mil. 

M' = [ 3 -4 10] 2 5 -1 . 

'Carl Friedrich Gauss (1777-1855) was a prolific German mathematician, 
astronomer and physicist. 
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Now divide row 1 by mil (the 'pivot'). This is later used to clear zeros in the 
remainder of its column (only one element in this case). Working to the very 
limited precision of one decimal place, we get the matrix, 

M" = [1 -1.3 3.3] 
2 5 -1' 

We continue to work with limited precision for this section as an extreme example 
of dealing with rounding errors. Now produce zeros in column 1 below row 1 by 
subtracting relevant multiples of row 1 from the remaining rows (this statement may 
sound artificial as there is only one such other row in this case, but this more 
general form is valid for any size of problem). The correct multiples for each row are 
found by taking all elements mil, where i > 1. Note that these are all numerically 
less than the original pivot value of m! 1, so the net effect of the last two operations 
is to multiply elements of column 1 by a value numerically less than one, thus 
reducing any rounding error. For this example, we only have m2! = 2 to deal with 
(so the net effect of the last two operations is to multiply by 2/3, which is less than 
one). m2!R! is subtracted from R2. 

M'" = [01 -1.3 3.3]. 
7.6 -7.6 

We have now reduced column 1 to a simple form. We should now search through 
column 2 from m22 through m32 and so on for its pivot element and exchange rows 
where necessary, but only one such element remains, m22 with value 7.6 (this would 
be iiJ working precisely). We divide row 2 by this (effectively a default pivot). 

M"" = [1 -1.3 3.3] o 1 -1' 

As we have reached the bottom row, the elimination phase is over. 
Remember that the three terms in a row of the equation in this case represent the 

multiple of x, multiple ofy and the constant on the right-hand side of the equation. 
Thus, a row with 0, 1 and -1 in these positions represents equation 

Ox+ly=-I, 

or y=-l. 

The first row ofM"" can also be represented as an equation, 

Ix - 1.3y = 3.3. 
The value of y can be substituted into this, to give the result x = 2, y = -1, as 
before. Although there were intermediate rounding errors, the final solution turns 
out to be exactly correct - this does not always happen, but the pivoting does give 
some protection against rounding errors when many variables are involved. In small­
scale problems, human ingenuity can often produce short-cut solutions. Computers 
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can be programmed more easily to follow a standard method such as that described 
here. 

Suppose we have a general system of n simultaneous equations for n unknowns 

allxl + a12X2 + ... + alnXn = bn 
a21X2 + a22X2 + ... + a2nXn = b2 

The unknowns are designated as XI, X2, ... Xn rather than the X, y used above. This is 
generally enough information to solve for the n unknowns, provided the equations 
are linearly independent. This means that none of the equations can be derived from 
the others using the standard equation manipulation rules. If the equations should be 
linearly dependent, the fact that there is no single solution will become clear during 
the process, as at some stage there will be no available non-zero value to act as 
pivot. An intuitive interpretation of this is that in the n-dimensional space of the 
variables (Xl, X2, ... xn), some of the 'surfaces' represented by the equations are 
parallel. This concept relates to the 'degrees of freedom' concept introduced earlier. 
If one or more of the equations can be derived from others, it acts as a constraint as 
its constants cannot be freely determined. Thus the dimensionality of the system of 
equations is reduced accordingly, and less information is carried. 

We start by setting up a single matrix from the coefficients of the equations, 

all a l2 a ln bl 

M= a 21 a 22 a 2n b2 

anI a n2 ann bn 

Within a loop, from i = I to n, we start by searching for the numerically largest of 
values in or below the leading diagonal in column i, aji to ain. 'Numerically largest' 
means the element with largest modulus; the negative signs are ignored. Suppose 
this is in row k. If k and i are not equal, row k is exchanged with row i to place the 
pivotal element in position aji. Row i is then divided by the current pivot value in 
aii. Looping from j = i + 1 to n when i < n (this stage is not needed for the final 
row when i = n), values in column i below aii are then reduced to zero by 
subtracting ajiRi from Rj. When this loop is exhausted, M will usually have the 
form 

a 12 

M' = 0 1 

o 0 bn 

The values of a12, ... bn in M' are not the same as those in M above. If at any stage 
during this loop, the search for the pivot (the numerically largest of the values aii to 
ain) shows all these values to be zero, it is clear that there is no distinct solution to 
the set of equations. The search for a solution can be abandoned at this stage. 
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Now the process of 'back substitution' starts. Yn = bn can be immediately 
allocated. Looping backwards for i from n - 1 to 1, we can define 

n 

Xi = bi - ~aijXj' 
j-HI 

to give the full set of values of XI, X2, ... xn• 

A routine based on this method can be built into a suite of graphics functions. 
Alternatively, a similar routine can be used from a commercially marketed numerical 
analysis system; this kind of numerical equation solver is properly a part of the 
subject known as 'numerical analysis'. 

The Inverse of a Square Matrix 

The method given above for solving equations can be adapted to find the inverse of 
a square matrix. This is only one of several possible methods that could be used, 
but is relatively efficient and safe in its avoidance of rounding error. The square 
matrix A to be inverted is augmented by placing an identity (or unit) matrix to its 
right, as 

a ln I 0 

a 2n 0 

o 
o 

M is operated on very much as in the Gaussian elimination method with partial 
pivoting, except that, in reducing elements in a particular column to zero, this is 
perfonned for all elements in the column (those above the pivot as well as those 
below) except for the pivot ajj itself. We should replace the statement 'values in 
column i below ajj ... ' by 'all values in column i except for ajj itself are then reduced 
to zero by looping from j = 1 to n (excluding the case j = i), subtracting ajiRi from 
Rj'. If at any stage it is impossible to find a non-zero pivot, this indicates that the 
detenninant of the original matrix A is zero, so no inverse exists. Otherwise, M will 
reduce to the fonn 

I 0 

M'= 0 

o 0 

Now the unit matrix is to the left, with a new square matrix to its right. This new 
square matrix is extracted as AI, the inverse of A, 
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bll bl2 bin 

kl=B= b21 bn b2n 

bnl bn2 bnn 

No attempt is made to justify this method, other than to state that it works. The 
matrices produced form true inverses. 

As a side issue, the determinant of matrix A can be evaluated from this process. 
During each stage of the original i loop, 'row i is divided by the current pivot value 
in a/. As the loops proceed, these pivot values should be multiplied together and 
the number of row swaps performed, m, counted (if a row is swapped with itself, 
this does not count). The determinant of A is the product of the pivot multiplied by 
-1 m. It is sometimes of interest in computer graphics systems to find if the 
determinant of a square matrix is numerically less than one. This can be found 
directly from the pivotal product. 

Matrices, Transformations and Homogeneous 
Coordinates: Two Dimensions 

We now return to a major issue of importance to computer graphics. In discussing 
coordinate systems earlier, the transformations of translation, scaling and rotation 
were defined and equations for these developed. In this section, we show how 
matrix methods enable all these transformations to be performed by a standard 
method, giving a unified way of treated them in a computer graphics system. This 
technique has the added bonus of enabling sequences of transformations to be 
merged or 'concatenated' into one operation, speeding computer graphics routines. 
We consider first the 2D transformations (fig 6.1). 

Translation 

Scaling 

Rotation 

Shear in x 

Shear in y 

Xl = X + tx, 

y' = Y + ty• 

x' = SxX, 

Y'=Syy. 

x' = x cos(O) - y sin(O), 
y' = x sin(O) + y cos(O). 

x' = x + kxY, 
y' = y. 

x' = x, 
y' = kyx + y. 

The shear operations are not given explicitly in many texts as they can be performed 
by combinations of rotations and scatings, but they can be more efficiently 
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perfonned if separately defined. The vertices of a 
2D object are represented in Cartesian fonn as 
(x, y). The fonnulae above transfonn (x, y) into an 
'image' point or vertex (x', y'). When applied to all 
vertices defining an original object, such as the unit 
square of fig 6.1, the method changes the object 
into a transfonned version. The effect of the 
translation defined here is to move an object tx 
units horizontally and ty units vertically. Scaling 
expands or contracts by factors Sx horizontally and 
Sy vertically, the origin (0, 0) remaining 'pinned 
down'. A negative scale factor gives a reflection in 
the relevant axis. Rotation again pins down the 
origin (0, 0), rotating the object through an angle 8 
in the positive anti-clockwise sense. 

These sets of equations are directly expressed as 
matrix operations. 

Translation 

Scaling 

Rotation 

Shear in x 

Shear in y 

[~:]= [~]+ [::]; 

[~:]= [so s~][~]; 

[x:]= [C~S(8) -Sin(8)][x]. 
y sm(8) cos(8) y 

[;:] = [~ ki ][;]; 

[;:]= [ky
1 ~][;]. 

The point (x, y) is represented in matrix fonn as 

[ ; ]. A perfectly valid alternative is to use [x y] for 

(x, y). In this case, the transfonnations would 
involve the transposes of the versions given above, 
with the order of multiplication for scaling and 
rotation reversed. The choice of method is a matter 
of personal choice - they are both equivalent in 
power - but once chosen, the method should not be 
changed as inconsistency could lead to error. 

This is a matrix method, but it holds no 
advantage over the direct use of equations. A 

y 
j 

y 

y 

y 

x --
A unit square 

D 
translated 
by (0.5,1) 

scaled by 
(1.5, -0.5) 

rotated 
by 30· 

sheared 
by 0.5 in x 

x 

x 

x 

x 
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transformations on a unit 

square 
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drawback is that the matrix methods used are not the same for each type of 
operation. Translation involves addition, whereas scaling and rotation use 
multiplication. Matrix methods become useful when all three basic transformations 
can be performed in the same way. Shear is not counted as one of these basic 
transformations as it can be performed by combining scaling and rotations. It is not 
possible to reduce all to the simpler form of matrix addition; some multiplication is 
involved. They can all be performed by matrix multiplication using the device of 
homogeneous coordinates. 

The point (x, y) is represented in homogeneous coordinate form as a matrix 

[? 1 ' where w is any ..-bitrruy non-zero constant, called the 'weight'. Thus, there 

are many possible interpretations for a single point. For example, (3, -4) can be 

represented as H l' Hlor [~~ 1 Mth weights I, 2 and -3 respectively. Given a 

point in homogeneous coordinate form, its Cartesian (x, y) form can easily be 
extracted by dividing the first two row values by the third. In the homogeneous 

fonn [~i 1 both 11 and -8 ..-e divided by -2 to give the Cartesian point (-5.5, 4). As 

the choice of weight w is arbitrary, it makes sense to choose the easiest possible 
value to work with. Whenever possible, which is almost always in computer 
graphics, we choose w = 1. A general point (x, y) can be represented in the simplest 

homogeneous fonn as [r]. The exception to this in computer gmphks occurs in 

performing perspective projection, when use of a non-unit weight can simplify other 
calculations. This will be considered in a later section on 3D work. 

We are now ready to devise the unified method for dealing with our three 
transformations. The required transformations are simply stated - their validity can 
be checked by multiplying out the matrices concerned and comparing results with 
the equations given above. 

[~} 
o tx [r] = T( t" 4) [r]; 0 1 ty 

0 o 1 

Translation 

Scaling [r]= 
Sx 0 

~lm = S(s" s,) [n 0 Sy 

0 0 
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Rotation [X'] [COS(B) - sin(B) 0] [X] [X] 
~' = Sin~B) CO~(B) ~ r = R(B) r ; 

Shear in x [fH~ ! ~][rJ~ Sh,(k,) [rJ. 
(the notation indicates that y is unchanged); 

Shear in y [fH~ ! ~]m~Sh£k,)[n 
(the notation indicates that X is unchanged). 

The six matrices T(tx, ty), S(sx, Sy), R(B), Shy(kx) and Shx(ky) represent the operations 
of translation, scaling, rotation, shearing in the X direction and shearing in the y 
direction respectively. The clumsy notations used for shearing matrices indicate by 
suffixes which coordinate is unchanged by the shear. This method is used for 
consistency with the 3D forms introduced below. It is worth reiterating that some 
texts represent their homogeneous coordinates as a row matrix [x y I] rather than the 
column matrices used here. If this is done, the transformation matrices are the 
transposes of those given above and the order of multiplication is reversed. Care 
should be taken when interpreting texts to understand which method is being used. 
In a particular work, consistency is important. It does not matter which method is 
used, as long as the same one is used throughout. 

Now we can illustrate the benefits of this technique. In a naIve application of 
multiple transformations, all transformations would be applied successively to every 
point of an object to be transformed. Using the matrix method for homogeneous 
coordinates, sequences of transformations can be reduced to a single matrix. As an 
example, suppose we wish to rotate a figure through 90· clockwise about the point 
(3, -2). This can be performed by the sequence of 3 standard transformations shown 
in fig 6.2). 

translate the whole figure so that (3, -2) is placed at the origin using a 
translation of (-3, 2); 
rotate through the required angle of -90· (remember that a clockwise 
rotation is in the negative sense); 
return the figure to the correct location by moving its origin to (3, -2) 
using a translation of (3, -2). 

The first translation stage is defined by matrix 

[
I 0 

T(-3, 2) = 0 I 
o 0 

-3] 2. 
I 
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y y y 

translate 
(-3,2) 

x x x 

rotate _90· 

(3, -2) 

• 
translate 
(3,-2) 

Figure 6.2 Rotation by 90· clockwise about (3, -2) 

The standard form of rotation allows us to rotate by any angle about the origin. This 
initial translation rearranges the figure so that the required centre of rotation is now 
located at the origin, enabling us to rotate by -90·. From chapter 3, we use the 
trigonometric values sin(-90·) = -1 and cos(-90·) = O. The required rotation matrix is 

[ 0 I 0] 
R(-90·) = -I 0 O. 

o 0 I 

The last translation, replacing the centre of rotation in its original position, has 
matrix 

[I 0 3] 
T(3, -2) = 0 I -2. 

o 0 I 

Using matrix multiplication, these three operations can be combined into one matrix 
before processing the figure itself, so only one operation needs to be applied to each 
ofthe object's points. Figure 6.2 shows only a simple object defined by five points. 
When the method is applied to objects defined by several thousands of points, 
considerable time saving can be achieved. It is important to combine the matrices in 
the correct order as matrix multiplication is not commutative. 

The transformation matrices given in this text operate on points by pre­
multiplication. The point representation appears to the right, with the operator 
matrix to its left. Thus the first operation must be placed to the left of the point to 
be transformed, the next operation appearing to the left of the previous one, and so 
on. In general if we have to apply several transformation matrices MI, M2, M3, .. , in 
that time order to a point represented in homogeneous form as matrix X, the 
composite operation is given by 
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where X' is the homogeneous representation of the final point reached. A discussion 
above showed that the time order (but not the space order) of matrix multiplication 
could be changed, so the above line can be restated generally as 

and finally rearranged as 

where the matrix product (... M3M2M1) represents the complete sequence of 
transformations. By multiplying these together, the sequence is reduced to a single 
matrix that can be applied to each of the points of the figure in turn. For example, if 
the figure has 1000 points, and the transformation comprises five standard 
transformations, the naive approach would involve 5000 multiplications of a matrix 
by a point. By combining the matrices into one, at an initial cost of four matrix 
multiplications, there would subsequently be only 1000 multiplications of a matrix 
by a point. The 'concatenation' of all operations into a single matrix has enabled 
considerable time saving. This is the real reason for the use of this technique in 
computer graphics. 

Returning to our specific example, the sequence of individual matrices gives the 
single matrix 

M" T(3. -2)R(-90')T(-3. 2)" [~ 

Remembering that we cannot change the positional order of these matrices, but we 
may multiply them in any time order; multiplying the right-hand pair first, we get 

This single matrix can now be applied to all points of the figure, effectively cutting 
out the middle two phases of fig 6.2. 

The determinant of a transformation matrix (which can be found by a computer 
routine as discussed above) indicates the change of area effected by that 
transformation. Ifwe denote the determinant of matrix A as det[A], we have 

det[T(tx, ty)] = 1, 

det[S(sx, Sy)] = SxSy, 

det[R(8)] = cos2(8) + sin2 (8) = 1. 

The last case uses a standard trigonometric identity that can be easily established 
from Pythagoras' theorem. These values clearly indicate the change of area given 
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when these transfonnations are applied to a two-dimensional shape. Scaling and 
rotation do not affect area, but the scaling factors Sx and Sy stretch or squash an 
object linearly, so their combined effect on area is represented by their product. A 
theorem on detenninants of square matrices tells us that when matrices are 
multiplied, the detenninant of the result is the product of the detenninants of the 
original matrices. From this, it is clear that the detenninant of a combination of 
affine transfonnations gives the overall area change effected by that combination. 

Matrices, Transformations and Homogeneous 
Coordinates: Three Dimensions 

Similar methods are used in the three-dimensional world. We move directly to the 
homogeneous representation of a three-dimensional point (x, y, z) in Cartesian 

wx 

coordinates as wy when the 'weight' w:;tO. For purposes other than perfonning the 
wz 
w 

perspective projection transfonnation (discussed later), we take w = 1 for simplicity, 
x 

representing the point (x, y, z) as y . Matrices for the operations of translation and 
z 
1 

scaling are obvious extensions of the 2D case. Rotation must now be defined about 
the three coordinate axes as shown below. 

Translation 1 0 0 tx 

x' = x + tx, T( t., ty, tz) = 
0 1 0 ty 

y' = Y + ty, 0 0 tz 
z' = z + tz. 0 0 0 1 

Scaling Sx 0 0 0 

x' = sxx, S(sx, Sy, Sy) = 
0 Sy 0 0 

Y'=Syy, 0 0 Sz 0 
z' = szz. 0 0 0 

Rotation about the x-axis 
1 0 0 0 

x' = x, Rx(e) = 
0 cos(e) -sinCe) 0 

y' = Y cos(8) - z sin(8), 0 sin(8) cos(8) 0 

z' = y sinCe) + z cos(e). 0 0 0 1 
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Rotation about the y-axis cos(8) 0 sin(8) 0 

Ry(8) = 0 1 0 0 
x' = x cos(8) + z sin(8), -sin(8) 0 cos(8) 0 
y' =y, 0 0 0 
z' = -x sin(8) + z cos(8). 

Rotation about the z-axis cos(8) -sin(8) 0 0 

x' = x cos(8) - y sin(8), Rz(8) = sin(8) cos(8) 0 0 

y' = x sin(8) + y cos(8), 0 0 1 0 

z' = z. 0 0 0 1 

Shear with z unchanged 1 0 kx 0 

Shz(kx, ky) = 0 1 ky 0 
x' = x + kxz, 
y' = y + kyz, 0 0 1 0 

z' = z. 0 0 0 1 

The first two methods, for translation and scaling, are very similar to their 2D 
equivalents with the addition of an extra z coordinate, which needs an extra row and 
column for the transformation matrix. 

Rotations are almost always described in 3D as being 'about an axis', invoking 
the idea of a 'right-hand screw' for positive rotation, in the sense of tightening a 
standard screw with a screwdriver pointing in the positive direction of the axis of 
rotation. If the right thumb points in the positive direction of this axis, the fingers 
curl naturally in the sense of rotation. This form of definition is specific to three­
dimensional cases. No such axis of rotation exists in 2D, unless we artificially 
create an axis outside the 2D universe, and in four- and higher-dimensional systems 
there is more than one 'axis' used for each rotation. At first reading, the concept of 
rotation in 4D space may seem a bit bewildering, but there is little difficulty in 
extending mathematical laws to cope with extra dimensions. We have just extended 
a 2D transformation system to one in 3D, and we discussed in chapter 3 how 
'objects' in four and higher dimensions can be created. These are sometimes useful 
for computer graphics as well as in other disciplines. In 4D systems, it is far easier 
to consider rotation as 'from one axis towards another'. For example, in a 4D 
system with axes (x, y, z, u), rotation 'from x towards y' leaves z and u unchanged, 
so the rotation is conceptually 'about z and u'. The description of rotation in the 
sense 'from x towards y' can be used in all coordinate systems from 2D upwards. It 
represents the only form of rotation in 2D systems, rotation about z in 3D, rotation 
'about z and u' in 4D, and so on, giving a uniform way of describing all cases. 

We are particularly concerned with the 3D case here, so it is worth describing the 
three possible forms of rotation explicitly (fig 6.3). Rotation about the x-axis turns 
y towards z; rotation about the y-axis turns z towards x; rotation about the z-axis 
turns x towards y. Once the alphabetic x to y to z to x ... cycle is identified, this 
seems a natural system to adopt. As in other texts, the more convenient form of 'Rx' 
is used here rather that the cumbersome 'Ry to z', but knowledge of this cyclic effect 
may help readers to understand the process. This was discussed in chapter 4, but it 
does no harm to revisit the concept. 
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Figure 6.3 Rotations about the three coordinate axes 

As we have to consider three forms of rotation in a 3D system, we must also take 
into account three forms of shear, each of which leaves one of the three spatial 
coordinates unchanged. The single example given above leaves the z coordinate 
unchanged, shearing in the x and y directions. The shear matrices 

000 
100 

010 
o 0 

and 

1 kx 

Shy(kz, kx) = 00 1 
kz 

o 0 

o 0 
o 0 
1 0 
o 

leave the x coordinate and the y coordinate unchanged respectively, shearing in the 
two altered coordinate directions. To visualize this, imagine having a stacked pack 
of cards on a table, then drag a finger across the edge of the pack to make it non­
vertical. The vertical location of cards has not changed, but position in both 
horizontal directions can be changed. Suffixes in the above formulae are consistently 
given in the now familiar alphabetical cycle. Only one shear matrix was given in the 
main list above, for brevity. As for 2D systems, many texts do not mention 
shearing explicitly, as it can be performed by a combination of rotation and scaling 
operations, but having the shear operation directly available can add to the usability 
of modelling and computer graphics systems. 

Ifwe have a sequence of transformations, MI, M2, M3, ••• in matrix form, to be 
x 

performed on the homogeneous point X = y, the complete operation can be 
z 
1 

represented as 

where the single matrix M = ... M3M2M I represents the complete sequence of 
transformations. As in the two-dimensional case, pre-computation of M can lead to 
considerable time savings in performing such a sequence on an object defined by 
many vertices in three dimensions. As in the 2D case, this is illustrated with a 
specific example. 
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Suppose we want to rescale an object by a factor of2 in the x direction about the 
origin, and subsequently rotate it by 45' positively about the x-axis, keeping the 
point (1, 1, 1) fixed. Remembering that cos (45') = sin (45') = 11--/2, the required 
matrices for the composite operation can be written down from the standard 
formulae given above. The composite matrix representing the complete set of 
operations required is found by repeated pre-multiplication as the process develops, 
rather than just identifying the matrices to be used and then mUltiplying the stored 
values at the end. In a computer context, this is more memory efficient as just the 
one intermediate result is carried forward each stage, and no more costly in terms of 
time taken. 

• Scale by 2 in the x direction: 

• Place (1, 1, 1) at the origin: 

Composite matrix: 

1 0 0 -1 2 0 0 0 
o 1 0 -1 0 1 0 0 
o 0 1 -1 0 0 1 0 
00010001 

2 
0 
0 
0 

S(2, 1, 1) = 

T(-I,-I,-I) = 

0 0 -1 
1 0 -1 
0 1 -1 
0 0 1 

1 

2 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 -1 
0 1 0 -1 
0 0 1 -1 
0 0 0 1 

0 0 0 

• Rotate about x-axis by 45': Rx(45') = 0 1Iv2 -1Iv2 0 
0 1Iv2 1Iv2 0 
0 0 

Composite matrix: 

1 0 0 0 [2 0 0 -1 2 0 o 1Iv2 -IIY2 0 0 1 0 -1 = 0 1Iv2 
o 1/v2 1Iv2 0 0 0 1 -1 0 1Iv2 
00 01000100 

(in this stage, we note that 2/--/2 = --/2, as 2 = --/2*--/2). 

1 0 
o 1 • Replace the origin to (1, 1, 1): T(I, 1, 1) = 0 0 

o 0 

Composite matrix: 

1 0 0 1 2 0 0 -1 2 0 

0 

o 
-1Iv2 
1Iv2 

o 

o 1 
o 1 
1 1 
o 1 

0 

1 

-1 
o 

-v2 
1 

0 1 0 1 0 1Iv2 -1Iv2 0 0 1Iv2 -1Iv2 
0 
1 

0 0 1 1 0 1Iv2 1Iv2 -v2 0 1/v2 1Iv2 I-v2 
0 0 0 1 0 0 0 1 0 0 0 1 

The final matrix generated, 
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M= 

2 0 
o 1!V2 
o 1!V2 
o 0 

o 
-l!v2 
l!v2 

o 
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o 
I 

l-v2 ' 
I 

represents all operations. Applying this overall transformation to a cube, say, with 
eight vertices, at the initial cost of three matrix multiplications, we now only have 
to perform eight direct matrix by point multiplications. Had we not 'concatenated' 
the series of operations into one matrix in this way, four such operations would 
have been performed on each point - a total of 24 matrix by point multiplications. 
With more complex objects, the savings are more dramatic. 

As a check on our calculations, it is illustrative to apply the resulting matrix to a 
few points. We consider the point (0.5, I, I). The scaling in x will place this point 
at (1, I, 1), the centre of the subsequent rotation, so it will not be moved further by 

0.5 

the rotation. Applying our transformation M to the point X = ~ ,we have 

MX= 

2 0 
o l!v2 
o l!v2 
o 0 

o 
-l!v2 
l!v2 

o 

o 
1 

I-v2 
1 

0.5 
1 
1 
1 

1 

This can be interpreted as the Cartesian point (1, 1 , 1) as required. As another 
example check, the point (1, 2, 2) will be moved to (2, 2, 2) by the x-scaling. A 
little thought indicates that rotation of 45' about the x-axis with centre of rotation 
(l, I, 1) will place this resulting point on the plane y = 1, distant I + -v2 from the 

I 

z-axis. Applying matrix M to the representation ~ of the point (1, 2, 2), we get 

1 

MX= 

2 0 
o l!v2 
o l!v2 
o 0 

o 
-l!v2 
l!v2 

o 

o 1 
I 2 

I-v2 2 
I 1 

2 
1 

l+v2 
1 

This gives the correct location for the final point as (2, 1, 1 + -V2). 

Inverse of a Transformation Matrix 

A relatively complicated routine for finding an inverse of a general square matrix 
was given above. For affine transformation matrices, inverses are easy to find. An 
inverse matrix 'undoes' the effect ofthe original matrix, so we can write down 
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2D TI(tx, ty) = T(-tx, -ty), 

S-I(SX, Sy) = S(lISx, l/sy), 

RI(S) = R( -S), 

Sh/(kx) = Shy( -kx), 

3D TI(tx, ty, tz) = T(-tx, -ty, -tz), 

provided Sx t- 0, Sy t- 0, 

S-I(sx, Sy, sz) = S(l/sx, lIsy, l/sz), provided Sx t- 0, Sy t- 0, Sz t- 0, 

R/(S) = ~(-S), 

Shx-I(ky, kz) = Shx(-ky, -kz), 

Sh/(kz, kx) = Shy( -kz, -kx). 

171 

Rotation of -S undoes a rotation of S. This result can also be checked by 
multiplying original matrices by their inverses. Each gives the unit matrix I. 

In mUltiplying together sequences of transformation matrices, we have 

M-I ( M M M )-1 M -1 M -1 M -I = .. ·321=123 .. •· 

This can be justified by considering the product 

- ... -I. 

Central matrices are repeatedly paired off, until the whole sequence is reduced to I, 
the unit matrix. This gives an easy way of creating the inverse of a sequence of 
transformation matrices at the same time as creating the product of the sequence. 
When a new transformation is absorbed into the sequence, its matrix pre-multiplies 
the existing transformation matrix and its inverse post-multiplies the composite 
inverse. Both processes go hand in hand; there is no need to use a difficult matrix 
inversion routine. 
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Figure 6.4 Perspective projection of a general point P onto a view plane using centre of 
projection C 

Perspective Projection 

Part of the process of viewing objects in 3D is to project them onto a 2D smface 
that will be mapped onto the viewing smface, such as a VDU screen or plotter. 
'Realistic' effects are achieved by using perspective projection. We assume that a 
special view coordinate system has been set up for this purpose, with origin on this 
view plane and a pseudo observer (or centre of projection, C) at a point (0, 0, -d) in 
this system, as shown in fig 6.4. These systems are often set up as left-handed sets 
of coordinates, as shown in this figure. The z-axis points away from the centre of 
projection, measuring the depth of an object into the scene. The other direction 
would give the more orthodox right-handed set of axes. 

Given the location of a point P in space, the perspective projection calculates the 
position P' where the line CP intersects the view plane, the plane of z = 0 in this 
method. An alternative method places the centre of projection at the origin, with the 
view plane having equation z = d. The result for this alternative formulation is 
given later. 

If we 'look down' upon fig 6.4 from the positive y-axis, fig 6.5 results. From 
this view, it is more easy to see how the x coordinate ofP' can be found. The tan of 

C~ __ d __ ~O~ ____ ~z ____ ~~z 
• •• 'Ot'"'"····.'"I •• 

P' .......................... ~. 

x P 

Figure 6.5 Vertical view of fig 6.4 
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angle LOCP' can be found from two triangles as OP'/d or as x/(d + z). As OP' = xp, 

we have 

xp x 
----, 
d d+z 

dx d 
so Xp= -- = --x. 

d+z d+z 

Similarly, the y coordinate ofP' is given by 

d dy 
yp= --y= --. 

d+z d+z 

Trivially, P' has z coordinate Zp = O. Note that this method gives a zero divide error 
if z = -d. We cannot view a point that is alongside the observer. This makes 
physical sense. Most viewing systems get around this problem by including a 'near 
plane' to exclude any point with z less than some small positive value from the 
potentially visible region. This also avoids the situation of points behind the 
observer being projected in a negative sense onto the view plane. It could be useful 
in real life to have 'eyes in the back of one's head' but this would be most 
confusing in a computer graphics system. A 'perspective transformation matrix' to 

x 

perform this operation, given a homogeneous representation ofP as P = Y , is 
z 

[
d 0 0 01 

Per( d) = 0 d 0 0 o 0 0 o· 
o Old 

This requires some explanation. P' is given by 

P' = Per( d)P = 
d 0 0 
o d 0 
000 
o 0 1 

o x 
o y = 
o z 
d 1 

dx 
dy 
o 

d+z 

I 

The result is a homogeneous matrix that does not have weight w = 1. Above, the 
convention has been to hold w = 1 for simplicity, as in most computer graphic 
texts; this is the single case when the more general form is required. The Cartesian 
representation of P' is found by dividing its first three elements by the fourth, its 
'weight' w. This gives the required result, 

( dx dy ) 
(xp, YP' zp) = --, --, 0 . 

d+z d+z 
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.. z ... ..... 

C d 

o ................... . 
P' ........................... ~ .. 

view P 
plane 

, x 

Figure 6.6 Alternative perspective set-up with origin at the centre of projection 

In many algorithms, for example hidden surface algorithms that determine which of 
several objects is visible from the point of view of an observer, it is necessary to 
pass on the 'depth information' z. In such cases, the matrix above can be used to 
evaluate Xp and YP' but a special addition to the algorithm can carry the value of z 
through unchanged as zp = z. 

An alternative method sets up the view coordinate system with its origin at the 
centre of projection C and the view plane passing through (0, 0, d) (fig 6.6 has 0 
and C coincident). The equations for the position ofP' (x'p, y'p, z'p) are 

dx dy 
x' = - y' = -andz' =d p ,p p. 

z z 

d 000 

The matrix Per'( d) = o d 0 
o 0 d 
001 

~ can be used to perform this version of 

o 
perspective projection. As in the previous method, points alongside the centre of 
projection (alongside the ears of an observer, with z = 0 in this formulation) would 
give a 'zero divide' error and cannot be viewed by this method. Once more, use of a 
'near plane' elsewhere in the system prevents this anomalous situation and avoids 
the projection of points from behind the centre of projection onto the view plane. 

Applying Per'( d) to the homogeneous representation of P as P = 

x 

y , using the 
z 
1 

general form of homogeneous point representation with weight w, we get 

wx'p 
wy'p 
wz'p 
w 

d 0 0 

= Per( d)P = 0 d 0 o 0 d 
001 

o x 
o y 
o z 
o 1 

dx 
dy 
dz 
z 

The result can be reduced to its Cartesian equivalent by dividing other terms by the 

'weight' z, to give x'p = dx, y'p = dy and z'p = d, as required. As above, the value 
z z 
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of ZIp produced may be ignored, the previous value of z being carried through for use 
in algorithms that need depth information. 

The different structures of these matrices compared with the affine transformation 
matrices (those for translation, scaling, rotation and all combinations of them have 
bottom row [0 0 0 I]) pose difficulties with computer implementation. Space and 
time-saving considerations make it attractive to eliminate this bottom row in storage 
of standard affine transformations, giving special concatenation routines that take 
this into account rather than use 'off the shelf matrix multiplication. The creation of 
a perspective view in computer graphics comprises a modelling stage (when objects 
are composed to create the scene, as a photographer would arrange objects to be 
photographed), a viewing stage (the view parameters are set up, equivalent to the 
photographer locating the tripod, choosing a lens) and a projection and rendering 
stage (as in the actual exposure of the film). 

The use of a 'near plane' to avoid division by zero in perspective projection has 
been introduced. Other forms of clipping are used in computer graphics, to eliminate 
all objects or parts of objects outside the field of view, or to cut out objects so fur 
away as not to contribute meaningfully to an image. This has to intrude somewhere 
within this three-stage image synthesis process, so the smooth use of matrix 
concatenation has to be interrupted into two stages. Modelling and viewing can be 
concatenated into one matrix operation, although it may be useful to store 
intermediate data on the modelling stage if several views of the same scene are to be 
taken. It is more difficult to include the projection transformation as part of the 
same process, as the abbreviated form of matrix convenient for modelling 
transformations is no longer suitable. These two forms of process may be treated 
separately if specialized matrix operators are used for affine transformations. It is 
worth noting that some sophisticated modellers allow non-affine forms of space 
warping such as tapering or twisting as modelling transformations. Thus, the 
smooth concatenation of matrices must be interrupted at one or more stages in the 
process of image synthesis, sometimes called the 'computer graphics pipeline'. 
Many texts omit to mention this. Although this means that two or three matrix 
operations per point are needed, the use of matrix concatenation can still cut down 
considerably the amount of calculation needed to view a complex object; it is still a 
time-saving method. Some implementation issues are discussed later in the chapter. 

Parallel projection is a simple alternative to perspective projection. It is 
equivalent to viewing a point from a centre of projection placed an enormous 
distance away from the view plane (technically, a parallel projection is the limit of a 
perspective projection as d approaches infinity). When all created points have been 
converted to a view coordinate system (as in figs 6.4 and 6.5), the parallel 
projection simply takes the x and y coordinates from the view projection. The 
equations for the 'view plane origin' form of perspective projection are 

dx 
Xp= --

d+z 
and Y =~ p • 

d+z 

If we divide top and bottom of the fractions by d, this can be rearranged as 

x 
Xp = -I-+-z-I-d and yp= -~y-

1+ z/d 
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It is clear from this form that as d becomes very large the term zld gets smaller 
because the denominator ofzld increases. In the limit, as d approaches infinity, we 
take zld = 0, so the limiting form of the perspective projection gives the expected 
parallel projection formulae 

xp = x and yp = y. 

We have here taken a 'limit as d approaches infinity'; this is similar to the 'limit as 
6x approaches zero' that we used in developing the differential and integral calculus 
in chapter 5. 

Perspective projection could also be used to distort geometric models adding a 
non-affine option to the modelling process. It should be clear that perspective 
projection is a non-affine process from the presence of 'vanishing points' in classical 
perspective images or the visual effect of straight railway lines converging upon a 
distant point. A defining property of affine transformations is the preservation of 
parallel lines. Under perspective transformation, parallel lines are made to converge 
to a vanishing point, and are therefore non-parallel. The effect is equivalent to 
distorting an oval to an egg shape, broadening some parts and narrowing others. 
Distortion using centre of projection (0, 0, -d) can be applied to both x and y 
variables of an object's vertices, or either x or y alone. Care must be taken in 
carrying the z coordinate through this process - it can be retrieved through the 
'weight'. Equivalent formulae can be devised for perspective transformation with the 
centre of projection on the x or y coordinate axes. If allowed, this process makes 
concatenation of modelling operations very difficult. For example, direct matrix 
implementation of a sequence of perspective modelling transformations, one along 
each coordinate axis, without extraction of the perspective axis coordinate would 
reduce all vertices to the origin (0, 0, 0). A way to safeguard against this in 
sequences of perspective modelling operations, perhaps with different axes, is to 
evaluate vertices after every perspective operation, losing the benefit of matrix 
concatenation. If required, perspective transformations could be incorporated into 
modelling as an initial stage, before passing object vertices on to the affine 
modelling and viewing stage. 

Computer Implementation of Matrix Methods 

Matrices are excellent conceptual devices for devising ways of performing affine and 
projective transformations. They are often described as methods for performing such 
transformations, but, once the concepts from matrix methods are developed, better 
time performance is achieved by specially tailored routines. A similar situation was 
outlined in chapter 2; ways of storing and manipulating numbers in a computer are 
based on the concepts of binary numbers, but the implementation uses a number of 
convenient divergences. Many texts hint at potential efficiencies leading from the 
peculiar structures of transformation matrices, but few give details of what they 
mean; fewer discuss limitations introduced by such efficiencies. Concatenation of 
two 3D transformation matrices (order 4 x 4) takes 43 or 64 multiplications using a 
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standard matrix multiplication routine. Ignoring, for the time being, perspective 
transformations, the standard modelling and viewing matrices all have fourth rows 
[0 0 0 1]. If this is taken into account, concatenation can be performed using only 
36 multiplications. Further savings are possible using specific routines for 
concatenation of different forms of transformations. As shown in the methods 
suggested below, in 3D translations take only 3 additions, scalings use 12 
multiplications, rotations involve 16 multiplications and 8 additions or subtractions 
after the necessary calculations of cosine and sine terms. Such savings are desirable 
in the time-consuming activity of computer graphics. The 'working parts' of such 
transformations fit only three rows of four elements, compared to the 16 elements 
using direct matrix methods, so space saving is also possible, although this is less 
of an issue as relatively few such matrices need to be stored. 

A further divergence from the mathematical matrix model gives potential 
memory and time benefits. Accessing an element of a two-dimensional array is more 
time consuming than accessing an element of a one-dimensional array, so it is more 
efficient to code 3D transformations as 12 elements of a one-dimensional array, 
ensuring through the code that elements are properly matched. This can be done by 
storing a general 3D transformation matrix B as a 12 element one-dimensional array 
A, 

bll bl2 bl3 bl4 a o a l a 2 a 3 
b2l bn b23 b24 a 4 as a 6 a 7 

b3l b32 b33 b34 a 8 a 9 a lO all 
0 0 0 1 0 0 0 1 

where aj is equivalent to the C language array element A[i]. A similar device can 
hold a general 2D transformation in a six-element array. Whilst this method does 
give some memory and time savings, some developers may not find these factors 
important and may prefer to implement more standard direct matrix methods 
requiring fewer functions to be developed. Some sample manipulations of the 'pared 
down' 3D version are given below, on the understanding that this is just a method, 
not the only one or necessarily the 'best' for all circumstances. Similar methods are 
available for 2D manipulation; these will not suffer the problems caused by the 
special case of perspective transformations. 

The fourth row of a perspective transformation is not of the form [0 0 0 1]. 
Ingenuity in interpretation of the array structure that holds transformations can allow 
this to be accommodated without defining a different data type. Direct application of 
the perspective transformation converts the 'z' depth coordinate uniformly to the 
constant z value of the view plane for all vertices, so this can be ignored. However, 
the value of z used in hidden-surface or line calculations can be recovered from the 
non-zero weight (directly when the origin is at the centre of projection, or by 
subtracting d if the origin is on the view plane), which is calculated from the fourth 
row of the overall matrix. This row can be held in place of the unneeded values in 
locations 8 to 11 of the transformation array. Care must then be taken in the correct 
interpretation of these array elements. This form of operation is shown below. 

Following is a typical computer graphics sequence of transformations used in 
rendering a 3D scene, with the type of coordinate generated by each shown: 
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• modelling transfonnations used to define objects (3D world coordinates); 
• viewing transfonnations (3D view coordinates); 
• perspective transfonnation on all vertices (2D window coordinates and z); 
• window to viewport transfonnation (2D device coordinates). 

These could all be concatenated to one operation, preferably using 'pseudo-matrix' 
methods. Many texts state this blandly, but do not indicate the special treatment 
that must be given to the perspective transfonnation. This process has to be broken 
into at some stage in classical image synthesis algorithms to clip vertices, edges, 
faces and parts of edges and faces that lie outside the visible region defined in the 
viewing transfonnations. Clipping after perspective transfonnation is an easier 
process, involving simple comparisons of coordinates against fixed limits, 
compared to the more difficult testing of points against general planes used in 
clipping before perspective projection. The disadvantage of the 'project first, clip 
last' strategy is that all vertices in the data set must be projected; this is unsuitable 
when a large number of objects lie outside the potentially visible region. 
Sophisticated pre-selection strategies are often used in such cases to eliminate 
obviously external objects before all vertices that define objects (as described in 
chapter 8) pass through the modelling and viewing transfonnation stages, so the 
extra cost of perfonning perspective projection as part of this process is relatively 
small. Systems designers must make a strategic decision as to the positioning of 
their clipping routine in the general 3D viewing pipeline. The ordering adopted 
below is to clip after the perspective transfonnations has been perfonned, allowing 
concatenation of all 3D transfonnations into one operation. This neatly separates the 
2D operations of window to viewport mapping from the 3D routines. 

Examples are given below to show how such a matrix-operated affine 
transfonnation system could operate in a 3D computer graphics system. Routines 
set up initial matrices of the three standard transfonnations; these are concatenated 
with an existing transfonnation matrix using a multiplication routine to build a 
composite transfonnation matrix. (Routines for concatenating rotation about x and y 
and shear are not shown for brevity; the concept of how to develop these routines 
should be clear.) Initialization using a 'near unit' matrix (an identity matrix of order 
4 with its bottom row sliced oft) would avoid the need for separate translation, 
scaling and rotation matrix creation routines, but having such routines does 
eliminate one matrix multiplication. Suffixes indicating the content of a one­
dimensional array are used, so that they can be directly coded, but operations are 
shown below in matrix fonnation to indicate their relationships with their matrix 
derivations. If speed is the major consideration in generating routines based on these 
fonnulae, inelegant but fast direct allocation of all elements is the best method. This 
can increase speed by avoiding the index checks used in neater looping methods. 

3D Initial Matrices 

a o a l a 2 a 3 

With A = 
a 4 a 5 a 6 a 7 

a g a 9 ala all 
0 0 0 1 



Plate 3.1 A (r, g, b) cube (top left) and, clockwise, slices through it at 0.75, 0.50 and 0.25 
respectively of the green axis 

Plate 3.2 Additive colour - combinations of red, green and blue - produce cyan, magenta, yellow 
and white 

Plate 3.3 The (r, g, b) colour (0.2, 0.8, 0.6); its colour may be distorted due to its printed 
representation in (c, m, y) 



Plate 3.4A (h, s, v) cone, lines (anticlockwise) show the hues of red, magenta, blue, cyan, green, 
and yellow 

Plate 3.5 Subtractive colour - combinations of cyan, magenta and yellow - produce red, green, 
blue and black 

Plate 5.1 A mathematical cone with two nappes; it extends to infinity beyond the bounds of the 
image 



Plate 5.2 Slices at different angles through the cone revealing (clockwise from top left) a circle, 
ellipse, parabola and hyperbola 

Plate 8.1 A chaotic pattern produced using a Mandelbrot type iteration in -2 < x < 2, 

-1.5 < y < -1.5 for the function x' = tan(x2 - y2) + cx, y' = COS(x2 + y2) - cy. Many functions 

produce interesting patterns 



Plate 8.2 A tree generated by Paul Briggs using parametric L-systems 

Plate 8.3 A Sierpinski tetrahedron generated by Aurelio Campa using 3D IFS 



Plate 8.4 A fractal copse of 10 IFS trees using some non-affine transformations 

Plate 8.5 A terrain model by Denis Crampton using functional variation of height to produce 
flatter valley features without making mountain peaks over-pointed 



Plate 8.6 A landscape created by Semannia Luk Cheung with the support of John Vince 

Plate 9.1 Eight' shells', each created as a pair of cubic Bezier spline patches, joined at the central 
'ridge' of symmetry. They are depicted using the exact object method (chapter 10) with Phong 
shading, highlights and shadows. Some pixellation is seen due to the random nature of the image 
generation, in which points are scattered across the two Bezier patch parameters 

Plate 10.1 Four 'cylinders' displayed using, from the left, Lambert (flat) shading, Gouraud 
shading, Phong shading and exact object rendering. The first three examples are created as 
octagonal based prisms; there is little observed difference between Gouraud and Phong examples, 
as no specular highlights are seen 



Plate 10.2 An abstract construction of cones, a cylinder and spheres. This shows how the z­
buffer copes with interpenetration, the shadow buffer copes with complex cast shadows and 
how gloss factors may vary (higher for the rear sphere than the other two glossy objects) 

Plate 10.3 Part of a maple tree modelled by John Thurn. Texture mapping is used to create surface 
detail 



Plate 10.4 This plate shows many ofthe effects described in the book. Curved surfaces use exact 
object rendering; the walls, ball and floor are procedurally texture mapped and stochastically 
anti-aliased although some 'jaggies' still appear; the plants are generated by 3D IFS; a z-buffer 
and shadow buffer was used and the ball has a specular highlight 
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• translation: aj = 0 for i = 0 to 11, except for ao = as = alO = 1, a3 = tx, a7 = ty, 
al1 = tz; 

• scaling: aj = 0 for i = 0 to 11, except for ao = Sx, as = Sy, alO = Sz; 

• rotation(x): aj = 0 for i = 0 to 11, except for as = cos(8), a9 = sin(8), 8{; = -~, 
alO = as, ao = 1; 

• rotation(y): aj = 0 for i = 0 to 11, except for alO = cos(8), a2 = sin(8), as = -a2, 
ao = alO, as = 1; 

• rotation(z): aj = 0 for i = 0 to 11, except for ao = cos(8), 114 = sin(8), al = -1l4, 
as = ao, alO = 1; 

• shear(x same): aj = 0 for i = 0 to 11 except for ao = as = alO = 1, 114 = ky, as = kz; 

• shear(y same): aj = 0 for i = 0 to 11 except for ao = as = alO = 1, a9 = kz, al = kx; 

• shear(z same): aj = 0 for i = 0 to 11 except for ao = as = alO = 1, a2 = kx, 8{; = kyo 

3D Concatenation Routines 
The following assume that the specified transformation is performed after a general 

ao a l a2 a 3 

transformation A = 
a 4 as a 6 a 7 and use c = cos(8) and s = sin(8) in the 
as a 9 a lO all 
0 0 0 1 

rotation matrices: 

1 0 0 tx ao a l a 2 a 3 ao a l a 2 (a 3 + t.) 

• translation: 
0 0 ty a 4 as a 6 a 7 a 4 as a 6 (a 7 + ty) 

0 0 tz a g a 9 a lO all a g a9 a lO (all + tz) 
0 0 0 1 0 0 0 1 0 0 0 1 

Sx 0 0 0 ao a l a2 a3 
0 Sy 0 0 a 4 as a 6 a 7 

0 0 Sz 0 as a 9 a lO all 
• scaling: 

0 0 0 0 0 0 1 

sxao sxal sxa 2 sxa 3 
sya 4 sya S sya 6 sya 7 

szag sza9 szalO sza ll 
0 0 0 
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c -s 0 0 a o a l a 2 a 3 

• rotation(z): s c 0 0 a 4 as a 6 a 7 

0 0 I 0 as a 9 a lO all 
0 0 0 I 0 0 0 I 

(ca o - sa 4) (cal - sa s) (ca 2 - sa 6) (ca 3 - sa 7) 

(sao + ca 4) (sal + ca5) (sa 2 +ca 6) (sa 3 + ca 7) 

as a 9 a lO all 
0 0 0 I 

3D Transformation Applied to a Vertex 

a o a l a 2 a 3 Xo (aoxo +alxl +a 2x2 +a 3) 

a 4 as a 6 a 7 XI (a 4xo + a 5XI + a 6x2 + a 7) 

as a 9 a lO all x2 (asxo +a 9xI +a lOx2 +a ll ) 

0 0 0 I I I 

Concatenation of perspective transformation 

If the origin is on the view plane, with centre of projection at (0,0,0, -d), 

d 0 0 0 a o a l a 2 a 3 

0 d 0 0 a 4 a 5 a 6 a 7 

0 0 0 0 as a 9 a lO all 
0 0 I d 0 0 0 I 

da o da l da 2 da 3 

da 4 da 5 da 6 da 7 

0 0 0 0 
as a 9 a to (d + all) 

All useful infonnation in the latter matrix can be held efficiently by reinterpreting 
the 12-element array transfonnation data structure as its first, second and fourth 
rows. If array B represents the result of applying this perspective transfonnation to a 
previous transfonnation (possibly composite) represented by array A, we can 
interpret B as 

bo bl b2 b3 da o da l da 2 da 3 

b4 bs b6 b7 da 4 da 5 da 6 da 7 

* * * * 0 0 0 0 
bs b 9 bto b 11 as a 9 a to (d + all) 

Applying this matrix to a general point gives 
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bo bl b2 b3 Xo 

• b4 bs b6 b7 XI 

* * * * X2 
bg b9 blO bll 1 

enabling the extraction of 

w = (bgxo + b9xI + blOx2 + bll ), 
x'o = (boxo + blxl + b2X2 + b3)/w, 
X'I = (b4Xo + bsxI + b6x2 + b7)/w, 

and X'2 = W - d 
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(boxo + blxl + b2x2 + b3) 

(b4Xo + bsxI + b6x2 + b7) 

* 
(bgxo + b9xI + blOx2 + bll ) 

as the coordinates of the resulting point. x'o and X'I are the (x, y) coordinates of the 
original point (xo, XI, X2) after transformation into the view window coordinates, X'2 
is the z 'depth' of (xo, XI, X2) from the window after it has undergone modelling and 
viewing transformations. The unchanged value of w would be just as useful for 
hidden surface/line and depth cueing purposes, giving the 'depth' of the model 
vertex from the centre of projection, which represents the location of an observer of 
the model. This is described in more detail in chapter 10. 

If the origin is at the centre of projection, 

d 0 0 0 ao a l a 2 a 3 dao da l da 2 da 3 

0 d 0 0 a4 as a 6 a 7 da 4 da s da 6 da 7 

0 0 d 0 ag a 9 a lO all da g da 9 da lo da ll 
0 0 1 0 0 0 0 I ag a 9 a lO all 

Again, if B is the overall result of applying this perspective transformation after a 
transformation (possibly composite) represented by A, B can be encoded as 

bo bl b2 b3 dao da l da 2 da 3 

b4 bs b6 b7 da 4 da s da 6 da 7 

* * * * da g da 9 dalO da lI 
, 

bg b9 blO bll ag a 9 a lO alI 

as information in the third row (replaced by asterisks '*') is only a multiple of the 
fourth by d. Applying this matrix to a point gives 

bo bl b2 b3 Xo 
b4 bs b6 b7 XI 

* * * * x2 
bg b9 blO blI 1 

enabling the extraction of 

X'2 = (bgxo + b9xI + blOx2 + blI ), 

(boxo + blxl + b2x2 + b3) 

(b4xo + bsxI + b6x2 + b7) 

* 
(bgxo + b9xI + blOx2 + blI ) 
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X'o = (boxo + blxl + b2x2 + b3)/X'2' 
and X'I = (b4Xo + bsxl + b6x2 + b7)/X'2 

as the coordinates of the resulting point. x'o and X'I are the (x, y) coordinates of the 
original point (xo, x" X2) after transfonnation into the view window coordinates, X'2 
is the z 'depth' of (xo, x" X2) after it has undergone modelling and viewing 
transfonnations. 

Perspective Transformation Applied Directly to a 
Vertex (Usually after Clipping) 

If the origin is placed on the view plane, with centre of projection (0, 0, 0, -d), 

d 0 0 0 Xo dxo 
o d 0 0 XI dXI 
o 0 0 0 x2 0 
o 0 I dId +X2 

division by the weight w = (d + X2) gives the transfonned point 

dxo /(d + x2) 

dXI /(d + x2) 

o 
1 

The value of (w - d) = X2 should be associated in a data structure with the 2D view 
window coordinates (dxoI(d + X2), dxd(d + X2)) as it is used to give depth priorities 
for hidden surface or line removal. 

If the origin is at the centre of projection, 

d 0 0 0 Xo 
o d 0 0 XI 
o 0 d 0 x2 
o 0 1 0 1 

division by the 'weight' w = X2 gives the transfonned point 

The value of w = X2 should be associated in a data structure with the 2D view 
window coordinates (dxO/X2' dxdx2) as it is used to give depth priorities for hidden 
surface or line removal. 
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Summary 

Users of computer graphics systems can continue blissfully unaware of the use of 
matrices within the routines that enable their creations. This chapter has developed 
the concept of matrices, with particular reference to the needs of computer graphics 
based on the transformations discussed in chapter 4, but with a sideways look at the 
historically important use of matrices in solving sets of linear equations. This is not 
wasted; it, too, is used in specialized computer graphics methods, such as rendering 
using radiosity (chapter 10). We have discussed how purely mathematical matrix 
methods can be subverted to produce more efficient computer usage. 

Does this help the casual user? As a car driver may drive more efficiently with 
some basic knowledge of the workings of a car, the intention is that computer 
graphics creators may create better images and do so more efficiently if they have at 
least a vague knowledge of how their routines work. At least, they should 
understand why some things take a relatively long time to perform, even with 
continuing advances in the speed and memory capacity of modem computers. 


