
6. Matrices: Tools for Manipulating Space

Matrices in Computer Graphics

Matrices are used in 2D and 3D computer graphic systems to perform the standard
affine transformations of translation, scaling and rotation that form part of the
modelling, viewing and coordinate changing processes. Perspective viewing can also
be described by a matrix method ('matrix' is the singular of 'matrices'). These
different operations can be dealt with in a unified way through their representation as
matrix operations, simplifying the code used for these purposes. Matrices, used in
conjunction with homogeneous coordinate methods, also enable sequences of
transformations to be 'concatenated' into a single operation, thus offering
considerable time saving. A matrix maps directly into the two-dimensional array
data structure that is readily available in most computer languages. It is a compact
method of storing several numbers. These are all reasons for matrix methods to lie
at the heart of most computer graphics systems.

The following sections define and develop laws controlling matrices and explain
their properties before describing explicitly their main applications to computer
graphics. It is hoped that this justification will give readers enough motivation to
pursue the chapter through the properties and definitions until the importance of the
use of matrices for computer graphics is made clear. Only those properties that are
useful in the context of computer graphics are explained.

Definition and Notation

A matrix is a rectangular array of elements. For our purposes, the elements are real
numbers, although there is no reason why they cannot be other entities, even
matrices themselves. The array is a structure that holds elements of interest. The
word 'matrix' can mean the womb or a cavity in which things are embedded. These
include the structure of claws which hold jewels in a ring or brooch, the base
material within which nuggets of ore or precious materials are located in geology or
the mould from which type is cast. The rectangular form of a mathematical matrix
means that elements appear in complete rows and columns.

Most of the notation concerning matrices is made clear by a single statement.

all a l2 all a ln
A = a 21 a 22 a 2l a 2n

The matrix itself is denoted by an upper case (capital) character, with its elements,
enclosed within square brackets, carrying the same lower case character. Some texts

H. Jones, Computer Graphics through Key Mathematics
© Springer-Verlag London Limited 2001

148 Computer Graphics through Key Mathematics

use round brackets '(' and ')'. This is not an important issue; curly braces '{' and '}'
or plain vertical lines should, however, not be used as they can have different
meanings. Each element has a pair of suffixes, indicating its row and column
position. The (horizontal) row is always denoted before the (vertical) column. The
general example given above has m rows and n columns and is said to have order
(m x n) - pronounced 'm by n'. Again, rows before columns is the rule. For
example, if we have

[
3 8 -4 0]

B= 2-885
1 1 4 11

and [4 1 7]
C = -3 1 -5 ,

2 -4 1

matrix B has order (3 x 4), with bl3 = -4 and b31 = 1, and C has order (3 x 3), with
C13 = 7 and C31 = 2.

The simplest matrix operation is to find a transpose. The transpose A T of a
matrix A is found by writing the rows of A as the columns of AT. Some texts use
- T
A or A' for transpose. If matrix P has order (m x n) and Q = P , then Q has order
(n x m) and qij = Pji for all i and j (that is, for i = 1 to n and j = 1 to m). For
example, the transposes of the example matrices B and C given above are

[3 2 1]
BT= 8-81

-4 8 4
o 5 11

and [4 -3 2]
CT = 1 1 -4 .

7 -5 1

Forms of Matrices

Many of the matrices used in computer graphics have the same number of rows as
columns. Such matrices are known as square matrices. C above is an example of a
'square matrix of order 3', which means the same as a 'matrix of order (3 x 3)'.

Particularly for a square matrix, the set of elements whose row and column
numbers are equal is known as the leading diagonal. For our example matrix C, the
elements cII' C22 and C33 are emboldened to show the leading diagonal below.

[4 1 7]
C = -3 1 -5 .

2 -4 1

For reasons that should be obvious on inspection, the matrices D, E, F and G below
are known as diagonal, upper triangular, lower triangular and symmetric
respectively.

D=[~~~],
005

[-2 2 -1]
E= 0-43,

005

6. Matrices: Tools for Manipulating Space 149

[4 0 0]
F = -3 -3 0 ,

2 -4 -1
[3 1 -2]

G = 1 -5 -5 .
-2 -5 1

More formally stated, the rules for such square matrices are
• D is diagonal if and only if: dij = 0 whenever i f. j;
• E is upper triangular if and only if: eij = 0 whenever i > j;
• F is lower triangular if and only if: iij = 0 whenever i < j;
• G is symmetric if and only if: gij = &i for all i and j.

Operations on Matrices: Addition

There is no point in merely defining and describing several forms of matrices and
looking at them in wonder, as one might admire the jewels held in a brooch.
Matrices were developed in the mid to late nineteenth century, particularly by Arthur
Cayley and James Joseph Sylvester, because they were useful in a number of topical
problems. Werner Heisenberg developed some methods in the mid 1920s in
advancing the topic of quantum mechanics; he was advised by Max Born that he
had redeveloped some results from matrix theory. We now look at laws for
comparing, manipulating and combining matrices that are useful in the context of
computer graphics.

For two matrices to be equal, they have to be identical in all aspects. Equality of
two matrices implies that they have the same orders and all pairs of corresponding
elements are equal. Matrices also have to be of the same form before they can be
added. Two matrices are conformable for addition if and only if they have the same
orders. If this is the case, their sum has the same order and is formed by filling its
elements with the sums of corresponding elements from the matrices to be added.
Addition of matrices is a binary operator, as it takes in two matrices and blends
them to give one as a result. Both addition and equality are illustrated in the
statement

o -4 -5 + -4
3 -1

-4 4 4 = -12 -4 0 -1, H
-2 8 1] [-2
303 5 1 3

0] [2 1 7 1]
-3 10 4 3 0

but no sum can be formed from two matrices that are not compatible for addition,
such as

[4 -2 8 1] [-2 3 -1] -8 0 -4 -5 and -4 -4 4.
5303 513

If a matrix is added to itself (this is always possible as the order must be the same),
the effect is to multiply each element by 2. Similar repeated addition gives

150 Computer Graphics through Key Mathematics

multiples by 3, 4, and so on. This suggests the rule for multiplying a matrix by a
scalar (a scalar is simply a single real valued number; this term is used to
distinguish it from other mathematical 'objects' such as matrices and vectors). To
multiply a matrix A by a scalar value A, simply multiply all elements of A by A.
For example,

[
-5

-4 3
-4

-2] [20 8] 1 = -12 -4.
3 16 -12

Operations on Matrices: Multiplication

We have seen how to multiply a matrix by a scalar; now we consider the binary
operation that mUltiplies a matrix by another matrix. This is not as straightforward
as the operations described above. It may seem bewildering why a relatively
complex operation is performed, when an easier one could have been defined. The
reason is its usefulness. Defining an easy operation that has no obvious uses serves
no purpose. A relatively complicated definition is used because it is useful across a
wide range of potential applications. It is worth persevering to master the skill of
multiplying matrices.

As in the case of addition, it is not always possible to mUltiply a pair of
matrices. Matrices A and B can be multiplied only if they are conformable for
multiplication, which occurs when the number of columns of A is equal to the
number of rows of B. Thus, if A has order (m x p) and B has order (p x n),
multiplication is allowed. Note that the row length of A is the same as the column
length ofB; they are both equal to p. This is essential for the multiplication process
described below. For example, when

[2 -2 1] [-3 A = 4 4 -1 and B = -1
-2 0 5 0

the order of A is (3 x 3) and that of B is (3 x 2), so A and B are compatible for
multiplication. The rows of A and the columns of B contain three elements. To
decide on compatibility for multiplication, write down the orders of both matrices
next to each other, as '(3 x 3) (3 x 2)'. If the central numbers can be equally 'linked',
as in

(3 xQIillx 2)

then the matrices are conformable for multiplication. The numbers outside the
linking box are also significant. They give the order of the matrix that results from
the multiplication, (3 x 2) in this example. Thus, in general, if A has order (m x p)
and B has order (p x n), multiplication is allowed and the resulting product matrix,
C say, has order (m x n).

6. Matrices: Tools for Manipulating Space 151

Now we need to find the elements of C. The ith row of A and j'h column of B
have elements

and

respectively (remember that the first suffix indicates the row position and the second
indicates the column position). To find the element Cij of C, these elements are
multiplied together pair by pair, the resulting values being summed to give

The' .. .' can be avoided using more formal mathematical notation as

This is be interpreted as 'the sum of all values of aikbkj when k changes from I to p'.
The Greek equivalent of capital S, '~', is used to denote that a sum is being found.
This form of sum of repeated products is sometimes called an 'inner product' in
mathematical texts.

For example, to find element C32 of the product C of our example matrices A and
B,

[2 -2 1] [-3 3] A = 4 4 -1 and B = -1 -5 ,
-2 0 5 0 4

we take the third row of A and the second column of B,

-2 0 5

multiply pair-wise as

-2 x 3 =-6
Ox -5 = 0
5 x 4 = 20

and add to give

and

C32 = -6 + 0 + 20 = 14.

3
-5
4,

152 Computer Graphics through Key Mathematics

This is done for all six elements of C to give

[2 -2 1] [-3 3] [-4 20] 4 4 -1 -1 -5 = -16 -12 .
-2 0 5 0 4 6 14

This rather unpleasant, but useful, process has a number of consequences. Matrix
multiplication is not commutative; in general AB t- BA. Even if AB can be formed,
it may not be possible to find the product BA. This is the case in the example
above, where A has order (3 x 3) and B has order (3 x 2). A and B are compatible for
multiplication, but B and A are not. In a product AB, A is said to pre-multiply B
and B is said to post-multiply A.

Given matrices A order (m x p), Border (p x q) and Corder (q x n), the product
AB can be formed, having order (m x q). This is conformable for multiplication
with C, and the permitted product (AB)C has order (m x n). In (AB)C, the brackets
indicate that the product AB is the first to be performed in time. Alternatively, we
could form the product BC with order (p x n) and then pre-multiply by A to give
A(BC) with order (m x n). Both (AB)C and A(BC) are valid sequences of
multiplication; both give matrices of the same order (m X n) and both end up giving
exactly the same result. Thus, we can write both forms as ABC, the order of
performing the multiplication being irrelevant. No proof is offered, but readers can
justify this by trying a few examples. This appears to imply that the order of
multiplication does not matter, whereas the last paragraph stressed that it does. The
apparent paradox is due to different interpretations of the word 'order'. It is
important to maintain positional order when multiplying matrices, but change of
time order does not affect the outcome. This result will be useful later when we
consider matrix operations to perform sequences of transformations on points.

The product AB involves the rows of A associated with the columns of B. In
forming a transpose as defined above, rows and columns are exchanged, leading to
the following rule for transpose of a product:

This, and the multiple product rule described above, can be verified by trying out a
few examples.

The Identity Matrix

In number theory, the identity element for any binary operation leaves the other
value concerned unchanged. For example, zero has this role for addition (adding zero
to any value leaves it unchanged) and 1 has this role for multiplication. An identity
element for matrix multiplication is known as the identity matrix or unit matrix,
designated by the symbol I. There is more than one form of identity matrix,
depending on the order of the matrix needed to perform the multiplication. I is
always a square diagonal matrix. If required, it can be designated as In, where n
indicates its order. It is easy to verify that

6. Matrices: Tools for Manipulating Space 153

[1 0... 0]
I = . ~ .. 1. : :: . ~ ,

o 0... 1

with all elements zero except the unit values in the leading diagonal, satisfies these
requirements.IfI pre-multiplies or post-multiplies a matrix, the product leaves the
other matrix unchanged.

The identity matrix is closely tied to the idea of an inverse matrix. In number
theory, the inverse of the number x for addition is -x, as

x+(-x)=O,

the identity for addition. The inverse of the number x for multiplication is I/x, as

x*(1/x) = I,

the identity for multiplication. Note that we must exclude x = 0 from this
definition, it has no inverse as we are not allowed to divide by zero. In terms of
function theory, we must exclude the value zero from the domain of the
multiplicative inverse function. In general, an inverse 'undoes' the effect of an
operation. If A is a square matrix, it may have an inverse - some matrices are
excluded, as for multiplication of numbers. If such an inverse exists, it is designated
as Al and has the property

AAI = A-IA = I.

For square matrices of order two, the inverse can be easily stated. If

then

provided (alla22 _ aI2a21), known as the determinant of A, is not zero. This can be
checked by multiplying A and AI. All square matrices have a determinant, a single
value calculated from the elements of the matrix. For square matrices of order 2, the
determinant is formed as shown here, multiplying the elements on the leading
diagonal and subtracting the product of the two remaining elements. For square
matrices of order 3 or more, the calculation of determinant and inverse is more
complicated. This will be revisited later. The value of the determinant indicates
whether a square matrix has an inverse. If the determinant is non-zero, an inverse
exists and the matrix is said to be non-singular. A square matrix with no inverse (in
other words with zero determinant) is singular, it has no 'partner'.

154 Computer Graphics through Key Mathematics

Matrices and Equations

One of the major uses of matrices in general applications is in the solution of
systems of equations. This is not the main use of matrices in computer graphics,
but can be useful in some circumstances, for example in solving the systems of
equations produced in the radiosity shading method (chapter 10) or solving some
intersection problems in vector work (chapter 7). This section and the section
following on general methods for calculating matrix inverses can therefore be
considered as optional - they can be returned to if needed but may be skipped at
first reading. For those who take this option, it would be sensible to restart, without
penalty, at the section on 'Matrices, transformations and homogeneous coordinates'
(page 160).

The ability to solve simple systems of linear equations (containing only single
powers and no products of unknown quantities) is a skill learned at secondary
school. For example, consider the two-variable system

2x + 5y =-1
3x - 4y = 10

(1)
(2).

The system contains two equations with two unknowns. Generally, if we have the
same number of distinct equations as unknown values, the system can be solved. If
plotted as graphs in a Cartesian plane, equations (1) and (2) represent straight lines
(hence the description as linear equations). Many points separately satisfy each of
the equations, for example equation (1) is satisfied by (x, y) pairs (-0.5, 0), (2, -1)
and (-8, 3). A similar list of values can be generated to satisfy (2). The problem is
to find the one point that satisfies both equations, if such a value exists. Interpreting
the problem graphically, this involves finding the point at which the lines intersect.
Some pairs of lines may have no intersection (they may be parallel), others may
have an infinite number of common points (the two equations represent the same
line). One way (not the only one) of approaching this problem is as follows.

Multiply both sides of equation (1) by 3 and both sides of equation (2) by 2
(these are the 'coefficients' of x in the alternate equation). Such multiplication
involves multiplying all parts of the equation, both left-hand and right-hand sides,
by the required constant. If the same operation is performed on both sides of an
equation, the balance of the equation is unchanged. This gives

6x + 15y =-3
6x - 8y = 20

(3)
(4).

Note that (3) and (4) are simply disguised versions of (1) and (2), with the
coefficients of x made the same in both equations; the multiplying values for the
original equations were chosen so that this should occur. The x terms can now be
removed by subtracting equation (4) from equation (3). This involves subtracting
left-hand side from left-hand side and right-hand side from right-hand side to
maintain the balance, to give

23y = -23 (5).

6. Matrices: Tools for Manipulating Space 155

The number of unknown values and the number of equations is reduced by one,
leaving one equation for one unknown, y. Note that if the equations represented
parallel or coincident lines, the y term would also have disappeared, indicating that
no single solution is possible. Equation (5) is solved by dividing both sides by 23,
the coefficient ofy, to give

y =-1.

We can substitute this value - this means replacing y wherever it occurs by the
particular value -1, into either of the original equations to find x. Using (1) for this
purpose gives

2x - 5 = -1,

which can be rearranged by adding 5 to both sides, to give

2x = 4.

Dividing both sides by 2 (equivalent to the operation used to solve equation (5»,

x = 2.

Thus our final solution is x = 2, Y = -1. This is the only pair of values of x and y
that simultaneously satisfy both equations (1) and (2) and represent the intersection
point of the two lines represented by these equations.

This relatively simple problem has been dealt with in some detail to illustrate
some of the processes used in solving systems of equations. The validity of an
equation is maintained if the same operation is performed on both sides of the
equation. An exception to this rule is division by zero, which must be checked for
in any computer routine. Useful operations on a system of equations, used in the
general algorithm described later, are:

• multiplication of any equation by a constant;
• addition of a multiple of any equation to any other equation;
• swapping the positions of any two equations within the system.

The second of these could be replaced by the two operations of multiplying one
equation by a constant and then adding it to another equation, which is effectively
what was done in the above example.

Matrices have not yet been mentioned in this section. Systems of linear
equations can be represented in matrix form as

AX=B.

For equations (1) and (2), A, X and B take the form

A = [~ ~] , X = [;] and B = [;~] .

156 Computer Graphics through Key Mathematics

Multiplying out AX, this gives

[2x + 5Y] = [-1]
3x-4y 10·

Equating individual elements of these two matrices gives us the original equations
(l) and (2). The structure AX = B suggests a solution using the inverse of matrix A.
If that inverse exists, we can pre-multiply both sides of this by AI to give

A·IAX=AIB.

AIAX can be 'grouped' as (AIA)X = IX = X, so the left-hand side is simply the
matrix of unknowns. Thus, a complete solution is given as

Ifthe inverse AI does not exist (the determinant of A is zero), then there is no
single solution of the system of equations. This method seems attractive, but the
cost in evaluating AI can be prohibitively expensive, particularly for large systems
of equations with several unknowns, so we investigate another method below.

All values involved in the problem can be placed in a single matrix M,
combining the elements of A and B,

M - [2 5 -1]
3 -4 10'

where each row of M contains all information from one of the original equations.
The process of solving the system can be performed using the three equation
operations defined above on rows of the matrix. The method described here, known
as 'Gaussian elimination with partial pivoting', was developed by Gauss l and uses
'partial pivoting' to ensure rounding errors do not make computer-generated
solutions unreliable. The procedure, which gives a standard method for dealing with
any set of equations, is demonstrated on this limited system before a general
algorithm is stated. It is important to keep in mind that we have a system of two
equations for two unknown quantities (there are two rows of M). Pivoting is the
first stage of this process, which starts by searching column 1 of M for its
numerically largest element. This is 3, in row 2. (Note that in finding a
'numerically largest' element, the sign is ignored. For this purpose, -3 would be
selected before 2, although 2 is strictly larger than -3.) The 'pivot' for column 1 is
found in row 2, so we swap rows 1 and 2 to place the pivot in position mil.

M' = [3 -4 10] 2 5 -1 .

'Carl Friedrich Gauss (1777-1855) was a prolific German mathematician,
astronomer and physicist.

6. Matrices: Tools for Manipulating Space 157

Now divide row 1 by mil (the 'pivot'). This is later used to clear zeros in the
remainder of its column (only one element in this case). Working to the very
limited precision of one decimal place, we get the matrix,

M" = [1 -1.3 3.3]
2 5 -1'

We continue to work with limited precision for this section as an extreme example
of dealing with rounding errors. Now produce zeros in column 1 below row 1 by
subtracting relevant multiples of row 1 from the remaining rows (this statement may
sound artificial as there is only one such other row in this case, but this more
general form is valid for any size of problem). The correct multiples for each row are
found by taking all elements mil, where i > 1. Note that these are all numerically
less than the original pivot value of m! 1, so the net effect of the last two operations
is to multiply elements of column 1 by a value numerically less than one, thus
reducing any rounding error. For this example, we only have m2! = 2 to deal with
(so the net effect of the last two operations is to multiply by 2/3, which is less than
one). m2!R! is subtracted from R2.

M'" = [01 -1.3 3.3].
7.6 -7.6

We have now reduced column 1 to a simple form. We should now search through
column 2 from m22 through m32 and so on for its pivot element and exchange rows
where necessary, but only one such element remains, m22 with value 7.6 (this would
be iiJ working precisely). We divide row 2 by this (effectively a default pivot).

M"" = [1 -1.3 3.3] o 1 -1'

As we have reached the bottom row, the elimination phase is over.
Remember that the three terms in a row of the equation in this case represent the

multiple of x, multiple ofy and the constant on the right-hand side of the equation.
Thus, a row with 0, 1 and -1 in these positions represents equation

Ox+ly=-I,

or y=-l.

The first row ofM"" can also be represented as an equation,

Ix - 1.3y = 3.3.
The value of y can be substituted into this, to give the result x = 2, y = -1, as
before. Although there were intermediate rounding errors, the final solution turns
out to be exactly correct - this does not always happen, but the pivoting does give
some protection against rounding errors when many variables are involved. In small­
scale problems, human ingenuity can often produce short-cut solutions. Computers

158 Computer Graphics through Key Mathematics

can be programmed more easily to follow a standard method such as that described
here.

Suppose we have a general system of n simultaneous equations for n unknowns

allxl + a12X2 + ... + alnXn = bn
a21X2 + a22X2 + ... + a2nXn = b2

The unknowns are designated as XI, X2, ... Xn rather than the X, y used above. This is
generally enough information to solve for the n unknowns, provided the equations
are linearly independent. This means that none of the equations can be derived from
the others using the standard equation manipulation rules. If the equations should be
linearly dependent, the fact that there is no single solution will become clear during
the process, as at some stage there will be no available non-zero value to act as
pivot. An intuitive interpretation of this is that in the n-dimensional space of the
variables (Xl, X2, ... xn), some of the 'surfaces' represented by the equations are
parallel. This concept relates to the 'degrees of freedom' concept introduced earlier.
If one or more of the equations can be derived from others, it acts as a constraint as
its constants cannot be freely determined. Thus the dimensionality of the system of
equations is reduced accordingly, and less information is carried.

We start by setting up a single matrix from the coefficients of the equations,

all a l2 a ln bl

M= a 21 a 22 a 2n b2

anI a n2 ann bn

Within a loop, from i = I to n, we start by searching for the numerically largest of
values in or below the leading diagonal in column i, aji to ain. 'Numerically largest'
means the element with largest modulus; the negative signs are ignored. Suppose
this is in row k. If k and i are not equal, row k is exchanged with row i to place the
pivotal element in position aji. Row i is then divided by the current pivot value in
aii. Looping from j = i + 1 to n when i < n (this stage is not needed for the final
row when i = n), values in column i below aii are then reduced to zero by
subtracting ajiRi from Rj. When this loop is exhausted, M will usually have the
form

a 12

M' = 0 1

o 0 bn

The values of a12, ... bn in M' are not the same as those in M above. If at any stage
during this loop, the search for the pivot (the numerically largest of the values aii to
ain) shows all these values to be zero, it is clear that there is no distinct solution to
the set of equations. The search for a solution can be abandoned at this stage.

6. Matrices: Tools for Manipulating Space 159

Now the process of 'back substitution' starts. Yn = bn can be immediately
allocated. Looping backwards for i from n - 1 to 1, we can define

n

Xi = bi - ~aijXj'
j-HI

to give the full set of values of XI, X2, ... xn•

A routine based on this method can be built into a suite of graphics functions.
Alternatively, a similar routine can be used from a commercially marketed numerical
analysis system; this kind of numerical equation solver is properly a part of the
subject known as 'numerical analysis'.

The Inverse of a Square Matrix

The method given above for solving equations can be adapted to find the inverse of
a square matrix. This is only one of several possible methods that could be used,
but is relatively efficient and safe in its avoidance of rounding error. The square
matrix A to be inverted is augmented by placing an identity (or unit) matrix to its
right, as

a ln I 0

a 2n 0

o
o

M is operated on very much as in the Gaussian elimination method with partial
pivoting, except that, in reducing elements in a particular column to zero, this is
perfonned for all elements in the column (those above the pivot as well as those
below) except for the pivot ajj itself. We should replace the statement 'values in
column i below ajj ... ' by 'all values in column i except for ajj itself are then reduced
to zero by looping from j = 1 to n (excluding the case j = i), subtracting ajiRi from
Rj'. If at any stage it is impossible to find a non-zero pivot, this indicates that the
detenninant of the original matrix A is zero, so no inverse exists. Otherwise, M will
reduce to the fonn

I 0

M'= 0

o 0

Now the unit matrix is to the left, with a new square matrix to its right. This new
square matrix is extracted as AI, the inverse of A,

160 Computer Graphics through Key Mathematics

bll bl2 bin

kl=B= b21 bn b2n

bnl bn2 bnn

No attempt is made to justify this method, other than to state that it works. The
matrices produced form true inverses.

As a side issue, the determinant of matrix A can be evaluated from this process.
During each stage of the original i loop, 'row i is divided by the current pivot value
in a/. As the loops proceed, these pivot values should be multiplied together and
the number of row swaps performed, m, counted (if a row is swapped with itself,
this does not count). The determinant of A is the product of the pivot multiplied by
-1 m. It is sometimes of interest in computer graphics systems to find if the
determinant of a square matrix is numerically less than one. This can be found
directly from the pivotal product.

Matrices, Transformations and Homogeneous
Coordinates: Two Dimensions

We now return to a major issue of importance to computer graphics. In discussing
coordinate systems earlier, the transformations of translation, scaling and rotation
were defined and equations for these developed. In this section, we show how
matrix methods enable all these transformations to be performed by a standard
method, giving a unified way of treated them in a computer graphics system. This
technique has the added bonus of enabling sequences of transformations to be
merged or 'concatenated' into one operation, speeding computer graphics routines.
We consider first the 2D transformations (fig 6.1).

Translation

Scaling

Rotation

Shear in x

Shear in y

Xl = X + tx,

y' = Y + ty•

x' = SxX,

Y'=Syy.

x' = x cos(O) - y sin(O),
y' = x sin(O) + y cos(O).

x' = x + kxY,
y' = y.

x' = x,
y' = kyx + y.

The shear operations are not given explicitly in many texts as they can be performed
by combinations of rotations and scatings, but they can be more efficiently

6. Matrices: Tools for Manipulating Space

perfonned if separately defined. The vertices of a
2D object are represented in Cartesian fonn as
(x, y). The fonnulae above transfonn (x, y) into an
'image' point or vertex (x', y'). When applied to all
vertices defining an original object, such as the unit
square of fig 6.1, the method changes the object
into a transfonned version. The effect of the
translation defined here is to move an object tx
units horizontally and ty units vertically. Scaling
expands or contracts by factors Sx horizontally and
Sy vertically, the origin (0, 0) remaining 'pinned
down'. A negative scale factor gives a reflection in
the relevant axis. Rotation again pins down the
origin (0, 0), rotating the object through an angle 8
in the positive anti-clockwise sense.

These sets of equations are directly expressed as
matrix operations.

Translation

Scaling

Rotation

Shear in x

Shear in y

[~:]= [~]+ [::];

[~:]= [so s~][~];

[x:]= [C~S(8) -Sin(8)][x].
y sm(8) cos(8) y

[;:] = [~ ki][;];

[;:]= [ky
1 ~][;].

The point (x, y) is represented in matrix fonn as

[;]. A perfectly valid alternative is to use [x y] for

(x, y). In this case, the transfonnations would
involve the transposes of the versions given above,
with the order of multiplication for scaling and
rotation reversed. The choice of method is a matter
of personal choice - they are both equivalent in
power - but once chosen, the method should not be
changed as inconsistency could lead to error.

This is a matrix method, but it holds no
advantage over the direct use of equations. A

y
j

y

y

y

x --
A unit square

D
translated
by (0.5,1)

scaled by
(1.5, -0.5)

rotated
by 30·

sheared
by 0.5 in x

x

x

x

x

161

Figure 6.1 Effects of2D
transformations on a unit

square

162 Computer Graphics through Key Mathematics

drawback is that the matrix methods used are not the same for each type of
operation. Translation involves addition, whereas scaling and rotation use
multiplication. Matrix methods become useful when all three basic transformations
can be performed in the same way. Shear is not counted as one of these basic
transformations as it can be performed by combining scaling and rotations. It is not
possible to reduce all to the simpler form of matrix addition; some multiplication is
involved. They can all be performed by matrix multiplication using the device of
homogeneous coordinates.

The point (x, y) is represented in homogeneous coordinate form as a matrix

[? 1 ' where w is any ..-bitrruy non-zero constant, called the 'weight'. Thus, there

are many possible interpretations for a single point. For example, (3, -4) can be

represented as H l' Hlor [~~ 1 Mth weights I, 2 and -3 respectively. Given a

point in homogeneous coordinate form, its Cartesian (x, y) form can easily be
extracted by dividing the first two row values by the third. In the homogeneous

fonn [~i 1 both 11 and -8 ..-e divided by -2 to give the Cartesian point (-5.5, 4). As

the choice of weight w is arbitrary, it makes sense to choose the easiest possible
value to work with. Whenever possible, which is almost always in computer
graphics, we choose w = 1. A general point (x, y) can be represented in the simplest

homogeneous fonn as [r]. The exception to this in computer gmphks occurs in

performing perspective projection, when use of a non-unit weight can simplify other
calculations. This will be considered in a later section on 3D work.

We are now ready to devise the unified method for dealing with our three
transformations. The required transformations are simply stated - their validity can
be checked by multiplying out the matrices concerned and comparing results with
the equations given above.

[~}
o tx [r] = T(t" 4) [r]; 0 1 ty

0 o 1

Translation

Scaling [r]=
Sx 0

~lm = S(s" s,) [n 0 Sy

0 0

6. Matrices: Tools for Manipulating Space 163

Rotation [X'] [COS(B) - sin(B) 0] [X] [X]
~' = Sin~B) CO~(B) ~ r = R(B) r ;

Shear in x [fH~ ! ~][rJ~ Sh,(k,) [rJ.
(the notation indicates that y is unchanged);

Shear in y [fH~ ! ~]m~Sh£k,)[n
(the notation indicates that X is unchanged).

The six matrices T(tx, ty), S(sx, Sy), R(B), Shy(kx) and Shx(ky) represent the operations
of translation, scaling, rotation, shearing in the X direction and shearing in the y
direction respectively. The clumsy notations used for shearing matrices indicate by
suffixes which coordinate is unchanged by the shear. This method is used for
consistency with the 3D forms introduced below. It is worth reiterating that some
texts represent their homogeneous coordinates as a row matrix [x y I] rather than the
column matrices used here. If this is done, the transformation matrices are the
transposes of those given above and the order of multiplication is reversed. Care
should be taken when interpreting texts to understand which method is being used.
In a particular work, consistency is important. It does not matter which method is
used, as long as the same one is used throughout.

Now we can illustrate the benefits of this technique. In a naIve application of
multiple transformations, all transformations would be applied successively to every
point of an object to be transformed. Using the matrix method for homogeneous
coordinates, sequences of transformations can be reduced to a single matrix. As an
example, suppose we wish to rotate a figure through 90· clockwise about the point
(3, -2). This can be performed by the sequence of 3 standard transformations shown
in fig 6.2).

translate the whole figure so that (3, -2) is placed at the origin using a
translation of (-3, 2);
rotate through the required angle of -90· (remember that a clockwise
rotation is in the negative sense);
return the figure to the correct location by moving its origin to (3, -2)
using a translation of (3, -2).

The first translation stage is defined by matrix

[
I 0

T(-3, 2) = 0 I
o 0

-3] 2.
I

164

y

(3, -2)

•
original
shape

x

Computer Graphics through Key Mathematics

y y y

translate
(-3,2)

x x x

rotate _90·

(3, -2)

•
translate
(3,-2)

Figure 6.2 Rotation by 90· clockwise about (3, -2)

The standard form of rotation allows us to rotate by any angle about the origin. This
initial translation rearranges the figure so that the required centre of rotation is now
located at the origin, enabling us to rotate by -90·. From chapter 3, we use the
trigonometric values sin(-90·) = -1 and cos(-90·) = O. The required rotation matrix is

[0 I 0]
R(-90·) = -I 0 O.

o 0 I

The last translation, replacing the centre of rotation in its original position, has
matrix

[I 0 3]
T(3, -2) = 0 I -2.

o 0 I

Using matrix multiplication, these three operations can be combined into one matrix
before processing the figure itself, so only one operation needs to be applied to each
ofthe object's points. Figure 6.2 shows only a simple object defined by five points.
When the method is applied to objects defined by several thousands of points,
considerable time saving can be achieved. It is important to combine the matrices in
the correct order as matrix multiplication is not commutative.

The transformation matrices given in this text operate on points by pre­
multiplication. The point representation appears to the right, with the operator
matrix to its left. Thus the first operation must be placed to the left of the point to
be transformed, the next operation appearing to the left of the previous one, and so
on. In general if we have to apply several transformation matrices MI, M2, M3, .. , in
that time order to a point represented in homogeneous form as matrix X, the
composite operation is given by

6. Matrices: Tools for Manipulating Space 165

where X' is the homogeneous representation of the final point reached. A discussion
above showed that the time order (but not the space order) of matrix multiplication
could be changed, so the above line can be restated generally as

and finally rearranged as

where the matrix product (... M3M2M1) represents the complete sequence of
transformations. By multiplying these together, the sequence is reduced to a single
matrix that can be applied to each of the points of the figure in turn. For example, if
the figure has 1000 points, and the transformation comprises five standard
transformations, the naive approach would involve 5000 multiplications of a matrix
by a point. By combining the matrices into one, at an initial cost of four matrix
multiplications, there would subsequently be only 1000 multiplications of a matrix
by a point. The 'concatenation' of all operations into a single matrix has enabled
considerable time saving. This is the real reason for the use of this technique in
computer graphics.

Returning to our specific example, the sequence of individual matrices gives the
single matrix

M" T(3. -2)R(-90')T(-3. 2)" [~

Remembering that we cannot change the positional order of these matrices, but we
may multiply them in any time order; multiplying the right-hand pair first, we get

This single matrix can now be applied to all points of the figure, effectively cutting
out the middle two phases of fig 6.2.

The determinant of a transformation matrix (which can be found by a computer
routine as discussed above) indicates the change of area effected by that
transformation. Ifwe denote the determinant of matrix A as det[A], we have

det[T(tx, ty)] = 1,

det[S(sx, Sy)] = SxSy,

det[R(8)] = cos2(8) + sin2 (8) = 1.

The last case uses a standard trigonometric identity that can be easily established
from Pythagoras' theorem. These values clearly indicate the change of area given

166 Computer Graphics through Key Mathematics

when these transfonnations are applied to a two-dimensional shape. Scaling and
rotation do not affect area, but the scaling factors Sx and Sy stretch or squash an
object linearly, so their combined effect on area is represented by their product. A
theorem on detenninants of square matrices tells us that when matrices are
multiplied, the detenninant of the result is the product of the detenninants of the
original matrices. From this, it is clear that the detenninant of a combination of
affine transfonnations gives the overall area change effected by that combination.

Matrices, Transformations and Homogeneous
Coordinates: Three Dimensions

Similar methods are used in the three-dimensional world. We move directly to the
homogeneous representation of a three-dimensional point (x, y, z) in Cartesian

wx

coordinates as wy when the 'weight' w:;tO. For purposes other than perfonning the
wz
w

perspective projection transfonnation (discussed later), we take w = 1 for simplicity,
x

representing the point (x, y, z) as y . Matrices for the operations of translation and
z
1

scaling are obvious extensions of the 2D case. Rotation must now be defined about
the three coordinate axes as shown below.

Translation 1 0 0 tx

x' = x + tx, T(t., ty, tz) =
0 1 0 ty

y' = Y + ty, 0 0 tz
z' = z + tz. 0 0 0 1

Scaling Sx 0 0 0

x' = sxx, S(sx, Sy, Sy) =
0 Sy 0 0

Y'=Syy, 0 0 Sz 0
z' = szz. 0 0 0

Rotation about the x-axis
1 0 0 0

x' = x, Rx(e) =
0 cos(e) -sinCe) 0

y' = Y cos(8) - z sin(8), 0 sin(8) cos(8) 0

z' = y sinCe) + z cos(e). 0 0 0 1

6. Matrices: Tools for Manipulating Space 167

Rotation about the y-axis cos(8) 0 sin(8) 0

Ry(8) = 0 1 0 0
x' = x cos(8) + z sin(8), -sin(8) 0 cos(8) 0
y' =y, 0 0 0
z' = -x sin(8) + z cos(8).

Rotation about the z-axis cos(8) -sin(8) 0 0

x' = x cos(8) - y sin(8), Rz(8) = sin(8) cos(8) 0 0

y' = x sin(8) + y cos(8), 0 0 1 0

z' = z. 0 0 0 1

Shear with z unchanged 1 0 kx 0

Shz(kx, ky) = 0 1 ky 0
x' = x + kxz,
y' = y + kyz, 0 0 1 0

z' = z. 0 0 0 1

The first two methods, for translation and scaling, are very similar to their 2D
equivalents with the addition of an extra z coordinate, which needs an extra row and
column for the transformation matrix.

Rotations are almost always described in 3D as being 'about an axis', invoking
the idea of a 'right-hand screw' for positive rotation, in the sense of tightening a
standard screw with a screwdriver pointing in the positive direction of the axis of
rotation. If the right thumb points in the positive direction of this axis, the fingers
curl naturally in the sense of rotation. This form of definition is specific to three­
dimensional cases. No such axis of rotation exists in 2D, unless we artificially
create an axis outside the 2D universe, and in four- and higher-dimensional systems
there is more than one 'axis' used for each rotation. At first reading, the concept of
rotation in 4D space may seem a bit bewildering, but there is little difficulty in
extending mathematical laws to cope with extra dimensions. We have just extended
a 2D transformation system to one in 3D, and we discussed in chapter 3 how
'objects' in four and higher dimensions can be created. These are sometimes useful
for computer graphics as well as in other disciplines. In 4D systems, it is far easier
to consider rotation as 'from one axis towards another'. For example, in a 4D
system with axes (x, y, z, u), rotation 'from x towards y' leaves z and u unchanged,
so the rotation is conceptually 'about z and u'. The description of rotation in the
sense 'from x towards y' can be used in all coordinate systems from 2D upwards. It
represents the only form of rotation in 2D systems, rotation about z in 3D, rotation
'about z and u' in 4D, and so on, giving a uniform way of describing all cases.

We are particularly concerned with the 3D case here, so it is worth describing the
three possible forms of rotation explicitly (fig 6.3). Rotation about the x-axis turns
y towards z; rotation about the y-axis turns z towards x; rotation about the z-axis
turns x towards y. Once the alphabetic x to y to z to x ... cycle is identified, this
seems a natural system to adopt. As in other texts, the more convenient form of 'Rx'
is used here rather that the cumbersome 'Ry to z', but knowledge of this cyclic effect
may help readers to understand the process. This was discussed in chapter 4, but it
does no harm to revisit the concept.

168 Computer Graphics through Key Mathematics

Figure 6.3 Rotations about the three coordinate axes

As we have to consider three forms of rotation in a 3D system, we must also take
into account three forms of shear, each of which leaves one of the three spatial
coordinates unchanged. The single example given above leaves the z coordinate
unchanged, shearing in the x and y directions. The shear matrices

000
100

010
o 0

and

1 kx

Shy(kz, kx) = 00 1
kz

o 0

o 0
o 0
1 0
o

leave the x coordinate and the y coordinate unchanged respectively, shearing in the
two altered coordinate directions. To visualize this, imagine having a stacked pack
of cards on a table, then drag a finger across the edge of the pack to make it non­
vertical. The vertical location of cards has not changed, but position in both
horizontal directions can be changed. Suffixes in the above formulae are consistently
given in the now familiar alphabetical cycle. Only one shear matrix was given in the
main list above, for brevity. As for 2D systems, many texts do not mention
shearing explicitly, as it can be performed by a combination of rotation and scaling
operations, but having the shear operation directly available can add to the usability
of modelling and computer graphics systems.

Ifwe have a sequence of transformations, MI, M2, M3, ••• in matrix form, to be
x

performed on the homogeneous point X = y, the complete operation can be
z
1

represented as

where the single matrix M = ... M3M2M I represents the complete sequence of
transformations. As in the two-dimensional case, pre-computation of M can lead to
considerable time savings in performing such a sequence on an object defined by
many vertices in three dimensions. As in the 2D case, this is illustrated with a
specific example.

6. Matrices: Tools for Manipulating Space 169

Suppose we want to rescale an object by a factor of2 in the x direction about the
origin, and subsequently rotate it by 45' positively about the x-axis, keeping the
point (1, 1, 1) fixed. Remembering that cos (45') = sin (45') = 11--/2, the required
matrices for the composite operation can be written down from the standard
formulae given above. The composite matrix representing the complete set of
operations required is found by repeated pre-multiplication as the process develops,
rather than just identifying the matrices to be used and then mUltiplying the stored
values at the end. In a computer context, this is more memory efficient as just the
one intermediate result is carried forward each stage, and no more costly in terms of
time taken.

• Scale by 2 in the x direction:

• Place (1, 1, 1) at the origin:

Composite matrix:

1 0 0 -1 2 0 0 0
o 1 0 -1 0 1 0 0
o 0 1 -1 0 0 1 0
00010001

2
0
0
0

S(2, 1, 1) =

T(-I,-I,-I) =

0 0 -1
1 0 -1
0 1 -1
0 0 1

1

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 -1
0 1 0 -1
0 0 1 -1
0 0 0 1

0 0 0

• Rotate about x-axis by 45': Rx(45') = 0 1Iv2 -1Iv2 0
0 1Iv2 1Iv2 0
0 0

Composite matrix:

1 0 0 0 [2 0 0 -1 2 0 o 1Iv2 -IIY2 0 0 1 0 -1 = 0 1Iv2
o 1/v2 1Iv2 0 0 0 1 -1 0 1Iv2
00 01000100

(in this stage, we note that 2/--/2 = --/2, as 2 = --/2*--/2).

1 0
o 1 • Replace the origin to (1, 1, 1): T(I, 1, 1) = 0 0

o 0

Composite matrix:

1 0 0 1 2 0 0 -1 2 0

0

o
-1Iv2
1Iv2

o

o 1
o 1
1 1
o 1

0

1

-1
o

-v2
1

0 1 0 1 0 1Iv2 -1Iv2 0 0 1Iv2 -1Iv2
0
1

0 0 1 1 0 1Iv2 1Iv2 -v2 0 1/v2 1Iv2 I-v2
0 0 0 1 0 0 0 1 0 0 0 1

The final matrix generated,

170

M=

2 0
o 1!V2
o 1!V2
o 0

o
-l!v2
l!v2

o

Computer Graphics through Key Mathematics

o
I

l-v2 '
I

represents all operations. Applying this overall transformation to a cube, say, with
eight vertices, at the initial cost of three matrix multiplications, we now only have
to perform eight direct matrix by point multiplications. Had we not 'concatenated'
the series of operations into one matrix in this way, four such operations would
have been performed on each point - a total of 24 matrix by point multiplications.
With more complex objects, the savings are more dramatic.

As a check on our calculations, it is illustrative to apply the resulting matrix to a
few points. We consider the point (0.5, I, I). The scaling in x will place this point
at (1, I, 1), the centre of the subsequent rotation, so it will not be moved further by

0.5

the rotation. Applying our transformation M to the point X = ~ ,we have

MX=

2 0
o l!v2
o l!v2
o 0

o
-l!v2
l!v2

o

o
1

I-v2
1

0.5
1
1
1

1

This can be interpreted as the Cartesian point (1, 1 , 1) as required. As another
example check, the point (1, 2, 2) will be moved to (2, 2, 2) by the x-scaling. A
little thought indicates that rotation of 45' about the x-axis with centre of rotation
(l, I, 1) will place this resulting point on the plane y = 1, distant I + -v2 from the

I

z-axis. Applying matrix M to the representation ~ of the point (1, 2, 2), we get

1

MX=

2 0
o l!v2
o l!v2
o 0

o
-l!v2
l!v2

o

o 1
I 2

I-v2 2
I 1

2
1

l+v2
1

This gives the correct location for the final point as (2, 1, 1 + -V2).

Inverse of a Transformation Matrix

A relatively complicated routine for finding an inverse of a general square matrix
was given above. For affine transformation matrices, inverses are easy to find. An
inverse matrix 'undoes' the effect ofthe original matrix, so we can write down

6. Matrices: Tools for Manipulating Space

2D TI(tx, ty) = T(-tx, -ty),

S-I(SX, Sy) = S(lISx, l/sy),

RI(S) = R(-S),

Sh/(kx) = Shy(-kx),

3D TI(tx, ty, tz) = T(-tx, -ty, -tz),

provided Sx t- 0, Sy t- 0,

S-I(sx, Sy, sz) = S(l/sx, lIsy, l/sz), provided Sx t- 0, Sy t- 0, Sz t- 0,

R/(S) = ~(-S),

Shx-I(ky, kz) = Shx(-ky, -kz),

Sh/(kz, kx) = Shy(-kz, -kx).

171

Rotation of -S undoes a rotation of S. This result can also be checked by
multiplying original matrices by their inverses. Each gives the unit matrix I.

In mUltiplying together sequences of transformation matrices, we have

M-I (M M M)-1 M -1 M -1 M -I = .. ·321=123 .. •·

This can be justified by considering the product

- ... -I.

Central matrices are repeatedly paired off, until the whole sequence is reduced to I,
the unit matrix. This gives an easy way of creating the inverse of a sequence of
transformation matrices at the same time as creating the product of the sequence.
When a new transformation is absorbed into the sequence, its matrix pre-multiplies
the existing transformation matrix and its inverse post-multiplies the composite
inverse. Both processes go hand in hand; there is no need to use a difficult matrix
inversion routine.

172 Computer Graphics through Key Mathematics

Figure 6.4 Perspective projection of a general point P onto a view plane using centre of
projection C

Perspective Projection

Part of the process of viewing objects in 3D is to project them onto a 2D smface
that will be mapped onto the viewing smface, such as a VDU screen or plotter.
'Realistic' effects are achieved by using perspective projection. We assume that a
special view coordinate system has been set up for this purpose, with origin on this
view plane and a pseudo observer (or centre of projection, C) at a point (0, 0, -d) in
this system, as shown in fig 6.4. These systems are often set up as left-handed sets
of coordinates, as shown in this figure. The z-axis points away from the centre of
projection, measuring the depth of an object into the scene. The other direction
would give the more orthodox right-handed set of axes.

Given the location of a point P in space, the perspective projection calculates the
position P' where the line CP intersects the view plane, the plane of z = 0 in this
method. An alternative method places the centre of projection at the origin, with the
view plane having equation z = d. The result for this alternative formulation is
given later.

If we 'look down' upon fig 6.4 from the positive y-axis, fig 6.5 results. From
this view, it is more easy to see how the x coordinate ofP' can be found. The tan of

C~ __ d __ ~O~ ____ ~z ____ ~~z
• •• 'Ot'"'"····.'"I ••

P' ~.

x P

Figure 6.5 Vertical view of fig 6.4

6. Matrices: Tools for Manipulating Space 173

angle LOCP' can be found from two triangles as OP'/d or as x/(d + z). As OP' = xp,

we have

xp x
----,
d d+z

dx d
so Xp= -- = --x.

d+z d+z

Similarly, the y coordinate ofP' is given by

d dy
yp= --y= --.

d+z d+z

Trivially, P' has z coordinate Zp = O. Note that this method gives a zero divide error
if z = -d. We cannot view a point that is alongside the observer. This makes
physical sense. Most viewing systems get around this problem by including a 'near
plane' to exclude any point with z less than some small positive value from the
potentially visible region. This also avoids the situation of points behind the
observer being projected in a negative sense onto the view plane. It could be useful
in real life to have 'eyes in the back of one's head' but this would be most
confusing in a computer graphics system. A 'perspective transformation matrix' to

x

perform this operation, given a homogeneous representation ofP as P = Y , is
z

[
d 0 0 01

Per(d) = 0 d 0 0 o 0 0 o·
o Old

This requires some explanation. P' is given by

P' = Per(d)P =
d 0 0
o d 0
000
o 0 1

o x
o y =
o z
d 1

dx
dy
o

d+z

I

The result is a homogeneous matrix that does not have weight w = 1. Above, the
convention has been to hold w = 1 for simplicity, as in most computer graphic
texts; this is the single case when the more general form is required. The Cartesian
representation of P' is found by dividing its first three elements by the fourth, its
'weight' w. This gives the required result,

(dx dy)
(xp, YP' zp) = --, --, 0 .

d+z d+z

174 Computer Graphics through Key Mathematics

.. z

C d

o
P' ~ ..

view P
plane

, x

Figure 6.6 Alternative perspective set-up with origin at the centre of projection

In many algorithms, for example hidden surface algorithms that determine which of
several objects is visible from the point of view of an observer, it is necessary to
pass on the 'depth information' z. In such cases, the matrix above can be used to
evaluate Xp and YP' but a special addition to the algorithm can carry the value of z
through unchanged as zp = z.

An alternative method sets up the view coordinate system with its origin at the
centre of projection C and the view plane passing through (0, 0, d) (fig 6.6 has 0
and C coincident). The equations for the position ofP' (x'p, y'p, z'p) are

dx dy
x' = - y' = -andz' =d p ,p p.

z z

d 000

The matrix Per'(d) = o d 0
o 0 d
001

~ can be used to perform this version of

o
perspective projection. As in the previous method, points alongside the centre of
projection (alongside the ears of an observer, with z = 0 in this formulation) would
give a 'zero divide' error and cannot be viewed by this method. Once more, use of a
'near plane' elsewhere in the system prevents this anomalous situation and avoids
the projection of points from behind the centre of projection onto the view plane.

Applying Per'(d) to the homogeneous representation of P as P =

x

y , using the
z
1

general form of homogeneous point representation with weight w, we get

wx'p
wy'p
wz'p
w

d 0 0

= Per(d)P = 0 d 0 o 0 d
001

o x
o y
o z
o 1

dx
dy
dz
z

The result can be reduced to its Cartesian equivalent by dividing other terms by the

'weight' z, to give x'p = dx, y'p = dy and z'p = d, as required. As above, the value
z z

6. Matrices: Tools for Manipulating Space 175

of ZIp produced may be ignored, the previous value of z being carried through for use
in algorithms that need depth information.

The different structures of these matrices compared with the affine transformation
matrices (those for translation, scaling, rotation and all combinations of them have
bottom row [0 0 0 I]) pose difficulties with computer implementation. Space and
time-saving considerations make it attractive to eliminate this bottom row in storage
of standard affine transformations, giving special concatenation routines that take
this into account rather than use 'off the shelf matrix multiplication. The creation of
a perspective view in computer graphics comprises a modelling stage (when objects
are composed to create the scene, as a photographer would arrange objects to be
photographed), a viewing stage (the view parameters are set up, equivalent to the
photographer locating the tripod, choosing a lens) and a projection and rendering
stage (as in the actual exposure of the film).

The use of a 'near plane' to avoid division by zero in perspective projection has
been introduced. Other forms of clipping are used in computer graphics, to eliminate
all objects or parts of objects outside the field of view, or to cut out objects so fur
away as not to contribute meaningfully to an image. This has to intrude somewhere
within this three-stage image synthesis process, so the smooth use of matrix
concatenation has to be interrupted into two stages. Modelling and viewing can be
concatenated into one matrix operation, although it may be useful to store
intermediate data on the modelling stage if several views of the same scene are to be
taken. It is more difficult to include the projection transformation as part of the
same process, as the abbreviated form of matrix convenient for modelling
transformations is no longer suitable. These two forms of process may be treated
separately if specialized matrix operators are used for affine transformations. It is
worth noting that some sophisticated modellers allow non-affine forms of space
warping such as tapering or twisting as modelling transformations. Thus, the
smooth concatenation of matrices must be interrupted at one or more stages in the
process of image synthesis, sometimes called the 'computer graphics pipeline'.
Many texts omit to mention this. Although this means that two or three matrix
operations per point are needed, the use of matrix concatenation can still cut down
considerably the amount of calculation needed to view a complex object; it is still a
time-saving method. Some implementation issues are discussed later in the chapter.

Parallel projection is a simple alternative to perspective projection. It is
equivalent to viewing a point from a centre of projection placed an enormous
distance away from the view plane (technically, a parallel projection is the limit of a
perspective projection as d approaches infinity). When all created points have been
converted to a view coordinate system (as in figs 6.4 and 6.5), the parallel
projection simply takes the x and y coordinates from the view projection. The
equations for the 'view plane origin' form of perspective projection are

dx
Xp= --

d+z
and Y =~ p •

d+z

If we divide top and bottom of the fractions by d, this can be rearranged as

x
Xp = -I-+-z-I-d and yp= -~y-

1+ z/d

176 Computer Graphics through Key Mathematics

It is clear from this form that as d becomes very large the term zld gets smaller
because the denominator ofzld increases. In the limit, as d approaches infinity, we
take zld = 0, so the limiting form of the perspective projection gives the expected
parallel projection formulae

xp = x and yp = y.

We have here taken a 'limit as d approaches infinity'; this is similar to the 'limit as
6x approaches zero' that we used in developing the differential and integral calculus
in chapter 5.

Perspective projection could also be used to distort geometric models adding a
non-affine option to the modelling process. It should be clear that perspective
projection is a non-affine process from the presence of 'vanishing points' in classical
perspective images or the visual effect of straight railway lines converging upon a
distant point. A defining property of affine transformations is the preservation of
parallel lines. Under perspective transformation, parallel lines are made to converge
to a vanishing point, and are therefore non-parallel. The effect is equivalent to
distorting an oval to an egg shape, broadening some parts and narrowing others.
Distortion using centre of projection (0, 0, -d) can be applied to both x and y
variables of an object's vertices, or either x or y alone. Care must be taken in
carrying the z coordinate through this process - it can be retrieved through the
'weight'. Equivalent formulae can be devised for perspective transformation with the
centre of projection on the x or y coordinate axes. If allowed, this process makes
concatenation of modelling operations very difficult. For example, direct matrix
implementation of a sequence of perspective modelling transformations, one along
each coordinate axis, without extraction of the perspective axis coordinate would
reduce all vertices to the origin (0, 0, 0). A way to safeguard against this in
sequences of perspective modelling operations, perhaps with different axes, is to
evaluate vertices after every perspective operation, losing the benefit of matrix
concatenation. If required, perspective transformations could be incorporated into
modelling as an initial stage, before passing object vertices on to the affine
modelling and viewing stage.

Computer Implementation of Matrix Methods

Matrices are excellent conceptual devices for devising ways of performing affine and
projective transformations. They are often described as methods for performing such
transformations, but, once the concepts from matrix methods are developed, better
time performance is achieved by specially tailored routines. A similar situation was
outlined in chapter 2; ways of storing and manipulating numbers in a computer are
based on the concepts of binary numbers, but the implementation uses a number of
convenient divergences. Many texts hint at potential efficiencies leading from the
peculiar structures of transformation matrices, but few give details of what they
mean; fewer discuss limitations introduced by such efficiencies. Concatenation of
two 3D transformation matrices (order 4 x 4) takes 43 or 64 multiplications using a

6. Matrices: Tools for Manipulating Space 177

standard matrix multiplication routine. Ignoring, for the time being, perspective
transformations, the standard modelling and viewing matrices all have fourth rows
[0 0 0 1]. If this is taken into account, concatenation can be performed using only
36 multiplications. Further savings are possible using specific routines for
concatenation of different forms of transformations. As shown in the methods
suggested below, in 3D translations take only 3 additions, scalings use 12
multiplications, rotations involve 16 multiplications and 8 additions or subtractions
after the necessary calculations of cosine and sine terms. Such savings are desirable
in the time-consuming activity of computer graphics. The 'working parts' of such
transformations fit only three rows of four elements, compared to the 16 elements
using direct matrix methods, so space saving is also possible, although this is less
of an issue as relatively few such matrices need to be stored.

A further divergence from the mathematical matrix model gives potential
memory and time benefits. Accessing an element of a two-dimensional array is more
time consuming than accessing an element of a one-dimensional array, so it is more
efficient to code 3D transformations as 12 elements of a one-dimensional array,
ensuring through the code that elements are properly matched. This can be done by
storing a general 3D transformation matrix B as a 12 element one-dimensional array
A,

bll bl2 bl3 bl4 a o a l a 2 a 3
b2l bn b23 b24 a 4 as a 6 a 7

b3l b32 b33 b34 a 8 a 9 a lO all
0 0 0 1 0 0 0 1

where aj is equivalent to the C language array element A[i]. A similar device can
hold a general 2D transformation in a six-element array. Whilst this method does
give some memory and time savings, some developers may not find these factors
important and may prefer to implement more standard direct matrix methods
requiring fewer functions to be developed. Some sample manipulations of the 'pared
down' 3D version are given below, on the understanding that this is just a method,
not the only one or necessarily the 'best' for all circumstances. Similar methods are
available for 2D manipulation; these will not suffer the problems caused by the
special case of perspective transformations.

The fourth row of a perspective transformation is not of the form [0 0 0 1].
Ingenuity in interpretation of the array structure that holds transformations can allow
this to be accommodated without defining a different data type. Direct application of
the perspective transformation converts the 'z' depth coordinate uniformly to the
constant z value of the view plane for all vertices, so this can be ignored. However,
the value of z used in hidden-surface or line calculations can be recovered from the
non-zero weight (directly when the origin is at the centre of projection, or by
subtracting d if the origin is on the view plane), which is calculated from the fourth
row of the overall matrix. This row can be held in place of the unneeded values in
locations 8 to 11 of the transformation array. Care must then be taken in the correct
interpretation of these array elements. This form of operation is shown below.

Following is a typical computer graphics sequence of transformations used in
rendering a 3D scene, with the type of coordinate generated by each shown:

178 Computer Graphics through Key Mathematics

• modelling transfonnations used to define objects (3D world coordinates);
• viewing transfonnations (3D view coordinates);
• perspective transfonnation on all vertices (2D window coordinates and z);
• window to viewport transfonnation (2D device coordinates).

These could all be concatenated to one operation, preferably using 'pseudo-matrix'
methods. Many texts state this blandly, but do not indicate the special treatment
that must be given to the perspective transfonnation. This process has to be broken
into at some stage in classical image synthesis algorithms to clip vertices, edges,
faces and parts of edges and faces that lie outside the visible region defined in the
viewing transfonnations. Clipping after perspective transfonnation is an easier
process, involving simple comparisons of coordinates against fixed limits,
compared to the more difficult testing of points against general planes used in
clipping before perspective projection. The disadvantage of the 'project first, clip
last' strategy is that all vertices in the data set must be projected; this is unsuitable
when a large number of objects lie outside the potentially visible region.
Sophisticated pre-selection strategies are often used in such cases to eliminate
obviously external objects before all vertices that define objects (as described in
chapter 8) pass through the modelling and viewing transfonnation stages, so the
extra cost of perfonning perspective projection as part of this process is relatively
small. Systems designers must make a strategic decision as to the positioning of
their clipping routine in the general 3D viewing pipeline. The ordering adopted
below is to clip after the perspective transfonnations has been perfonned, allowing
concatenation of all 3D transfonnations into one operation. This neatly separates the
2D operations of window to viewport mapping from the 3D routines.

Examples are given below to show how such a matrix-operated affine
transfonnation system could operate in a 3D computer graphics system. Routines
set up initial matrices of the three standard transfonnations; these are concatenated
with an existing transfonnation matrix using a multiplication routine to build a
composite transfonnation matrix. (Routines for concatenating rotation about x and y
and shear are not shown for brevity; the concept of how to develop these routines
should be clear.) Initialization using a 'near unit' matrix (an identity matrix of order
4 with its bottom row sliced oft) would avoid the need for separate translation,
scaling and rotation matrix creation routines, but having such routines does
eliminate one matrix multiplication. Suffixes indicating the content of a one­
dimensional array are used, so that they can be directly coded, but operations are
shown below in matrix fonnation to indicate their relationships with their matrix
derivations. If speed is the major consideration in generating routines based on these
fonnulae, inelegant but fast direct allocation of all elements is the best method. This
can increase speed by avoiding the index checks used in neater looping methods.

3D Initial Matrices

a o a l a 2 a 3

With A =
a 4 a 5 a 6 a 7

a g a 9 ala all
0 0 0 1

Plate 3.1 A (r, g, b) cube (top left) and, clockwise, slices through it at 0.75, 0.50 and 0.25
respectively of the green axis

Plate 3.2 Additive colour - combinations of red, green and blue - produce cyan, magenta, yellow
and white

Plate 3.3 The (r, g, b) colour (0.2, 0.8, 0.6); its colour may be distorted due to its printed
representation in (c, m, y)

Plate 3.4A (h, s, v) cone, lines (anticlockwise) show the hues of red, magenta, blue, cyan, green,
and yellow

Plate 3.5 Subtractive colour - combinations of cyan, magenta and yellow - produce red, green,
blue and black

Plate 5.1 A mathematical cone with two nappes; it extends to infinity beyond the bounds of the
image

Plate 5.2 Slices at different angles through the cone revealing (clockwise from top left) a circle,
ellipse, parabola and hyperbola

Plate 8.1 A chaotic pattern produced using a Mandelbrot type iteration in -2 < x < 2,

-1.5 < y < -1.5 for the function x' = tan(x2 - y2) + cx, y' = COS(x2 + y2) - cy. Many functions

produce interesting patterns

Plate 8.2 A tree generated by Paul Briggs using parametric L-systems

Plate 8.3 A Sierpinski tetrahedron generated by Aurelio Campa using 3D IFS

Plate 8.4 A fractal copse of 10 IFS trees using some non-affine transformations

Plate 8.5 A terrain model by Denis Crampton using functional variation of height to produce
flatter valley features without making mountain peaks over-pointed

Plate 8.6 A landscape created by Semannia Luk Cheung with the support of John Vince

Plate 9.1 Eight' shells', each created as a pair of cubic Bezier spline patches, joined at the central
'ridge' of symmetry. They are depicted using the exact object method (chapter 10) with Phong
shading, highlights and shadows. Some pixellation is seen due to the random nature of the image
generation, in which points are scattered across the two Bezier patch parameters

Plate 10.1 Four 'cylinders' displayed using, from the left, Lambert (flat) shading, Gouraud
shading, Phong shading and exact object rendering. The first three examples are created as
octagonal based prisms; there is little observed difference between Gouraud and Phong examples,
as no specular highlights are seen

Plate 10.2 An abstract construction of cones, a cylinder and spheres. This shows how the z­
buffer copes with interpenetration, the shadow buffer copes with complex cast shadows and
how gloss factors may vary (higher for the rear sphere than the other two glossy objects)

Plate 10.3 Part of a maple tree modelled by John Thurn. Texture mapping is used to create surface
detail

Plate 10.4 This plate shows many ofthe effects described in the book. Curved surfaces use exact
object rendering; the walls, ball and floor are procedurally texture mapped and stochastically
anti-aliased although some 'jaggies' still appear; the plants are generated by 3D IFS; a z-buffer
and shadow buffer was used and the ball has a specular highlight

6. Matrices: Tools for Manipulating Space 179

• translation: aj = 0 for i = 0 to 11, except for ao = as = alO = 1, a3 = tx, a7 = ty,
al1 = tz;

• scaling: aj = 0 for i = 0 to 11, except for ao = Sx, as = Sy, alO = Sz;

• rotation(x): aj = 0 for i = 0 to 11, except for as = cos(8), a9 = sin(8), 8{; = -~,
alO = as, ao = 1;

• rotation(y): aj = 0 for i = 0 to 11, except for alO = cos(8), a2 = sin(8), as = -a2,
ao = alO, as = 1;

• rotation(z): aj = 0 for i = 0 to 11, except for ao = cos(8), 114 = sin(8), al = -1l4,
as = ao, alO = 1;

• shear(x same): aj = 0 for i = 0 to 11 except for ao = as = alO = 1, 114 = ky, as = kz;

• shear(y same): aj = 0 for i = 0 to 11 except for ao = as = alO = 1, a9 = kz, al = kx;

• shear(z same): aj = 0 for i = 0 to 11 except for ao = as = alO = 1, a2 = kx, 8{; = kyo

3D Concatenation Routines
The following assume that the specified transformation is performed after a general

ao a l a2 a 3

transformation A =
a 4 as a 6 a 7 and use c = cos(8) and s = sin(8) in the
as a 9 a lO all
0 0 0 1

rotation matrices:

1 0 0 tx ao a l a 2 a 3 ao a l a 2 (a 3 + t.)

• translation:
0 0 ty a 4 as a 6 a 7 a 4 as a 6 (a 7 + ty)

0 0 tz a g a 9 a lO all a g a9 a lO (all + tz)
0 0 0 1 0 0 0 1 0 0 0 1

Sx 0 0 0 ao a l a2 a3
0 Sy 0 0 a 4 as a 6 a 7

0 0 Sz 0 as a 9 a lO all
• scaling:

0 0 0 0 0 0 1

sxao sxal sxa 2 sxa 3
sya 4 sya S sya 6 sya 7

szag sza9 szalO sza ll
0 0 0

180 Computer Graphics through Key Mathematics

c -s 0 0 a o a l a 2 a 3

• rotation(z): s c 0 0 a 4 as a 6 a 7

0 0 I 0 as a 9 a lO all
0 0 0 I 0 0 0 I

(ca o - sa 4) (cal - sa s) (ca 2 - sa 6) (ca 3 - sa 7)

(sao + ca 4) (sal + ca5) (sa 2 +ca 6) (sa 3 + ca 7)

as a 9 a lO all
0 0 0 I

3D Transformation Applied to a Vertex

a o a l a 2 a 3 Xo (aoxo +alxl +a 2x2 +a 3)

a 4 as a 6 a 7 XI (a 4xo + a 5XI + a 6x2 + a 7)

as a 9 a lO all x2 (asxo +a 9xI +a lOx2 +a ll)

0 0 0 I I I

Concatenation of perspective transformation

If the origin is on the view plane, with centre of projection at (0,0,0, -d),

d 0 0 0 a o a l a 2 a 3

0 d 0 0 a 4 a 5 a 6 a 7

0 0 0 0 as a 9 a lO all
0 0 I d 0 0 0 I

da o da l da 2 da 3

da 4 da 5 da 6 da 7

0 0 0 0
as a 9 a to (d + all)

All useful infonnation in the latter matrix can be held efficiently by reinterpreting
the 12-element array transfonnation data structure as its first, second and fourth
rows. If array B represents the result of applying this perspective transfonnation to a
previous transfonnation (possibly composite) represented by array A, we can
interpret B as

bo bl b2 b3 da o da l da 2 da 3

b4 bs b6 b7 da 4 da 5 da 6 da 7

* * * * 0 0 0 0
bs b 9 bto b 11 as a 9 a to (d + all)

Applying this matrix to a general point gives

6. Matrices: Tools for Manipulating Space

bo bl b2 b3 Xo

• b4 bs b6 b7 XI

* * * * X2
bg b9 blO bll 1

enabling the extraction of

w = (bgxo + b9xI + blOx2 + bll),
x'o = (boxo + blxl + b2X2 + b3)/w,
X'I = (b4Xo + bsxI + b6x2 + b7)/w,

and X'2 = W - d

181

(boxo + blxl + b2x2 + b3)

(b4Xo + bsxI + b6x2 + b7)

*
(bgxo + b9xI + blOx2 + bll)

as the coordinates of the resulting point. x'o and X'I are the (x, y) coordinates of the
original point (xo, XI, X2) after transformation into the view window coordinates, X'2
is the z 'depth' of (xo, XI, X2) from the window after it has undergone modelling and
viewing transformations. The unchanged value of w would be just as useful for
hidden surface/line and depth cueing purposes, giving the 'depth' of the model
vertex from the centre of projection, which represents the location of an observer of
the model. This is described in more detail in chapter 10.

If the origin is at the centre of projection,

d 0 0 0 ao a l a 2 a 3 dao da l da 2 da 3

0 d 0 0 a4 as a 6 a 7 da 4 da s da 6 da 7

0 0 d 0 ag a 9 a lO all da g da 9 da lo da ll
0 0 1 0 0 0 0 I ag a 9 a lO all

Again, if B is the overall result of applying this perspective transformation after a
transformation (possibly composite) represented by A, B can be encoded as

bo bl b2 b3 dao da l da 2 da 3

b4 bs b6 b7 da 4 da s da 6 da 7

* * * * da g da 9 dalO da lI
,

bg b9 blO bll ag a 9 a lO alI

as information in the third row (replaced by asterisks '*') is only a multiple of the
fourth by d. Applying this matrix to a point gives

bo bl b2 b3 Xo
b4 bs b6 b7 XI

* * * * x2
bg b9 blO blI 1

enabling the extraction of

X'2 = (bgxo + b9xI + blOx2 + blI),

(boxo + blxl + b2x2 + b3)

(b4xo + bsxI + b6x2 + b7)

*
(bgxo + b9xI + blOx2 + blI)

182 Computer Graphics through Key Mathematics

X'o = (boxo + blxl + b2x2 + b3)/X'2'
and X'I = (b4Xo + bsxl + b6x2 + b7)/X'2

as the coordinates of the resulting point. x'o and X'I are the (x, y) coordinates of the
original point (xo, x" X2) after transfonnation into the view window coordinates, X'2
is the z 'depth' of (xo, x" X2) after it has undergone modelling and viewing
transfonnations.

Perspective Transformation Applied Directly to a
Vertex (Usually after Clipping)

If the origin is placed on the view plane, with centre of projection (0, 0, 0, -d),

d 0 0 0 Xo dxo
o d 0 0 XI dXI
o 0 0 0 x2 0
o 0 I dId +X2

division by the weight w = (d + X2) gives the transfonned point

dxo /(d + x2)

dXI /(d + x2)

o
1

The value of (w - d) = X2 should be associated in a data structure with the 2D view
window coordinates (dxoI(d + X2), dxd(d + X2)) as it is used to give depth priorities
for hidden surface or line removal.

If the origin is at the centre of projection,

d 0 0 0 Xo
o d 0 0 XI
o 0 d 0 x2
o 0 1 0 1

division by the 'weight' w = X2 gives the transfonned point

The value of w = X2 should be associated in a data structure with the 2D view
window coordinates (dxO/X2' dxdx2) as it is used to give depth priorities for hidden
surface or line removal.

6. Matrices: Tools for Manipulating Space 183

Summary

Users of computer graphics systems can continue blissfully unaware of the use of
matrices within the routines that enable their creations. This chapter has developed
the concept of matrices, with particular reference to the needs of computer graphics
based on the transformations discussed in chapter 4, but with a sideways look at the
historically important use of matrices in solving sets of linear equations. This is not
wasted; it, too, is used in specialized computer graphics methods, such as rendering
using radiosity (chapter 10). We have discussed how purely mathematical matrix
methods can be subverted to produce more efficient computer usage.

Does this help the casual user? As a car driver may drive more efficiently with
some basic knowledge of the workings of a car, the intention is that computer
graphics creators may create better images and do so more efficiently if they have at
least a vague knowledge of how their routines work. At least, they should
understand why some things take a relatively long time to perform, even with
continuing advances in the speed and memory capacity of modem computers.

