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Transformation and Viewing

Chapter Objectives: 

• Understand basic transformation and viewing methods

• Understand 3D hidden-surface removal and collision detection

• Design and implement 3D models (cone, cylinder, and sphere) and their 
animations in OpenGL

2.1 Geometric Transformation

In Chapter 1, we discussed creating and scan-converting primitive models. After a 
computer-based model is generated, it can be moved around or even transformed into 
a completely different shape. To do this, we need to specify the rotation axis and 
angle, translation vector, scaling vector, or other manipulations to the model. The 
ordinary geometric transformation is a process of mathematical manipulations of all 
the vertices of the model through matrix multiplications, where the graphics system 
then displays the final transformed model. The transformation can be predefined, such 
as moving along a planned trajectory; or interactive, depending on the user input. The 
transformation can be permanent — the coordinates of the vertices are changed and 
we have a new model replacing the original one; or just temporary — the vertices 
return to their original coordinates. In many cases a model is transformed in order to 
be displayed at a different position or orientation, and the graphics system discards the 
transformed model after scan-conversion. Sometimes all the vertices of a model go 
through the same transformation, and the shape of the model is preserved; sometimes 
different vertices go through different transformations, and the shape is dynamic. 

A model can be displayed repetitively with each frame going through a small 
transformation step. This causes the model to be animated on display. 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
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2.2 2D Transformation

Translation, rotation, and scaling are the basic and essential transformations. They 
can be combined to achieve most transformations in many applications. To simplify 
the discussion, we will first introduce 2D transformation and then generalize it into 
3D. 

2.2.1 2D Translation

A point  is translated to  by a distance vector :

, (EQ 12)

. (EQ 13)

In the homogeneous coordinates, we represent a point  by a column vector 

. Similarly, . Then, translation can be achieved by matrix 

multiplication: 

. (EQ 14)

Let's assume . We can denote the translation matrix equation as: 

. (EQ 15)
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 Fig. 2.1 Basic transformation: translation

If a model is a set of vertices, all vertices of the model can be translated as points by 
the same translation vector (Fig. 2.1). Note that translation moves a model through a 
distance without changing its orientation. 

2.2.2 2D Rotation

A point  is rotated counter-clockwise to  by an angle θ around the 
origin (0,0). Let us assume that the distance from the origin to point P is r = OP, and 
the angle between OP and x axis is α. If the rotation is clockwise, the rotation angle θ
is then negative. The rotation axis is perpendicular to the 2D plane at the origin:

, (EQ 16)

, (EQ 17)

, (EQ 18)

, (EQ 19)

, (EQ 20)

. (EQ 21)

In the homogeneous coordinates, rotation can be achieved by matrix multiplication: 
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. (EQ 22)

Let's assume . The simplified rotation matrix equation is 

. (EQ 23)

If a model is a set of vertices, all vertices 
of the model can be rotated as points by 
the same angle around the same rotation 
axis (Fig. 2.2). Rotation moves a model 
around the origin of the coordinates. The 
distance of each vertex to the origin is 
not changed during rotation. 

2.2.3 2D Scaling

A point  is scaled to  by 
a scaling vector : 

, (EQ 24)

. (EQ 25)

In the homogeneous coordinates, again, scaling can be achieved by matrix 
multiplication: 
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 Fig. 2.2 Basic transformation: rotation
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. (EQ 26)

Let's assume . We can denote the scaling matrix equation as: 

. (EQ 27)

If a model is a set of vertices, all vertices of the model can be scaled as points by the 
same scaling vector (Fig. 2.3). Scaling amplifies or shrinks a model around the origin 
of the coordinates. Note that a scaled vertex will move unless it is at the origin.

2.2.4 Simulating OpenGL Implementation 

OpenGL actually implements 3D transformations, which we will discuss later. Here, 
we implement 2D transformations in our own code in J2_0_2DTransform.java, which 
corresponds to the OpenGL implementation in hardware. 

OpenGL has a MODELVIEW matrix stack that saves the current matrices for 
transformation. Let us define a matrix stack as follows:

 Fig. 2.3 Basic transformation: scaling
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/* 2D transformation OpenGL style implementation */

import net.java.games.jogl.*;

public class J2_0_2DTransform extends J1_5_Circle {
  private static float my2dMatStack[][][] =
      new float[24][3][3];
  private static int stackPtr = 0;

...
}

The identity matrix for 2D homogeneous coordinates is . Any matrix 

multiplied with identity matrix does not change. 

The stackPtr points to the current matrix on the matrix stack 
(my2dMatrixStack[stackPtr]) that is in use. Transformations are then achieved by the 
following methods: my2dLoadIdentity(), my2dMultMatrix(float mat[][]), 
my2dTranslatef(float x, float y), my2dRotatef(float angle), my2dScalef(float x, float y), 
and my2dTransformf(float vertex[], float vertex1[]) (or my2dTransVertex(float 
vertex[], float vertex1[]) for vertices already in homogeneous form).

1. my2dLoadIdentity() loads the current matrix on the matrix stack with the identity 
matrix: 

// initialize a 3*3 matrix to all zeros
  private void my2dClearMatrix(float mat[][]) {

    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        mat[i][j] = 0.0f;
      }
    }
  }

  // initialize a matrix to Identity matrix
  private void my2dIdentity(float mat[][]) {

I
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    my2dClearMatrix(mat);
    for (int i = 0; i<3; i++) {
      mat[i][i] = 1.0f;
    }
  }

  // initialize the current matrix to Identity matrix
  public void my2dLoadIdentity() {
    my2dIdentity(my2dMatStack[stackPtr]);
  }

2. my2dMultMatrix(float mat[][]) multiplies the current matrix on the matrix stack 
with the matrix mat: CurrentMatrix = currentMatrix*Mat.

// multiply the current matrix with mat
  public void my2dMultMatrix(float mat[][]) {
    float matTmp[][] = new float[3][3];

    my2dClearMatrix(matTmp);

    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        for (int k = 0; k<3; k++) {
          matTmp[i][j] +=
              my2dMatStack[stackPtr][i][k]*mat[k][j];
        }
      }
    }
    // save the result on the current matrix
    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        my2dMatStack[stackPtr][i][j] = matTmp[i][j];
      }
    }
  }

3. my2dTranslatef(float x, float y) multiplies the current matrix on the matrix stack 
with the translation matrix T(x, y): 

// multiply the current matrix with a translation matrix
  public void my2dTranslatef(float x, float y) {
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    float T[][] = new float[3][3];

    my2dIdentity(T);

    T[0][2] = x;
    T[1][2] = y;

    my2dMultMatrix(T);
  }

4. my2dRotatef(float angle) multiplies the current matrix on the matrix stack with the 
rotation matrix R(angle): 

// multiply the current matrix with a rotation matrix
  public void my2dRotatef(float angle) {
    float R[][] = new float[3][3];

    my2dIdentity(R);

    R[0][0] = (float)Math.cos(angle);
    R[0][1] = (float)-Math.sin(angle);
    R[1][0] = (float)Math.sin(angle);
    R[1][1] = (float)Math.cos(angle);

    my2dMultMatrix(R);
  }

5. my2dScalef(float x, float y) multiplies the current matrix on the matrix stack with 
the scaling matrix S(x, y): 

// multiply the current matrix with a scale matrix
  public void my2dScalef(float x, float y) {
    float S[][] = new float[3][3];

    my2dIdentity(S);

    S[0][0] = x;
    S[1][1] = y;

    my2dMultMatrix(S);
  }
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6. my2dTransformf(float vertex[]; vertex1[]) multiplies the current matrix on the 
matrix stack with vertex, and save the result in vertex1. Here vertex is first 
extended to homogeneous coordinates before matrix multiplication. 

  // v1 = (the current matrix) * v
  // here v and v1 are vertices in homogeneous coord. 
  public void my2dTransHomoVertex(float v[], float v1[]) {
    int i, j;

    for (i = 0; i<3; i++) {
      v1[i] = 0.0f;

    }
    for (i = 0; i<3; i++) {
      for (j = 0; j<3; j++) {
        v1[i] +=
            my2dMatStack[stackPtr][i][j]*v[j];
      }
    }
  }

  // vertex = (the current matrix) * vertex
  // here vertex is in homogeneous coord. 
  public void my2dTransHomoVertex(float vertex[]) {
      float vertex1[] = new float[3];

    my2dTransHomoVertex(vertex, vertex1);
    for (int i = 0; i<3; i++) {
      vertex[i] = vertex1[i];
    }
  }

  // transform v to v1 by the current matrix 
  // here v and v1 are not in homogeneous coordinates
  public void my2dTransformf(float v[], float v1[]) {
    float vertex[] = new float[3];

    // extend to homogenous coord
     vertex[0] = v[0];
    vertex[1] = v[1];
    vertex[2] = 1;

    // multiply the vertex by the current matrix
    my2dTransHomoVertex(vertex);
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    // return to 3D coord
    v1[0] = vertex[0]/vertex[2];
    v1[1] = vertex[1]/vertex[2];
  }

  // transform v by the current matrix 
   // here v is not in homogeneous coordinates
  public void my2dTransformf(float[] v) {
    float vertex[] = new float[3];

    // extend to homogenous coord
    vertex[0] = v[0];
    vertex[1] = v[1];
    vertex[2] = 1;

    // multiply the vertex by the current matrix
    my2dTransHomoVertex(vertex);

    // return to 3D coord
    v[0] = vertex[0]/vertex[2];
    v[1] = vertex[1]/vertex[2];
  }

7. In addition to the above methods, my2dPushMatrix() and my2dPopMatrix() are a 
powerful mechanism to change the current matrix on the matrix stack, which we 
will discuss in more detail later. PushMatrix will increase the stack pointer and 
make a copy of the previous matrix to the current matrix. Therefore, the matrix 
remains the same, but we are using a different set of memory locations on the 
matrix stack. PopMatrix will decrease the stack pointer, so we return to the 
previous matrix that was saved at PushMatrix. 

  // move the stack pointer up, and copy the previous 
  // matrix to the current matrix
  public void my2dPushMatrix() {
    int tmp = stackPtr+1;

    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        my2dMatStack[tmp][i][j] =
            my2dMatStack[stackPtr][i][j];
      }
    }
    stackPtr++;
  }
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  // move the stack pointer down
  public void my2dPopMatrix() {

    stackPtr--;
  }

With the above 2D transformation methods, the 
following example (J2_0_2DTransform.java) 
achieves different transformations using the 
implemented methods, as shown in Fig. 2.4. 

/* 2D transformation: OpenGL style 
implementation  */

import net.java.games.jogl.*;

public class J2_0_2DTransform 
extends J1_5_Circle {

....// the matrix stack

  static float vdata[][] = { {1.0f, 0.0f, 0.0f}
                           , {0.0f, 1.0f, 0.0f}
                           , {-1.0f, 0.0f, 0.0f}
                           , {0.0f, -1.0f, 0.0f}
  };
  static int cnt = 1;

  // called for OpenGL rendering every reshape
  public void display(GLDrawable drawable) {

    if (cnt<1||cnt>200) {
      flip = -flip;
    }
    cnt = cnt+flip;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    // white triangle is scaled
    gl.glColor3f(1, 1, 1);
    my2dLoadIdentity();

 Fig. 2.4 Transformations of  
triangles [See Color Plate 1]
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    my2dScalef(cnt, cnt);
    transDrawTriangle(vdata[0], vdata[1], vdata[2]);

    // red triangle is rotated and scaled
    gl.glColor3f(1, 0, 0);
    my2dRotatef((float)cnt/15);
    transDrawTriangle(vdata[0], vdata[1], vdata[2]);

    // green triangle is translated, rotated, and scaled
    gl.glColor3f(0, 1, 0);
    my2dTranslatef((float)cnt/100, 0.0f);
    transDrawTriangle(vdata[0], vdata[1], vdata[2]);

    try {
      Thread.sleep(20);
    } catch (InterruptedException e) {}
  }

  // the vertices are transformed first then drawn
  public void transDrawTriangle(float[] v1,
                                 float[] v2, float[] v3) {
    float v[][] = new float[3][3];

    my2dTransformf(v1, v[0]);
    my2dTransformf(v2, v[1]);
    my2dTransformf(v3, v[2]);

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glVertex3fv(v[0]);
    gl.glVertex3fv(v[1]);
    gl.glVertex3fv(v[2]);
    gl.glEnd();
  }

... // the transformation methods 

  public static void main(String[] args) {
    J2_0_2DTransform f = new J2_0_2DTransform();

    f.setTitle("JOGL J2_0_2DTransform");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}
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 Fig. 2.5 Moving the clock hand by matrix multiplications

2.2.5 Composition of 2D Transformations

A complex transformation is often achieved by a series of simple transformation steps. 
The result is a composition of translations, rotations, and scalings. We will study this 
through the following three examples. 

Example 1: Find the coordinates of a moving clock hand in 2D. Consider a single clock 
hand. The center of rotation is given at c(x0, y0), and the end rotation point is at h(x1, 
y1). If we know the rotation angle is θ, can we find the new end point h' after the 
rotation? As shown in Fig. 2.5, we can achieve this by a series of transformations.

1. Translate the hand so that the center of rotation is at the origin. Note that we only 
need to find the new coordinates of the end point h:

. (EQ 28)

That is, h1 = T(−x0, −y0)h. (EQ 29)

2. Rotate θ degrees around the origin. Note that the positive direction of rotation is 
counter-clockwise:
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h2 = R(−θ)h1. (EQ 30)

3. After the rotation. We translate again to move the clock back to its original 
position:

h' = T(x0, y0)h2. (EQ 31)

Therefore, putting Equations  29,  30, and  31 together, the combination of 
transformations to achieve the clock hand movement is

h' = T(x0 , y0)R(−θ)T(−x0, −y0)h. (EQ 32)

That is, . (EQ 33)

In the future, we will write matrix equations concisely using only symbol notations 
instead of full matrix expressions. However, we should always remember that the 
symbols represent the corresponding matrices. 

Let’s assume M=T(x0,y0)R(−θ)T(−x0, −y0). We can further simplify the equation:

h' = Mh. (EQ 34)

The order of the matrices in a matrix expression matters. The sequence represents the 
order of the transformations. For example, although matrix M in Equation 34 can be 
calculated by multiplying the first two matrices first [T(x0, y0)R(−θ)]T(−x0, −y0) or by 
multiplying the last two matrices first T(x0, y0)[R(−θ)T(−x0, −y0)], the order of the 
matrices cannot be changed. 

When we analyze a model’s transformations, we should remember that, logically 
speaking, the order of transformation steps are from right to left in the matrix 
expression. In this example, the first logical step is T(−x0, −y0)h; the second step is 
R(−θ)[T(−x0, −y0)h]; and the last step is T(x0, y0)[R(−θ)[T(−x0, −y0)]]. In the actual 
OpenGL style implementation, the matrix multiplication is from left to right, and there 
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is always a final matrix on the matrix stack. The following is a segment of 
J2_1_Clock2d.java that simulates a real-time clock. 

my2dLoadIdentity();
my2dTranslate(c[0], c[1]); // x0=c[0], y0=c[1]; 
my2dRotate(-a); 
my2dTranslate(-c[0], -c[1]); 
transDrawClock(c, h);

In the above code, first the current matrix on the matrix stack is loaded with the 
identity matrix I, then it is multiplied by a translation matrix T(x0, y0), after that it is 
multiplied by a rotation matrix R(−θ), and finally it is multiplied by a translation 
matrix T(−x0, −y0). Written in an expression, it is [[[I]T(x0, y0)]R(−θ)]T(−x0, −y0). In 
transDrawClock(), the clock center c and end h are both transformed by the current 
matrix, and then scan converted to display. In OpenGL, transformation is implied. In 
other words, the vertices are first transformed by the system before they are sent to the 
scan-conversion. The following is the complete program. 

/* 2D clock hand transformation */

public class J2_1_Clock2d extends J2_0_2DTransform {
  static final float PI = 3.1415926f;

  public void display(GLDrawable glDrawable) {
    // homogeneous coordinates
    float c[] = {0, 0, 1};
    float h[] = {0, WIDTH/6, 1};

    long curTime;
    float ang, second, minute, hour;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    curTime = System.currentTimeMillis()/1000;
    // returns the current time in milliseconds
    hsecond = curTime%60;
    curTime = curTime/60;
    hminute = curTime%60+hsecond/60;
    curTime = curTime/60;
    hhour = (curTime%12)+8+hminute/60;
    // Eastern Standard Time
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    ang = PI*second/30; // arc angle

    gl.glColor3f(1, 0, 0); // second hand in red
    my2dLoadIdentity();
    my2dTranslatef(c[0], c[1]);
    my2dRotatef(-ang);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(1);
    transDrawClock(c, h);

    gl.glColor3f(0, 1, 0); // minute hand in green
    my2dLoadIdentity();
    ang = PI*minute/30; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.8f, 0.8f); // minute hand shorter
    my2dRotatef(-ang);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(2);
    transDrawClock(c, h);

    gl.glColor3f(0, 0, 1); // hour hand in blue
    my2dLoadIdentity();
    ang = PI*hour/6; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.5f, 0.5f); // hour hand shortest
    my2dRotatef(-ang);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(3);
    transDrawClock(c, h);
  }

  public void transDrawClock(float C[], float H[]) {
    float End1[] = new float[3];
    float End2[] = new float[3];

    my2dTransHomoVertex(C, End1);
    // Transform the center by the current matrix 
    my2dTransHomoVertex(H, End2);
    // Transform the end by the current matrix 

    // assuming z = w = 1;
    gl.glBegin(GL.GL_LINES);
    gl.glVertex3fv(End1);
    gl.glVertex3fv(End2);
    gl.glEnd();
  }
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  public static void main(String[] args) {

    J2_1_Clock2d f = new J2_1_Clock2d();

    f.setTitle("JOGL J2_1_Clock2d");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}

Example 2: Reshaping a rectangular area. In OpenGL, we can use the mouse to 
reshape the display area. In the Reshape callback function, we can use glViewport() to 
adjust the size of the drawing area accordingly. The system makes corresponding 
adjustments to the models through the same transformation matrix. Viewport 
transformation will be discussed later in the section “Viewing”. 

Here, we discuss a similar problem: a transformation that allows reshaping a 
rectangular area. Let's assume the coordinate system of the screen is as in Fig. 2.6. 
After reshaping, the rectangular area and all the vertices of the model inside the 
rectangular area go through the following transformations: translate so that the 
lower-left corner of the area is at the origin, scale to the size of the new area, and then 
translate to the scaled area location. The corresponding matrix expression is 

T(P2)S(sx, sy)T(−P1). (EQ 35)

 Fig. 2.6 Scaling an arbitrary rectangular area
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p1 p2

Translate Scale Translate
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sy = wd2/wd1
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P1 is the starting point for scaling, and P2 is the 
destination. We can use the mouse to 
interactively drag P1 to P2 in order to reshape 
the corresponding rectangular area. In the 
following example (J2_2_Reshape.java), we 
use the mouse to drag the lower-left vertex P1
of the rectangular area to a new location. The 
rectangle and the clock inside are reshaped 
accordingly. A snapshot is shown in Fig. 2.7. 

/* reshape the rectangular drawing area 
*/

import net.java.games.jogl.*;
import java.awt.event.*;

public class J2_2_Reshape extends J2_1_Clock2d implements
    MouseMotionListener {

  // the point to be dragged as the lower-left corner
  private static float P1[] = {-WIDTH/4, -HEIGHT/4};

  // reshape scale value
  private float sx = 1, sy = 1;

  // when mouse is dragged, a new lower-left point
  // and scale value for the rectangular area
  public void mouseDragged(MouseEvent e) {
    float wd1 = WIDTH/2;
    float ht1 = HEIGHT/2;

    // The mouse location, new lower-left corner
    P1[0] = e.getX()-WIDTH/2;
    P1[1] = HEIGHT/2-e.getY();
    float wd2 = WIDTH/4-P1[0];
    float ht2 = HEIGHT/4-P1[1];

 Fig. 2.7 Reshape a drawing 
area with a clock inside
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    // scale value of the current rectangular area
    sx = wd2/wd1;
    sy = ht2/ht1;
  }

  public void mouseMoved(MouseEvent e) {
  }

  public void init(GLDrawable drawable) {

    super.init(drawable);
    // listen to mouse motion
    drawable.addMouseMotionListener(this);
  }

  public void display(GLDrawable glDrawable) {
    // the rectangle lower-left and upper-right corners
    float v0[] = {-WIDTH/4, -HEIGHT/4};
    float v1[] = {WIDTH/4, HEIGHT/4};

    // reshape according to the current scale
    my2dLoadIdentity();
    my2dTranslatef(P1[0], P1[1]);
    my2dScalef(sx, sy);
    my2dTranslatef(-v0[0], -v0[1]);

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);
    gl.glColor3f(1, 1, 1); // the rectangle is white

    // rectangle area
    float v00[] = new float[2], v11[] = new float[2];
    my2dTransformf(v0, v00);
    my2dTransformf(v1, v11);
    gl.glBegin(GL.GL_LINE_LOOP);
    gl.glVertex3f(v00[0], v00[1], 0);
    gl.glVertex3f(v11[0], v00[1], 0);
    gl.glVertex3f(v11[0], v11[1], 0);
    gl.glVertex3f(v00[0], v11[1], 0);
    gl.glEnd();

    // the clock hands go through the same transformation
    curTime = System.currentTimeMillis()/1000;
    hsecond = curTime%60;
    curTime = curTime/60;
    hminute = curTime%60+hsecond/60;
    curTime = curTime/60;
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    hhour = (curTime%12)+8+hminute/60;
    // Eastern Standard Time

    hAngle = PI*hsecond/30; // arc angle

    gl.glColor3f(1, 0, 0); // second hand in red
    my2dTranslatef(c[0], c[1]);
    my2dRotatef(-hAngle);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(3);
    transDrawClock(c, h);

    gl.glColor3f(0, 1, 0); // minute hand in green
    my2dLoadIdentity();
    my2dTranslatef(P1[0], P1[1]);
    my2dScalef(sx, sy);
    my2dTranslatef(-v0[0], -v0[1]);
    hAngle = PI*hminute/30; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.8f, 0.8f); // minute hand shorter
    my2dRotatef(-hAngle);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(5);
    transDrawClock(c, h);

    gl.glColor3f(0, 0, 1); // hour hand in blue
    my2dLoadIdentity();
    my2dTranslatef(P1[0], P1[1]);
    my2dScalef(sx, sy);
    my2dTranslatef(-v0[0], -v0[1]);
    hAngle = PI*hhour/6; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.5f, 0.5f); // hour hand shortest
    my2dRotatef(-hAngle);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(7);
    transDrawClock(c, h);
  }

  public static void main(String[] args) {
    J2_2_Reshape f = new J2_2_Reshape();

    f.setTitle("JOGL J2_2_Reshape");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}
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Example 3: Drawing a 2D robot arm with three moving segments. A 2D robot arm has 3 
segments rotating at the joints in a 2D plane (Fig. 2.8). Given an arbitrary initial 
posture (A, B, C), let’s find the transformation matrix expressions for another posture 
(Af, Bf, Cf) with respective rotations (α, β, γ) around the joints. Here we specify (A, B, 
C) on the x axis, which is used to simplify the visualization. (A, B, C) can be initialized 
arbitrarily. There are many different methods to achieve the same goal. Here, we 
elaborate three methods for the same goal. 

Method I. 

1. Rotate oABC around the origin by α degrees: 

Af = R(α)A; B’ = R(α)B; C’ = R(α)C. (EQ 36)

 Fig. 2.8 A 2D robot arm rotates (α, β, γ) degrees at the 3 joints, respectively
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2. Consider AfB’C’ to be a clock hand like the example in Fig. 2.5. Rotate AfB’C’
around Af by β degrees. This is achieved by first translating the hand to the origin, 
rotating, then translating back: 

Bf = T(Af)R(β)T(−Af)B’; C’’ = T(Af)R(β)T(−Af)C’. (EQ 37)

3. Again, consider BfC’’ to be a clock hand. Rotate BfC’’ around Bf by γ degrees: 

Cf = T(Bf)R(γ)T(−Bf)C’’. (EQ 38)

The corresponding code is as follows. Here my2dTransHomoVertex(v1, v2) will 
multiply the current matrix on the matrix stack with v1, and save the results in v2. 
drawArm() is just drawing a line segment. 

  // Method I: 2D robot arm transformations
  public void transDrawArm1(float a, float b, float g) {
    float Af[] = new float[3];
    float B1[] = new float[3];
    float C1[] = new float[3];
    float Bf[] = new float[3];
    float C2[] = new float[3];
    float Cf[] = new float[3];

    my2dLoadIdentity();
    my2dRotatef(a);
    my2dTransHomoVertex(A, Af);
    my2dTransHomoVertex(B, B1);
    my2dTransHomoVertex(C, C1);

    drawArm(O, Af);

    my2dLoadIdentity();
    my2dTranslatef(Af[0], Af[1]);
    my2dRotatef(b);
    my2dTranslatef( -Af[0], -Af[1]);
    my2dTransHomoVertex(B1, Bf);
    my2dTransHomoVertex(C1, C2);
    drawArm(Af, Bf);

    my2dLoadIdentity();
    my2dTranslatef(Bf[0], Bf[1]);
    my2dRotatef(g);
    my2dTranslatef( -Bf[0], -Bf[1]);
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    my2dTransHomoVertex(C2, Cf);
    drawArm(Bf, Cf);
  }

Method II. 

1. Consider BC to be a clock hand. Rotate BC around B by γ degrees: 

C’ = T(B)R(γ)T(−B)C. (EQ 39)

2. Consider ABC’ to be a clock hand. Rotate ABC’ around A by β degrees: 

B’ = T(A)R(β)T(−A)B; C’’ = T(A)R(β)T(−A)C’. (EQ 40)

3. Again, consider oAB’C’’ to be a clock hand. Rotate oAB’C’’ around the origin by α
degrees: 

Af = R(α)A; (EQ 41)

Bf = R(α)B’ = R(α)T(A)R(β)T(−A)B; (EQ 42)

Cf= R(α)C’’ = R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B)C. (EQ 43)

The corresponding code is as follows. Here transDraw() will first transform the 
vertices, and then draw the transformed vertices as a line segment. 

  // Method II: 2D robot arm transformations
  public void transDrawArm2(float a, float b, float g) {

    my2dLoadIdentity();
    my2dRotatef(a);
    transDrawArm(O, A);
    my2dTranslatef(A[0], A[1]);
    my2dRotatef(b);
    my2dTranslatef( -A[0], -A[1]);



74          2 Transformation and Viewing

    transDrawArm(A, B);
    my2dTranslatef(B[0], B[1]);
    my2dRotatef(g);
    my2dTranslatef( -B[0], -B[1]);
    transDrawArm(B, C);
  }

Method III. 

1. Consider oA, AB, and BC as clock hands with the rotation axes at o, A, and B, 
respectively. Rotate oA by α degrees, AB by (α+β) degrees, and BC by (α+β+γ)
degrees: 

Af = R(α)A; B’ = T(A)R(α+β)T(−A)B; C’ = T(B)R(α+β+γ)T(−B)C. (EQ 44)

2. Translate AB’ to AfBf: 

Bf = T(Af)T(−A)B’ =T(Af)R(α+β)T(−A)B. (EQ 45)

Note that T(−A)T(A) = I, which is the identity matrix: . Any matrix 

multiplied by the identity matrix does not change. The vertex is translated by 
vector A, and then reversed back to its original position by translation vector −A. 

3. Translate BC’ to BfCf: 

Cf = T(Bf)T(−B)C’ =T(Bf)R(α+β+γ)T(−B)C. (EQ 46)

The corresponding code is as follows. 

   // Method III: 2D robot arm transformations
   public void transDrawArm3(float a, float b, float g) {
    float Af[] = new float[3];
    float Bf[] = new float[3];
    float Cf[] = new float[3];

I
1 0 0

0 1 0

0 0 1

=
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    my2dLoadIdentity();
    my2dRotatef(a);
    my2dTransHomoVertex(A, Af);
    drawArm(O, Af);
    my2dLoadIdentity();
    my2dTranslatef(Af[0], Af[1]);
    my2dRotatef(a + b);
    my2dTranslatef( -A[0], -A[1]);
    my2dTransHomoVertex(B, Bf);
    drawArm(Af, Bf);
    my2dLoadIdentity();
    my2dTranslatef(Bf[0], Bf[1]);
    my2dRotatef(a + b + g);
    my2dTranslatef( -B[0], -B[1]);
    my2dTransHomoVertex(C, Cf);
    drawArm(Bf, Cf);
  }

In the above examples, we use Draw() and transDraw(), which are implemented 
ourselves. The difference between the two functions are that Draw() will draw the two 
vertices as a line directly, whereas transDraw() will first transform the two vertices by 
the current matrix on the matrix stack, and then draw a line according to the 
transformed vertices. In OpenGL implementation, as we will see, transDraw is 
implied. That is, whenever we draw a primitive, the vertices of the primitive are 
always transformed by the current matrix on the MODELVIEW matrix stack, even 
though the transformation matrix multiplication is unseen. We will discuss this in 
detail later. The three different transformation are demonstrated in the following 
sample program (J2_3_Robot2d.java). 

/* three different methods for 2D robot arm transformations */

import net.java.games.jogl.*;

public class J2_3_Robot2d extends J2_0_2DTransform {
  // homogeneous coordinates
  float O[] = {0, 0, 1};
  float A[] = {100, 0, 1};
  float B[] = {160, 0, 1};
  float C[] = {200, 0, 1};
  float a, b, g;
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  public void display(GLDrawable glDrawable) {

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    a = a + 0.01f;
    b = b - 0.02f;
    g = g + 0.03f;

    gl.glColor3f(0, 1, 1);
    transDrawArm1(a, b, g);

    gl.glColor3f(1, 1, 0);
    transDrawArm2(-b, -g, a);

    gl.glColor3f(1, 0, 1);
    transDrawArm3(g, -a, -b);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  ...; // Method I: 2D robot arm transformations
  ...; // Method II: 2D robot arm transformations
  ...; // Method III: 2D robot arm transformations

  // transform the coordinates and then draw
  private void transDrawArm(float C[], float H[]) {

    float End1[] = new float[3];
    float End2[] = new float[3];

    my2dTransHomoVertex(C, End1);
    // multiply the point with the matrix on the stack
    my2dTransHomoVertex(H, End2);

    // assuming z = w = 1;
    drawArm(End1, End2);
  }

  // draw the coordinates directly
  public void drawArm(float C[], float H[]) {

    gl.glLineWidth(5);

    // assuming z = w = 1;



2.3  3D Transformation and Hidden-Surface Removal          77

    gl.glBegin(GL.GL_LINES);
    gl.glVertex3fv(C);
    gl.glVertex3fv(H);
    gl.glEnd();
  }

  public static void main(String[] args) {
    J2_3_Robot2d f = new J2_3_Robot2d();

    f.setTitle("JOGL J2_3_Robot2d");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}

2.3 3D Transformation and Hidden-Surface Removal

2D transformation is a special case of 3D 
transformation where z=0. For example, a 
2D point (x, y) is (x, y, 0) in 3D, and a 2D 
rotation around the origin R(θ) is a 3D 
rotation around the z axis Rz(θ) (Fig. 2.9). 
The z axis is perpendicular to the display 
with the arrow pointing toward the viewer. 
We can assume the display to be a view of a 
3D drawing box, which is projected along 
the z axis direction onto the 2D drawing 
area at z=0. 

2.3.1 3D Translation, Rotation, and Scaling

In 3D, for translation and scaling, we can translate or scale not only along the x and 
the y axis but also along the z axis. For rotation, in addition to rotating around the z
axis, we can also rotate around the x axis and the y axis. In the homogeneous 
coordinates, the 3D transformation matrices for translation, rotation, and scaling are as 
follows:

P

 Fig. 2.9 A 3D rotation around z axis
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x

P’
θ

z
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Translation: ; (EQ 47)

Scaling: ; (EQ 48)

Rotation around x axis: ; (EQ 49)

Rotation around y axis: ; (EQ 50)

Rotation around z axis: . (EQ 51)

For example, the 2D transformation Equation 41 can be replaced by the corresponding 
3D matrices: 

Af = Rz(α)A, (EQ 52)

T dx dy dz, ,( )

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

=

S sx sy sz, ,( )

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

=

Rx θ( )

1 0 0 0

0 θcos θsin– 0

0 θsin θcos 0

0 0 0 1

=

Ry θ( )

θcos 0 θsin 0

0 1 0 0

θsin– 0 θcos 0

0 0 0 1

=

Rz θ( )

θcos θsin– 0 0

θsin θcos 0 0

0 0 1 0

0 0 0 1

=
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where , , and Az=0. We can show that Afz=0 as well. 

2.3.2 Transformation in OpenGL

As an example, we will again implement in OpenGL the robot arm transformation 
MODELVIEW matrix stack to achieve the transformation. We consider the 
transformation to be a special case of 3D at z=0. 

In OpenGL, all the vertices of a model are multiplied by the matrix on the top of the 
MODELVIEW matrix stack and then by the matrix on the top of the PROJECTION 
matrix stack before the model is scan-converted. Matrix multiplications are carried out 
on the top of the matrix stack automatically in the graphics system. The 
MODELVIEW matrix stack is used for geometric transformation. The PROJECTION 
matrix stack is used for viewing, which will be discussed later. Here, we explain how 
OpenGL handles the geometric transformations in the following example 
(J2_4_Robot.java, which implements Method II in Fig. 2.8.) 

1. Specify that current matrix multiplications are carried out on the top of the MOD-
ELVIEW matrix stack:

gl.glMatrixMode (GL.GL_MODELVIEW);

2. Load the current matrix on the matrix stack with the identity matrix:

gl.glLoadIdentity ();

The identity matrix for 3D homogeneous coordinates is .

A

Ax

Ay

Az

1

= Af

Afx

Afy

Afz

1

=

I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=
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3. Specify the rotation matrix Rz(α), which will be multiplied by whatever on the 
current matrix stack already. The result replaces the matrix currently on the top of 
the stack. If the identity matrix is on the stack, then IRz(α)=Rz(α): 

gl.glRotatef (alpha, 0.0, 0.0, 1.0);

4. Draw a robot arm — a line segment between point O and A. Before the model is 
scan-converted into the frame buffer, O and A will first be transformed by the 
matrix on the top of the MODELVIEW matrix stack, which is Rz(α). That is, 
Rz(α)O and Rz(α)A will be used to scan-convert the line (Equation 41):

drawArm (O, A);

5. In the following code section, we specify a series of transformation matrices, 
which in turn will be multiplied by whatever is already on the current matrix stack: 
I, [I]R(α), [[I]R(α)]T(A), [[[I]R(α)]T(A)]R(β), [[[[I]R(α)]T(A)]R(β)]T(−A). Before 
drawArm (A, B), we have M = R(α)T(A)R(β)T(−A) on the matrix stack, which 
corresponds to Equation 42:

gl.glPushMatrix();
gl.glLoadIdentity ();
gl.glRotatef (alpha, 0.0, 0.0, 1.0);
drawArm (O, A);

gl.glTranslatef (A[0], A[1], 0.0);
gl.glRotatef (beta, 0.0, 0.0, 1.0);
gl.glTranslatef (-A[0], -A[1], 0.0);
drawArm (A, B);

gl.glPopMatrix();

The matrix multiplication is always carried out on the top of the matrix stack. 
glPushMatrix() will move the stack pointer up one slot and duplicate the previous 
matrix so that the current matrix is the same as the matrix immediately below it on 
the stack. glPopMatrix() will move the stack pointer down one slot. The advantage 
of this mechanism is to separate the transformations of the current model between 
glPushMatrix() and glPopMatrix() from other transformations of models later. 
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 Fig. 2.10 Matrix stack operations with glPushMatrix() and glPopMatrix()

Let’s look at the function drawRobot() in J2_4_Robot.java below. Fig. 2.10 shows 
what is on the top of the matrix stack, when drawRobot() is called once and then 
again. At drawArm(B, C) right before glPopMatrix(), the matrix on top of the stack 
is M = R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B), which corresponds to Equation 43. 

6. Suppose we remove glPushMatrix() and glPopMatrix() from drawRobot(), if we 
call drawRobot() once, it appears fine. If we call it again, you will see that the 
matrix on the matrix stack is not an identity matrix. It is the previous matrix on the 
stack already (Fig. 2.11).

For beginners, it is a good idea to draw the state of the current matrix stack while you 
are reading the sample programs or writing your own programs. This will help you 
clearly understand what the transformation matrices are at different stages. 

 Fig. 2.11 Matrix stack operations without glPushMatrix() and glPopMatrix()
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Methods I and III (Fig. 2.8) cannot be achieved using OpenGL transformations 
directly, because OpenGL provides matrix multiplications, but not the vertex 
coordinates after a vertex is transformed by the matrix. This means that all vertices are 
always fixed at their original locations. This method avoids floating point 
accumulation errors. We can use glGetDoublev(GL.GL_MODELVIEW_MATRIX, 
M[]) to get the current 16 values of the matrix on the top of the MODELVIEW stack, 
and multiply the coordinates by the current matrix to achieve the transformations for 
Methods I and III. Of course, you may implement your own matrix multiplications to 
achieve all the different transformation methods as well. 

/* 2D robot transformation in OpenGL */

import net.java.games.jogl.*;

public class J2_4_Robot extends J2_3_Robot2d {

  public void display(GLDrawable glDrawable) {

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    a = a+0.1f;
    b = b-0.2f;
    g = g+0.3f;

    gl.glLineWidth(7f); // draw a wide line for arm
    drawRobot(A, B, C, a, b, g);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  void drawRobot(
      float A[],
      float B[],
      float C[],
      float alpha,
      float beta,
      float gama) {

    gl.glPushMatrix();

    gl.glColor3f(1, 1, 0);
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    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f);
    // R_z(alpha) is on top of the matrix stack
    drawArm(O, A);

    gl.glColor3f(0, 1, 1);
    gl.glTranslatef(A[0], A[1], 0.0f);
    gl.glRotatef(beta, 0.0f, 0.0f, 1.0f);
    gl.glTranslatef(-A[0], -A[1], 0.0f);
    // R_z(alpha)T(A)R_z(beta)T(-A) is on top
    drawArm(A, B);

    gl.glColor3f(1, 0, 1);
    gl.glTranslatef(B[0], B[1], 0.0f);
    gl.glRotatef(gama, 0.0f, 0.0f, 1.0f);
    gl.glTranslatef(-B[0], -B[1], 0.0f);
    // R_z(alpha)T(A)R_z(beta)T(-A) is on top
    drawArm(B, C);

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_4_Robot f = new J2_4_Robot();

    f.setTitle("JOGL J2_4_Robot");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.3.3 Hidden-Surface Removal

Bounding volumes. We first introduce a simple method, called bounding volume or 
minmax testing, to determine visible 3D models without using a time-consuming 
hidden-surface removal algorithm. Here we assume that the viewpoint of our eye is at 
the origin and the models are in the negative z axis. If we render the models in the 
order of their distances to the viewpoint of the eye along z axis from the farthest to the 
closest, we will have correct overlapping of the models. We can build up a rectangular 
box (bounding volume) with the faces perpendicular to the x, y, or z axis to bound a 
3D model and compare the minimum and maximum bounds in the z direction between 
boxes to decide which model should be rendered first. Using bounding volumes to 
decide the priority of rendering is also known as minmax testing. In addition to 
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visible-model determination, bounding volumes are also used for collision detection, 
which will be discussed later in this chapter. 

The z-buffer (depth-buffer) algorithm. In OpenGL, to enable the hidden-surface 
removal (or visible-surface determination) mechanism, we need to enable the depth 
test once and then clear the depth buffer whenever we redraw a frame: 

// enable zbuffer (depthbuffer) once
gl.glEnable(GL.GL_DEPTH_TEST);

// clear both frame buffer and zbuffer
gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);

Corresponding to a frame buffer, the graphics system also has a z-buffer, or depth 
buffer, with the same number of entries. After glClear(), the z-buffer is initialized to 
the z value farthest from the viewpoint of our eye, and the frame buffer is initialized to 
the background color. When scan-converting a model (such as a polygon), before 
writing a pixel color into the frame buffer, the graphics system (the z-buffer 
algorithm) compares the pixel’s z value to the corresponding xy coordinates’ z value in 
the z-buffer. If the pixel is closer to the viewpoint, its z value is written into the 
z-buffer and its color is written into the frame buffer. Otherwise, the system moves on 
to considering the next pixel without writing into the buffers. The result is that, no 
matter what order the models are scan-converted, the image in the frame buffer only 
shows the pixels on the models that are not blocked by other pixels. In other words, 
the visible surfaces are saved in the frame buffer, and all the hidden surfaces are 
removed. 

A pixel’s z value is provided by the model at the corresponding xy coordinates. For 
example, given a polygon and the xy coordinates, we can calculate the z value 
according to the polygon’s plane equation z=f(x,y). Therefore, although 
scan-conversion is drawing in 2D, 3D calculations are needed to decide 
hidden-surface removal and others (as we will discuss in the future: lighting, texture 
mapping, etc.). 

A plane equation in its general form is ax + by + cz + 1 = 0, where (a, b, c)
corresponds to a vector perpendicular to the plane. A polygon is usually specified by a 
list of vertices. Given three vertices on the polygon, they all satisfy the plane equation 
and therefore we can find (a, b, c) and z=−(ax + by + 1)/c. By the way, because the 
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cross-product of two edges of the polygon is perpendicular to the plane, it is 
proportional to (a, b, c) as well. 

2.3.4 3D Models: Cone, Cylinder, and Sphere

Approximating a cone. In the example 
discussed at the end of last chapter 
(J1_5_Circle.java), we approximated a 
circle with subdividing triangles. If we raise 
the center of the circle along the z axis, we 
can approximate a cone, as shown in 
Fig. 2.12. Because the model is in 3D, we 
need to enable depth test to achieve 
hidden-surface removal. Also, we need to 
make sure that our model is contained within 
the defined coordinates (i.e., the viewing 
volume):

    gl.glOrtho(-w/2, w/2, 
-h/2, h/2, -w, w);

/* draw a cone by subdivision */

import net.java.games.jogl.*;

public class J2_5_Cone extends J1_5_Circle {

  public void reshape(GLDrawable glDrawable,
      int x, int y, int w, int h) {

    WIDTH = w; HEIGHT = h;

    // enable depth buffer for hidden-surface removal
    gl.glEnable(GL.GL_DEPTH_TEST);
 
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    
    // make sure the cone is within the viewing volume

 Fig. 2.12 A cone by subdivision 
[See Color Plate 1]
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    gl.glOrtho(-w/2, w/2, -h/2, h/2, -w, w);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void display(GLDrawable glDrawable) {

    if ((cRadius>(WIDTH/2))|| (cRadius==1)) {
      flip = -flip;
      depth++;
      depth = depth%5;
    }

    cRadius += flip;

    // clear both frame buffer and zbuffer
    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    gl.glRotatef(1, 1, 1, 1); // accumulated on matrix
    // rotate 1 degree alone vector (1, 1, 1)
    gl.glPushMatrix(); // not accumulated 
    gl.glScaled(cRadius, cRadius, cRadius);
    drawCone();
    gl.glPopMatrix();

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  private void subdivideCone(float v1[],
                             float v2[], int depth) {
    float v0[] = {0, 0, 0};
    float v12[] = new float[3];

    if (depth==0) {
      gl.glColor3f(v1[0]*v1[0], v1[1]*v1[1], v1[2]*v1[2]);

      drawtriangle(v1, v2, v0);
      // bottom cover of the cone

      v0[2] = 1; // height of the cone, the tip on z axis
      drawtriangle(v1, v2, v0); // side cover of the cone

      return;
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    }

    for (int i = 0; i<3; i++) {
      v12[i] = v1[i]+v2[i];
    }
    normalize(v12);

    subdivideCone(v1, v12, depth-1);
    subdivideCone(v12, v2, depth-1);
  }

  public void drawCone() {
    subdivideCone(cVdata[0], cVdata[1], depth);
    subdivideCone(cVdata[1], cVdata[2], depth);
    subdivideCone(cVdata[2], cVdata[3], depth);
    subdivideCone(cVdata[3], cVdata[0], depth);
  }

  public static void main(String[] args) {
    J2_5_Cone f = new J2_5_Cone();

    f.setTitle("JOGL J2_5_Cone");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Approximating a cylinder. If we can draw a 
circle at z=0, then draw another circle at z=1. 
If we connect the rectangles of the same 
vertices on the edges of the two circles, we 
have a cylinder, as shown in Fig. 2.13. 

/* draw a cylinder by subdivision */

import net.java.games.jogl.*;

public class J2_6_Cylinder 
extends J2_5_Cone {  Fig. 2.13 A cylinder by 

subdivision [See Color Plate 1]
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  public void display(GLDrawable glDrawable) {

    if ((cRadius>(WIDTH/2))||(cRadius==1)) {
      flip = -flip;
      depth++;
      depth = depth%6;
    }
    cRadius += flip;

    // clear both frame buffer and zbuffer
    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    gl.glRotatef(1, 1, 1, 1);
    // rotate 1 degree alone vector (1, 1, 1)
    gl.glPushMatrix();
    gl.glScaled(cRadius, cRadius, cRadius);
    drawCylinder();
    gl.glPopMatrix();

    try {
      Thread.sleep(20);
    } catch (Exception ignore) {}
  }

  private void subdivideCylinder(float v1[],
                                 float v2[], int depth) {
    float v11[] = {0, 0, 0};
    float v22[] = {0, 0, 0};
    float v0[] = {0, 0, 0};
    float v12[] = new float[3];
    int i;

    if (depth==0) {
      gl.glColor3f(v1[0]*v1[0],
                   v1[1]*v1[1], v1[2]*v1[2]);

      for (i = 0; i<3; i++) {
        v22[i] = v2[i];
        v11[i] = v1[i];
      }

      drawtriangle(v1, v2, v0);
      // draw sphere at the cylinder's bottom

      v11[2] = v22[2] = v0[2] = 1.0f;
      drawtriangle(v11, v22, v0);
      // draw sphere at the cylinder's bottom
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      gl.glBegin(GL.GL_POLYGON);
      // draw the side rectangles of the cylinder
      gl.glVertex3fv(v11);
      gl.glVertex3fv(v22);
      gl.glVertex3fv(v2);
      gl.glVertex3fv(v1);
      gl.glEnd();

      return;
    }

    for (i = 0; i<3; i++) {
      v12[i] = v1[i]+v2[i];

    }
    normalize(v12);

    subdivideCylinder(v1, v12, depth-1);
    subdivideCylinder(v12, v2, depth-1);
  }

  public void drawCylinder() {
    subdivideCylinder(cVdata[0], cVdata[1], depth);
    subdivideCylinder(cVdata[1], cVdata[2], depth);
    subdivideCylinder(cVdata[2], cVdata[3], depth);
    subdivideCylinder(cVdata[3], cVdata[0], depth);
  }

  public static void main(String[] args) {
    J2_6_Cylinder f = new J2_6_Cylinder();

    f.setTitle("JOGL J2_6_Cylinder");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Approximating a sphere. Let’s assume that we have an equilateral triangle with its 
three vertices (v1, v2, v3) on a sphere and |v1|=|v2|=|v3|=1. That is, the three vertices are 
unit vectors from the origin. We can see that v12 = normalize(v1 + v2) is also on the 
sphere. We can further subdivide the triangle into four equilateral triangles, as shown 
in Fig. 2.14a. Example J2_7_Sphere.java uses this method to subdivide an octahedron 
(Fig. 2.14b) into a sphere, as shown in Fig. 2.14c.
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 Fig. 2.14 Drawing a sphere through subdivision [See Color Plate 1]

/* draw a sphere by subdivision */
 
import net.java.games.jogl.*;

public class J2_7_Sphere extends J2_6_Cylinder {
  static float sVdata[][] = { {1.0f, 0.0f, 0.0f}
                            , {0.0f, 1.0f, 0.0f}
                            , {0.0f, 0.0f, 1.0f}
                            , { -1.0f, 0.0f, 0.0f}
                            , {0.0f, -1.0f, 0.0f}
                            , {0.0f, 0.0f, -1.0f}
  };

  public void display(GLDrawable glDrawable) {

    if ((cRadius > (WIDTH / 2)) || (cRadius == 1)) {
      flip = -flip;

      depth++;
      depth = depth % 5;
    }

    cRadius += flip;

v2

v1

v3

v12

v23

v13
z

z

x
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(b) Front view of an octahedron(a) Subdivision (c) A sphere 
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    // clear both frame buffer and zbuffer
    gl.glClear(GL.GL_COLOR_BUFFER_BIT |
               GL.GL_DEPTH_BUFFER_BIT);

    gl.glRotatef(1, 1, 1, 1);
    // rotate 1 degree alone vector (1, 1, 1)
    gl.glPushMatrix();
    gl.glScalef(cRadius, cRadius, cRadius);
    drawSphere();
    gl.glPopMatrix();

    try {
      Thread.sleep(20);
    } catch (Exception ignore) {}
  }

  private void subdivideSphere(
      float v1[],
      float v2[],
      float v3[],
      long depth) {
    float v12[] = new float[3];
    float v23[] = new float[3];
    float v31[] = new float[3];
    int i;

    if (depth == 0) {
      gl.glColor3f(v1[0] * v1[0],
                   v2[1] * v2[1], v3[2] * v3[2]);
      drawtriangle(v1, v2, v3);

      return;
    }
    for (i = 0; i < 3; i++) {
      v12[i] = v1[i] + v2[i];
      v23[i] = v2[i] + v3[i];
      v31[i] = v3[i] + v1[i];
    }
    normalize(v12);
    normalize(v23);
    normalize(v31);
    subdivideSphere(v1, v12, v31, depth - 1);
    subdivideSphere(v2, v23, v12, depth - 1);
    subdivideSphere(v3, v31, v23, depth - 1);
    subdivideSphere(v12, v23, v31, depth - 1);
  }
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  public void drawSphere() {
    subdivideSphere(sVdata[0], sVdata[1], sVdata[2], depth);
    subdivideSphere(sVdata[0], sVdata[2], sVdata[4], depth);
    subdivideSphere(sVdata[0], sVdata[4], sVdata[5], depth);
    subdivideSphere(sVdata[0], sVdata[5], sVdata[1], depth);
    subdivideSphere(sVdata[3], sVdata[1], sVdata[5], depth);
    subdivideSphere(sVdata[3], sVdata[5], sVdata[4], depth);
    subdivideSphere(sVdata[3], sVdata[4], sVdata[2], depth);
    subdivideSphere(sVdata[3], sVdata[2], sVdata[1], depth);
  }

  public static void main(String[] args) {
    J2_7_Sphere f = new J2_7_Sphere();

    f.setTitle("JOGL J2_7_Sphere");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.3.5 Composition of 3D Transformations

Example J2_8_Robot3d.java implements the 
robot arm in Example J2_4_Robot.java with 
3D cylinders, as shown in Fig. 2.15. We also 
add one rotation around the y axis, so the robot 
arm moves in 3D.

/* 3D 3-segment arm transformation */

import net.java.games.jogl.*;

public class J2_8_Robot3d extends 
J2_7_Sphere {

  static float alpha = -30;
  static float beta = -30;
  static float gama = 60;
  static float aalpha = 1;
  static float abeta = 1;
  static float agama = -2;

 Fig. 2.15 A 3-segment robot 
arm [See Color Plate 2]
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  float O = 0;
  float A = (float) WIDTH / 4;
  float B = (float) 0.4 * WIDTH;
  float C = (float) 0.5 * WIDTH;

  public void display(GLDrawable glDrawable) {

    // for reshape purpose
    A = (float) WIDTH / 4;
    B = (float) 0.4 * WIDTH;
    C = (float) 0.5 * WIDTH;

    depth = 4;
    alpha += aalpha;
    beta += abeta;
    gama += agama;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT |
               GL.GL_DEPTH_BUFFER_BIT);
    drawRobot(O, A, B, C, alpha, beta, gama);

void drawArm(float End1, float End2) {

    float scale;
    scale = End2 - End1;

    gl.glPushMatrix();

    // the cylinder lies in the z axis;
    // rotate it to lie in the x axis
    gl.glRotatef(90.0f, 0.0f, 1.0f, 0.0f);
    gl.glScalef(scale / 5.0f, scale / 5.0f, scale);
    drawCylinder();

    gl.glPopMatrix();
  }

  void drawRobot(float O, float A, float B, float C, 
                 float alpha, float beta, float gama) {
    // the robot arm is rotating around y axis
    gl.glRotatef(1.0f, 0.0f, 1.0f, 0.0f);
    gl.glPushMatrix();

    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f);
    // R_z(alpha) is on top of the matrix stack
    drawArm(O, A);



94          2 Transformation and Viewing

    gl.glTranslatef(A, 0.0f, 0.0f);
    gl.glRotatef(beta, 0.0f, 0.0f, 1.0f);
    // R_z(alpha)T_x(A)R_z(beta) is on top of the stack
    drawArm(A, B);

    gl.glTranslatef(B - A, 0.0f, 0.0f);
    gl.glRotatef(gama, 0.0f, 0.0f, 1.0f);
    // R_z(alpha)T_x(A)R_z(beta)T_x(B)R_z(gama) is on top
    drawArm(B, C);

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_8_Robot3d f = new J2_8_Robot3d();

    f.setTitle("JOGL J2_8_Robot3d");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Example J2_9_Solar.java is a simplified solar system. The earth rotates around the 
sun and the moon rotates around the earth in the xz plane. Given the center of the earth 
at E(xe, ye, ze) and the center of the moon at M(xm, ym, zm), let’s find the new centers 
after the earth rotates around the sun e degrees, and the moon rotates around the earth 
m degrees. The moon also revolves around the sun with the earth (Fig. 2.16).

 Fig. 2.16 Simplified solar system: a 2D problem in 3D

y

z

 Ef = Ry(e) E;
Mf = Ry(e) M’;

M’ = T(E) Ry(m) T(−E) M;

 
Ef = Ry(e) E;

Mf = T(Ef ) Ry(m) T(−Ef ) M’
M’ = Ry(e) M;

The moon rotates first:

The earth-moon rotates first:
x

M
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e
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This problem is exactly like the clock problem in Fig. 2.5, except that the center of the 
clock is revolving around y axis as well. We can consider the moon rotating around the 
earth first, and then the moon and the earth as one object rotating around the sun.

In OpenGL, because we can draw a sphere at the center of the coordinates, the 
transformation would be simpler. 

/* draw a simplified solar system */

import net.java.games.jogl.*;
import net.java.games.jogl.util.*;

public class J2_9_Solar extends J2_8_Robot3d {

  public void display(GLDrawable glDrawable) {

    depth = (cnt/100)%6;
    cnt++; 

    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  public void drawColorCoord(float xlen, float ylen,
                             float zlen) {
    GLUT glut = new GLUT();

    gl.glBegin(GL.GL_LINES);

    gl.glColor3f(1, 0, 0);

    gl.glVertex3f(0, 0, 0);
    gl.glVertex3f(0, 0, zlen);

    gl.glColor3f(0, 1, 0);

    gl.glVertex3f(0, 0, 0);
    gl.glVertex3f(0, ylen, 0);
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    gl.glColor3f(0, 0, 1);

    gl.glVertex3f(0, 0, 0);
    gl.glVertex3f(xlen, 0, 0);

    gl.glEnd();

    // coordinate labels: X, Y, Z
    gl.glPushMatrix();
    gl.glTranslatef(xlen, 0, 0);
    gl.glScalef(xlen/WIDTH, xlen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'X');
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glColor3f(0, 1, 0);
    gl.glTranslatef(0, ylen, 0);
    gl.glScalef(ylen/WIDTH, ylen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Y');
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glColor3f(1, 0, 0);
    gl.glTranslatef(0, 0, zlen);
    gl.glScalef(zlen/WIDTH, zlen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Z');
    gl.glPopMatrix();

  }

  void drawSolar(float E, float e, float M, float m) {

    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix();

    gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle

    gl.glTranslatef(E, 0.0f, 0.0f);

    gl.glPushMatrix();
    gl.glScalef(WIDTH/20f, WIDTH/20f, WIDTH/20f);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(m, 0.0f, 1.0f, 0.0f);
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    // rotating around the "earth"
    gl.glTranslatef(M, 0.0f, 0.0f);
    drawColorCoord(WIDTH/8f, WIDTH/8f, WIDTH/8f);
    gl.glScalef(WIDTH/40f, WIDTH/40f, WIDTH/40f);
    drawSphere();

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_9_Solar f = new J2_9_Solar();

    f.setTitle("JOGL J2_9_Solar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Next, we change the above solar system into a more complex system, which we call 
the generalized solar system. Now the earth is elevated along the y axis, and the moon 
is elevated along the axis from the origin toward the center of the earth, and the moon 
rotates around this axis as in Fig. 2.17. In other words, the moon rotates around the 
vector E. Given E and M and their rotation angles e and m, respectively, can we find 
the new coordinates of Ef and Mf? 

We cannot come up with the rotation matrix for the moon, M, immediately. However, 
we can consider E and M as one object and create the rotation matrix by several steps. 
Note that for M’s rotation around E, we do not really need to rotate E itself, but we use 
it as a reference to explain the rotation. 

1. As shown in Fig. 2.17, the angle between the y axis and E is α = arc cos (y/r); the 
angle between the projection of E on the xz plane and the x axis is β = arc tg (z/x); 
r = sqrt(x2 + y2 + z2). 

2. Rotate M around the y axis by β degrees so that the new center of rotation E1 is in 
the xy plane: 

M1 = Ry(β)M; E1 = Ry(β)E. (EQ 53)
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 Fig. 2.17 Generalized solar system: a 3D problem

3. Rotate M1 around the z axis by α degrees so that the new center of rotation E2 is 
coincident with the y axis:

M2 = Rz(α)M1; E2 = Rz(α)E1. (EQ 54)

4. Rotate M2 around the y axis by m degree:

M3 = Ry(m)M2. (EQ 55)

5. Rotate M3 around the z axis by −α degree so that the center of rotation returns to 
the xz plane:

M4 = Rz(−α)M3; E1 = Rz(−α)E2. (EQ 56)

6. Rotate M4 around y axis by −β degree so that the center of rotation returns to its 
original orientation: 

M5 = Ry(−β)M4; E = Ry(−β)E1. (EQ 57)

x

y

z

E M

me

β

α

α = arc cos (y/r); β = arc tg (z/x);

M1 = Ry(β) M; // the center of rotation OE is in the xy plane

M2 = Rz(α) M1 // OE is along the y axis
M3 = Ry(m) M2; // the moon rotates along the y axis

M4 = Rz(−α) M3; //OE returns to the xy plane

M5 = Ry(−β) M4; // OE returns to its original orientation

Mf = Ry(e)Ry(−β) Rz(−α) Ry(m) Rz(α) Ry(β) M;

r
Mf = Ry(e) M5; // the moon proceeds with the earth

Ef = Ry(e) E; // the earth rotates around the y axis

O

r = sqrt(x2 + y2 + z2);
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7. Rotate M5 around y axis e degree so that the moon proceeds with the earth around 
the y axis:

Mf = Ry(e)M5; Ef = Ry(e)E. (EQ 58)

8. Putting the transformation matrices together, we have

Mf = Ry(e)Ry(−β) Rz(−α) Ry(m) Rz(α) Ry(β) M. (EQ 59)

Again, in OpenGL, we start with the sphere at 
the origin. The transformation is simpler. The 
following code demonstrates the generalized 
solar system. The result is shown in Fig. 2.18. 
Incidentally, glRotatef(m, x, y, z) specifies a 
single matrix that rotates a point along the 
vector (x, y, z) by m degrees. Now, we know 
that the matrix is equal to Ry(−β) Rz(−α) Ry(m) 
Rz(α) Ry(β). 

/* draw a generalized solar system */

import net.java.games.jogl.*;

public class J2_10_GenSolar extends J2_9_Solar {
  static float tiltAngle = 40;

  void drawSolar(float earthDistance,
                 float earthAngle,
                 float moonDistance,
                 float moonAngle) {

    // Global coordinates
    gl.glLineWidth(6);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix();

 Fig. 2.18 Generalized solar 
system [See Color Plate 2] 
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    gl.glRotatef(earthAngle, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(tiltAngle, 0.0f, 0.0f, 1.0f);
    // tilt angle, angle between the center line and y axis
    gl.glBegin(GL.GL_LINES);
    gl.glVertex3f(0.0f, 0.0f, 0.0f);
    gl.glVertex3f(0.0f, earthDistance, 0.0f);
    gl.glEnd();

    gl.glTranslatef(0.0f, earthDistance, 0.0f);
    gl.glLineWidth(2);

    gl.glPushMatrix();
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);
    gl.glScalef(WIDTH/20, WIDTH/20, WIDTH/20);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(moonAngle, 0.0f, 1.0f, 0.0f);
    // rotating around the "earth"
    gl.glTranslatef(moonDistance, 0.0f, 0.0f);
    gl.glLineWidth(3);
    drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
    gl.glScalef(WIDTH/40, WIDTH/40, WIDTH/40);
    drawSphere();

    gl.glPopMatrix();
  }

  public static void main(String[] args) {

    J2_10_GenSolar f = new J2_10_GenSolar();

    f.setTitle("JOGL J2_10_GenSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

The generalized solar system corresponds to a top that rotates and proceeds as shown 
in Fig. 2.19b. The rotating angle is m and the proceeding angle is e. The earth E is a 
point along the center of the top, and the moon M can be a point on the edge of the top. 
We learned to draw a cone in OpenGL. We can transform the cone to achieve the 
motion of a top. In the following example (J2_11_ConeSolar.java), we have a top that 
rotates and proceeds and a sphere that rotates around the top (Fig. 2.19c). 
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 Fig. 2.19 A top rotates and proceeds [See Color Plate 2]

/* draw a cone solar system */

public class J2_11_ConeSolar extends J2_10_GenSolar {

  void drawSolar(float E, float e, float M, float m) {

    // Global coordinates
    gl.glLineWidth(6);
    drawColorCoord(WIDTH / 4, WIDTH / 4, WIDTH / 4);

    gl.glPushMatrix();
    gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
    gl.glTranslatef(0.0f, E, 0.0f);
    gl.glPushMatrix();
    gl.glScalef(WIDTH / 20, WIDTH / 20, WIDTH / 20);
    drawSphere();
    gl.glPopMatrix();
    gl.glPushMatrix();
    gl.glScalef(E / 8, E, E / 8);
    gl.glRotatef(90, 1.0f, 0.0f, 0.0f); // orient the cone
    drawCone();
    gl.glPopMatrix();

    gl.glRotatef(m, 0.0f, 1.0f, 0.0f);

x
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α

m

x

y

z z β

(c) A Top in generalized solar system(a) A top (b) Rotating and proceeding
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    // rotating around the "earth"
    gl.glTranslatef(M, 0.0f, 0.0f);
    gl.glLineWidth(4);
    drawColorCoord(WIDTH / 8, WIDTH / 8, WIDTH / 8);
    gl.glScalef(E / 8, E / 8, E / 8);
    drawSphere();
    gl.glPopMatrix();
  }

  public static void main(String[] args) {

    J2_11_ConeSolar f = new J2_11_ConeSolar();

    f.setTitle("JOGL J2_11_ConeSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.3.6 Collision Detection 

To avoid two models in an animation penetrating 
each other, we can use their bounding volumes to 
decide their physical distances and collision. Of 
course, the bounding volume can be in a different 
shape other than a box, such as a sphere. If the 
distance between the centers of the two spheres 
is bigger than the summation of the two radii of 
the spheres, we know that the two models do not 
collide with each other. We may use multiple 
spheres with different radii to more accurately 
bound a model, but the collision detection would 
be more complex. Of course, we may also detect 
collisions directly without using bounding 
volumes, which is likely much more complex 
and time consuming. 

We can modify the above example to have three moons (a cylinder, a sphere, and a 
cone) that rotate around the earth in different directions and collide with one another 
changing the directions of rotation (Fig. 2.20). If we use a sphere as a bounding 

 Fig. 2.20 Collision detection 
[See Color Plate 2]
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volume, the problem becomes how to find the centers of the bounding spheres. We 
know that each moon is transformed from the origin. If we know the current matrix on 
the matrix stack at the point we draw a moon, we can multiply the matrix with the 
origin (0, 0, 0, 1) to find the center of the moon. Because at the origin x, y, and z are 0s, 
we only need to retrieve the last column in the matrix, which is shown in the following 
example (J2_11_coneSolarCollision.java). Collision detection is then decided by the 
distances among the moons’ centers. If a distance is shorter than a predefined 
threshold, the two moons will change their directions of rotation around the earth. 

/* draw a cone solar system with collisions of the moons */

import java.lang.Math;
import net.java.games.jogl.*;

public class J2_11_ConeSolarCollision extends
    J2_11_ConeSolar {
  //direction and speed of rotation
  static float coneD = WIDTH/110;
  static float sphereD = -WIDTH/64;
  static float cylinderD = WIDTH/300f;
  static float spherem = 120, cylinderm = 240;
  static float tmpD = 0, conem = 0;

  // centers of the objects
  static float[] coneC = new float[3];
  static float[] sphereC = new float[3];
  static float[] cylinderC = new float[3];

  // current matrix on the matrix stack
  static float[] currM = new float[16];

  void drawSolar(float E, float e, float M, float m) {

    // Global coordinates
    gl.glLineWidth(8);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix(); {
      gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
      // rotating around the "sun"; proceed angle
      gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
      gl.glTranslatef(0.0f, E, 0.0f);
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      gl.glPushMatrix();
      gl.glScalef(WIDTH/20, WIDTH/20, WIDTH/20);
      drawSphere();
      gl.glPopMatrix();

      gl.glPushMatrix();
      gl.glScalef(E/8, E, E/8);
      gl.glRotatef(90, 1.0f, 0.0f, 0.0f);

      // orient the cone
      drawCone();
      gl.glPopMatrix();

      gl.glPushMatrix();
      cylinderm = cylinderm+cylinderD;
      gl.glRotatef(cylinderm, 0.0f, 1.0f, 0.0f);
      // rotating around the "earth"
      gl.glTranslatef(M*2, 0.0f, 0.0f);
      gl.glLineWidth(4);
      drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
      gl.glScalef(E/8, E/8, E/8);
      drawCylinder();
      // retrieve the center of the cylinder
      // the matrix is stored column major left to right
      gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
      cylinderC[0] = currM[12];
      cylinderC[1] = currM[13];
      cylinderC[2] = currM[14];
      gl.glPopMatrix();

      gl.glPushMatrix();
      spherem = spherem+sphereD;
      gl.glRotatef(spherem, 0.0f, 1.0f, 0.0f);
      // rotating around the "earth"
      gl.glTranslatef(M*2, 0.0f, 0.0f);
      drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
      gl.glScalef(E/8, E/8, E/8);
      drawSphere();
      // retrieve the center of the sphere
      gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
      sphereC[0] = currM[12];
      sphereC[1] = currM[13];
      sphereC[2] = currM[14];
      gl.glPopMatrix();

      gl.glPushMatrix();
      conem = conem+coneD;
      gl.glRotatef(conem, 0.0f, 1.0f, 0.0f);
      // rotating around the "earth"
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      gl.glTranslatef(M*2, 0.0f, 0.0f);
      drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
      gl.glScalef(E/8, E/8, E/8);
      drawCone();
      // retrieve the center of the cone
      gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
      coneC[0] = currM[12];
      coneC[1] = currM[13];
      coneC[2] = currM[14];
      gl.glPopMatrix();
    }
    gl.glPopMatrix();

    if (distance(coneC, sphereC)<E/5) {
      // collision detected, swap the rotation directions
      tmpD = coneD;
      coneD = sphereD;
      sphereD = tmpD;
    }

    if (distance(coneC, cylinderC)<E/5) {
      // collision detected, swap the rotation directions
      tmpD = coneD;
      coneD = cylinderD;
      cylinderD = tmpD;
    }

    if (distance(cylinderC, sphereC)<E/5) {
      // collision detected, swap the rotation directions
      tmpD = cylinderD;
      cylinderD = sphereD;
      sphereD = tmpD;
    }
  }

  // distance between two points
  float distance(float[] c1, float[] c2) {
    float tmp = (c2[0]-c1[0])*(c2[0]-c1[0])+
                (c2[1]-c1[1])*(c2[1]-c1[1])+
                (c2[2]-c1[2])*(c2[2]-c1[2]);

    return ((float)Math.sqrt(tmp));
  }

  public static void main(String[] args) {
    J2_11_ConeSolarCollision f =
        new J2_11_ConeSolarCollision();
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    f.setTitle("JOGL J2_11_ConeSolarCollision");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.4 Viewing

The display has its device coordinate system in pixels, and our model has its (virtual) 
modeling coordinate system in which we specify and transform our model. We need to 
consider the relationship between the modeling coordinates and the device 
coordinates so that our virtual model will appear as an image on the display. 
Therefore, we need a viewing transformation — the mapping of an area or volume in 
the modeling coordinates to an area in the display device coordinates. 

2.4.1 2D Viewing

In 2D viewing, we specify a rectangular area called the modeling window in the 
modeling coordinates and a display rectangular area called the viewport in the device 
coordinates (Fig. 2.21). The modeling window defines what is to be viewed; the 
viewport defines where the image appears. Instead of transforming a model in the 
modeling window to a model in the display viewport directly, we can first transform 
the modeling window into a square with the lower-left corner at (−1, −1) and the 
upper-right corner at (1, 1). The coordinates of the square are called the normalized
coordinates. Clipping of the model is then calculated in the normalized coordinates 
against the square. After that, the normalized coordinates are scaled and translated to 
the device coordinates. 

We should understand that the matrix that transforms the modeling window to the 
square will also transform the models in the modeling coordinates to the 
corresponding models in the normalized coordinates. Similarly, the matrix that 
transforms the square to the viewport will also transform the models accordingly. The 
process (or pipeline) in 2D viewing is shown in Fig. 2.21. Through normalization, the 
clipping algorithm avoids dealing with the changing sizes of the modeling window 
and the device viewport.
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 Fig. 2.21 2D viewing pipeline

2.4.2 3D Viewing

The display is a 2D viewport, and our model can be in 3D. In 3D viewing, we need to 
specify a viewing volume, which determines a projection method (parallel or 
perspective) — for how 3D models are projected into 2D. The projection lines go 
from the vertices in the 3D models to the projected vertices in the projection plane — 
a 2D view plane that corresponds to the viewport. A parallel projection has all the 
projection lines parallel. A perspective projection has all the projection lines 
converging to a point named the center of projection. The center of projection is also 
called the viewpoint. You may consider that your eye is at the viewpoint looking into 
the viewing volume. Viewing is analogous to taking a photograph with a camera. The 
object in the outside world has its own 3D coordinate system, the film in the camera 
has its own 2D coordinate system. We specify a viewing volume and a projection 
method by pointing and adjusting the zoom. 

As shown in Fig. 2.22, the viewing volume for the parallel projection is like a box. 
The result of the parallel projection is a less realistic view but can be used for exact 
measurements. The viewing volume for the perspective projection is like a truncated 
pyramid, and the result looks more realistic in many cases, but does not preserve sizes 
in the display — objects further away are smaller. 
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 Fig. 2.22 View volumes and projection methods

In the following, we use the OpenGL system as an example to demonstrate how 3D 
viewing is achieved. The OpenGL viewing pipeline includes normalization, clipping, 
perspective division, and viewport transformation (Fig. 2.23). Except for clipping, all 
other transformation steps can be achieved by matrix multiplications. Therefore, 
viewing is mostly achieved by geometric transformation. In the OpenGL system, 
these transformations are achieved by matrix multiplications on the PROJECTION 
matrix stack.

Specifying a viewing volume. A parallel projection is called an orthographic projection 
if the projection lines are all perpendicular to the view plane. glOrtho(left, right, 
bottom, top, near, far) specifies an orthographic projection as shown in Fig. 2.22a. 
glOrtho() also defines six plane equations that cover the orthographic viewing 
volume: x=left, x=right, y=bottom, y=top, z=−near, and z=−far. We can see that (left, 
bottom, −near) and (right, top, −near) specify the (x, y, z) coordinates of the lower-left 
and upper-right corners of the near clipping plane. Similarly, (left, bottom, −far) and 
(right, top, −far) specify the (x, y, z) coordinates of the lower-left and upper-right 
corners of the far clipping plane.

glFrustum(left, right, bottom, top, near, far) specifies a perspective projection as 
shown in Fig. 2.22b. glFrustum() also defines six planes that cover the perspective 
viewing volume. We can see that (left, bottom, −near) and (right, top, −near) specify 
the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping 
plane. The far clipping plane is a cross section at z=−far with the projection lines 
converging to the viewpoint, which is fixed at the origin looking down the negative z
axis. 
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 Fig. 2.23 3D viewing pipeline

As we can see, both glOrtho() and glFrustum() specify viewing volumes oriented with 
left and right edges on the near clipping plane parallel to y axis. In general, we use a 
vector up to represent the orientation of the viewing volume, which when projected on 
to the near clipping plane is parallel to the left and right edges.  

Normalization. Normalization transformation is achieved by matrix multiplication on 
the PROJECTION matrix stack. In the following code section, we first load the 
identity matrix onto the top of the matrix stack. Then, we multiply the identity matrix 
by a matrix specified by glOrtho().

// hardware set to use projection matrix stack
gl.glMatrixMode (GL.GL_PROJECTION);

   gl.glLoadIdentity (); 
gl.glOrtho(-Width/2,Width/2,-Height/2,Height/2,-1.0, 1.0); 

In OpenGL, glOrtho() actually specifies a matrix that transforms the specified 
viewing volume into a normalized viewing volume, which is a cube with six clipping 
planes as shown in Fig. 2.24 (x=1, x=−1, y=1, y=−1, z=1, and z=−1). glOrtho(l, r, b, t, 
n, f) is equivalent to the following matrix expression: 

S(-2/(r-l), -2/(t-b), -2/(f-n))T(-(r+l)/2, -(t+b)/2, (f+n)/2); (EQ 60)
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Therefore, instead of calculating the clipping and projection directly, the 
normalization transformation is carried out first to simplify the clipping and the 
projection. Similarly, glFrustum() also specifies a matrix that transforms the 
perspective viewing volume into a normalized viewing volume as in Fig. 2.24. Here a 
division is needed to map the homogeneous coordinates into 3D coordinates. In 
OpenGL, a 3D vertex is represented by (x, y, z, w) and transformation matrices are 

 matrices. When w=1, (x, y, z) represents the 3D coordinates of the vertex. If 
w=0, (x, y, z) represents a direction. Otherwise, (x/w, y/w, z/w) represents the 3D 
coordinates. A perspective division is needed simply because after the glFrustum()
matrix transformation, . In OpenGL, the perspective division is carried out after 
clipping. 

Clipping. Because glOrtho() and 
glFrustum() both transform their 
viewing volumes into a normalized 
viewing volume, we only need to 
develop one clipping algorithm. 
Clipping is carried out in homogeneous 
coordinates. Therefore, all vertices of 
the models are first transformed into the 
normalized viewing coordinates, clipped 
against the planes of the normalized 
viewing volume (x=−w, x=w, y=−w, y=w, 
z=−w, z=w), and then transformed and 
projected into the 2D viewport. 

Perspective division. The perspective normalization transformation glFrustum() results 
in homogenous coordinates with . Clipping is carried out in homogeneous 
coordinates. However, a division for all the coordinates of the model (x/w, y/w, z/w) is 
needed to transform homogeneous coordinates into 3D coordinates. 

Viewport transformation. All vertices are kept in 3D. We need the z values to calculate 
hidden-surface removal. From the normalized viewing volume after dividing by w, the 
viewport transformation calculates each vertex’s (x, y, z) corresponding to the pixels in 
the viewport and invokes scan-conversion algorithms to draw the model into the 
viewport. Projecting into 2D is nothing more than ignoring the z values when 
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 Fig. 2.24 Normalized viewing volume
— a cube with (−1 to 1) along each axis

w 1≠



2.4  Viewing          111

scan-converting the model’s pixels into the frame buffer. It is not necessary but we 
may consider that the projection plane is at z=0. In Fig. 2.22, the shaded projection 
planes are arbitrarily specified. 

Summary of the viewing pipeline. Before scan-conversion, an OpenGL model will go 
through the following transformation and viewing processing steps: 

• Modeling: Each vertex of the model will be transformed by the current matrix on 
the top of the MODELVIEW matrix stack.

• Normalization: After the above MODELVIEW transformation, each vertex will 
be transformed by the current matrix on the top of the PROJECTION matrix 
stack.

• Clipping: Each primitive (point, line, polygon, etc.) is clipped against the clipping 
planes in homogeneous coordinates.

• Perspective division: All primitives are transformed from homogeneous 
coordinates into Cartesian coordinates.

• Viewport transformation: The model is scaled and translated into the viewport for 
scan-conversion. 

2.4.3 3D Clipping Against a Cube

Clipping a 3D point against a cube can be done in six comparisons. If we represent a 
point by its six comparisons in six bits, we can easily decide a 3D line clipping.  

Bit 6 = 1 if x<left;
Bit 5 = 1 if x>right;
Bit 4 = 1 if y<bottom;
Bit 3 = 1 if y>top;
Bit 2 = 1 if z<near;
Bit 1 = 1 if z>far;

If the two end points of a line’s 6 bits are 000000 (the logic OR is equal to zero), then 
the end points of the line are inside the cube. If there is a same bit in the two end 
points is not equal to zero (the logic AND is not equal to zero), then the two end points 
are outside the viewing volume. Otherwise, we can find the lines intersections with 
the cube. Given two end points (x0, y0, z0) and (x1, y1, z1), the parametric line equation 
can be represented as: 
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(EQ 61)

(EQ 62)

(EQ 63)

Now if any bit is not equal to zero, say Bit 2 = 1, then z=near, and we can find t in 
Equation 63. and therefore find the intersection point (x, y, z) according to Equation 61
and Equation 62. 

For a polygon in 3D, we can extend the above line clipping algorithm to walk around 
the edges of the polygon against the cube. If a polygon’s edge lies inside the clipping 
volume, the vertices are accepted for the new polygon. Otherwise, we can throw out 
all vertices outside a volume boundary plane, cut the two edges that go out of and into 
a boundary plane, and generate new vertices along a boundary plane between the two 
edges to replace the vertices that are outside a boundary plane. The clipped polygon 
has all vertices in the viewing volume after the six boundary planes are processed. 

Clipping against the viewing volume is part of OpenGL view pipeline discussed 
earlier. Actually, clipping against an arbitrary plane can be calculated similarly as 
discussed below. 

2.4.4 Clipping Against an Arbitrary Plane

A plane equation in general form can be expressed as follows: 

(EQ 64)

We can clip a point against the plane equation. Given a point (x0, y0, z0), if 
, then the point is accepted. Otherwise it is clipped. For an 

edge, if the two end points are not accepted or clipped, we can find the intersection of 
the edge with the plane by putting Equation 61, Equation 62, and Equation 63 into 
Equation 64. Again, we can walk around the vertices of a polygon to clip against the 
plane. 

x x0 t x1 x0–( )+=

y y0 t y1 y0–( )+=

z z0 t z1 z0–( )+=

ax by cz d+ + + 0=

ax0 by0 cz0 d 0≥+ + +
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OpenGL has a function glClipPlane() that allows specifying and clipping plane. You 
can enable the corresponding clipping plane so that objects below the clipping plane 
will be clipped. 

/* clipping against an arbitrary plane.*/

import java.lang.Math; // import net.java.games.jogl.*;
import javax.media.opengl.*;

public class J2_12_Clipping extends J2_11_ConeSolarCollision {

static double[] eqn = new double[4]; 
// plane equation ax+by+cz+d = 0

public void display(GLAutoDrawable glDrawable) {
  

//1. specify plane equation x = 0;
eqn[0] = 1;
//2. tell OpenGL system eqn is a clipping plane
gl.glClipPlane(GL.GL_CLIP_PLANE0, eqn, 0);
//3. Enable clipping of the plane. 
gl.glEnable(GL.GL_CLIP_PLANE0);

super.display(glDrawable);  
  }

public static void main(String[] args) {
J2_12_Clipping f = new J2_12_Clipping();

f.setTitle("JOGL J2_12_Clipping");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

2.4.5 The Logical Orders of Transformation Steps 

Modeling and viewing transformations are carried out by the OpenGL system 
automatically. For programmers, it is more practical to understand how to specify a 
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viewing volume through glOrtho() or glFrustum() on the PROJECTION matrix stack 
and to make sure that the model is in the viewing volume after being transformed by 
the current matrix on the MODELVIEW matrix stack. The PROJECTION matrix is 
multiplied with the MODELVIEW matrix, and the result is used to transform 
(normalize) the original model’s vertices. The final matrix, if you view it from how it 
is constructed, represents an expression or queue of matrices from left-most where 
you specify normalization matrix to right-most where you specify a vertex in drawing. 

When we analyze a model’s transformation steps, logically speaking, the order of 
transformation steps is from right to left in the matrix expression. However, we can 
look at the matrix expression from left to right if our logical is transforming the 
projection (camera) instead of the model. We will discuss these two different logical 
reasoning orders here. 

The following demonstrates how to specify the 
modelview and projection matrices on the two 
stacks in the example J2_12_RobotSolar.java, as 
shown in Fig. 2.25. Here the logical reasoning is 
from where we specify the model to where we 
specify the projection matrix. 

1.  In display(), a robot arm is calculated at the 
origin of the modeling coordinates. 

2.  As we discussed before, although the matrices 
are multiplied from the top-down 
transformation commands, when we analyze a 
model’s transformations, logically speaking, 
the order of transformation steps are bottom-up 
from the closest transformation above the drawing command on the MODELVIEW 
matrix stack to where we specify the viewing volume on the PROJECTION matrix 
stack. 

3. OpenGL provides PROJECTION and MODELVIEW matrix stacks to facilitate 
viewing and transformation separately, which is a nice separation and logical 
structure. Theoretically, we do not have to require two pieces of hardware, because 
the matrix on top of the PROJECTION matrix stack and the matrix on top of the 
MODELVIEW matrix stack are multiplied together to transform the models into 

 Fig. 2.25 Viewing in 3D [See 
Color Plate 2]
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the canonical viewing volume. Therefore, we can view these two matrices as one 
matrix expression, and some of the transformations can be on either of the matrix 
stacks. The following transformation step is an example. 

4. In Reshape(), the robot arm is translated along z axis −(zNear + zFar)/2 in order to 
be put in the middle of the viewing volume. This translation here can be the first 
matrix in the MODELVIEW matrix expression or the last matrix in the 
PROJECTION matrix expression. 

5.  glOrtho() or glFrustum() specify the viewing volume. The models in the viewing 
volume will appear in the viewport area on the display. 

6. glViewport() in Reshape() specifies the rendering area within the display window. 
The viewing volume will be projected into the viewport area. When we reshape the 
drawing area, the viewport aspect ratio (w/h) changes accordingly. We may specify 
a different viewport using glViewport() and draw into that area. In other words, we 
may have multiple viewports with different renderings in each display, which will 
be discussed later. 

/* 3D transformation and viewing */

import net.java.games.jogl.*;

public class J2_12_RobotSolar extends
    J2_11_ConeSolarCollision {

  public void reshape(
      GLDrawable glDrawable,
      int x,
      int y,
      int w,
      int h) {

    WIDTH = w;
    HEIGHT = h;

    // enable zbuffer for hidden-surface removal
    gl.glEnable(GL.GL_DEPTH_TEST);

    // specify the drawing area within the frame window
    gl.glViewport(0, 0, w, h);
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    // projection is carried on the projection matrix
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    // specify perspective projection using glFrustum
    gl.glFrustum(-w/4, w/4, -h/4, h/4, w/2, 4*w);

    // put the models at the center of the viewing volume
    gl.glTranslatef(0, 0, -2*w);

    // transformations are on the modelview matrix
    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void display(GLDrawable glDrawable) {

    cnt++;
    depth = (cnt/100)%6;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    if (cnt%60==0) {
      aalpha = -aalpha;
      abeta = -abeta;
      agama = -agama;
    }
    alpha += aalpha;
    beta += abeta;
    gama += agama;

    drawRobot(O, A, B, C, alpha, beta, gama);

    try {
      Thread.sleep(15);
    } catch (Exception ignore) {}
  }

  void drawRobot (float O, float A, float B, float C,
      float alpha, float beta, float gama) {

    gl.glLineWidth(8);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix();

    gl.glRotatef(cnt, 0, 1, 0);
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    gl.glRotatef(alpha, 0, 0, 1);
    // R_z(alpha) is on top of the matrix stack
    drawArm(O, A);

    gl.glTranslatef(A, 0, 0);
    gl.glRotatef(beta, 0, 0, 1);
    // R_z(alpha)T_x(A)R_z(beta) is on top of the stack
    drawArm(A, B);

    gl.glTranslatef(B-A, 0, 0);
    gl.glRotatef(gama, 0, 0, 1);
    // R_z(alpha)T_x(A)R_z(beta)T_x(B)R_z(gama) is on top
    drawArm(B, C);

    // put the solar system at the end of the robot arm
    gl.glTranslatef(C-B, 0, 0);
    drawSolar(WIDTH/4, 2.5f*cnt, WIDTH/6, 1.5f*cnt);

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_12_RobotSolar f = new J2_12_RobotSolar();

    f.setTitle("JOGL J2_12_RobotSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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Another way of looking at the modeling and 
viewing transformation is that the matrix 
expression transforms the viewing method 
instead of the model. Translating a model along 
the negative z axis is like moving the viewing 
volume (camera) along the positive z axis. 
Similarly, rotating a model along an axis by a 
positive angle is like rotating the viewing volume 
along the axis by a negative angle. When we 
analyze a model’s transformation by thinking 
about transforming its viewing, the order of 
transformation steps are top-down from where 
we specify the viewing volume to where we 
specify the drawing command. We should 
remember that the signs of the transformation are logically negated in this perspective. 
Example J2_12_RobotSolar.java, specifies transformation in myCamera() from the 
top-down point of view. The result is shown in Fig. 2.26.   

/* going backwards to the moon in generalized solar system */

import net.java.games.jogl.*;

public class J2_13_TravelSolar extends J2_12_RobotSolar {

  public void display(GLDrawable glDrawable) {

    cnt++;
    depth = (cnt/50)%6;

gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);

    if (cnt%60==0) {
      aalpha = -aalpha; abeta = -abeta; agama = -agama;
    }
    alpha += aalpha; beta += abeta; gama += agama;

    gl.glPushMatrix();
    if (cnt%1000<500) {
      // look at the solar system from the moon
      myCamera(A, B, C, alpha, beta, gama);
    }

 Fig. 2.26 Transform the viewing 
[See Color Plate 2]
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    drawRobot(O, A, B, C, alpha, beta, gama);
    gl.glPopMatrix();

  void myCamera(float A, float B, float C,
      float alpha, float beta, float gama) {

    float E = WIDTH/4; float e = 2.5f*cnt;
    float M = WIDTH/6; float m = 1.5f*cnt;

    //1. camera faces the negative x axis
    gl.glRotatef(-90, 0, 1, 0);

    //2. camera on positive x axis
    gl.glTranslatef(-M*2, 0, 0);

    //3. camera rotates with the cylinder
    gl.glRotatef(-cylinderm, 0, 1, 0);

    // and so on reversing the solar transformation
    gl.glTranslatef(0, -E, 0);
    gl.glRotatef(-alpha, 0, 0, 1); // tilt angle
    // rotating around the "sun"; proceed angle
    gl.glRotatef(-e, 0, 1, 0);

    // and reversing the robot transformation
    gl.glTranslatef(-C+B, 0, 0);
    gl.glRotatef(-gama, 0, 0, 1);
    gl.glTranslatef(-B+A, 0, 0);
    gl.glRotatef(-beta, 0, 0, 1);
    gl.glTranslatef(-A, 0, 0);
    gl.glRotatef(-alpha, 0, 0, 1);
    gl.glRotatef(-cnt, 0, 1, 0);
  }

  public static void main(String[] args) {
    J2_13_TravelSolar f = new J2_13_TravelSolar();

    f.setTitle("JOGL J2_13_TravelSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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2.4.6 gluPerspective and  gluLookAt

The OpenGL Utility (GLU) library, which is considered part of OpenGL, contains 
several groups of convenience functions that are built on top of OpenGL functions and 
complement the OpenGL library. The prefix for OpenGL Utility library functions is 
"glu" rather than "gl." We have only focused on the OpenGL library. For further 
understanding viewing, here we discuss two GLU library functions: gluPerspective()
and gluLookAt(). More GLU library functions are discussed in Chapter 5. 

gluPerspective() sets up a perspective projection matrix as follows: 

void gluPerspective(
  double fovy, // the field of view angle in y-direction
  double aspect,  // width/height of the near clipping plane
  double zNear, // distance from the origin to the near 
  double zFar  // distance from the origin to far 
);

The parameters of gluPerspective() are explained in Fig. 2.27. Compared with 
glFrustum(), gluPerspective() is easier to use for some programmers, but it is less 
powerful. The fovy (field of view) angle is symmetric around z axis in y direction, and 
its near and far clipping planes are symmetric around z axis as well. Therefore, 
gluPerspective() can only specify a symmetric viewing frustum around z axis, 
whereas glFrustum() has no such restriction. The following example 
J2_14_Perspective.java shows an implementation of myPerspective(double fovy, 
double aspect, double near, double far): 
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 Fig. 2.27 gluPerspective specifies a viewing frustum symmetric around z axis

/* simulate gluPerspective */
import net.java.games.jogl.*;
import java.lang.Math;

public class J2_14_Perspective extends
    J2_13_TravelSolar {

  public void myPerspective(double fovy, double aspect,
                            double near, double far) {
    double left, right, bottom, top;

    fovy = fovy*Math.PI/180; // convert degree to arc

    top = near*Math.tan(fovy/2);
    bottom = -top;
    right = aspect*top;
    left = -right;

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    gl.glFrustum(left, right, bottom, top, near, far);
  }

  public void reshape(GLDrawable glDrawable,
      int x, int y, int width, int height) {

view
point

zNear 
zFar

z

width − in x axis direction

height − in y axis direction

fovy − angle along y axis

aspect = width / height;
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    WIDTH = width;
    HEIGHT = height;

    // enable zbuffer for hidden-surface removal
    gl.glEnable(GL.GL_DEPTH_TEST);
    gl.glViewport(0, 0, width, height);

    myPerspective(45, 1, width/2, 4*width);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
    gl.glTranslatef(0, 0, -2*width);
  }

  public static void main(String[] args) {
    J2_14_Perspective f = new J2_14_Perspective();

    f.setTitle("JOGL J2_14_Perspective");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

glOrtho(), glFrustum(), and gluPerspective all specify a viewing volume oriented with 
left and right edges on the near clipping plane parallel to y axis. As we mentioned 
earlier, we use an up vector to represent the orientation of the viewing volume. In 
other words, by default the projection of up onto the near clipping plane is always 
parallel to the y axis. Because we can transform a viewing volume (camera) now as 
discussed in the past section, if we specify an orientation vector (upX, upY, upZ), we 
can orient the viewing volume accordingly. Here the angle between y axis and up’s 
projection on the xy plane is atan(upX/upY), we just need to rotate the viewing volume 
−atan(upX/upY) to achieve this. This can go further. We do not necessarily have to 
look from the origin down to the negative z axis. Instead, we can specify the viewpoint 
as a point eye looking down to another point center, with up as the orientation of the 
viewing volume. This seems complex, but an equivalent transformation seems much 
simpler. Given a triangle in 3D (eye, center, up), can we build up a transformation 
matrix so that after the transformation eye will be at the origin, center will be in the 
negative z axis, and up in the yz plane? The answer is shown in the method 
myLookAt() in the example J2_15_LookAt.java in the next section. myLookAt() and 
myGluLookAt() in the example are equivalent simulations of gluLookAt(), which 
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defines a viewing transformation from viewpoint eye to another point center with up
as the viewing frustum’s orientation vector: 

void gluLookAt (double eyeX
              , double eyeY
              , double eyeZ
              , double centerX
              , double centerY
              , double centerZ
              , double upX
              , double upY
              , double upZ
              );

Here the eye and center are points, but up is a vector. This is slightly different from 
our triangle example, where up is a point as well. As we can see, the up vector cannot 
be parallel to the line (eye, center). 

2.4.7 Multiple Viewports

glViewport(int x, int y, int width, int height) specifies the rendering area within the 
frame of the display window. By default glViewport(0, 0, w, h) is implicitly called in 
the reshape(GLDrawable glDrawable, int x, int y, int w, int h) with the same area as 
the display window. The viewing volume will be projected into the viewport area 
accordingly. 

We may specify a different viewport using glViewport() with lower-left corner (x, y) 
goes from (0, 0) to (w, h) and the viewport region is an area of width to height in pixels 
confined in the display window. All drawing functions afterwards will draw into the 
current viewport region. That is, the projection goes to the viewport. Also, we may 
specify multiple viewports at different regions in a drawing area and draw different 
scenes into these viewports. For example, glViewport(0, 0, width/2, height/2) will be 
the lower-left quarter of the drawing area, and glViewport(width/2, height/2, width/2, 
height/2) will be the upper-right quarter of the drawing area. In our example 
J2_15_LookAt.java below, we also specified different projection methods to 
demonstrate myLookAt(), mygluLookat(), and myPerspective() functions. If we don’t 
specify different projection methods in different viewports, the same projection matrix 
will be used for different viewports. Fig. 2.28 is a snapshot of the multiple viewports 
rendering. 
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 Fig. 2.28 Multiple viewports with different LookAt projections [See Color Plate 3]

/* simulate gluLookAt and display in multiple viewports */
import net.java.games.jogl.*;
import java.lang.Math;
import net.java.games.jogl.util.GLUT;

public class J2_15_LookAt extends J2_14_Perspective {
  GLUT glut = new GLUT();

  public void display(GLDrawable glDrawable) {
    cnt++;
    depth = 4;
    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    viewPort1();
    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
    // the objects' centers are retrieved from above call
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    viewPort2();
    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
    viewPort3();
    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
    viewPort4();
    drawRobot(O, A, B, C, alpha, beta, gama);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  public void viewPort1() {
    int w = WIDTH, h = HEIGHT;

    gl.glViewport(0, 0, w/2, h/2);

    // use a different projection
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    gl.glOrtho(-w/2, w/2, -h/2, h/2, -w, w);
    gl.glRasterPos3f(-w/3, -h/3, 0); // start position
    glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport1 - looking down -z.");

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void viewPort2() {
    int w = WIDTH, h = HEIGHT;
    gl.glViewport(w/2, 0, w/2, h/2);

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();

    // make sure the cone is within the viewing volume
    gl.glFrustum(-w/8, w/8, -h/8, h/8, w/2, 4*w);
    gl.glTranslatef(0, 0, -2*w);
    gl.glRasterPos3f(-w/3, -h/3, 0); // start position
    glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport2 - earth to origin.");

    // earthC retrieved in drawSolar() before viewPort2
    myLookAt(earthC[0], earthC[1], earthC[2],
             0, 0, 0, 0, 1, 0);
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    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();

  }

  public void viewPort3() {
    int w = WIDTH, h = HEIGHT;

    gl.glViewport(w/2, h/2, w/2, h/2);

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    // make sure the cone is within the viewing volume
    gl.glFrustum(-w/8, w/8, -h/8, h/8, w/2, 4*w);
    gl.glTranslatef(0, 0, -2*w);

    gl.glRasterPos3f(-w/3, -h/3, 0); // start position
    glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport3 - cylinder to earth.");

    // earthC retrieved in drawSolar() before viewPort3
    mygluLookAt(cylinderC[0], cylinderC[1], cylinderC[2],
                earthC[0], earthC[1], earthC[2],
                earthC[0], earthC[1], earthC[2]);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void viewPort4() {
    int w = WIDTH, h = HEIGHT;

    gl.glViewport(0, h/2, w/2, h/2);

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    // implemented in superclass J2_14_Perspective
    myPerspective(45, w/h, w/2, 4*w);
    gl.glTranslatef(0, 0, -1.5f*w);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();

    gl.glRasterPos3f(-w/2.5f, -h/2.1f, 0); 
     glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport4 - a different scene.");
  }
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  public void myLookAt(
      double eX, double eY, double eZ,
      double cX, double cY, double cZ,
      double upX, double upY, double upZ) {
    //eye and center are points, but up is a vector

    //1. change center into a vector:
    // glTranslated(-eX, -eY, -eZ);
    cX = cX-eX; cY = cY-eY; cZ = cZ-eZ;

    //2. The angle of center on xz plane and x axis
    // i.e. angle to rot so center in the neg. yz plane
    double a = Math.atan(cZ/cX);
    if (cX>=0) {
      a = a+Math.PI/2;
    } else {
      a = a-Math.PI/2;
    }

    //3. The angle between the center and y axis
    // i.e. angle to rot so center in the negative z axis
    double b = Math.acos(
        cY/Math.sqrt(cX*cX+cY*cY+cZ*cZ));
    b = b-Math.PI/2;

    //4. up rotate around y axis (a) radians
    double upx = upX*Math.cos(a)+upZ*Math.sin(a);
    double upz = -upX*Math.sin(a)+upZ*Math.cos(a);
    upX = upx; upZ = upz;

    //5. up rotate around x axis (b) radians
    double upy = upY*Math.cos(b)-upZ*Math.sin(b);
    upz = upY*Math.sin(b)+upZ*Math.cos(b);
    upY = upy; upZ = upz;

    double c = Math.atan(upX/upY);
    if (upY<0) {
      //6. the angle between up on xy plane and y axis
      c = c+Math.PI;
    }
    gl.glRotated(Math.toDegrees(c), 0, 0, 1);
    // up in yz plane
    gl.glRotated(Math.toDegrees(b), 1, 0, 0);
    // center in negative z axis
    gl.glRotated(Math.toDegrees(a), 0, 1, 0);
    //center in yz plane
    gl.glTranslated(-eX, -eY, -eZ);
    //eye at the origin
  }
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  public void mygluLookAt(
      double eX, double eY, double eZ,
      double cX, double cY, double cZ,
      double upX, double upY, double upZ) {
    //eye and center are points, but up is a vector

    double[] F = new double[3];
    double[] UP = new double[3];
    double[] s = new double[3];
    double[] u = new double[3];
    F[0] = cX-eX; F[1] = cY-eY; F[2] = cZ-eZ;
    UP[0] = upX; UP[1] = upY; UP[2] = upZ;
    normalize(F); normalize(UP);
    crossProd(F, UP, s); crossProd(s, F, u);

    double[] M = new double[16];
    M[0] = s[0]; M[1] = u[0]; M[2] = -F[0];
    M[3] = 0; M[4] = s[1]; M[5] = u[1];
    M[6] = -F[1]; M[7] = 0; M[8] = s[2];
    M[9] = u[2]; M[10] = -F[2]; M[11] = 0;
    M[12] = 0; M[13] = 0; M[14] = 0; M[15] = 1;

    gl.glMultMatrixd(M);
    gl.glTranslated(-eX, -eY, -eZ);
  }

  public void normalize(double v[]) {
    double d = Math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

    if (d==0) {
      System.out.println("0 length vector: normalize().");
      return;
    }
    v[0] /= d; v[1] /= d; v[2] /= d;
  }

  public void crossProd(double U[],
                        double V[], double W[]) {
    // W = U X V
    W[0] = U[1]*V[2]-U[2]*V[1];
    W[1] = U[2]*V[0]-U[0]*V[2];
    W[2] = U[0]*V[1]-U[1]*V[0];
  }



2.5  Review Questions          129

  public static void main(String[] args) {
    J2_15_LookAt f = new J2_15_LookAt();

    f.setTitle("JOGL J2_15_LookAt");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.5 Review Questions

1. An octahedron has v1=(1,0,0), v2=(0,1,0), v3=(0,0,1), v4=(−1,0,0), v5=(0,−1,0), v6=(0,0,−1). Please 
choose the triangles that face the outside of the octahedron.

 a. (v1v2v3, v1v3v5, v1v5v6,v1v2v6)    b. (v2v3v1, v2v1v6, v2v6v4, v2v4v3) 
 c. (v3v2v1, v3v5v1, v3v4v2, v3v4v5) d. (v4v2v1, v4v5v1, v3v4v2, v3v4v5)

2. If we subdivide the above octahedron 8 times (depth=8), how many triangles we will have in the 
final sphere. 

 No. of triangles:                                                         

3. Choose the matrix expression that 
would transform square ABCD into 
square A’B’C’D’ in 3D as shown in the 
figure below.

 a. T(−1,−1, 0)Ry(−90) 
 b. Ry(−90) T(−1,−1, 0) 
 c. T(−2,−2, 0)Rz(−90)Ry(90) 
 d. Ry(90)Rz(−90)T(−2,−2, 0)

4. myDrawTop() will draw a top below on the 
left. Write a section of OpenGL code so that the 
top will appear as specified on the right with tip 
at A(x1, y1, z1), tilted α, and proceeded θ around 
an axis parallel to y axis.
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6. In the scan-line algorithm for filling polygons, if z-buffer is used, when should the program call 
the z-buffer algorithm function? 

 a. at the beginning of the program b. at the beginning of each scan-line
 c. at the beginning of each pixel d. at the beginning of each polygon

7. Collision detection avoids two models in an animation penetrating each other; which of the fol-
lowing is FALSE: 

 a. bounding boxes are used for efficiency purposes in collision detection
 b. both animated and stationary objects are covered by the bounding boxes 
 c. animated objects can move whatever distance between frames of calculations
 d. collision detection can be calculated in many different ways

8. After following transformations, what is on top of the matrix stack at drawObject2()? 
 glLoadIdentity(); glPushMatrix(); glMultMatrixf(S); glRotatef(a,1,0,0); glTranslatef(t,0,0); 
drawObject1(); glGetFloatv(GL_MODELVIEW_MATRIX, &tmp); glPopMatrix(); 
glPushMatrix();  glMultMatrixf(S); glMultMatrixf(&tmp);drawObject2(); glPopMatrix(); 
 
 a. SSRx(a)Tx(t) b. STx(t)Rx(a)S c. Tx(t)Rx(a)SS
 d. Rx(a)SSTx(t) e. SRx(a)Tx(t) 

9. Given glViewport (u, v, w, h) and gluOrtho2D(xmin, 
xmax, ymin, ymax), choose the 2D transformation 
matrix expression that maps a point in the modeling 
(modelview) coordinates to the device (viewport) coor-
dinates. 

 a. S(1/(xmax − xmin),1/(ymax − ymin)) 
T(−xmin,−ymin)T(u,v)S(w,h)

 b. S(1/(xmax − xmin),1/(ymax − ymin))S(w,h)T(−xmin,−ymin)T(u,v)
 c. T(u,v)S(w,h)S(1/(xmax − xmin),1/(ymax − ymin))T(−xmin,−ymin)
 d. T(−xmin,−ymin)T(u,v)S(1/(xmax − xmin),1/(ymax − ymin))S(w,h)
 

glLoadIdentity();
glRotatef (-90, 0.0, 1.0, 0.0); 
myDrawTop(); // left
glRotatef(-90, 0.0, 0.0, 1.0);  

glPushMatrix(); 
glTranslatef (0.0, 0.0, 1.0);  
myDrawTop(); //right
glPopMatrix(); 

5. myDrawTop() will draw an object in oblique pro-
jection as in the question above with height equals 1 
and radius equals 0.5. Please draw two displays in 
orthographic projection according to the program 
on the right (as they will appear on the screen where 
the z axis is perpendicular to the plane).
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y

1

1
x

y

1

1

(u,v)

h

w

(xmin, ymin)

(xmax, ymax)

modeling viewport
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10. Given a 2D model and a modeling window, please draw the object in normalized coordinates 
after clipping and in the device as it appears on a display. 

11. In the OpenGL graphics pipeline, please order the following according to their order of opera-
tions: 

 (        ) clipping (        ) viewport transformation 
 (        ) modelview transformation (        ) normalization
 (        ) perspective division (        ) scan conversion

12. Please implement the following viewing command: gmuPerspective(fx, fy, d, s), 
where the viewing direction is from the origin looking down the negative z axis. fx is the field of 
view angle in the x direction; fy is the field of view angle in the y direction; d is the distance from the 
viewpoint to the center of the viewing volume, which is a point on the negative z axis; s is the dis-
tance from d to the near or far clipping planes. 

 gmuPerspective(fx, fy, d, s) { 
 
 
 
 
 
 
 
 
 
 
 
 glFrustum(l, r, b, t, n, f); 
 }

2.6 Programming Assignments

1. Implement myLoadIdentity, myRotatef, myTranslatef, myScalef, myPushMatrix, and myPop-
Matrix just like their corresponding OpenGL commands. Then, in the rest of the programming 
assignments, you can interchange them with OpenGL commands. 

2. Check out online what is polarview transformation; implement your own polarview with a dem-
onstration of the function. 
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Ymodeling

Xnormalized

Ynormalized

Xdevice

Ydevice

d

f
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3. As shown in the figure on the right, use 2D transforma-
tion to rotate the stroke font and the star. 

4. The above problem can be extended into 3D: the outer 
circle rotates along y axis, the inner circle rotates around x 
axis, and the star rotates around z axis. 

5. Draw a cone, a cylinder, and a sphere that bounce back 
and forth along a circle, as shown in the figure. When the 
objects meet, they change their directions of movement. 
The program must be in double-buffer mode and have hid-
den surface removal.

6. Draw two circles with the same animation as above. At the same time, 
one circle rotates around x axis, and the other rotates around y axis. 

7. Implement a 3D robot arm animation as in the book, and put the 
above animation system on the palm of the robot arm. The system on the 
palm can change its size periodically, which is achieved through scaling. 

8. Draw a cone, a cylinder, and a sphere that move and 
collide in the moon’s trajectory in the generalized solar 
system. When the objects meet, they change their direc-
tions of movement. 

9. Put the above system on the palm of the robot arm. 

10. Implement myPerspective and myLookAt just like 
gluPerspective and gluLookAt. Then, use them to look 
from the cone to the earth or cylinder in the system above. 

11. Display different perspectives or direction of viewing 
in multiple viewports. 
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