

CHAP T ER 3

Matrix Algebra and
Transformations

In this chapter, you will learn about some mathematical objects—vectors
and matrices—that are essential to rendering three-dimensional scenes.

Afer learning some theoretical background, you will apply this knowledge to
create a Matrix class that will be fundamental in manipulating the position
and orientation of geometric objects. Finally, you will learn how to incorpo-
rate matrix objects into the rendering of an interactive 3D scene.

3.1 INTRODUCTION TO VECTORS AND MATRICES
When creating animated and interactive graphics applications, you will
frequently want to transform sets of points defning the shape of geometric
objects. You may want to translate the object to a new position, rotate the
object to a new orientation, or scale the object to a new size. Additionally,
you will want to project the viewable region of the scene into the space that
is rendered by OpenGL. Tis will frequently be a perspective projection,
where objects appear smaller the further away they are from the virtual
camera. Tese ideas were frst introduced in Chapter 1, in the discussion
of the graphics pipeline and geometry processing; these calculations take
place in a vertex shader. In Chapter 2, you learned how to work with points
(using the vector data types vec3and vec4), and you implemented a trans-
formation (two-dimensional translation). In this chapter, you will learn
about a data structure called a matrix—a rectangular or two-dimensional

DOI: 10.1201/9781003181378-3 83

https://doi.org/10.1201/9781003181378-3

84 ◾ Developing Graphics Frameworks with Python and OpenGL

array of numbers—that is capable of representing all of the diferent types
of transformations you will need in three-dimensional graphics. For these
matrix-based transformations, you will learn how to

• apply a transformation to a point

• combine multiple transformations into a single transformation

• create a matrix corresponding to a given description of a
transformation

3.1.1 Vector Defnitions and Operations

In the previous chapter, you worked with vector data types, such as vec3,
which are data structures whose components are foating-point numbers.
In this section, you will learn about vectors from a mathematical point
of view. For simplicity, the topics in this section will be introduced in a
two-dimensional context. In a later section, you will learn how each of the
concepts is generalized to higher-dimensional settings.

A coordinate system is defned by an origin point and the orientation
and scale of a set of coordinate axes. A point P = (x , y) refers to a location
in space, specifed relative to a coordinate system. A point is typically
drawn as a dot, as illustrated by Figure 3.1. Note that in the diagram, the
axes are oriented so that the x-axis is pointing to the right, and the y-axis
is pointing upward; the direction of the arrow represents the direction
in which the values increase. Te orientation of the coordinate axes is
somewhat arbitrary, although having the x-axis point to the right is a stan-
dard choice. In most two-dimensional mathematics diagrams, as well as
OpenGL, the y-axis points upward. However, in many two-dimensional

FIGURE 3.1 A collection of points.

Matrix Algebra and Transformations ◾ 85

computer graphics applications, the origin is placed in the top-lef corner
of the screen or drawing area, and the y-axis points downward. It is always
important to know the orientation of the coordinate system you are
working in!

A vector v = ,m n refers to a displacement—an amount of change in
each coordinate—and is typically drawn as an arrow pointing along the
direction of displacement, as illustrated by Figure 3.2. Te point where the
arrow begins is called the initial point or tail; the point where the arrow
ends is called the terminal point or head, and indicates the result when the
displacement has been applied to the initial point. Te distance between
the initial and terminal points of the vector is called its length or magni-
tude, and can be calculated from the components of the vector. Vectors
are not associated with any particular location in space; the same vector
may exist at diferent locations. A vector whose initial point is located at
the origin (when a coordinate system is specifed) is said to be in standard
position.

To further emphasize the diference between location and displacement,
consider navigating in a city whose roads are arranged as lines in a grid. If
you were to ask someone to meet you at the intersection of 42nd Street and
5th Avenue, this refers to a particular location and corresponds to a point.
If you were to ask someone to travel fve blocks north and three blocks east
from their current position, this refers to a displacement (a change in their
position) and corresponds to a vector.

Each of these mathematical objects—points and vectors—are
represented by a list of numbers, but as explained above, they have
diferent geometric interpretations. In this book, notation will be used to
quickly distinguish these objects. When referring to vectors, bold lower-
case letters will be used for variables, and angle brackets will be used when
listing components, as in v = 1, 4 . In contrast, when referring to points,
regular (that is, non-bold) uppercase letters will be used for variables,

FIGURE 3.2 A collection of vectors.

86 ◾ Developing Graphics Frameworks with Python and OpenGL

and standard parentheses will be used when listing components, as in
P = (3, 2). Individual numbers (that are not part of a point or vector)
are ofen called scalars in this context (to clearly distinguish them from
points and vectors) and will be represented with regular lowercase letters,
as in x = 5. Additionally, subscripted variables will sometimes be used
when writing the components of a point or vector, and these subscripts

P p p) P p p)may be letters or numbers, as in = (x , y or = (1 , 2 for points, and
v = ,v v or v = 1 ,v v for vectors.

While many algebraic operations can be defned on combinations of
points and vectors, those with a geometric interpretation will be most sig-
nifcant in what follows. Te frst such operation is vector addition, which
combines two vectors v =

x y 2

1 , 2v v and w = w w and produces a new
vector according to the following formula:

1, 2

v w+ = v v + w w = v w v w 1, 2 1 , 2 1 + 1 , 2 + 2

For example, 2, 5 + 4,−2 = 6, 3 . Geometrically, this corresponds to
displacement along the vector v, followed by displacement along the vector
w ; this can be visualized by aligning the terminal point of v with the initial
point of w . Te result is a new vector u v w= + that shares the initial point
of v and the terminal point of w , as illustrated in Figure 3.3.

Tere is also a geometric interpretation for adding a vector v to a point
P with the same algebraic formula; this corresponds to translating a point
to a new location, which yields a new point. Align the vector v so its initial
point is at location P, and the result is the point Q located at the termi-
nal point of v; this is expressed by the equation P + =v Q. For example,
(2, 2)+ 1, 3 = (3, 5), as illustrated in Figure 3.4.

FIGURE 3.3 Vector addition.

Matrix Algebra and Transformations ◾ 87

FIGURE 3.4 Adding a vector to a point.

Te sum of two points does not have any clear geometric interpretation,
but the diference of two points does. Rearranging the equation v QP + =
yields the equation v = –Q P, which can be thought of as calculating the
displacement vector between two points by subtracting their coordinates.

Te componentwise product of two points or two vectors does not have
any clear geometric interpretation. However, multiplying a vector v by a
scalar c does. Tis operation is called scalar multiplication and is defned by

For example, ˜2 3, 2 = 6, 4 . Geometrically, this corresponds to scaling
the vector; the length of v is multiplied by a factor of |c| (the absolute value
of c), and the direction is reversed when c < 0. Figure 3.5 illustrates scaling
a vector v by various amounts.

Te operations of vector addition and scalar multiplication will be par-
ticularly important in what follows. Along these lines, consider the vectors

FIGURE 3.5 Scalar multiplication.

c c⋅ =v ⋅ =v v1 , ,2 1c v⋅ ⋅ 2c v

88 ◾ Developing Graphics Frameworks with Python and OpenGL

i = 1, 0 and j = 0, 1 . Any other vector v = ,x y can be written in terms
of i and j using vector multiplication and scalar multiplication in exactly
one way, as follows:

v = ,x y = x , 0 + 0, y = ˛ 1, 0 x + ˛ y 0, 1 x i y j= ˛ + ˛

Any set of vectors with these properties is called a basis. Tere are many
sets of basis vectors, but since i and j are in a sense the simplest such
vectors, they are called the standard basis (for two-dimensional space).

3.1.2 Linear Transformations and Matrices

Te main goal of this chapter is to design and create functions that
 transform sets of points or vectors in certain geometric ways. Tese are
ofen called vector functions, to distinguish them from functions that have
scalar valued input and output. Tey may also be called t ransformations to
emphasize their geometric interpretation. Tese functions may be written
as F ((p1 , p 2)) = (q 1 , q2) , or F v() ,1 v w2 1= , 2 w , or occasionally
ve ctors will be written in column form, as

2

w1

w
=

2

Te latter of these three expressions is most commonly used in a tradi-
tional mathematical presentation, but the alternative expressions are ofen
used for writing mathematics within sentences.

Vector functions with difering levels of complexity are easy to write. As
simple examples, one may consider the zero function, where the output is
always the zero vector:

F v1 , v2 0, 0 () =

Tere is also the identity function, where the output is always equal to the
input:

F v1 , v2 v1 , v2() =

v1
v

F
˝˜�˝˜ˇ
ˆ
ˆ̇

˛
°̨

�
�

ˆ
ˆ̇

˛
°̨

�
˘

At the other extreme, one could invent all manner of arbitrary compli-
cated expressions, such as

Matrix Algebra and Transformations ◾ 89

F v1 , v2 1 − ˙ (v , v1
7 + ln (v 3 cos 3 2) () v)+ ˇ() = 2

Most of which lack any geometrical signifcance whatsoever.
Te key is to fnd a relatively simple class of vector functions which can

perform the types of geometric transformations described at the begin-
ning of this chapter. It will be particularly helpful to choose to work with
vector functions that can be simplifed in some useful way. One such set
of functions are linear functions or linear transformations, which are func-
tions F that satisfy the following two equations relating to scalar multipli-
cation and vector addition: for any scalar c and vectors v and w,

(v) c F vF c ̨ = ˛ ()

F (v w)= F ()v + F w+ ()

One advantage to working with such functions involves the standard basis
vectors i and j: if F is a linear function and the values of F(i) and F(j) are
known, then it is possible to calculate the value of F(v) for any vector v,
even when a general formula for the function F is not given. For example,
assume that F is a linear function, F()i = 1,2 and F()j = 3,1 . Ten by
using the equations that linear functions satisfy, the value of F (4, 5)
can be calculated as follows:

In a similar way, the general formula for F (x, y) for this example can
be calculated as follows:

F F() 4, 5 = +() 4, 0 0, 5

= +F F() 4, 0 () 0, 5

= ⋅F F() 4 1, 0 + ⋅()5 0, 1

= ⋅4 F F()1, 0 5+ ⋅ () 0, 1

= ⋅4 5F F()i j+ ⋅ ()
= ⋅4 1, 2 5+ ⋅ 3, 1

= +4, 8 15, 5

= 19, 13

90 ◾ Developing Graphics Frameworks with Python and OpenGL

x, y) = F (x , 0 0, yF ()+()
F x , 0)+ F (0, y= ()

= (1, 0 F x ˙ + F y 0, 1) (˙)
= ˙ (x F 1, 0 + ˙ 0, 1) y F ()
= ˙ ()x F ()i + ˙y F j

= ˙ 1, 2 x + ˙y 3, 1

= , 2 x x + 3 ,y y

= +3 , 2 +x y x y

In fact, the same line of reasoning establishes the most general case: if F is
() , b d, then the formula for the a linear function, where F i = a c and F()j = ,

function F is F x y ,) = ˝ + ˝ , ˝ + ˝ a x b y c x d y , since (

F x, y = F x , 0 + 0, y() ()
F x , 0)+ F (0, y= ()

= (1, 0 F x ˙ + F y 0, 1) (˙)
= ˙ (x F 1, 0 + ˙ 0, 1) y F ()
= ˙ ()x F ()i + ˙y F j

= ˙ ,x a c + ˙y ,b d

= ˙ , ˙ +a x c x ˙ , ˙b y d y

= ˙ + ˙ , ˙ + ˙a x b y c x d y

In addition to these useful algebraic properties, it is possible to visualize the
geometric efect of a linear function on the entire space. To begin, consider
a unit square consisting of the points u v, = u·i + v· j, where 0 u˜ ˜1 and
0 ̃ ˜v 1, the dot-shaded square labeled as S on the lef side of Figure 3.6.

Matrix Algebra and Transformations ◾ 91

˝˜˝˜�˝˜ˇ
ˆ
ˆ̇

˛
°̨

ˆ
˙

˛
°

�
�

ˆ
ˆ̇

˛
°̨

�
˘

FIGURE 3.6 Te geometric efects of a linear transformation.

Assume F is a linear function with F ()i =m and F ()j = n . Ten, the set of
points in S is transformed to the set of points that can be written as

(i v j u F + ˛ F u) i˛ + ˛ = ˛ () v F j u m v n= ˛ + ˛

Tis area is indicated by the dot-shaded parallelogram labeled as T on the
right side of Figure 3.6. Similarly, the function F transforms each square
region on the lef of Figure 3.6 into a parallelogram shaped region on the
right of Figure 3.6.

Te formula for a linear function F can be written in column form as

ˇ ˜ x ˝� ˜ a x b y � + � ˝
F � ˛ ˆ� = ˛ ˆ

c x d y ̂˘ °̨ y ˆ̇� °̨ � + � ˙

It is useful to think of the vector ⟨x, y⟩ as being operated on by the set of
numbers a, b, c, d, which naturally leads us to a particular mathematical
notation: these numbers can be grouped into a rectangular array of num-
bers called a matrix, typically enclosed within square brackets, and the
function F can be rewritten as

In accordance with this notation, the product of a matrix and a vector is
defned by the following equation:

˜ a b ̋̃ x ˝ ˜ a x b y ̋˘ + ˘
= ˛ ˆ˛ ˆ ˛ ˆ

c d y ˛ ˘ + ˘ ˆc x d y ° ˙ °̨ ˆ̇ ° ˙

x
y

a b
c d

=
x
y F

92 ◾ Developing Graphics Frameworks with Python and OpenGL

For example, consider the following linear function:

˝˜˝
ˆ
ˆ̇

˛
°̨

ˆ
˙

2 3
4 1

˜˝˜

˝
ˆ
˙

˜
˛
°

=
˝
ˆ
˙

˜
˛
°

=
˝
ˆ
˙

˜
˛
°

˝
ˆ
˙

˜
˛
°

=
�
�
�

˝
ˆ
˙

˜
˛
°

ˇ
�
˘

˛
°

�
�

ˆ
ˆ̇

˛
°̨

�
˘

�ˇ

Similarly, to calculate F (−3,1),

� ˝ − ˝ ˝ − ˝ 2 � − + � () 3 1 ˇ ˝ ˇ3 ˇ� 2 3 ˇ 3 ˇ 3 −3F = = ˆ � =� ˆ �� ˆ � ˆ � ˆ �1 4 1 1
˙̂ ()3 1 1 ˘

−114 � − + � �� ˙ ˘� ˙ ˘ ˙ ˘ ˙ ˘

Once again, it will be helpful to use notation to distinguish between
matrices and other types of mathematical objects (scalars, points, and
vectors). When referring to a matrix, bold uppercase letters will be used for
variables, and square brackets will be used to enclose the grid of numbers
or variables. Tis notation can be used to briefy summarize the previous
observation: if F is a linear function, then F can be written in the form

v = ˝ for some matrix A. Conversely, one can also show that if F is F () A v
a vector function defned by matrix multiplication, that is, if F v = ˝() A v,
then F also satisfes the equations that defne a linear function; this can
be verifed by straightforward algebraic calculations. Terefore, these two
descriptions of vector functions—those that are linear and those defned
by matrix multiplication—are equivalent; they defne precisely the same
set of functions.

Two of the vector functions previously mentioned can be represented
using matrix multiplication: the zero function can be written as

˜ x ˝ ˝ ˜ ˝ 0 x y ˜ ˝
F � ˛ ˆ� = ˛ ˆ ˛ ˆ = ˛ ˆ = ˛ ˆ

ˇ � ˜ 0 0 x ˜ � + � 0 ˝ 0
y 0 0 0 � + � yy x 0 0˘ °̨ ˙̂� ° ˙ °̨ ˙̂ °̨ ˙̂ ° ˙

while the identity function can be written as

˜ ˝� ˜ ˝ ˜ ˝ ˜ 1 x 0 ˝ ˜ x
F � ˛ ˆ� = ˛ ˆ ˛ ˆ = ˛ ˆ = ˛ ˆ

ˇ x 1 0 x � + � y ˝
y x 1˘ °̨ y ˆ̇� ° 0 1 ̨̇° ˆ̇ °̨ 0 � + � y ˆ̇ °̨ y ˆ̇

28
26

x
y

� + � 2 5 3 6
� + � 4 5 1 6

Ten, F (5,6) can be calculated as follows:

5
6

=
x

2 3
4 1

y F

5
6

F

Matrix Algebra and Transformations ◾ 93

Te matrix in the defnition of the identity function is called the identity
matrix and appears in a variety of contexts, as you will see.

When introducing notation for vectors, it was indicated that subscripted
variables will sometimes be used for the components of a vector. When
working with a matrix, double subscripted variables will sometimes be
used for its components; the subscripts will indicate the position (row and
column) of the component in the matrix. For example, the variable a12 will
refer to the entry in row 1 and column 2 of the matrix A, and in general,
amn will refer to the entry in row m and column n of the matrix A. Te
contents of the entire matrix A can be written as

°
A =

a a11 12

a a21 22

˙
ˇ
ˇ̂

˝
˝̨

At this point, you know how to apply a linear function (written in matrix
notation) to a point or a vector. In many contexts (and in computer graph-
ics in particular), you will want to apply multiple functions to a set of
points. Given two functions F and G, a new function H can be created by
defning H () = F G (()v); the function H is called the composi ion of Fv t
and G. As it turns out, if F and G are linear functions, then H will be a lin-
ear function as well. Tis can be verifed by checking that the two linearity
equations hold for H, making use of the fact that the linearity equations
are true for the functions F and G by assumption. Te derivation relating
to vector addition is as follows:

v w)= F G v w))H (+ ((+

= F G v +G w)(() ()

= (v)+ F G(()w)F G()

= H v +H w() ()

Te derivation relating to scalar multiplication is as follows:

˛ =v F G c ̨ v)H c() (()

= (˛ vF c G ())
= ˛ (()vc F G)
= ˛ ()vc H

94 ◾ Developing Graphics Frameworks with Python and OpenGL

Te reason this is signifcant is that given two linear functions—each of
which can be represented by a matrix, as previously observed—their
composition can be represented by a single matrix, since the composition is
also a linear function. By repeatedly applying this reasoning, it follows that
the composition of any number of linear functions can be represented by a
single matrix. Tis immediately leads to the question: how can the matrix
corresponding to the composition be calculated? Algebraically, given two
transformations F ()v = A· and G v = vv () B· , the goal is to fnd a matrix C
such that the transformation H v = · is equal to (v = () for () C v F G()) A B v · ·
all vectors v. In this case, one writes C A B·= . Tis operation is referred to as
matrix multiplication, and C is called the product of the matrices A and B.

Te formula for matrix multiplication may be deduced by computing
both sides of the equation C v = A B v·)· ·(and equating the coefcients of x
and y on either side of the equation. Expanding C v· yields

˛ c11 c12 ˆ ˛ x ˆ ˛ c x11 ˜ + ˜ c y12 ˆ
C v ˙ ˘ ˙ ˘ = ˙ ˘˜ =

c c ˜ + ˜ y c x c y˙ 21 22 ˘ ˙ ˘ ˙ 21 22 ˘˝ ˇ ˝ ˇ ˝ ˇ

Similarly, expanding A B v()· · yields

˙ a a ˘ � ˙ b b ̆ ˙ x ˘�
11 12 11 12A ()B v ˇ ˛� � ˇ˛ ˛ = � ˇ ˛ ��a a � b b y �ˇ 21 22 � � ˇ 21 22 � ˇ ��ˆ � ˆ � ˆ �

˙ ˘ ˙ b x b y ˛ + ˛ ˘a11 a12 11 12
= ˇ �˛ˇ �

ˆ̌ 21 22 �� ˇ 21 22 �a a b x b y ˛ + ˛ ˆ �

˙ ˘a b x b y a b x b y 12 ˛ + ˛)11 (11 ˛ + ˛ + 12) (21 22ˇ �=
˛ + ˛ + ˛ + ˛ ˇ a b x b y a b x b y �21 (11 12) 22 (21 22)ˆ �

˙ (a b a b x a b a11 ˛ + ̨ 12)˛ + (11 ˛ + ˛ 12 b y ˘
11 21 12 22)˛

= ˇ �
ˇ (a b a b x a b a21 ˛ + 22 ˛)˛ + (21 ˛ + 22 ˛b y ˆ 11 21 12 22)˛ �

�

Tus, matrix multiplication C= A·B is defned as

˛ 11 c12 ˙ (� 11 + � 21) (a b a b � 12 + � 22 ˘
a b a b +

˙ ˘ =
c ˆ ˛

11 12 11 12) ˆ

˝̇ c21 c22 ˇ̆ ˙
˝ (a b a b 21 � 11 + 22 � 21)+ (a b a b 21 � 12 + 22 � 22) ˘

ˇ

Matrix Algebra and Transformations ◾ 95

Tis formula can be written more simply using a vector operation called
the dot product. Given vectors v = v v2 and w = 1 , , the dot w w2

product d = v w
1 ,

• is a (scalar) number, defned by

As an example of a dot product calculation, consider

3, 4 • 7, 5 = ° + ° = 3 7 4 5 41

To restate the defnition of matrix multiplication: partition the matrix A
into row vectors and the matrix B into column vectors. Te entry cmn of
the product matrix C= A·B is equal to the dot product of row vector m
from matrix A (denoted by am) and column vector n from matrix B
(denoted by bn), as illustrated in the following formula, where partitions
are indicated by dashed lines.

As an example of a matrix multiplication computation, consider

˛ ˆ2, 3 • 9, 7 2, 3 • 8, 6 ˛ 2 3 ˆ ˛ 9 8 ̂ ˘˙ ˘ � ˙ ˘ = ˙
4 5 7 6 ˙ 4, 5 • 9, 7 4, 5 • 8, 6 ˘˝ ˇ ˝ ˇ ˝ ˇ

˛ (2 9� + �) (2 8 ˆ3 7 � + � 3 6)
= ˙ ˘

˝ 5 7 � + �) ˇ˙ (4 9� + �) (4 8 5 6 ˘

˛ 39 34 ˆ
= ˙ ˘71 62˝ ˇ

 a a
A ⋅ =B  11 12   b b

⋅ 11 12 


21 22 b b a a   21 22 

 a 
=  1 ⋅ b b

a  1 2 


 2 

 a b1 1• •a b
=  1 2 


 a b2 1• •a b 2 2 

 c c 
=  11 12 

 c c21 22 

d v= =v w• ,1 2 •v w1 ,w v2 1= ⋅w v1 2+ ⋅w2

96 ◾ Developing Graphics Frameworks with Python and OpenGL

In general, matrix multiplication can quickly become tedious, and so a
sofware package is typically used to handle these and other matrix-related
calculations.

It is important to note that, in general, matrix multiplication is not
a commutative operation. Given matrices A and B, the product A·B is
usually not equal to the product B·A. For example, calculating the product
of the matrices from the previous example in the opposite order yields

˛ ˆ

ˇ
˘
˘

9,8 • 2,4 9,8 • 2,5

7,2 • 6,4 7,6 • 3,5
˛ 9 8 ̂ ˛ 2 3 ˆ ˙

˙̋
�˙ ˘ =˙ ˘7 6 4 5˝ ˇ ˝ ˇ

˛ (9 2� + � 8 4) (9 3� + � 8 5) ˆ
= ˙ ˘

˝ (� + � 6 4) (� + � 6 5) ˘̌˙ 7 2 7 3

˛ 50 67 ˆ
= ˙ ˘38 51˝ ˇ

Tis fact has a corresponding geometric interpretation as well: the order
in which geometric transformations are performed makes a diference.
For example, let T represent translation by 1, 0
rotation around the origin by 90°. If P denotes the point P = (2, 0), then

, and let R represent

(()) = R(3,0) (0,3)= , while T R P = T =R T P (()) (0,2) (1,2), as illustrated in
Figure 3.7. Tus, R T P (()).(()) does not equal T R P

Te identity matrix I, previously mentioned, is the matrix

° ˙1 0I = ˝
˛

ˇ
ˆ0 1

Te identity matrix has multiplication properties similar to those of the
number 1 in ordinary multiplication. Just as for any number x, it is true
that = and x·11·x x = x, for any matrix A it can be shown with algebra that
I A = A · =· and A I A. Because of these properties, both 1 and I are called
identity elements in their corresponding mathematical contexts. Similarly,
the identity function is the identity element in the context of function
composition. Tinking of vector functions as geometric transformations,
the identity function does not change the location of any points; the geo-
metric transformations translation by ⟨0, 0⟩, rotation around the origin by

Matrix Algebra and Transformations ◾ 97

FIGURE 3.7 Geometric transformations (translation and rotation) are not
commutative.

0 degrees, and scaling all components by a factor of 1 are all equivalent to
the identity function.

Te concept of identity elements leads to the concept of inverse elements.
In a given mathematical context, combining an object with its inverse
yields the identity element. For example, a number x multiplied by its
inverse equals 1; a function composed with its inverse function yields the
identity function. Analogously, a matrix multiplied by its inverse matrix
results in the identity matrix. Symbolically, the inverse of a matrix A is a

M I and M A I . Te inverse of the matrix Amatrix M such that A· = · = is
typically written using the notation A−1. Using a fair amount of algebra,
one can fnd a formula for the inverse of the matrix A by solving the
equation A·M I := for the entries of M

˛ ˆ˛ ˆ ˛ ˆa b 1 0m n
A ˜M = ˜ = I˙

˙̋
˘
˘̌

˙
˝

˘
ˇ

˙
˝

˘
ˇ

=
c d 0 1p q

Solving this equation frst involves calculating the product on the lef-hand
side of the equation and setting each entry of the resulting matrix equal
to the corresponding entry in the identity matrix. Tis yields a system of
four equations with four unknowns (the entries of M). Solving these four
equations yields the following formula for the inverse of a 2-by-2 matrix:

˙ / (d b) −b ad bc () ˘d a − c / −
M A−1 = ˇ �=

ˇ − / (d b− c) a ad bc (−)ˆ c a / �
�

Te value (a·d− b·c) appearing in the denominator of each entry of the
inverse matrix is called the determinant of the matrix A. If this value is

98 ◾ Developing Graphics Frameworks with Python and OpenGL

equal to 0, then the fractions are all undefined, and the inverse of the matrix
A does not exist. Analogous situations, in which certain elements do not
have inverse elements, arise in other mathematical contexts. For example,
in ordinary arithmetic, the number x = 0 does not have a multiplicative
inverse, as nothing times 0 equals the identity element 1.

As may be expected, if an invertible vector function F can be re presented
with matrix multiplication as F()v A= ⋅v, then the inverse function G
can be represented with matrix multiplication by the inverse of A, as
G()v A= ⋅−1 v, since

 F G()()v = ⋅A A−1 ⋅ = ⋅ =v I v v

G F()()v = ⋅A A−1 ⋅ = ⋅ =v I v v

Once again, thinking of vector functions as geometric transformations,
the inverse of a function performs a transformation that is in some sense
the “opposite” or “reverse” transformation. For example, the inverse of
translation by ⟨m, n⟩ is translation by ⟨−m, −n⟩; the inverse of clockwise
rotation by an angle a is counterclockwise rotation by an angle a (which is
equivalent to clockwise rotation by an angle −a); the inverse of scaling the
components of a vector by the values r and s is scaling the components by
the values 1/r and 1/s.

3.1.3 Vectors and Matrices in Higher Dimensions

All of these vector and matrix concepts can be generalized to three, four,
and even higher dimensions. In this section, these concepts will be restated
in a three-dimensional context. The generalization to four-dimensional
space follows the same algebraic pattern. Four-dimensional vectors and
matrices are used quite frequently in computer graphics, for reasons
 discussed later in this chapter.

Three-dimensional coordinate systems are drawn using xyz-axes, where
each axis is perpendicular to the other two. Assuming that the axes are
oriented as in Figure 3.1, so that the plane spanned by the x and y axes are
aligned with the window used to display graphics, there are two p ossible
directions for the (positive) z-axis: either pointing towards the viewer
or away from the viewer. These two systems are called right-handed and
 left-handed coordinate systems, respectively, so named due to the hand-
based mnemonic rule used to remember the orientation. To visualize the
relative orientation of the axes in a right-handed coordinate system, using

Matrix Algebra and Transformations ◾ 99

FIGURE 3.8 Using a right hand to determine the orientation of xyz-axes.

your right hand, imagine your index fnger pointing along the x-axis and
your middle fnger perpendicular to this (in the direction the palm of your
hand is facing) pointing along the y-axis. Ten, your extended thumb will
be pointing in the direction of the z-axis; this is illustrated in Figure 3.8. If
the z-axis were pointing in the opposite direction, this would correspond
to a lef-handed coordinate system, and indeed, this would be the orienta-
tion indicated by carrying out the steps above with your lef hand. Some
descriptions of the right-hand rule, instead of indicating the directions of
the x and y axes with extended fngers, will suggest curling the fngers of
your hand in the direction from the x-axis to the y-axis; your extended
thumb still indicates the direction of the z-axis, and the two descriptions
have the same result.

In mathematics, physics, and computer graphics, it is standard practice
to use a right-handed coordinate system, as shown on the lef side of
Figure 3.9. In computer graphics, the positive z-axis points directly at the
viewer. Although the three axes are perpendicular to each other, when
illustrated in this way, at frst it may be difcult to see that the z-axis is
perpendicular to the other axes. In this case, it may aid with visualiza-
tion to imagine the xyz-axes as aligned with the edges of a cube hidden
from view, illustrated with dashed lines as shown on the right side of
Figure 3.9.

In three-dimensional space, points are written as P = (, y ,)p p p or
= p p p

x z

P (1 , 2 , 3), and vectors are written as v = , ,v v v or v = , ,v v v .
Sometimes, for clarity, the components may be written as x, y, and z (and
in four-dimensional space, the fourth component may be written as w).
Vector addition is defned by

x y z 1 2

v w+ = , ,v v v + , ,w w w = ˛ + , + 2 , + ˝ 3v w v w v w 1 2 3 1 2 3 1 1 2 3

3

100 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 3.9 Coordinate axes in three dimensions.

while scalar multiplication is defned by

c ˜ = ˜ v c v v, ,v = ˛ ˜c , ˜v c, ˜ ˝ v c v1 2 3 1 2 3

Te standard basis for three-dimensional space consists of the vectors
i = 1, 0, 0 , j = 0, 1, 0 , and k = 0, 0, 1 . Every vector v = , , zx y can be
written as a linear combination of these three vectors as follows:

v = x , y z,

= x , 0, 0 + 0, y , 0 + ˛0, 0, z˝

= ˙ 1, 0, 0 x + ˙y 0, 1, 0 + ˙z 0, 0, 1

= ˙ + ˙ + ˙ kx i y j z

Te defnition of a linear function is identical for vectors of any dimension,
as it only involves the operations of vector addition and scalar multiplication;
it does not reference the number of components of a vector at all:

(˛ = ˛ v) c F ()vF c

F (v w)= F ()v + F w+ ()

Te values of a three-dimensional linear function can be calculated for
any vector if the values of F(i), F(j), and F(k) are known, and in general,
such a function can be written in the following form:

ˇ � + � + � ˜ ˝� ˜
˛

a x a y a z ˝
ˆx 11 12 13

� ˛ ˆ�F y = ˛ � + � + � ˆa x a y a z� ˛ ˆ� 21 22 23
˛ ˆ� ˛ ˆ�z � + � + � a x a y a z˘ � 31 32 33° ˙ °̨ ˙̂

Matrix Algebra and Transformations ◾ 101

As before, the coefcients of x, y, and z in the formula are typically grouped
into a 3-by-3 matrix:

° a ˙
˝ 11 a 12 a 13 ˇ

A = ̋ a 21 a 22 a 23 ˇ
˝ ˇ
˛ a 31 a 32 a 33 ˆ

˙°
˙
ˆ

°
˛˘

ˇ
ˇ
ˇ̂

˝
˝
˝̨

=

Te matrix-vector product A·v is then defned as

a a 12˛ 11 12 a13 ˆ ˛ x ˆ ˙
˛ a x a y a z 11 ˜ + ˜ + ˜ 13 ˘

ˆ
˙ ˘ ˙ ˘A v a a a =˜ = y ˙ a x a y a z ˜ + ˜ + ˜ ˘˙ 21 22 23 ˘ ˙ ˘ 21 22 23˙ ˘˙ ˘ ˙ ˘31 a33 z ˜ + ˜ + ˜ a a 32 a x a y a z ˙ 31 32 33 ˘˝ ˇ ˝ ˇ ˝ ˇ

Matrix multiplication is most clearly described using the dot product,
which for three-dimensional vectors is defned as

d = v w• = v , v v, ° , ,w w w = v °w v °w v °w1 2 3 1 2 3 1 1 + 2 2 + 3 3

Matrix multiplication A·B can be calculated from partitioning the entries
of the two matrices into vectors: each row of the frst matrix (A) is written
as a vector, and each column of the second matrix (B) is written as a vector.
Ten, the value in row m and column n of the product is equal to the dot
product of row vector m from matrix A (denoted by a) and column vector m

n from matrix B (denoted by b), as illustrated below. n

ˆ˛ ˆ ˛ b12 b13a a 11 12 a13 b11 ˘˙ ˘ ˙
A B a a a ˜˜ = ˙ 21 22 23 ˘ ˙ b21 b22 b23 ˘

˘˙ a a a ˘ ˙ b33 32 33 33 b32 b33 ˇ˝ ˇ ˝

a1

b b2 b31 a2

a3

˙°
ˇ
ˇ
ˇ
ˆ

˝
˝
˝
˛

=
a b a b a b 1 • 1 1 • 2 1 • 3

a b a b a b 2 • 1 2 • 2 2 • 3

a b a b a b 3 • 1 3 • 2 3 • 3

102 ◾ Developing Graphics Frameworks with Python and OpenGL

° c11 c12 c13 ˙
˝ ˇ

= ˝ c21 c22 c23 ˇ
˝ c31 c32 c33 ˇ
˛ ˆ

Te 3-by-3 identity matrix I has the following form:

1 0 0
I 0 1 0

0 0 1

As before, this identity matrix is defned by the equations I A A· = and
A·I A . Similarly, the inverse of a matrix A (if it exists) is = for any matrix A
a matrix denoted by A−1, defned by the equations A ˜ A−1 = I −1 ˜ = and A A I.
Te formula for the inverse of a 3-by-3 matrix in terms of its entries is quite
tedious to write down, and as mentioned previously, a sofware package
will be used to handle these calculations.

3.2 GEOMETRIC TRANSFORMATIONS
Te previous section introduced linear functions: vector functions that
satisfy the linearity equations, functions which can be written with
matrix multiplication. It remains to show that the geometric transfor-
mations needed in computer graphics (translation, rotation, scaling, and
perspective projections) are linear functions, and then, formulas must be
found for the corresponding matrices. In particular, it must be possible
to determine the entries of a matrix corresponding to a description of
a transformation, such as “translate along the x direction by 3 units” or
“rotate around the z-axis by 45°.” Formulas for each type of transforma-
tion (in both two and three dimensions) will be derived next, in increasing
order of difculty: scaling, rotation, translation, and perspective projec-
tion. In the following sections, vectors will be drawn in standard position
(the initial point of each vector will be at the origin), and vectors can be
identifed with their terminal points.

3.2.1 Scaling

A scaling transformation multiplies each component of a vector by a
constant. For two-dimensional vectors, this has the following form (where
r and s are constants):

˙°
ˇ
ˇ
ˇ̂

˝
˝
˝̨

=

Matrix Algebra and Transformations ◾ 103

x
y =

˝˜�˝˜ˇ
˛
°̨

�
�

˛
°̨

�
˘

F
r x
s y

It can quickly be deduced and verifed that this transformation can be
expressed with matrix multiplication as follows:

�
�

r x
s y

Similarly, the three-dimensional version of this transformation, where the
z-component of a vector is scaled by a constant value t, is:

�
�

�
�
�

r x
s y
t z

˝˜
� ˛
°̨

˝

ˆ
ˆ̇

˜˝

ˆ
ˆ̇

˜�˝˜ˇ

˝
ˆ
ˆ
ˆ̇

ˆ
ˆ̇

˜
˛
˛
°̨

�
˝
ˆ
ˆ
ˆ̇

ˆ
˙

˛
°

=

˜
˛
˛
°̨

ˆ
ˆ̇

=
˝
ˆ
ˆ
ˆ̇

˛
°̨

=

˜
˛
˛
°̨

= �
�
��

ˆ
ˆ
ˆ̇

�
�

ˆ
ˆ̇

�˝

˛
°̨

�
˘

˜
˛
˛
°̨

ˇ
�
�
�̆

x

Observe that if all the scaling constants are equal to 1, then the formula for
the scaling matrix results in the identity matrix. Tis corresponds to the
following pair of related statements: scaling the components of a vector by
1 does not change the value of the vector, just as multiplying a vector by the
identity matrix does not change the value of the vector.

3.2.2 Rotation

In two dimensions, a rotation transformation rotates vectors by a constant
amount around the origin point. Unlike the case with the scaling
transformation, it is not immediately clear how to write a formula for a
rotation function F(v) or whether rotation transformations can even be
calculated with matrix multiplication. To establish this fact, it sufces
to show that rotation is a linear transformation that it satisfes the two
linearity equations. An informal geometric argument will be presented for
each equation.

To see that () v = c F· (), begin by considering the endpoint of the F c· v
vector v, and assume that this point is at a distance d from the origin.
When multiplying v by c, the resulting vector has the same direction, and
the endpoint is now at a distance c · d from the origin. Note that rotation
transformations fx the origin point and do not change the distance of
a point from the origin. Applying the rotation transformation F to the

y
z

x
y

0
s

r 0 0

0
r

0 0s
0 0 t

x
y

x
y
z

F

F

104 ◾ Developing Graphics Frameworks with Python and OpenGL

vectors v and c · v yields the vectors v and (·); these vectors have F () F c v
the same direction, and their endpoints have the same distances from the
origin: d and c · d, respectively. However, the vector · v is also aligned c F ()
with v and its endpoint has distance c · d from the origin. Terefore, F ()
the endpoints of F c v) · v must be at the same position, and thus, (· and c F ()

() v = c F· vF c· (). Tis is illustrated in Figure 3.10.
To see that F v + w)= F v + F ()w , begin by defning u v w(() = + , and let

o represent the origin. Due to the nature of vector addition, the endpoints
of u, v, and w, together with o, form the vertices of a parallelogram.
Applying the rotation transformation F to this parallelogram yields a
parallelogram M whose vertices are o and the endpoints of the vectors
F () v F ()u , F (), and w . Again, due to the nature of vector addition, the
endpoints of v , F (), and F () F w , together with oF () w v + () , form the verti-
ces of a parallelogram N. Since parallelograms M and N have three vertices
in common, their fourth vertex must also coincide, from which it follows
that F v + F w = F u = F v w () () () (+). Tis is illustrated in Figure 3.11.

FIGURE 3.10 Illustrating that rotation transformations are linear (scalar
multiplication).

FIGURE 3.11 Illustrating that rotation transformations are linear (vector
addition).

Matrix Algebra and Transformations ◾ 105

FIGURE 3.12 Right triangle with angle θ, indicating adjacent (a), opposite (b),
and hypotenuse (h) side lengths.

Given that rotation is a linear transformation, the previous theoretical
discussion of linear functions provides a practical method for calculating a
formula for the associated matrix. Te values of the function at the standard
basis vectors—in two dimensions, F(i) and F(j)—are the columns of the
associated matrix. Tus, the next step is to calculate the result of rotating
the vectors i = ⟨1, 0⟩ and j = ⟨0, 1⟩ around the origin (counterclockwise) by
an angle θ.

Tis calculation requires basic knowledge of trigonometric functions.
Given a right triangle with angle θ, adjacent side length a, opposite side
length b, and hypotenuse length h, as illustrated in Figure 3.12, then the
trigonometric functions are defned as ratios of these lengths: the sine

() /function is defned by sin ˜ = b h, the cosine function is defned by
cos () a h, and the tangent function is defned by () b a˜ = / tan ˜ = / .

As illustrated in Figure 3.13, rotating the vector i by an angle θ yields a
new vector F ()i , which can be viewed as the hypotenuse of a right triangle.
Since rotation does not change lengths of vectors, the hypotenuse has
length h= 1, which implies sin ˜ = b and cos ˜ = a, from which it follows () ()
that F i = cos ˜ ,sin ˜ . Tis vector represents the frst column of the () () ()
rotation matrix.

As illustrated in Figure 3.14, rotating the vector j by an angle θ yields
a new vector F(j), which can once again be viewed as the hypotenuse of
a right triangle with h= 1, and as before, sin ˜ = b and cos ˜ =() () a. Note
that since the horizontal displacement of the vector F(j) is towards the

FIGURE 3.13 Rotating the basis vector i by an angle θ.

106 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 3.14 Rotating the basis vector j by an angle θ.

negative x direction, the value of the frst vector component is −b, the
negative of the length of the side opposite angle θ. From this, it follows
that F ()j = –sin ˜ ,cos ˜ , yielding the second column of the rotation
matrix.

Based on these calculations, the matrix corresponding to rotation
around the origin by an angle θ in two-dimensional space is given by the
matrix:

() ()

˜ − sin ˜˙ cos () () ˘
ˇ �
ˇ sin ˜ cos ˜ˆ () () ��

To conclude the discussion of two-dimensional rotations, consider the fol-
lowing computational example. Assume that one wants to rotate the point
(7, 5) around the origin by θ = 30° (or equivalently, θ = π/6 radians). Te
new location of the point can be calculated as follows:

˘˙ (°) − sin 30 (°) ˘ ˙ 7 ˙cos 30 ˘ ˙ 7 ˘ˇ � ˇ �ˇ � = ˇ �ˇ sin 30 ° cos 30 ° � 5 � 5() () ˆ � ˇ ˆ �ˆ � ˆ �

˙ ˘5 / 2 −) � ˙ 3.56 ˘ˇ =
(7 3

�� ˇ �ˇ) � 7.83 +ˇ (7 5 3 / 2 ˆ �
ˆ �

In three dimensions, rotations are performed around a line, rather than a
point. In theory, it is possible to rotate around any line in three-dimensional
space. For simplicity, only the formulas for rotation around each of the
three axes, as illustrated in Figure 3.15, will be derived in this section.

−3/ 2 1/ 2
1/ 2 3 / 2

Matrix Algebra and Transformations ◾ 107

FIGURE 3.15 Rotations around the axes in three-dimensional space.

Note that the rotations appear counterclockwise when looking along each
axis from positive values to the origin.

If the xy-plane of two-dimensional space is thought of as the set of
points in three-dimensional space where z = 0, then the two-dimensional
rotation previously discussed corresponds to rotation around the z-axis.
Analogous to the observation that in two dimensions, rotating around
a point does not move the point, in three dimensions, rotating around
an axis does not move that axis. By the same reasoning as before, rota-
tion (around an axis) is a linear transformation. Terefore, calculating the
matrix corresponding to a rotation transformation F can be accomplished
by fnding the values of F at i, j, and k (the standard basis vectors in three
dimensions); the vectors F(i), F(j), and F(k) the results will be the columns
of the matrix.

To begin, let F denote rotation around the z-axis, a transformation
which extends the previously discussed two-dimensional rotation around
a point in the xy-plane to three-dimensional space. Since this transfor-
mation fxes the z-axis and therefore all z coordinates, based on previ-
ous work calculating F(i) and F(j), it follows that F ()i = cos ()˜ ,sin ˜(), 0 ,
F ()j = –sin ()˜ ,cos ˜(), 0 , and F k 0, 0, 1 , and therefore, the matrix
for this transformation is

() =

˙ ()˜ − sin ˜ ˘cos () 0
ˇ �
ˇ sin ˜ cos ˜() () 0 �
ˇ �0 0 1ˇ �ˆ �

Next, let F denote rotation around the x-axis. Evaluating the values of this
function requires similar reasoning. Tis transformation fxes the x-axis,
so F ()i = 1, 0, 0 is the frst column of the matrix. Since the transfor-
mation fxes all x coordinates, two-dimensional diagrams such as those

108 ◾ Developing Graphics Frameworks with Python and OpenGL

in Figures 3.13 and 3.14, featuring the yz-axes, can be used to analyze
F(j) and F(k), this is illustrated in Figure 3.16, where the x-coordinate
is excluded for simplicity. One fnds that F ()j = 0 ,cos ˜ ,sin ˜ and () ()
F ()k = 0,–sin ˜ ,cos ˜ , and thus, the corresponding matrix is () ()

˙ ˘1 0 0ˇ �
˜ − sin ˜ �ˇ 0 cos () ()

0 sin ˜ cos ˜
ˇ () () �
ˇ �ˆ �

Finally, let F denote the rotation around the y-axis. As before, the cal-
culations use the same logic. However, the orientation of the axes
illustrated in Figure 3.15 must be kept in mind. Drawing a diagram
analogous to Figure 3.16, aligning the x-axis horizontally and the z-axis
vertically (and excluding the y-coordinate), a counterclockwise rotation
around the y-axis in three-dimensional space will appear as a clockwise
rotation in the diagram; this is illustrated in Figure 3.17. One may then

FIGURE 3.16 Calculating rotation around the x-axis.

FIGURE 3.17 Calculating rotation around the y-axis.

Matrix Algebra and Transformations ◾ 109

calculate that F ()i = cos ˜ , 0,–sin ˜ and F k = sin ˜ , 0,cos ˜ ,
and F ()j =

() () () () ()
0, 1, 0 since the y-axis is fxed. Terefore, the matrix for rota-

tion around the y-axis is shown in Figure 3.17.
Tis completes the analysis of rotations in three-dimensional space;

you now have formulas for generating a matrix corresponding to
counterclockwise rotation by an angle θ around each of the axes. As a fnal
note, observe that if the angle of rotation is ̃ = 0, then since cos 0 1()= and
sin 0 ()=1, each of the rotation matrix formulas yields an identity matrix.

3.2.3 Translation

A translation transformation adds constant values to each component of
a vector. For two-dimensional vectors, this has the following form (where
m and n are constants):

F
x
y = +

+x m
y n

It can quickly be established that this transformation cannot be
represented with a 2-by-2 matrix. For example, consider translation by
⟨2, 0⟩. If this could be represented as a matrix transformation, then it
would be possible to solve the following equation for the constants a, b,
c, and d:

˜ a b ̋̃ x ˝ ˜ a x b y ˘ + ˘ ˝ ˜ x + 2 ˝
˛ ˆ ˛ ˆ = ˛ ˆ = ˛ ˆ
c d ˘ + ˘ yy c x d y ° ˙ °̨ ˙̂ ˛ ˆ °̨ ˙̂° ˙

Matching coefcients of x and y leads to a = 1, c = 0, d =1, and the
unavoidable expression b = 2/y, which is not a constant value for b. If
the value b = 2 were chosen, the resulting matrix would not produce a
translation—it would correspond to a shear transformation:

˜ ˜ + � y ˝˜ 1 2 ˝ x ˝ x 2
˛ ˆ = ˛ ˆ˛ ˆ0 1 y y° ˙ °̨ ˆ̇ ˛ ˙̂°

˝
ˆ
ˆ̇

˜
˛
°̨

�
�
�

˝
ˆ
ˆ̇

˜
˛
°̨

ˇ
�
˘

Tis particular shear transformation is illustrated in Figure 3.18, where
the dot-shaded square on the lef side is transformed into the dot-shaded
parallelogram on the right side.

110 ◾ Developing Graphics Frameworks with Python and OpenGL

FIGURE 3.18 A shear transformation along the x direction.

Observe that, in Figure 3.18, the points along each horizontal line are
being translated by a constant amount that depends on the y-coordinate
of the points on the line; this is the defning characteristic of any shear
transformation. In this particular example, the points along the line y =1
are translated 2 units to the right, the points along y = 2 are translated 4
units to the right, and so forth; the points along =y p are translated 2p
units to the right.

Te goal is to fnd a matrix that performs a constant translation on the
complete set of points in a space; a shear transformation performs a constant
translation on a subset of the points in a space. Tis observation is the key
to fnding the desired matrix and requires a new way of thinking about
points. Consider a one-dimensional space, which would consist of only an
x-axis. A translation on this space would consist of adding a constant num-
ber m to each x value. To realize this transformation as a matrix, consider
a copy of the one-dimensional space embedded in two-dimensional space
along the line y =1; symbolically, identifying the one-dimensional point x
with the two-dimensional point (x, 1). Ten, one-dimensional translation
by m corresponds to the matrix calculation:

Analogously, to perform a two-dimensional translation by ⟨m, n⟩, identify
each point (x, y) with the point (x, y, 1) and perform the following matrix
calculation:

x m

x
y
1

x
1

1 m
0 1

1 0 m
0 1 n
0 0 1

˝

˝
ˆ
ˆ
ˆ̇

+
+x m
y n
1

˜˝˜˝˜
˛
˛
°̨

= ˆ
ˆ
ˆ̇

˛
˛
°̨

ˆ
ˆ
ˆ̇

˛
˛
°̨

ˆ
˙

+
1

˜˝˜˝˜
˛
°

=ˆ
˙

˛
°

ˆ
˙

˛
°

Finally, to perform a three-dimensional translation by ⟨m, n, p⟩, identify
each point (x, y, z) with the point (x, y, z, 1) and perform the following
matrix calculation:

Matrix Algebra and Transformations ◾ 111

 1 0 0 m  x   x m+ 
    0 1 0 n y y n+    =
 0 0 1 p  z   z p+ 
    
 0 0 0 1  1   1 

In other words, to represent translation as a matrix transformation, the
space being translated is identified with a subset of a higher dimensional
space with the additional coordinate set equal to 1. This is the reason that
four-dimensional vectors and matrices are used in three-dimensional com-
puter graphics. Even though there is no intuitive way to visualize four spa-
tial dimensions, performing algebraic calculations on four- dimensional
vectors is a straightforward process. This system of representing three-
dimensional points with four-dimensional points (or representing
n-dimensional points with (n + 1)-dimensional points in general) is called
homogeneous coordinates. As previously mentioned, each point (x, y, z) is
identified with (x, y, z, 1); conversely, each four-dimensional point (x, y,
z, w) is associated with the three-dimensional point (x/w, y/w, z/w). This
operation is called perspective division and aligns with the previous corre-
spondence when w = 1. There are additional uses for perspective division,
which will be discussed further in Section 3.2.4.

It is also important to verify that the transformations previously dis-
cussed are compatible with the homogeneous coordinate system. In
two dimensions, the transformation F x() , y a = +· x b ·y c, · x d+ ·y
becomes F x(), y a, 1 = +· x b ·y c, · x d+ ·y , 1 , which corresponds to
the matrix multiplication:

   ⋅ a b 0  x  a x⋅ + b y
    

0 y = c d ⋅ + ⋅    c x d y 
 0 0 1    
  1   1 

Therefore (when using homogeneous coordinates), all the geometric
transformations of interest—translation, rotation, and scaling, collectively
referred to as affine transformations—can be represented by multiplying
by a matrix of the following form:

 a a m 
 11 12 1 
 a a21 22 m2 

 0 0 1 



112 ◾ Developing Graphics Frameworks with Python and OpenGL

where the 2-by-2 submatrix in the upper lef represents the rotation and/or
scaling part of the transformation (or is the identity matrix when there is
no rotation or scaling), and the two-component vector ⟨m1, m2⟩ within the
rightmost column represents the translation part of the transformation (or
is the zero vector if there is no translation).

Similarly, in three dimensions (using homogeneous coordinates), afne
transformations can be represented by multiplying by a matrix of the fol-
lowing form:

˜ a a ˝
˛ 11 12 a13 m1 ˆ
˛ a21 a22 a23 m2 ˆ ˛ a31 a32 a33 m
˛ 3 ˆ

ˆ
°̨ 0 0 0 1 ˆ̇

where the 3-by-3 submatrix in the upper lef represents the rotation and/
or scaling part of the transformation (or is the identity matrix if there is no
rotation or scaling), and the three-component vector ⟨m1, m2, m3⟩ within
the rightmost column represents the translation part of the transforma-
tion (or is the zero vector if there is no translation).

3.2.4 Projections

In this section, the goal is to derive a formula for a perspective projection
transformation. At the beginning of Chapter 1, and also in Section 1.2.2
on geometry processing, some of the core ideas were illustrated and
informally introduced. To review, the viewable region in the scene needs
to be mapped to the region rendered by OpenGL, a cube where the x, y,
and z coordinates are all between −1 and +1, also referred to as clip space.
In a perspective projection, the shape of the viewable region is a frustum
or truncated pyramid. Te pyramid is oriented so that it is “lying on its
side”: its central axis is aligned with the negative z-axis, as illustrated in
Figure 3.19, and the viewer or virtual camera is positioned at the origin
of the scene, which aligns with the point that was the tip of the original
pyramid. Te smaller rectangular end of the frustum is nearest to the
origin, and the larger rectangular end is farthest from the origin. When
the frustum is compressed into a cube, the larger end must be compressed
more. Tis causes objects in the rendered image of the scene to appear
smaller the farther they are from the viewer.

Matrix Algebra and Transformations ◾ 113

FIGURE 3.19 Te frustum for a perspective transformation.

Te shape of a frustum is defned by four parameters: the near distance,
the far distance, the (vertical) angle of view, and the aspect ratio. Te near
and far distances are the most straightforward to explain: they refer to
distances from the viewer (along the z-axis), and they set absolute bounds
on what could potentially be seen by the viewer—any points outside of this
range will not be rendered. However, not everything between these bounds
will be visible. Te angle of view is a measure of how much of the scene is
visible to the viewer, and is defned as the angle between the top and bot-
tom planes of the frustum (as oriented in Figure 3.19) if those planes were
extended to the origin. Figure 3.20 shows two diferent frustums (shaded
regions) as viewed from the side (along the x-axis). Te fgure also illus-
trates the fact that for fxed near and far distances, larger angles of view
correspond to larger frustums.

In order for the dimensions of the visible part of the near plane to be
proportional to the dimensions of the rendered image, the aspect ratio
(defned as width divided by height) of the rendered image is the fnal

FIGURE 3.20 Te efect of the angle of view on the size of a frustum.

114 ◾ Developing Graphics Frameworks with Python and OpenGL

value used to specify the shape of the frustum, illustrated in Figure 3.21,
which depicts the frustum as viewed from the front (along the negative
z-axis). In theory, a horizontal angle of view could be used to specify the
size of the frustum instead of the aspect ratio, but in practice, determining
the aspect ratio is simpler.

In a perspective projection, points in space (within the frustum) are
mapped to points in the projection window: a fat rectangular region in
space corresponding to the rendered image that will be displayed on the
computer screen. Te projection window corresponds to the smaller rect-
angular side of the frustum, the side nearest to the origin. To visualize how
a point P is transformed in a perspective projection, draw a line from P to
the origin, and the intersection of the line with the projection window is
the result. Figure 3.22 illustrates the results of projecting three diferent
points within the frustum onto the projection window.

To derive the formula for a perspective projection, the frst step is to adjust
the position of the projection window so that points in the frustum are pro-
jected to y-coordinates in the range from −1 to 1. Ten, the formula for project-
ing y-coordinates will be derived, incorporating both matrix multiplication
and the perspective division that occurs with homogeneous coordinates:

FIGURE 3.21 Te aspect ratio r = w/h of the frustum.

FIGURE 3.22 Projecting points from the frustum to the projection window.

Matrix Algebra and Transformations ◾ 115

converting (x, y, z, w) to (x/w, y/w, z/w). Next, the formula for projecting
x-coordinates will be derived, which is completely analogous to the for-
mula for y-coordinates except that the aspect ratio needs to be taken into
consideration. Finally, the z-coordinates of points in the frustum, which
are bounded by the near distance and far distance, will be converted into
the range from −1 to 1 and once again will require taking perspective
division into account.

To begin, it will help to represent the parameters that defne the shape of
the frustum—the near distance, far distance, (vertical) angle of view, and
aspect ratio—by n, f, a, and r, respectively. Consider adjusting the projec-
tion window so that the y-coordinates range from −1 to 1, while preserv-
ing the angle of view a, as illustrated on the lef side of Figure 3.23 (viewed
from the side, along the x-axis). Tis will change the distance d from the
origin to the projection window. Te value of d can be calculated using
trigonometry on the corresponding right triangle, illustrated on the right

tan /2 1/side of Figure 3.23. By the defnition of the tangent function, (a)= d,
from which it follows that d = (a . Terefore, all points on the pro-1/ tan /2)
jection window have their z coordinate equal to −d.

Next, ignoring x-coordinates for a moment, consider a point P = (Py , Pz)
in the frustum that will be projected onto this new projection window.
Drawing a line from P to the origin, let Q = (Qy , Qz) be the intersection of
the line with the projection window, as illustrated in Figure 3.24. Adding a
perpendicular line from P to the z-axis, it becomes clear that we have two
similar right triangles. Note that since the bases of the triangles are located
on the negative z-axis, but lengths of sides are positive, the lengths of the
sides are the negatives of the z-coordinates. Te sides of similar triangles
are proportional to each other, so we know that Py (– Pz) = Qy (– Qz).

FIGURE 3.23 Adjusting the projection window.

116 ◾ Developing Graphics Frameworks with Python and OpenGL

Since Q is a point on the adjusted projection window, we also know that
Q dz –= . This allows us to write a formula for the y-coordinate of the
 projection: Q dy y= ·P P()– z .

At first glance, this may appear to be incompatible with our matrix-
based approach, as this formula is not a linear transformation, due to the
division by the z coordinate. Fortunately, the fact that we are working in
homogeneous coordinates (x, y, z, w) will enable us to resolve this prob-
lem. Since this point will be converted to (x/w, y/w, z/w) by perspective
division (which is automatically performed by the GPU after the vertex
shader is complete), the “trick” is to use a matrix to change the value
of the w- component (which is typically equal to 1) to the value of the
z- component (or more precisely, the negative of the z-component). This
can be accomplished with the following matrix transformation (where ∗
indicates an as-yet unknown value):

  Px   * * * * *     
0 0d 0  Py  d P⋅   = y
* *   * *  pz  * 

    − 0 0 1 0   1   −P z 

Then, after performing the division transformation, the homogeneous
point (*, ·d Py z,*,–P) is transformed into (*, ·d Py z –()P ,*), as desired.

The next step is to derive a formula for the x-component of projected
points; the calculations are similar to those for the y-component. The
corresponding diagram is illustrated in Figure 3.25, viewed from along
the y-axis. Again there is a pair of similar triangles, and therefore, the
ratios of corresponding sides are equal, from which we obtain the equation
P Px z –()= Q Qx z –(), and therefore, Q dx x= ·P Q –()z .

FIGURE 3.24 Calculating y-components of projected points.

Matrix Algebra and Transformations ◾ 117

FIGURE 3.25 Calculating x-components of projected points.

However, one additional factor must be taken into account: the aspect
ratio r. We have previously considered the y values to be in the range
from −1 to 1; in accordance with the aspect ratio, the set of points that
should be included in the rendered image have x values in the range from
−r to r. Tis range needs to be scaled into clip space, from −1 to 1, and
therefore, the formula for the x coordinate must also be divided by r. Tis
leads us to the formula Qx = (d/ ·r P) x (–Pz), which can be accomplished
with the following matrix transformation (again, ∗ indicating undeter-
mined values):

Te values in the third row of the matrix remain to be determined and will
afect the z component of the point. Te z value is used in depth calcula-
tions to determine which points will be visible, as specifed by the near
distance and far distance values. Te values of the x and y components of
the point are not needed for this calculation, and so the frst two values
in the row should be 0; refer to the remaining unknown values as b and c.
Ten, we have the following matrix transformation:

ˇ˝ ˝ ˇ˝ P ˇ (d r /) �P d r/ 0 0 0 x
ˆ �ˆ x � ˆ �

P d P �ˆ 0 d 0 0 � ̂ y � ˆ �
= y

ˆ � ˆ 0 0 b c �ˆ �P b P� + c
ˆ � ˆ z � ˆ z �

0 0 −˙ 1 0 ̆ 1 ˆ �˙̂ �̆ −˙ Pz ˘

ˇ ˇ ˝ d r/ 0 0 0 ˇ˝ P ˝
x (d r /) � P x

ˆ � ̂ � ˆ �
ˆ 0 d 0 0 P ˆ d P � � � ̂ y � = y ˆ � ˆ * * * * � ̂ � P * ˆ z � ˆ � ˆ 0 0 − ˙ 1 0 �̆ ˆ − ˙ 1 �̆ ˆ Pz �˙ ˘

c−b+ = −1
n

c−b+ =1
f

Tere are a variety of approaches to solve this system; one of the sim-
plest is to multiply the frst equation by −1 and then add it to the
second equation. Tis eliminates b; solving for c yields c = 2· · / (– fn f n).
Substituting this value for c into the frst equation and solving for b yield
b = +() () n f .n f / –

With this calculation fnished, the matrix is completely determined.
To summarize, the perspective projection transformation for a frustum-
shaped region defned by near distance n, far distance f, (vertical) angle of
view a, and aspect ratio r, when working with homogeneous coordinates,
can be achieved with the following matrix:

Developing Graphics Frameworks with Python and OpenGL

After perspective division, the third coordinate b· P cz + becomes
(b P· z z+ = –c P) () –b c – Pz . The values of the constants b and c will be
determined soon, after two important points are clarified. First, the near
distance n and the far distance f are typically given as positive values,
even though the visible region frustum lies along the negative z-axis in
world space, and thus, the nearest visible point P satisfies P nz –= , while
the farthest visible point P satisfies P fz –= . Second, we know that we must
convert the z coordinates of visible points into clip space coordinates (the
range from −1 to 1), and it might seem as though the z coordinates of the
nearest points to the viewer should be mapped to the value 1, as the posi-
tive z axis points directly at the viewer in our coordinate system. However,
this is not the case! When OpenGL performs depth testing, it determines
if one point is closer (to the viewer) than another by comparing their z
coordinates. The type of comparison can be specified by the OpenGL func-
tion glDepthFunc, which has the default value GL_LESS, an OpenGL
constant which indicates that a point should be considered closer to the
viewer if its z coordinate is less. This means that in clip space, the negative
z axis points directly at the viewer; this space uses a left-handed coordinate
system. Combining these two points, we now know that if P nz = – , then
– b c– Pz should equal −1, and if P fz = – , then – b c– Pz should equal 1.
This corresponds to the following system of equations:

118 ◾

Matrix Algebra and Transformations ◾ 119

ˆ 1 �
˘ 0 0 0 � r ̨ tan / 2 (a)˘ �
˘ �1
˘ 0 0 0 �
˘ tan / 2 () �a
˘ �+ 2 ˛ ˛n f n f˘ 0 0 �

n f− − �˘ n f
˘ �0 0 −1 0ˇ �

3.2.5 Local Transformations

At this point, you are able to produce the matrices corresponding to trans-
lation, rotation, and scaling transformations. For example, consider an
object in two-dimensional space, such as the turtle on the lef side of Figure
3.26, whose shape is defned by some set of points S. Let T be the matrix
corresponding to translation by ⟨1, 0⟩, and let R be the matrix correspond-
ing to rotation around the origin by 45°. To move the turtle around you
could, for example, multiply all the points in the set S by T, and then by R,
and then by T again, which would result in the sequence of images illus-
trated in the remaining parts of Figure 3.26. All these transformations are
relative to an external, fxed coordinate system called world coordinates or
global coordinates, and this aspect is emphasized by the more specifc term
global transformations.

Te internal or local coordinate system used to defne the vertices
of a geometric object is somewhat arbitrary—the origin point and the
orientation and scale of the local coordinate axes are typically chosen for
convenience, without reference to the global coordinate system. For exam-
ple, the local origin is frequently chosen to correspond to a location on the
object that is in some sense the “center” of the object. Locations specifed

FIGURE 3.26 A sequence of global transformations.

120 ◾ Developing Graphics Frameworks with Python and OpenGL

relative to this coordinate system are called object coordinates or local
coordinates. Afer an object is added to a three-dimensional scene, the
object can then be repositioned, oriented, and resized as needed using
geometric transformations.

Of particular interest in this section are local transformations:
transformations relative to the local coordinate system of an object, and
how they may be implemented with matrix multiplication. Initially, the
local coordinate axes of an object are aligned with the global coordinate
axes. As an object is transformed, its local coordinate axes undergo the
same transformations. Figure 3.27 illustrates multiple copies of the turtle
object together with their local coordinate axes afer various transforma-
tions have been applied.

Figure 3.28 illustrates several examples of local transformations.
Assuming the turtle starts at the state with position and orientation shown

FIGURE 3.27 Transforming local coordinate axes.

FIGURE 3.28 Various local transformations.

Matrix Algebra and Transformations ◾ 121

in the lefmost image, the remaining images show local translation by
⟨2, 0⟩, local translation by ⟨0, 1⟩, and local rotation by 45°, each applied to
the starting state. Observe in particular that a local rotation takes place
around the center of an object (the origin of its local coordinate system),
rather than around the world or global origin.

Te concepts of local and global transformation are refected in every-
day language. For example, walking forwards, backwards, lef, or right,
are examples of local translations that depend on the current orientation
of a person's coordinate system: in other words, it matters which way the
person is currently facing. If two people are facing in diferent directions,
and they are both asked to step forward, they will move in diferent direc-
tions. If a global translation is specifed, which is typically done by refer-
encing the compass directions (north, south, east, and west), then you can
be assured that people will walk in the same direction, regardless of which
way they may have been facing at frst.

Te question remains: how can matrix multiplication be used to per-
form local transformations (assuming that it is possible)? Before addressing
this question, it will help to introduce a new concept. When transforming
a set of points with a matrix, the points are multiplied by the matrix in
the vertex shader and the new coordinates are passed along to the frag-
ment shader, but the new coordinates of the points are not permanently
stored. Instead, the accumulated transformations that have been applied
to an object are stored as the product of the corresponding matrices, which
is a single matrix called the model matrix of the object. Te model matrix
efectively stores the current location, orientation, and scale of an object
(although it is slightly complicated to extract some of the information
from the entries of the matrix).

Given an object whose shape is defned by a set of points S, assume that
a sequence of transformations have been applied and let M denote the cur-
rent model matrix of the object. Tus, the current location of the points of
the object can be calculated by M·P, where P ranges over the points in the
set S. Let T be the matrix corresponding to a transformation. If you were
to apply this matrix as a global transformation, as described in previous
sections, the new model matrix would be T·M, since each new matrix that
is applied becomes the lefmost element in the product (just as functions
are ordered in function composition). In order for the matrix T to have the
efect of a local transformation on an object, the local coordinate axes of
the object would have to be aligned with the global coordinate axes, which
suggests the following three-step strategy:

122 ◾ Developing Graphics Frameworks with Python and OpenGL

1. Align the two sets of axes by applying M−1, the inverse of the model
matrix.

2. Apply T, since local and global transformations are the same when
the axes are aligned.

3. Apply M, the original model matrix, which returns the object to its
previous state while taking the transformation T into account. (In a
sense, it is as if the matrix M has been applied to transformation T,
converting it from a global transformation to a local transformation.)

Tis sequence of transformations is illustrated in Figure 3.29, where the
images show an object with model matrix M (in this example, translation
and then rotation by 45° was applied), the result of applying M −1 (reversing
the rotation and then reversing the translation), the result of applying T (in
this example, translation), and the result of applying M again (translating
and rotating again). Te last image also shows the outline of the object in
its original placement for comparison.

At the end of this process, combining all these transformations, the
model matrix has become M T M 1 M (recall that matrices are applied ˜ ˜ − ˜
to a point from the right to the lef). Since M−1 ˜M I (the identity matrix), =
this expression simplifes to M·T: the original model matrix M multiplied
on the right by T. Tis is the answer to the question of interest. To sum-
marize, given an object with model matrix M and a transformation with
matrix T:

• To apply T as a global transformation, let the new model matrix
equal T·M.

• To apply T as a local transformation, let the new model matrix equal
M·T.

FIGURE 3.29 A sequence of global transformations equivalent to a local
translation.

Matrix Algebra and Transformations ◾ 123

As you will see in later sections, being able to use local transformations
will be useful when creating interactive three-dimensional scenes. For
example, navigating within a scene feels more intuitive and immersive if
one is able to move the virtual camera with local transformations. Te
viewer might not always be aware of the direction of the z-axis, which
could lead to unexpected motions when moving in global directions, but
the viewer is always able to see what is in front of them, which makes mov-
ing forward more natural.

3.3 A MATRIX CLASS
Now that you have learned how to derive the various types of matrices that
will be needed, the next step will be to create a Matrix class containing
static methods to generate matrices (with the numpy library) correspond-
ing to each of the previously discussed geometric transformations: iden-
tity, translation, rotation (around each axis), scaling, and projection. To
proceed, in the core folder, create a new fle named matrix.py contain-
ing the following code:

import numpy
from math import sin, cos, tan, pi

class Matrix(object):

 @staticmethod
 def makeIdentity():

 return numpy.array([[1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, 0],
[0, 0, 0, 1]]).
astype(float)

@staticmethod
 def makeTranslation(x, y, z):

 return numpy.array([[1, 0, 0, x],
 [0, 1, 0, y],
 [0, 0, 1, z],
[0, 0, 0, 1]]).
astype(float)

 @staticmethod
 def makeRotationX(angle):

http:matrix.py

124 ◾ Developing Graphics Frameworks with Python and OpenGL

 c = cos(angle)
 s = sin(angle)
 return numpy.array([[1, 0, 0, 0],

 [0, c, -s, 0],
 [0, s, c, 0],
[0, 0, 0, 1]]).
astype(float)

 @staticmethod
 def makeRotationY(angle):

 c = cos(angle)
 s = sin(angle)
 return numpy.array([[c, 0, s, 0],

 [0, 1, 0, 0],
 [-s, 0, c, 0],
[0, 0, 0, 1]]).
astype(float)

 @staticmethod
 def makeRotationZ(angle):

 c = cos(angle)
 s = sin(angle)
 return numpy.array([[c, -s, 0, 0],

 [s, c, 0, 0],
 [0, 0, 1, 0],
[0, 0, 0, 1]]).
astype(float)

 @staticmethod
 def makeScale(s):

 return numpy.array([[s, 0, 0, 0],
 [0, s, 0, 0],
 [0, 0, s, 0],
[0, 0, 0, 1]]).
astype(float)

 @staticmethod
 def makePerspective(angleOfView=60,

aspectRatio=1, near=0.1, far=1000):
 a = angleOfView * pi/180.0
 d = 1.0 / tan(a/2)
 r = aspectRatio

Matrix Algebra and Transformations ◾ 125

 b = (far + near) / (near - far)
 c = 2*far*near / (near - far)
 return numpy.array([[d/r, 0, 0, 0],

[0, d, 0, 0],
[0, 0, b, c],
[0, 0, -1, 0]]).
astype(float)

With this class completed, you are nearly ready to incorporate matrix-
based transformations into your scenes.

3.4 INCORPORATING WITH GRAPHICS PROGRAMS
Before creating the main application, the Uniform class needs to be
updated to be able to store the matrices generated by the Matrix class. In
GLSL, 4-by-4 matrices correspond to the data type mat4, and the corre-
sponding uniform data can be sent to the GPU with the following OpenGL
command:

glUniformMatrix4fv(variableRef, matrixCount, transpose, value)

Specify the value of the uniform variable referenced by the parameter
variableRef in the currently bound program. Te number of matri-
ces is specifed by the parameter matrixCount. Te matrix data is
stored as an array of vectors in the parameter value. OpenGL expects
matrix data to be stored as an array of column vectors; if this is
not the case (if data is stored as an array of row vectors), then the
boolean parameter transpose should be set to the OpenGL constant
GL_TRUE (which causes the data to be re-interpreted as rows) and
GL_FALSE otherwise.

In the fle uniform.py located in the core folder, add the following
else-if condition at the end of the block of elif statements in the uplo-
adData function:

elif self.dataType == "mat4":
 glUniformMatrix4fv(self.variableRef, 1, GL_TRUE,

self.data)

Since you will now be creating three-dimensional scenes, you will
activate a render setting that performs depth testing (in case you later

http:uniform.py

126 ◾ Developing Graphics Frameworks with Python and OpenGL

choose to add objects which may obscure other objects). Tis (and other
render settings) can be confgured by using the following two OpenGL
functions:

glEnable(setting)

Enables an OpenGL capability specifed by an OpenGL constant speci-
fed by the parameter setting. For example, possible constants include
GL_DEPTH_TEST to activate depth testing, GL_POINT_SMOOTH
to draw rounded points instead of square points, or GL_BLEND to
enable blending colors in the color bufer based on alpha values.

glDisable(setting)

Disables an OpenGL capability specifed by an OpenGL constant speci-
fed by the parameter setting.

Finally, for completeness, we include the OpenGL function that allows you
to confgure depth testing, previously mentioned in Section 3.2.4 on per-
spective projection. However, you will not change the function from its
default setting, and this function will not be used in what follows.

glDepthFunc(compareFunction)

Specify the function used to compare each pixel depth with the depth
value present in the depth bufer. If a pixel passes the comparison
test, it is considered to be currently the closest to the viewer, and
its values overwrite the current values in the color and depth buf-
fers. Te function used is specifed by the OpenGL constant
compareFunction, some of whose possible values include the default
setting GL_LESS (indicating that a pixel is closer to the viewer if
the depth value is less) and GL_GREATER (indicating that a pixel
is closer if the depth value is greater). If depth testing has not been
enabled, the depth test always passes, and pixels are rendered on top
of each other according to the order in which they are processed.

Now you are ready to create an interactive scene. Te frst new component
will be the vertex shader code: there will be two uniform mat4 variables.
One will store the model transformation matrix, which will be used to
translate and rotate a geometric object. Te other will store the perspec-
tive transformation matrix, which will make objects appear smaller as

Matrix Algebra and Transformations ◾ 127

they move further away. To begin creating this scene, in your main direc-
tory, create a fle named test-3.py, containing the following code (the
import statements will be needed later on):

from core.base import Base
from core.openGLUtils import OpenGLUtils
from core.attribute import Attribute
from core.uniform import Uniform
from core.matrix import Matrix
from OpenGL.GL import *
from math import pi

move a triangle around the screen
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 uniform mat4 projectionMatrix;
 uniform mat4 modelMatrix;
 void main()
 {

 gl_Position = projectionMatrix *
 modelMatrix * vec4(position, 1.0);

 }
 """

 fsCode = """
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(1.0, 1.0, 0.0, 1.0);
 }
 """

 self.programRef = OpenGLUtils.initializeProgram(
vsCode, fsCode)

http:OpenGL.GL
http:test-3.py

128 ◾ Developing Graphics Frameworks with Python and OpenGL

Next, you will initialize attribute data for the vertices of an isosceles
triangle, uniforms for the model and projection matrices, and variables to
store the movement and rotation speed that will be applied to the triangle
in the update function. To continue, return to the fle named test-3.
py, and add the following code to the initialize function:

render settings ###
glClearColor(0.0, 0.0, 0.0, 1.0)
glEnable(GL_DEPTH_TEST)

set up vertex array object ###
vaoRef = glGenVertexArrays(1)
glBindVertexArray(vaoRef)

set up vertex attribute ###
positionData = [[0.0, 0.2, 0.0], [0.1, -0.2, 0.0],

[-0.1, -0.2, 0.0]]
self.vertexCount = len(positionData)
positionAttribute = Attribute("vec3", positionData)
positionAttribute.associateVariable(self.programRef,

"position")

set up uniforms ###
mMatrix = Matrix.makeTranslation(0, 0, -1)
self.modelMatrix = Uniform("mat4", mMatrix)
self.modelMatrix.locateVariable(self.programRef,

"modelMatrix")

pMatrix = Matrix.makePerspective()
self.projectionMatrix = Uniform("mat4", pMatrix)
self.projectionMatrix.locateVariable(self.programRef,

"projectionMatrix")

movement speed, units per second
self.moveSpeed = 0.5
rotation speed, radians per second
self.turnSpeed = 90 * (pi / 180)

Next, you will turn your attention to creating an update function. Te
frst step will be to calculate the actual amounts of movement that may be
applied, based on the previously set base speed and the time elapsed since

Matrix Algebra and Transformations ◾ 129

the last frame (which is stored in the Base class variable deltaTime). In
the fle test-3.py, add the following code:

def update(self):
update data
 moveAmount = self.moveSpeed * self.deltaTime
 turnAmount = self.turnSpeed * self.deltaTime

To illustrate the versatility of using matrices to transform objects,
both global and local movement will be implemented. Next, there will
be a large number of conditional statements, each of which follow the
same pattern: check if a particular key is being pressed, and if so, cre-
ate the corresponding matrix m and multiply the model matrix by m in
the correct order (m on the lef for global transformations and m on the
right for local transformations). Note that while shaders use the operator
'*' for matrix multiplication, numpy uses the operator '@' for matrix
multiplication. For global translations, you will use the keys W/A/S/D
for the up/lef/down/right directions and the keys Z/X for the forward/
backward directions. In the fle test-3.py, in the update function,
add the following code:

global translation
if self.input.isKeyPressed("w"):

 m = Matrix.makeTranslation(0, moveAmount, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data

if self.input.isKeyPressed("s"):
 m = Matrix.makeTranslation(0, -moveAmount, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data

if self.input.isKeyPressed("a"):
 m = Matrix.makeTranslation(-moveAmount, 0, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data

if self.input.isKeyPressed("d"):
 m = Matrix.makeTranslation(moveAmount, 0, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data

if self.input.isKeyPressed("z"):
 m = Matrix.makeTranslation(0, 0, moveAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data

if self.input.isKeyPressed("x"):
 m = Matrix.makeTranslation(0, 0, -moveAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data

http:test-3.py
http:test-3.py

130 ◾ Developing Graphics Frameworks with Python and OpenGL

Rotation that makes the object appear to rotate lef and right from
the viewer’s perspective is really a rotation around the z-axis in three-
dimensional space. Since the keys A/D move the object lef/right, you
will use the keys Q/E to rotate the object lef/right, as they lay in the row
directly above A/D. Since these keys will be used for a global rotation,
they will cause the triangle to rotate around the origin (0,0,0) of the three-
dimensional world. Continuing on in the fle test-3.py, in the update
function, add the following code:

global rotation (around the origin)
if self.input.isKeyPressed("q"):

 m = Matrix.makeRotationZ(turnAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data

if self.input.isKeyPressed("e"):
 m = Matrix.makeRotationZ(-turnAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data

Next, to incorporate local translation, you will use the keys I/J/K/L for
the directions up/lef/down/right, as they are arranged in a similar lay-
out to the W/A/S/D keys. Continue by adding the following code to the
update function:

local translation
if self.input.isKeyPressed("i"):

 m = Matrix.makeTranslation(0, moveAmount, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m

if self.input.isKeyPressed("k"):
 m = Matrix.makeTranslation(0, -moveAmount, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m

if self.input.isKeyPressed("j"):
 m = Matrix.makeTranslation(-moveAmount, 0, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m

if self.input.isKeyPressed("l"):
 m = Matrix.makeTranslation(moveAmount, 0, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m

You will use the keys U/O for local rotation lef/right, as they are in the
row above the keys used local movement lef/right (J/L), analogous to the
key layout for global transformations. Since these keys will refer to a local
rotation, they will rotate the triangle around its center (where the world
origin was located when the triangle was in its original position).

http:test-3.py

Matrix Algebra and Transformations ◾ 131

local rotation (around object center)
if self.input.isKeyPressed("u"):

 m = Matrix.makeRotationZ(turnAmount)
 self.modelMatrix.data = self.modelMatrix.data @ m

if self.input.isKeyPressed("o"):
 m = Matrix.makeRotationZ(-turnAmount)
 self.modelMatrix.data = self.modelMatrix.data @ m

Afer processing user input, the bufers need to be cleared before the
image is rendered. In addition to clearing the color bufer, since depth
testing is now being performed, the depth bufer should also be cleared.
Uniform values need to be stored in their corresponding variables, and
the glDrawArrays function needs to be called to render the triangle.
To accomplish these tasks, at the end of the update function, add the
following code:

render scene ###
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glUseProgram(self.programRef)
self.projectionMatrix.uploadData()
self.modelMatrix.uploadData()
glDrawArrays(GL_TRIANGLES , 0 , self.vertexCount)

Finally, to run this application, the last lines of code need to instantiate
the Test class and call the run function. At the end of the test-3.py
fle, add the following code (with no indentation, as it is not part of the
class or the update function):

instantiate this class and run the program
Test().run()

At this point, the application class is complete! Run the fle and you
should see an isosceles triangle in the center of your screen. Press the key-
board keys as described previously to experience the diference between
global and local transformations of an object. While the object is located
at the origin, local and global rotations will appear identical, but when
the object is located far away from the origin, the diference in rotation is
more easily seen. Similarly, while the object is in its original orientation
(its local right direction aligned with the positive x-axis), local and global
translations will appear identical, but afer a rotation, the diference in the
translations becomes apparent.

http:test-3.py

132 ◾ Developing Graphics Frameworks with Python and OpenGL

3.5 SUMMARY AND NEXT STEPS
In this chapter, you learned about the mathematical foundations involved
in geometric transformations. You learned about vectors and the opera-
tions of vector addition and scalar multiplication, and how any vector can
be written as a combination of standard basis vectors using these opera-
tions. Ten, you learned about a particular type of vector function called
a linear transformation, which naturally led to the defnition of a matrix
and matrix multiplication. Ten, you learned how to create matrices rep-
resenting the diferent types of geometric transformations (scaling, rota-
tion, translation, and perspective projection) used in creating animated,
interactive three-dimensional graphics applications. You also learned how
a model matrix stores the accumulated transformations that have been
applied to an object, and how this structure enables you to use matrices for
both global and local transformations. Finally, all of this was incorporated
into the framework being developed in this book.

In the next chapter, you will turn your attention to automating many
of these steps as you begin to create the graphics framework classes in
earnest.

