
2
Transformation and Viewing

Chapter Objectives:

• Understand basic transformation and viewing methods

• Understand 3D hidden-surface removal and collision detection

• Design and implement 3D models (cone, cylinder, and sphere) and their
animations in OpenGL

2.1 Geometric Transformation

In Chapter 1, we discussed creating and scan-converting primitive models. After a
computer-based model is generated, it can be moved around or even transformed into
a completely different shape. To do this, we need to specify the rotation axis and
angle, translation vector, scaling vector, or other manipulations to the model. The
ordinary geometric transformation is a process of mathematical manipulations of all
the vertices of the model through matrix multiplications, where the graphics system
then displays the final transformed model. The transformation can be predefined, such
as moving along a planned trajectory; or interactive, depending on the user input. The
transformation can be permanent — the coordinates of the vertices are changed and
we have a new model replacing the original one; or just temporary — the vertices
return to their original coordinates. In many cases a model is transformed in order to
be displayed at a different position or orientation, and the graphics system discards the
transformed model after scan-conversion. Sometimes all the vertices of a model go
through the same transformation, and the shape of the model is preserved; sometimes
different vertices go through different transformations, and the shape is dynamic.

A model can be displayed repetitively with each frame going through a small
transformation step. This causes the model to be animated on display.

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,
DOI: 10.1007/978-1-84800-284-5_2, © Springer-Verlag London Limited 2008

52 2 Transformation and Viewing

2.2 2D Transformation

Translation, rotation, and scaling are the basic and essential transformations. They
can be combined to achieve most transformations in many applications. To simplify
the discussion, we will first introduce 2D transformation and then generalize it into
3D.

2.2.1 2D Translation

A point is translated to by a distance vector :

, (EQ 12)

. (EQ 13)

In the homogeneous coordinates, we represent a point by a column vector

. Similarly, . Then, translation can be achieved by matrix

multiplication:

. (EQ 14)

Let's assume . We can denote the translation matrix equation as:

. (EQ 15)

x y,() x' y',() dx dy,()

x' x dx+=

y' y dy+=

x y,()

P
x

y

1

= P'
x'
y'
1

=

x'
y'
1

1 0 dx

0 1 dy

0 0 1

x

y

1

=

T dx dy,()
1 0 dx

0 1 dy

0 0 1

=

P' T dx dy,()P=

2.2 2D Transformation 53

 Fig. 2.1 Basic transformation: translation

If a model is a set of vertices, all vertices of the model can be translated as points by
the same translation vector (Fig. 2.1). Note that translation moves a model through a
distance without changing its orientation.

2.2.2 2D Rotation

A point is rotated counter-clockwise to by an angle θ around the
origin (0,0). Let us assume that the distance from the origin to point P is r = OP, and
the angle between OP and x axis is α. If the rotation is clockwise, the rotation angle θ
is then negative. The rotation axis is perpendicular to the 2D plane at the origin:

, (EQ 16)

, (EQ 17)

, (EQ 18)

, (EQ 19)

, (EQ 20)

. (EQ 21)

In the homogeneous coordinates, rotation can be achieved by matrix multiplication:

P’

Pdx
d y

y

x

P x y,() P'' x' y',()

x' r α θ+()cos=

y' r α θ+()sin=

x' r α θcoscos αsin θsin–()=

x' r αsin θcos αcos θsin+()=

x' x θcos y θsin–=

y' x θsin y θcos+=

54 2 Transformation and Viewing

. (EQ 22)

Let's assume . The simplified rotation matrix equation is

. (EQ 23)

If a model is a set of vertices, all vertices
of the model can be rotated as points by
the same angle around the same rotation
axis (Fig. 2.2). Rotation moves a model
around the origin of the coordinates. The
distance of each vertex to the origin is
not changed during rotation.

2.2.3 2D Scaling

A point is scaled to by
a scaling vector :

, (EQ 24)

. (EQ 25)

In the homogeneous coordinates, again, scaling can be achieved by matrix
multiplication:

x'
y'
1

θcos θsin– 0

θsin θcos 0

0 0 1

x

y

1

=

R θ()
θcos θsin– 0

θsin θcos 0

0 0 1

=

P' R θ()P=

P

 Fig. 2.2 Basic transformation: rotation

y

x

P’

θ
α

O

P x y,() P' x' y',()
sx sy,()

x' sxx=

y' syy=

2.2 2D Transformation 55

. (EQ 26)

Let's assume . We can denote the scaling matrix equation as:

. (EQ 27)

If a model is a set of vertices, all vertices of the model can be scaled as points by the
same scaling vector (Fig. 2.3). Scaling amplifies or shrinks a model around the origin
of the coordinates. Note that a scaled vertex will move unless it is at the origin.

2.2.4 Simulating OpenGL Implementation

OpenGL actually implements 3D transformations, which we will discuss later. Here,
we implement 2D transformations in our own code in J2_0_2DTransform.java, which
corresponds to the OpenGL implementation in hardware.

OpenGL has a MODELVIEW matrix stack that saves the current matrices for
transformation. Let us define a matrix stack as follows:

 Fig. 2.3 Basic transformation: scaling

x'
y'
1

sx 0 0

0 sy 0

0 0 1

x

y

1

=

S sx sy,()
sx 0 0

0 sy 0

0 0 1

=

P' S sx sy,()P=

P

Before scaling After scaling by (2, 2)

x

y P

x

y

56 2 Transformation and Viewing

/* 2D transformation OpenGL style implementation */

import net.java.games.jogl.*;

public class J2_0_2DTransform extends J1_5_Circle {
 private static float my2dMatStack[][][] =
 new float[24][3][3];
 private static int stackPtr = 0;

...
}

The identity matrix for 2D homogeneous coordinates is . Any matrix

multiplied with identity matrix does not change.

The stackPtr points to the current matrix on the matrix stack
(my2dMatrixStack[stackPtr]) that is in use. Transformations are then achieved by the
following methods: my2dLoadIdentity(), my2dMultMatrix(float mat[][]),
my2dTranslatef(float x, float y), my2dRotatef(float angle), my2dScalef(float x, float y),
and my2dTransformf(float vertex[], float vertex1[]) (or my2dTransVertex(float
vertex[], float vertex1[]) for vertices already in homogeneous form).

1. my2dLoadIdentity() loads the current matrix on the matrix stack with the identity
matrix:

// initialize a 3*3 matrix to all zeros
 private void my2dClearMatrix(float mat[][]) {

 for (int i = 0; i<3; i++) {
 for (int j = 0; j<3; j++) {
 mat[i][j] = 0.0f;
 }
 }
 }

 // initialize a matrix to Identity matrix
 private void my2dIdentity(float mat[][]) {

I
1 0 0

0 1 0

0 0 1

=

2.2 2D Transformation 57

 my2dClearMatrix(mat);
 for (int i = 0; i<3; i++) {
 mat[i][i] = 1.0f;
 }
 }

 // initialize the current matrix to Identity matrix
 public void my2dLoadIdentity() {
 my2dIdentity(my2dMatStack[stackPtr]);
 }

2. my2dMultMatrix(float mat[][]) multiplies the current matrix on the matrix stack
with the matrix mat: CurrentMatrix = currentMatrix*Mat.

// multiply the current matrix with mat
 public void my2dMultMatrix(float mat[][]) {
 float matTmp[][] = new float[3][3];

 my2dClearMatrix(matTmp);

 for (int i = 0; i<3; i++) {
 for (int j = 0; j<3; j++) {
 for (int k = 0; k<3; k++) {
 matTmp[i][j] +=
 my2dMatStack[stackPtr][i][k]*mat[k][j];
 }
 }
 }
 // save the result on the current matrix
 for (int i = 0; i<3; i++) {
 for (int j = 0; j<3; j++) {
 my2dMatStack[stackPtr][i][j] = matTmp[i][j];
 }
 }
 }

3. my2dTranslatef(float x, float y) multiplies the current matrix on the matrix stack
with the translation matrix T(x, y):

// multiply the current matrix with a translation matrix
 public void my2dTranslatef(float x, float y) {

58 2 Transformation and Viewing

 float T[][] = new float[3][3];

 my2dIdentity(T);

 T[0][2] = x;
 T[1][2] = y;

 my2dMultMatrix(T);
 }

4. my2dRotatef(float angle) multiplies the current matrix on the matrix stack with the
rotation matrix R(angle):

// multiply the current matrix with a rotation matrix
 public void my2dRotatef(float angle) {
 float R[][] = new float[3][3];

 my2dIdentity(R);

 R[0][0] = (float)Math.cos(angle);
 R[0][1] = (float)-Math.sin(angle);
 R[1][0] = (float)Math.sin(angle);
 R[1][1] = (float)Math.cos(angle);

 my2dMultMatrix(R);
 }

5. my2dScalef(float x, float y) multiplies the current matrix on the matrix stack with
the scaling matrix S(x, y):

// multiply the current matrix with a scale matrix
 public void my2dScalef(float x, float y) {
 float S[][] = new float[3][3];

 my2dIdentity(S);

 S[0][0] = x;
 S[1][1] = y;

 my2dMultMatrix(S);
 }

2.2 2D Transformation 59

6. my2dTransformf(float vertex[]; vertex1[]) multiplies the current matrix on the
matrix stack with vertex, and save the result in vertex1. Here vertex is first
extended to homogeneous coordinates before matrix multiplication.

 // v1 = (the current matrix) * v
 // here v and v1 are vertices in homogeneous coord.
 public void my2dTransHomoVertex(float v[], float v1[]) {
 int i, j;

 for (i = 0; i<3; i++) {
 v1[i] = 0.0f;

 }
 for (i = 0; i<3; i++) {
 for (j = 0; j<3; j++) {
 v1[i] +=
 my2dMatStack[stackPtr][i][j]*v[j];
 }
 }
 }

 // vertex = (the current matrix) * vertex
 // here vertex is in homogeneous coord.
 public void my2dTransHomoVertex(float vertex[]) {
 float vertex1[] = new float[3];

 my2dTransHomoVertex(vertex, vertex1);
 for (int i = 0; i<3; i++) {
 vertex[i] = vertex1[i];
 }
 }

 // transform v to v1 by the current matrix
 // here v and v1 are not in homogeneous coordinates
 public void my2dTransformf(float v[], float v1[]) {
 float vertex[] = new float[3];

 // extend to homogenous coord
 vertex[0] = v[0];
 vertex[1] = v[1];
 vertex[2] = 1;

 // multiply the vertex by the current matrix
 my2dTransHomoVertex(vertex);

60 2 Transformation and Viewing

 // return to 3D coord
 v1[0] = vertex[0]/vertex[2];
 v1[1] = vertex[1]/vertex[2];
 }

 // transform v by the current matrix
 // here v is not in homogeneous coordinates
 public void my2dTransformf(float[] v) {
 float vertex[] = new float[3];

 // extend to homogenous coord
 vertex[0] = v[0];
 vertex[1] = v[1];
 vertex[2] = 1;

 // multiply the vertex by the current matrix
 my2dTransHomoVertex(vertex);

 // return to 3D coord
 v[0] = vertex[0]/vertex[2];
 v[1] = vertex[1]/vertex[2];
 }

7. In addition to the above methods, my2dPushMatrix() and my2dPopMatrix() are a
powerful mechanism to change the current matrix on the matrix stack, which we
will discuss in more detail later. PushMatrix will increase the stack pointer and
make a copy of the previous matrix to the current matrix. Therefore, the matrix
remains the same, but we are using a different set of memory locations on the
matrix stack. PopMatrix will decrease the stack pointer, so we return to the
previous matrix that was saved at PushMatrix.

 // move the stack pointer up, and copy the previous
 // matrix to the current matrix
 public void my2dPushMatrix() {
 int tmp = stackPtr+1;

 for (int i = 0; i<3; i++) {
 for (int j = 0; j<3; j++) {
 my2dMatStack[tmp][i][j] =
 my2dMatStack[stackPtr][i][j];
 }
 }
 stackPtr++;
 }

2.2 2D Transformation 61

 // move the stack pointer down
 public void my2dPopMatrix() {

 stackPtr--;
 }

With the above 2D transformation methods, the
following example (J2_0_2DTransform.java)
achieves different transformations using the
implemented methods, as shown in Fig. 2.4.

/* 2D transformation: OpenGL style
implementation */

import net.java.games.jogl.*;

public class J2_0_2DTransform
extends J1_5_Circle {

....// the matrix stack

 static float vdata[][] = { {1.0f, 0.0f, 0.0f}
 , {0.0f, 1.0f, 0.0f}
 , {-1.0f, 0.0f, 0.0f}
 , {0.0f, -1.0f, 0.0f}
 };
 static int cnt = 1;

 // called for OpenGL rendering every reshape
 public void display(GLDrawable drawable) {

 if (cnt<1||cnt>200) {
 flip = -flip;
 }
 cnt = cnt+flip;

 gl.glClear(GL.GL_COLOR_BUFFER_BIT);

 // white triangle is scaled
 gl.glColor3f(1, 1, 1);
 my2dLoadIdentity();

 Fig. 2.4 Transformations of
triangles [See Color Plate 1]

62 2 Transformation and Viewing

 my2dScalef(cnt, cnt);
 transDrawTriangle(vdata[0], vdata[1], vdata[2]);

 // red triangle is rotated and scaled
 gl.glColor3f(1, 0, 0);
 my2dRotatef((float)cnt/15);
 transDrawTriangle(vdata[0], vdata[1], vdata[2]);

 // green triangle is translated, rotated, and scaled
 gl.glColor3f(0, 1, 0);
 my2dTranslatef((float)cnt/100, 0.0f);
 transDrawTriangle(vdata[0], vdata[1], vdata[2]);

 try {
 Thread.sleep(20);
 } catch (InterruptedException e) {}
 }

 // the vertices are transformed first then drawn
 public void transDrawTriangle(float[] v1,
 float[] v2, float[] v3) {
 float v[][] = new float[3][3];

 my2dTransformf(v1, v[0]);
 my2dTransformf(v2, v[1]);
 my2dTransformf(v3, v[2]);

 gl.glBegin(GL.GL_TRIANGLES);
 gl.glVertex3fv(v[0]);
 gl.glVertex3fv(v[1]);
 gl.glVertex3fv(v[2]);
 gl.glEnd();
 }

... // the transformation methods

 public static void main(String[] args) {
 J2_0_2DTransform f = new J2_0_2DTransform();

 f.setTitle("JOGL J2_0_2DTransform");
 f.setSize(500, 500);
 f.setVisible(true);
 }
}

2.2 2D Transformation 63

 Fig. 2.5 Moving the clock hand by matrix multiplications

2.2.5 Composition of 2D Transformations

A complex transformation is often achieved by a series of simple transformation steps.
The result is a composition of translations, rotations, and scalings. We will study this
through the following three examples.

Example 1: Find the coordinates of a moving clock hand in 2D. Consider a single clock
hand. The center of rotation is given at c(x0, y0), and the end rotation point is at h(x1,
y1). If we know the rotation angle is θ, can we find the new end point h' after the
rotation? As shown in Fig. 2.5, we can achieve this by a series of transformations.

1. Translate the hand so that the center of rotation is at the origin. Note that we only
need to find the new coordinates of the end point h:

. (EQ 28)

That is, h1 = T(−x0, −y0)h. (EQ 29)

2. Rotate θ degrees around the origin. Note that the positive direction of rotation is
counter-clockwise:

h1(x11,y11)

x

c(x0,y0)

h(x1,y1)

h'

x
h2(x12,y12)

x
x

c(x0,y0)

h

h'(x'1,y'1)

Initial position: h
Destination: h'

Step 1. translate:
h1 = T(−x0, −y0)h

Step 2. rotate:
h2 = R(−θ)h1

Step 3. translate:
h' = T(x0,y0)h2

θ

y y yy

x11

y11
1

1 0 x0–

0 1 y0–
0 0 1

x1

y1

1

=

64 2 Transformation and Viewing

h2 = R(−θ)h1. (EQ 30)

3. After the rotation. We translate again to move the clock back to its original
position:

h' = T(x0, y0)h2. (EQ 31)

Therefore, putting Equations 29, 30, and 31 together, the combination of
transformations to achieve the clock hand movement is

h' = T(x0 , y0)R(−θ)T(−x0, −y0)h. (EQ 32)

That is, . (EQ 33)

In the future, we will write matrix equations concisely using only symbol notations
instead of full matrix expressions. However, we should always remember that the
symbols represent the corresponding matrices.

Let’s assume M=T(x0,y0)R(−θ)T(−x0, −y0). We can further simplify the equation:

h' = Mh. (EQ 34)

The order of the matrices in a matrix expression matters. The sequence represents the
order of the transformations. For example, although matrix M in Equation 34 can be
calculated by multiplying the first two matrices first [T(x0, y0)R(−θ)]T(−x0, −y0) or by
multiplying the last two matrices first T(x0, y0)[R(−θ)T(−x0, −y0)], the order of the
matrices cannot be changed.

When we analyze a model’s transformations, we should remember that, logically
speaking, the order of transformation steps are from right to left in the matrix
expression. In this example, the first logical step is T(−x0, −y0)h; the second step is
R(−θ)[T(−x0, −y0)h]; and the last step is T(x0, y0)[R(−θ)[T(−x0, −y0)]]. In the actual
OpenGL style implementation, the matrix multiplication is from left to right, and there

x'1
y'1
1

1 0 x0

0 1 y0

0 0 1

θcos θsin 0

θsin– θcos 0

0 0 1

1 0 x0–

0 1 y0–

0 0 1

x1

y1

1

=

2.2 2D Transformation 65

is always a final matrix on the matrix stack. The following is a segment of
J2_1_Clock2d.java that simulates a real-time clock.

my2dLoadIdentity();
my2dTranslate(c[0], c[1]); // x0=c[0], y0=c[1];
my2dRotate(-a);
my2dTranslate(-c[0], -c[1]);
transDrawClock(c, h);

In the above code, first the current matrix on the matrix stack is loaded with the
identity matrix I, then it is multiplied by a translation matrix T(x0, y0), after that it is
multiplied by a rotation matrix R(−θ), and finally it is multiplied by a translation
matrix T(−x0, −y0). Written in an expression, it is [[[I]T(x0, y0)]R(−θ)]T(−x0, −y0). In
transDrawClock(), the clock center c and end h are both transformed by the current
matrix, and then scan converted to display. In OpenGL, transformation is implied. In
other words, the vertices are first transformed by the system before they are sent to the
scan-conversion. The following is the complete program.

/* 2D clock hand transformation */

public class J2_1_Clock2d extends J2_0_2DTransform {
 static final float PI = 3.1415926f;

 public void display(GLDrawable glDrawable) {
 // homogeneous coordinates
 float c[] = {0, 0, 1};
 float h[] = {0, WIDTH/6, 1};

 long curTime;
 float ang, second, minute, hour;

 gl.glClear(GL.GL_COLOR_BUFFER_BIT);

 curTime = System.currentTimeMillis()/1000;
 // returns the current time in milliseconds
 hsecond = curTime%60;
 curTime = curTime/60;
 hminute = curTime%60+hsecond/60;
 curTime = curTime/60;
 hhour = (curTime%12)+8+hminute/60;
 // Eastern Standard Time

66 2 Transformation and Viewing

 ang = PI*second/30; // arc angle

 gl.glColor3f(1, 0, 0); // second hand in red
 my2dLoadIdentity();
 my2dTranslatef(c[0], c[1]);
 my2dRotatef(-ang);
 my2dTranslatef(-c[0], -c[1]);
 gl.glLineWidth(1);
 transDrawClock(c, h);

 gl.glColor3f(0, 1, 0); // minute hand in green
 my2dLoadIdentity();
 ang = PI*minute/30; // arc angle
 my2dTranslatef(c[0], c[1]);
 my2dScalef(0.8f, 0.8f); // minute hand shorter
 my2dRotatef(-ang);
 my2dTranslatef(-c[0], -c[1]);
 gl.glLineWidth(2);
 transDrawClock(c, h);

 gl.glColor3f(0, 0, 1); // hour hand in blue
 my2dLoadIdentity();
 ang = PI*hour/6; // arc angle
 my2dTranslatef(c[0], c[1]);
 my2dScalef(0.5f, 0.5f); // hour hand shortest
 my2dRotatef(-ang);
 my2dTranslatef(-c[0], -c[1]);
 gl.glLineWidth(3);
 transDrawClock(c, h);
 }

 public void transDrawClock(float C[], float H[]) {
 float End1[] = new float[3];
 float End2[] = new float[3];

 my2dTransHomoVertex(C, End1);
 // Transform the center by the current matrix
 my2dTransHomoVertex(H, End2);
 // Transform the end by the current matrix

 // assuming z = w = 1;
 gl.glBegin(GL.GL_LINES);
 gl.glVertex3fv(End1);
 gl.glVertex3fv(End2);
 gl.glEnd();
 }

2.2 2D Transformation 67

 public static void main(String[] args) {

 J2_1_Clock2d f = new J2_1_Clock2d();

 f.setTitle("JOGL J2_1_Clock2d");
 f.setSize(500, 500);
 f.setVisible(true);
 }
}

Example 2: Reshaping a rectangular area. In OpenGL, we can use the mouse to
reshape the display area. In the Reshape callback function, we can use glViewport() to
adjust the size of the drawing area accordingly. The system makes corresponding
adjustments to the models through the same transformation matrix. Viewport
transformation will be discussed later in the section “Viewing”.

Here, we discuss a similar problem: a transformation that allows reshaping a
rectangular area. Let's assume the coordinate system of the screen is as in Fig. 2.6.
After reshaping, the rectangular area and all the vertices of the model inside the
rectangular area go through the following transformations: translate so that the
lower-left corner of the area is at the origin, scale to the size of the new area, and then
translate to the scaled area location. The corresponding matrix expression is

T(P2)S(sx, sy)T(−P1). (EQ 35)

 Fig. 2.6 Scaling an arbitrary rectangular area

Before reshaping After reshaping

p1 p2

Translate Scale Translate

ht1 ht2

wd1 wd2

sx = ht2/ht1
sy = wd2/wd1

68 2 Transformation and Viewing

P1 is the starting point for scaling, and P2 is the
destination. We can use the mouse to
interactively drag P1 to P2 in order to reshape
the corresponding rectangular area. In the
following example (J2_2_Reshape.java), we
use the mouse to drag the lower-left vertex P1
of the rectangular area to a new location. The
rectangle and the clock inside are reshaped
accordingly. A snapshot is shown in Fig. 2.7.

/* reshape the rectangular drawing area
*/

import net.java.games.jogl.*;
import java.awt.event.*;

public class J2_2_Reshape extends J2_1_Clock2d implements
 MouseMotionListener {

 // the point to be dragged as the lower-left corner
 private static float P1[] = {-WIDTH/4, -HEIGHT/4};

 // reshape scale value
 private float sx = 1, sy = 1;

 // when mouse is dragged, a new lower-left point
 // and scale value for the rectangular area
 public void mouseDragged(MouseEvent e) {
 float wd1 = WIDTH/2;
 float ht1 = HEIGHT/2;

 // The mouse location, new lower-left corner
 P1[0] = e.getX()-WIDTH/2;
 P1[1] = HEIGHT/2-e.getY();
 float wd2 = WIDTH/4-P1[0];
 float ht2 = HEIGHT/4-P1[1];

 Fig. 2.7 Reshape a drawing
area with a clock inside

2.2 2D Transformation 69

 // scale value of the current rectangular area
 sx = wd2/wd1;
 sy = ht2/ht1;
 }

 public void mouseMoved(MouseEvent e) {
 }

 public void init(GLDrawable drawable) {

 super.init(drawable);
 // listen to mouse motion
 drawable.addMouseMotionListener(this);
 }

 public void display(GLDrawable glDrawable) {
 // the rectangle lower-left and upper-right corners
 float v0[] = {-WIDTH/4, -HEIGHT/4};
 float v1[] = {WIDTH/4, HEIGHT/4};

 // reshape according to the current scale
 my2dLoadIdentity();
 my2dTranslatef(P1[0], P1[1]);
 my2dScalef(sx, sy);
 my2dTranslatef(-v0[0], -v0[1]);

 gl.glClear(GL.GL_COLOR_BUFFER_BIT);
 gl.glColor3f(1, 1, 1); // the rectangle is white

 // rectangle area
 float v00[] = new float[2], v11[] = new float[2];
 my2dTransformf(v0, v00);
 my2dTransformf(v1, v11);
 gl.glBegin(GL.GL_LINE_LOOP);
 gl.glVertex3f(v00[0], v00[1], 0);
 gl.glVertex3f(v11[0], v00[1], 0);
 gl.glVertex3f(v11[0], v11[1], 0);
 gl.glVertex3f(v00[0], v11[1], 0);
 gl.glEnd();

 // the clock hands go through the same transformation
 curTime = System.currentTimeMillis()/1000;
 hsecond = curTime%60;
 curTime = curTime/60;
 hminute = curTime%60+hsecond/60;
 curTime = curTime/60;

70 2 Transformation and Viewing

 hhour = (curTime%12)+8+hminute/60;
 // Eastern Standard Time

 hAngle = PI*hsecond/30; // arc angle

 gl.glColor3f(1, 0, 0); // second hand in red
 my2dTranslatef(c[0], c[1]);
 my2dRotatef(-hAngle);
 my2dTranslatef(-c[0], -c[1]);
 gl.glLineWidth(3);
 transDrawClock(c, h);

 gl.glColor3f(0, 1, 0); // minute hand in green
 my2dLoadIdentity();
 my2dTranslatef(P1[0], P1[1]);
 my2dScalef(sx, sy);
 my2dTranslatef(-v0[0], -v0[1]);
 hAngle = PI*hminute/30; // arc angle
 my2dTranslatef(c[0], c[1]);
 my2dScalef(0.8f, 0.8f); // minute hand shorter
 my2dRotatef(-hAngle);
 my2dTranslatef(-c[0], -c[1]);
 gl.glLineWidth(5);
 transDrawClock(c, h);

 gl.glColor3f(0, 0, 1); // hour hand in blue
 my2dLoadIdentity();
 my2dTranslatef(P1[0], P1[1]);
 my2dScalef(sx, sy);
 my2dTranslatef(-v0[0], -v0[1]);
 hAngle = PI*hhour/6; // arc angle
 my2dTranslatef(c[0], c[1]);
 my2dScalef(0.5f, 0.5f); // hour hand shortest
 my2dRotatef(-hAngle);
 my2dTranslatef(-c[0], -c[1]);
 gl.glLineWidth(7);
 transDrawClock(c, h);
 }

 public static void main(String[] args) {
 J2_2_Reshape f = new J2_2_Reshape();

 f.setTitle("JOGL J2_2_Reshape");
 f.setSize(500, 500);
 f.setVisible(true);
 }
}

2.2 2D Transformation 71

Example 3: Drawing a 2D robot arm with three moving segments. A 2D robot arm has 3
segments rotating at the joints in a 2D plane (Fig. 2.8). Given an arbitrary initial
posture (A, B, C), let’s find the transformation matrix expressions for another posture
(Af, Bf, Cf) with respective rotations (α, β, γ) around the joints. Here we specify (A, B,
C) on the x axis, which is used to simplify the visualization. (A, B, C) can be initialized
arbitrarily. There are many different methods to achieve the same goal. Here, we
elaborate three methods for the same goal.

Method I.

1. Rotate oABC around the origin by α degrees:

Af = R(α)A; B’ = R(α)B; C’ = R(α)C. (EQ 36)

 Fig. 2.8 A 2D robot arm rotates (α, β, γ) degrees at the 3 joints, respectively

B’

y

o
A B C

x

y

o
α

Af
B’

C’

x

y

o
α

β

γ

B f

C f

Af

x

y

o
α

β
B f

C’’
Af

Initial position: (A, B, C)

Step 1 Step 2 Step 3

x

y

o
γ

C’
A B

x

y

o
β

C’’

A

y

o
α

B’ C’

Af

x

α+β

α+β+γ y

o
α

B f

C’

Af

x

α+β

α+β+γ

Final position

Step 1

Step 1

Step 2

Step 2

Step 3

Step 3

Method I:

Method II:

Method III:

γ

x

72 2 Transformation and Viewing

2. Consider AfB’C’ to be a clock hand like the example in Fig. 2.5. Rotate AfB’C’
around Af by β degrees. This is achieved by first translating the hand to the origin,
rotating, then translating back:

Bf = T(Af)R(β)T(−Af)B’; C’’ = T(Af)R(β)T(−Af)C’. (EQ 37)

3. Again, consider BfC’’ to be a clock hand. Rotate BfC’’ around Bf by γ degrees:

Cf = T(Bf)R(γ)T(−Bf)C’’. (EQ 38)

The corresponding code is as follows. Here my2dTransHomoVertex(v1, v2) will
multiply the current matrix on the matrix stack with v1, and save the results in v2.
drawArm() is just drawing a line segment.

 // Method I: 2D robot arm transformations
 public void transDrawArm1(float a, float b, float g) {
 float Af[] = new float[3];
 float B1[] = new float[3];
 float C1[] = new float[3];
 float Bf[] = new float[3];
 float C2[] = new float[3];
 float Cf[] = new float[3];

 my2dLoadIdentity();
 my2dRotatef(a);
 my2dTransHomoVertex(A, Af);
 my2dTransHomoVertex(B, B1);
 my2dTransHomoVertex(C, C1);

 drawArm(O, Af);

 my2dLoadIdentity();
 my2dTranslatef(Af[0], Af[1]);
 my2dRotatef(b);
 my2dTranslatef(-Af[0], -Af[1]);
 my2dTransHomoVertex(B1, Bf);
 my2dTransHomoVertex(C1, C2);
 drawArm(Af, Bf);

 my2dLoadIdentity();
 my2dTranslatef(Bf[0], Bf[1]);
 my2dRotatef(g);
 my2dTranslatef(-Bf[0], -Bf[1]);

2.2 2D Transformation 73

 my2dTransHomoVertex(C2, Cf);
 drawArm(Bf, Cf);
 }

Method II.

1. Consider BC to be a clock hand. Rotate BC around B by γ degrees:

C’ = T(B)R(γ)T(−B)C. (EQ 39)

2. Consider ABC’ to be a clock hand. Rotate ABC’ around A by β degrees:

B’ = T(A)R(β)T(−A)B; C’’ = T(A)R(β)T(−A)C’. (EQ 40)

3. Again, consider oAB’C’’ to be a clock hand. Rotate oAB’C’’ around the origin by α
degrees:

Af = R(α)A; (EQ 41)

Bf = R(α)B’ = R(α)T(A)R(β)T(−A)B; (EQ 42)

Cf= R(α)C’’ = R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B)C. (EQ 43)

The corresponding code is as follows. Here transDraw() will first transform the
vertices, and then draw the transformed vertices as a line segment.

 // Method II: 2D robot arm transformations
 public void transDrawArm2(float a, float b, float g) {

 my2dLoadIdentity();
 my2dRotatef(a);
 transDrawArm(O, A);
 my2dTranslatef(A[0], A[1]);
 my2dRotatef(b);
 my2dTranslatef(-A[0], -A[1]);

74 2 Transformation and Viewing

 transDrawArm(A, B);
 my2dTranslatef(B[0], B[1]);
 my2dRotatef(g);
 my2dTranslatef(-B[0], -B[1]);
 transDrawArm(B, C);
 }

Method III.

1. Consider oA, AB, and BC as clock hands with the rotation axes at o, A, and B,
respectively. Rotate oA by α degrees, AB by (α+β) degrees, and BC by (α+β+γ)
degrees:

Af = R(α)A; B’ = T(A)R(α+β)T(−A)B; C’ = T(B)R(α+β+γ)T(−B)C. (EQ 44)

2. Translate AB’ to AfBf:

Bf = T(Af)T(−A)B’ =T(Af)R(α+β)T(−A)B. (EQ 45)

Note that T(−A)T(A) = I, which is the identity matrix: . Any matrix

multiplied by the identity matrix does not change. The vertex is translated by
vector A, and then reversed back to its original position by translation vector −A.

3. Translate BC’ to BfCf:

Cf = T(Bf)T(−B)C’ =T(Bf)R(α+β+γ)T(−B)C. (EQ 46)

The corresponding code is as follows.

 // Method III: 2D robot arm transformations
 public void transDrawArm3(float a, float b, float g) {
 float Af[] = new float[3];
 float Bf[] = new float[3];
 float Cf[] = new float[3];

I
1 0 0

0 1 0

0 0 1

=

2.2 2D Transformation 75

 my2dLoadIdentity();
 my2dRotatef(a);
 my2dTransHomoVertex(A, Af);
 drawArm(O, Af);
 my2dLoadIdentity();
 my2dTranslatef(Af[0], Af[1]);
 my2dRotatef(a + b);
 my2dTranslatef(-A[0], -A[1]);
 my2dTransHomoVertex(B, Bf);
 drawArm(Af, Bf);
 my2dLoadIdentity();
 my2dTranslatef(Bf[0], Bf[1]);
 my2dRotatef(a + b + g);
 my2dTranslatef(-B[0], -B[1]);
 my2dTransHomoVertex(C, Cf);
 drawArm(Bf, Cf);
 }

In the above examples, we use Draw() and transDraw(), which are implemented
ourselves. The difference between the two functions are that Draw() will draw the two
vertices as a line directly, whereas transDraw() will first transform the two vertices by
the current matrix on the matrix stack, and then draw a line according to the
transformed vertices. In OpenGL implementation, as we will see, transDraw is
implied. That is, whenever we draw a primitive, the vertices of the primitive are
always transformed by the current matrix on the MODELVIEW matrix stack, even
though the transformation matrix multiplication is unseen. We will discuss this in
detail later. The three different transformation are demonstrated in the following
sample program (J2_3_Robot2d.java).

/* three different methods for 2D robot arm transformations */

import net.java.games.jogl.*;

public class J2_3_Robot2d extends J2_0_2DTransform {
 // homogeneous coordinates
 float O[] = {0, 0, 1};
 float A[] = {100, 0, 1};
 float B[] = {160, 0, 1};
 float C[] = {200, 0, 1};
 float a, b, g;

76 2 Transformation and Viewing

 public void display(GLDrawable glDrawable) {

 gl.glClear(GL.GL_COLOR_BUFFER_BIT);

 a = a + 0.01f;
 b = b - 0.02f;
 g = g + 0.03f;

 gl.glColor3f(0, 1, 1);
 transDrawArm1(a, b, g);

 gl.glColor3f(1, 1, 0);
 transDrawArm2(-b, -g, a);

 gl.glColor3f(1, 0, 1);
 transDrawArm3(g, -a, -b);

 try {
 Thread.sleep(10);
 } catch (Exception ignore) {}
 }

 ...; // Method I: 2D robot arm transformations
 ...; // Method II: 2D robot arm transformations
 ...; // Method III: 2D robot arm transformations

 // transform the coordinates and then draw
 private void transDrawArm(float C[], float H[]) {

 float End1[] = new float[3];
 float End2[] = new float[3];

 my2dTransHomoVertex(C, End1);
 // multiply the point with the matrix on the stack
 my2dTransHomoVertex(H, End2);

 // assuming z = w = 1;
 drawArm(End1, End2);
 }

 // draw the coordinates directly
 public void drawArm(float C[], float H[]) {

 gl.glLineWidth(5);

 // assuming z = w = 1;

2.3 3D Transformation and Hidden-Surface Removal 77

 gl.glBegin(GL.GL_LINES);
 gl.glVertex3fv(C);
 gl.glVertex3fv(H);
 gl.glEnd();
 }

 public static void main(String[] args) {
 J2_3_Robot2d f = new J2_3_Robot2d();

 f.setTitle("JOGL J2_3_Robot2d");
 f.setSize(500, 500);
 f.setVisible(true);
 }
}

2.3 3D Transformation and Hidden-Surface Removal

2D transformation is a special case of 3D
transformation where z=0. For example, a
2D point (x, y) is (x, y, 0) in 3D, and a 2D
rotation around the origin R(θ) is a 3D
rotation around the z axis Rz(θ) (Fig. 2.9).
The z axis is perpendicular to the display
with the arrow pointing toward the viewer.
We can assume the display to be a view of a
3D drawing box, which is projected along
the z axis direction onto the 2D drawing
area at z=0.

2.3.1 3D Translation, Rotation, and Scaling

In 3D, for translation and scaling, we can translate or scale not only along the x and
the y axis but also along the z axis. For rotation, in addition to rotating around the z
axis, we can also rotate around the x axis and the y axis. In the homogeneous
coordinates, the 3D transformation matrices for translation, rotation, and scaling are as
follows:

P

 Fig. 2.9 A 3D rotation around z axis

y

x

P’
θ

z

78 2 Transformation and Viewing

Translation: ; (EQ 47)

Scaling: ; (EQ 48)

Rotation around x axis: ; (EQ 49)

Rotation around y axis: ; (EQ 50)

Rotation around z axis: . (EQ 51)

For example, the 2D transformation Equation 41 can be replaced by the corresponding
3D matrices:

Af = Rz(α)A, (EQ 52)

T dx dy dz, ,()

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

=

S sx sy sz, ,()

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

=

Rx θ()

1 0 0 0

0 θcos θsin– 0

0 θsin θcos 0

0 0 0 1

=

Ry θ()

θcos 0 θsin 0

0 1 0 0

θsin– 0 θcos 0

0 0 0 1

=

Rz θ()

θcos θsin– 0 0

θsin θcos 0 0

0 0 1 0

0 0 0 1

=

2.3 3D Transformation and Hidden-Surface Removal 79

where , , and Az=0. We can show that Afz=0 as well.

2.3.2 Transformation in OpenGL

As an example, we will again implement in OpenGL the robot arm transformation
MODELVIEW matrix stack to achieve the transformation. We consider the
transformation to be a special case of 3D at z=0.

In OpenGL, all the vertices of a model are multiplied by the matrix on the top of the
MODELVIEW matrix stack and then by the matrix on the top of the PROJECTION
matrix stack before the model is scan-converted. Matrix multiplications are carried out
on the top of the matrix stack automatically in the graphics system. The
MODELVIEW matrix stack is used for geometric transformation. The PROJECTION
matrix stack is used for viewing, which will be discussed later. Here, we explain how
OpenGL handles the geometric transformations in the following example
(J2_4_Robot.java, which implements Method II in Fig. 2.8.)

1. Specify that current matrix multiplications are carried out on the top of the MOD-
ELVIEW matrix stack:

gl.glMatrixMode (GL.GL_MODELVIEW);

2. Load the current matrix on the matrix stack with the identity matrix:

gl.glLoadIdentity ();

The identity matrix for 3D homogeneous coordinates is .

A

Ax

Ay

Az

1

= Af

Afx

Afy

Afz

1

=

I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

80 2 Transformation and Viewing

3. Specify the rotation matrix Rz(α), which will be multiplied by whatever on the
current matrix stack already. The result replaces the matrix currently on the top of
the stack. If the identity matrix is on the stack, then IRz(α)=Rz(α):

gl.glRotatef (alpha, 0.0, 0.0, 1.0);

4. Draw a robot arm — a line segment between point O and A. Before the model is
scan-converted into the frame buffer, O and A will first be transformed by the
matrix on the top of the MODELVIEW matrix stack, which is Rz(α). That is,
Rz(α)O and Rz(α)A will be used to scan-convert the line (Equation 41):

drawArm (O, A);

5. In the following code section, we specify a series of transformation matrices,
which in turn will be multiplied by whatever is already on the current matrix stack:
I, [I]R(α), [[I]R(α)]T(A), [[[I]R(α)]T(A)]R(β), [[[[I]R(α)]T(A)]R(β)]T(−A). Before
drawArm (A, B), we have M = R(α)T(A)R(β)T(−A) on the matrix stack, which
corresponds to Equation 42:

gl.glPushMatrix();
gl.glLoadIdentity ();
gl.glRotatef (alpha, 0.0, 0.0, 1.0);
drawArm (O, A);

gl.glTranslatef (A[0], A[1], 0.0);
gl.glRotatef (beta, 0.0, 0.0, 1.0);
gl.glTranslatef (-A[0], -A[1], 0.0);
drawArm (A, B);

gl.glPopMatrix();

The matrix multiplication is always carried out on the top of the matrix stack.
glPushMatrix() will move the stack pointer up one slot and duplicate the previous
matrix so that the current matrix is the same as the matrix immediately below it on
the stack. glPopMatrix() will move the stack pointer down one slot. The advantage
of this mechanism is to separate the transformations of the current model between
glPushMatrix() and glPopMatrix() from other transformations of models later.

2.3 3D Transformation and Hidden-Surface Removal 81

 Fig. 2.10 Matrix stack operations with glPushMatrix() and glPopMatrix()

Let’s look at the function drawRobot() in J2_4_Robot.java below. Fig. 2.10 shows
what is on the top of the matrix stack, when drawRobot() is called once and then
again. At drawArm(B, C) right before glPopMatrix(), the matrix on top of the stack
is M = R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B), which corresponds to Equation 43.

6. Suppose we remove glPushMatrix() and glPopMatrix() from drawRobot(), if we
call drawRobot() once, it appears fine. If we call it again, you will see that the
matrix on the matrix stack is not an identity matrix. It is the previous matrix on the
stack already (Fig. 2.11).

For beginners, it is a good idea to draw the state of the current matrix stack while you
are reading the sample programs or writing your own programs. This will help you
clearly understand what the transformation matrices are at different stages.

 Fig. 2.11 Matrix stack operations without glPushMatrix() and glPopMatrix()

I I
I

I
M

I

(a) Before
glPushMatrix()

(b) After
glPushMatrix()

(c) Before
glPopMatrix()

(d) After
glPopMatrix()

Status of the OpenGL MODELVIEW matrix stack

I
(a) Call DrawRobot()

the first time

M

(b) Call DrawRobot() the 2nd time
M=R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B)

N

(c) Call DrawRobot() the 3rd time
N =MM

Status of the OpenGL MODELVIEW matrix stack

82 2 Transformation and Viewing

Methods I and III (Fig. 2.8) cannot be achieved using OpenGL transformations
directly, because OpenGL provides matrix multiplications, but not the vertex
coordinates after a vertex is transformed by the matrix. This means that all vertices are
always fixed at their original locations. This method avoids floating point
accumulation errors. We can use glGetDoublev(GL.GL_MODELVIEW_MATRIX,
M[]) to get the current 16 values of the matrix on the top of the MODELVIEW stack,
and multiply the coordinates by the current matrix to achieve the transformations for
Methods I and III. Of course, you may implement your own matrix multiplications to
achieve all the different transformation methods as well.

/* 2D robot transformation in OpenGL */

import net.java.games.jogl.*;

public class J2_4_Robot extends J2_3_Robot2d {

 public void display(GLDrawable glDrawable) {

 gl.glClear(GL.GL_COLOR_BUFFER_BIT);

 a = a+0.1f;
 b = b-0.2f;
 g = g+0.3f;

 gl.glLineWidth(7f); // draw a wide line for arm
 drawRobot(A, B, C, a, b, g);

 try {
 Thread.sleep(10);
 } catch (Exception ignore) {}
 }

 void drawRobot(
 float A[],
 float B[],
 float C[],
 float alpha,
 float beta,
 float gama) {

 gl.glPushMatrix();

 gl.glColor3f(1, 1, 0);

2.3 3D Transformation and Hidden-Surface Removal 83

 gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f);
 // R_z(alpha) is on top of the matrix stack
 drawArm(O, A);

 gl.glColor3f(0, 1, 1);
 gl.glTranslatef(A[0], A[1], 0.0f);
 gl.glRotatef(beta, 0.0f, 0.0f, 1.0f);
 gl.glTranslatef(-A[0], -A[1], 0.0f);
 // R_z(alpha)T(A)R_z(beta)T(-A) is on top
 drawArm(A, B);

 gl.glColor3f(1, 0, 1);
 gl.glTranslatef(B[0], B[1], 0.0f);
 gl.glRotatef(gama, 0.0f, 0.0f, 1.0f);
 gl.glTranslatef(-B[0], -B[1], 0.0f);
 // R_z(alpha)T(A)R_z(beta)T(-A) is on top
 drawArm(B, C);

 gl.glPopMatrix();
 }

 public static void main(String[] args) {
 J2_4_Robot f = new J2_4_Robot();

 f.setTitle("JOGL J2_4_Robot");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

2.3.3 Hidden-Surface Removal

Bounding volumes. We first introduce a simple method, called bounding volume or
minmax testing, to determine visible 3D models without using a time-consuming
hidden-surface removal algorithm. Here we assume that the viewpoint of our eye is at
the origin and the models are in the negative z axis. If we render the models in the
order of their distances to the viewpoint of the eye along z axis from the farthest to the
closest, we will have correct overlapping of the models. We can build up a rectangular
box (bounding volume) with the faces perpendicular to the x, y, or z axis to bound a
3D model and compare the minimum and maximum bounds in the z direction between
boxes to decide which model should be rendered first. Using bounding volumes to
decide the priority of rendering is also known as minmax testing. In addition to

84 2 Transformation and Viewing

visible-model determination, bounding volumes are also used for collision detection,
which will be discussed later in this chapter.

The z-buffer (depth-buffer) algorithm. In OpenGL, to enable the hidden-surface
removal (or visible-surface determination) mechanism, we need to enable the depth
test once and then clear the depth buffer whenever we redraw a frame:

// enable zbuffer (depthbuffer) once
gl.glEnable(GL.GL_DEPTH_TEST);

// clear both frame buffer and zbuffer
gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);

Corresponding to a frame buffer, the graphics system also has a z-buffer, or depth
buffer, with the same number of entries. After glClear(), the z-buffer is initialized to
the z value farthest from the viewpoint of our eye, and the frame buffer is initialized to
the background color. When scan-converting a model (such as a polygon), before
writing a pixel color into the frame buffer, the graphics system (the z-buffer
algorithm) compares the pixel’s z value to the corresponding xy coordinates’ z value in
the z-buffer. If the pixel is closer to the viewpoint, its z value is written into the
z-buffer and its color is written into the frame buffer. Otherwise, the system moves on
to considering the next pixel without writing into the buffers. The result is that, no
matter what order the models are scan-converted, the image in the frame buffer only
shows the pixels on the models that are not blocked by other pixels. In other words,
the visible surfaces are saved in the frame buffer, and all the hidden surfaces are
removed.

A pixel’s z value is provided by the model at the corresponding xy coordinates. For
example, given a polygon and the xy coordinates, we can calculate the z value
according to the polygon’s plane equation z=f(x,y). Therefore, although
scan-conversion is drawing in 2D, 3D calculations are needed to decide
hidden-surface removal and others (as we will discuss in the future: lighting, texture
mapping, etc.).

A plane equation in its general form is ax + by + cz + 1 = 0, where (a, b, c)
corresponds to a vector perpendicular to the plane. A polygon is usually specified by a
list of vertices. Given three vertices on the polygon, they all satisfy the plane equation
and therefore we can find (a, b, c) and z=−(ax + by + 1)/c. By the way, because the

2.3 3D Transformation and Hidden-Surface Removal 85

cross-product of two edges of the polygon is perpendicular to the plane, it is
proportional to (a, b, c) as well.

2.3.4 3D Models: Cone, Cylinder, and Sphere

Approximating a cone. In the example
discussed at the end of last chapter
(J1_5_Circle.java), we approximated a
circle with subdividing triangles. If we raise
the center of the circle along the z axis, we
can approximate a cone, as shown in
Fig. 2.12. Because the model is in 3D, we
need to enable depth test to achieve
hidden-surface removal. Also, we need to
make sure that our model is contained within
the defined coordinates (i.e., the viewing
volume):

 gl.glOrtho(-w/2, w/2,
-h/2, h/2, -w, w);

/* draw a cone by subdivision */

import net.java.games.jogl.*;

public class J2_5_Cone extends J1_5_Circle {

 public void reshape(GLDrawable glDrawable,
 int x, int y, int w, int h) {

 WIDTH = w; HEIGHT = h;

 // enable depth buffer for hidden-surface removal
 gl.glEnable(GL.GL_DEPTH_TEST);

 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();

 // make sure the cone is within the viewing volume

 Fig. 2.12 A cone by subdivision
[See Color Plate 1]

86 2 Transformation and Viewing

 gl.glOrtho(-w/2, w/2, -h/2, h/2, -w, w);

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 public void display(GLDrawable glDrawable) {

 if ((cRadius>(WIDTH/2))|| (cRadius==1)) {
 flip = -flip;
 depth++;
 depth = depth%5;
 }

 cRadius += flip;

 // clear both frame buffer and zbuffer
 gl.glClear(GL.GL_COLOR_BUFFER_BIT|
 GL.GL_DEPTH_BUFFER_BIT);

 gl.glRotatef(1, 1, 1, 1); // accumulated on matrix
 // rotate 1 degree alone vector (1, 1, 1)
 gl.glPushMatrix(); // not accumulated
 gl.glScaled(cRadius, cRadius, cRadius);
 drawCone();
 gl.glPopMatrix();

 try {
 Thread.sleep(10);
 } catch (Exception ignore) {}
 }

 private void subdivideCone(float v1[],
 float v2[], int depth) {
 float v0[] = {0, 0, 0};
 float v12[] = new float[3];

 if (depth==0) {
 gl.glColor3f(v1[0]*v1[0], v1[1]*v1[1], v1[2]*v1[2]);

 drawtriangle(v1, v2, v0);
 // bottom cover of the cone

 v0[2] = 1; // height of the cone, the tip on z axis
 drawtriangle(v1, v2, v0); // side cover of the cone

 return;

2.3 3D Transformation and Hidden-Surface Removal 87

 }

 for (int i = 0; i<3; i++) {
 v12[i] = v1[i]+v2[i];
 }
 normalize(v12);

 subdivideCone(v1, v12, depth-1);
 subdivideCone(v12, v2, depth-1);
 }

 public void drawCone() {
 subdivideCone(cVdata[0], cVdata[1], depth);
 subdivideCone(cVdata[1], cVdata[2], depth);
 subdivideCone(cVdata[2], cVdata[3], depth);
 subdivideCone(cVdata[3], cVdata[0], depth);
 }

 public static void main(String[] args) {
 J2_5_Cone f = new J2_5_Cone();

 f.setTitle("JOGL J2_5_Cone");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

Approximating a cylinder. If we can draw a
circle at z=0, then draw another circle at z=1.
If we connect the rectangles of the same
vertices on the edges of the two circles, we
have a cylinder, as shown in Fig. 2.13.

/* draw a cylinder by subdivision */

import net.java.games.jogl.*;

public class J2_6_Cylinder
extends J2_5_Cone { Fig. 2.13 A cylinder by

subdivision [See Color Plate 1]

88 2 Transformation and Viewing

 public void display(GLDrawable glDrawable) {

 if ((cRadius>(WIDTH/2))||(cRadius==1)) {
 flip = -flip;
 depth++;
 depth = depth%6;
 }
 cRadius += flip;

 // clear both frame buffer and zbuffer
 gl.glClear(GL.GL_COLOR_BUFFER_BIT|
 GL.GL_DEPTH_BUFFER_BIT);

 gl.glRotatef(1, 1, 1, 1);
 // rotate 1 degree alone vector (1, 1, 1)
 gl.glPushMatrix();
 gl.glScaled(cRadius, cRadius, cRadius);
 drawCylinder();
 gl.glPopMatrix();

 try {
 Thread.sleep(20);
 } catch (Exception ignore) {}
 }

 private void subdivideCylinder(float v1[],
 float v2[], int depth) {
 float v11[] = {0, 0, 0};
 float v22[] = {0, 0, 0};
 float v0[] = {0, 0, 0};
 float v12[] = new float[3];
 int i;

 if (depth==0) {
 gl.glColor3f(v1[0]*v1[0],
 v1[1]*v1[1], v1[2]*v1[2]);

 for (i = 0; i<3; i++) {
 v22[i] = v2[i];
 v11[i] = v1[i];
 }

 drawtriangle(v1, v2, v0);
 // draw sphere at the cylinder's bottom

 v11[2] = v22[2] = v0[2] = 1.0f;
 drawtriangle(v11, v22, v0);
 // draw sphere at the cylinder's bottom

2.3 3D Transformation and Hidden-Surface Removal 89

 gl.glBegin(GL.GL_POLYGON);
 // draw the side rectangles of the cylinder
 gl.glVertex3fv(v11);
 gl.glVertex3fv(v22);
 gl.glVertex3fv(v2);
 gl.glVertex3fv(v1);
 gl.glEnd();

 return;
 }

 for (i = 0; i<3; i++) {
 v12[i] = v1[i]+v2[i];

 }
 normalize(v12);

 subdivideCylinder(v1, v12, depth-1);
 subdivideCylinder(v12, v2, depth-1);
 }

 public void drawCylinder() {
 subdivideCylinder(cVdata[0], cVdata[1], depth);
 subdivideCylinder(cVdata[1], cVdata[2], depth);
 subdivideCylinder(cVdata[2], cVdata[3], depth);
 subdivideCylinder(cVdata[3], cVdata[0], depth);
 }

 public static void main(String[] args) {
 J2_6_Cylinder f = new J2_6_Cylinder();

 f.setTitle("JOGL J2_6_Cylinder");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

Approximating a sphere. Let’s assume that we have an equilateral triangle with its
three vertices (v1, v2, v3) on a sphere and |v1|=|v2|=|v3|=1. That is, the three vertices are
unit vectors from the origin. We can see that v12 = normalize(v1 + v2) is also on the
sphere. We can further subdivide the triangle into four equilateral triangles, as shown
in Fig. 2.14a. Example J2_7_Sphere.java uses this method to subdivide an octahedron
(Fig. 2.14b) into a sphere, as shown in Fig. 2.14c.

90 2 Transformation and Viewing

 Fig. 2.14 Drawing a sphere through subdivision [See Color Plate 1]

/* draw a sphere by subdivision */

import net.java.games.jogl.*;

public class J2_7_Sphere extends J2_6_Cylinder {
 static float sVdata[][] = { {1.0f, 0.0f, 0.0f}
 , {0.0f, 1.0f, 0.0f}
 , {0.0f, 0.0f, 1.0f}
 , { -1.0f, 0.0f, 0.0f}
 , {0.0f, -1.0f, 0.0f}
 , {0.0f, 0.0f, -1.0f}
 };

 public void display(GLDrawable glDrawable) {

 if ((cRadius > (WIDTH / 2)) || (cRadius == 1)) {
 flip = -flip;

 depth++;
 depth = depth % 5;
 }

 cRadius += flip;

v2

v1

v3

v12

v23

v13
z

z

x

x

yy

(b) Front view of an octahedron(a) Subdivision (c) A sphere

2.3 3D Transformation and Hidden-Surface Removal 91

 // clear both frame buffer and zbuffer
 gl.glClear(GL.GL_COLOR_BUFFER_BIT |
 GL.GL_DEPTH_BUFFER_BIT);

 gl.glRotatef(1, 1, 1, 1);
 // rotate 1 degree alone vector (1, 1, 1)
 gl.glPushMatrix();
 gl.glScalef(cRadius, cRadius, cRadius);
 drawSphere();
 gl.glPopMatrix();

 try {
 Thread.sleep(20);
 } catch (Exception ignore) {}
 }

 private void subdivideSphere(
 float v1[],
 float v2[],
 float v3[],
 long depth) {
 float v12[] = new float[3];
 float v23[] = new float[3];
 float v31[] = new float[3];
 int i;

 if (depth == 0) {
 gl.glColor3f(v1[0] * v1[0],
 v2[1] * v2[1], v3[2] * v3[2]);
 drawtriangle(v1, v2, v3);

 return;
 }
 for (i = 0; i < 3; i++) {
 v12[i] = v1[i] + v2[i];
 v23[i] = v2[i] + v3[i];
 v31[i] = v3[i] + v1[i];
 }
 normalize(v12);
 normalize(v23);
 normalize(v31);
 subdivideSphere(v1, v12, v31, depth - 1);
 subdivideSphere(v2, v23, v12, depth - 1);
 subdivideSphere(v3, v31, v23, depth - 1);
 subdivideSphere(v12, v23, v31, depth - 1);
 }

92 2 Transformation and Viewing

 public void drawSphere() {
 subdivideSphere(sVdata[0], sVdata[1], sVdata[2], depth);
 subdivideSphere(sVdata[0], sVdata[2], sVdata[4], depth);
 subdivideSphere(sVdata[0], sVdata[4], sVdata[5], depth);
 subdivideSphere(sVdata[0], sVdata[5], sVdata[1], depth);
 subdivideSphere(sVdata[3], sVdata[1], sVdata[5], depth);
 subdivideSphere(sVdata[3], sVdata[5], sVdata[4], depth);
 subdivideSphere(sVdata[3], sVdata[4], sVdata[2], depth);
 subdivideSphere(sVdata[3], sVdata[2], sVdata[1], depth);
 }

 public static void main(String[] args) {
 J2_7_Sphere f = new J2_7_Sphere();

 f.setTitle("JOGL J2_7_Sphere");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

2.3.5 Composition of 3D Transformations

Example J2_8_Robot3d.java implements the
robot arm in Example J2_4_Robot.java with
3D cylinders, as shown in Fig. 2.15. We also
add one rotation around the y axis, so the robot
arm moves in 3D.

/* 3D 3-segment arm transformation */

import net.java.games.jogl.*;

public class J2_8_Robot3d extends
J2_7_Sphere {

 static float alpha = -30;
 static float beta = -30;
 static float gama = 60;
 static float aalpha = 1;
 static float abeta = 1;
 static float agama = -2;

 Fig. 2.15 A 3-segment robot
arm [See Color Plate 2]

2.3 3D Transformation and Hidden-Surface Removal 93

 float O = 0;
 float A = (float) WIDTH / 4;
 float B = (float) 0.4 * WIDTH;
 float C = (float) 0.5 * WIDTH;

 public void display(GLDrawable glDrawable) {

 // for reshape purpose
 A = (float) WIDTH / 4;
 B = (float) 0.4 * WIDTH;
 C = (float) 0.5 * WIDTH;

 depth = 4;
 alpha += aalpha;
 beta += abeta;
 gama += agama;

 gl.glClear(GL.GL_COLOR_BUFFER_BIT |
 GL.GL_DEPTH_BUFFER_BIT);
 drawRobot(O, A, B, C, alpha, beta, gama);

void drawArm(float End1, float End2) {

 float scale;
 scale = End2 - End1;

 gl.glPushMatrix();

 // the cylinder lies in the z axis;
 // rotate it to lie in the x axis
 gl.glRotatef(90.0f, 0.0f, 1.0f, 0.0f);
 gl.glScalef(scale / 5.0f, scale / 5.0f, scale);
 drawCylinder();

 gl.glPopMatrix();
 }

 void drawRobot(float O, float A, float B, float C,
 float alpha, float beta, float gama) {
 // the robot arm is rotating around y axis
 gl.glRotatef(1.0f, 0.0f, 1.0f, 0.0f);
 gl.glPushMatrix();

 gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f);
 // R_z(alpha) is on top of the matrix stack
 drawArm(O, A);

94 2 Transformation and Viewing

 gl.glTranslatef(A, 0.0f, 0.0f);
 gl.glRotatef(beta, 0.0f, 0.0f, 1.0f);
 // R_z(alpha)T_x(A)R_z(beta) is on top of the stack
 drawArm(A, B);

 gl.glTranslatef(B - A, 0.0f, 0.0f);
 gl.glRotatef(gama, 0.0f, 0.0f, 1.0f);
 // R_z(alpha)T_x(A)R_z(beta)T_x(B)R_z(gama) is on top
 drawArm(B, C);

 gl.glPopMatrix();
 }

 public static void main(String[] args) {
 J2_8_Robot3d f = new J2_8_Robot3d();

 f.setTitle("JOGL J2_8_Robot3d");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

Example J2_9_Solar.java is a simplified solar system. The earth rotates around the
sun and the moon rotates around the earth in the xz plane. Given the center of the earth
at E(xe, ye, ze) and the center of the moon at M(xm, ym, zm), let’s find the new centers
after the earth rotates around the sun e degrees, and the moon rotates around the earth
m degrees. The moon also revolves around the sun with the earth (Fig. 2.16).

 Fig. 2.16 Simplified solar system: a 2D problem in 3D

y

z

 Ef = Ry(e) E;
Mf = Ry(e) M’;

M’ = T(E) Ry(m) T(−E) M;

Ef = Ry(e) E;

Mf = T(Ef) Ry(m) T(−Ef) M’
M’ = Ry(e) M;

The moon rotates first:

The earth-moon rotates first:
x

M

E

m

e

2.3 3D Transformation and Hidden-Surface Removal 95

This problem is exactly like the clock problem in Fig. 2.5, except that the center of the
clock is revolving around y axis as well. We can consider the moon rotating around the
earth first, and then the moon and the earth as one object rotating around the sun.

In OpenGL, because we can draw a sphere at the center of the coordinates, the
transformation would be simpler.

/* draw a simplified solar system */

import net.java.games.jogl.*;
import net.java.games.jogl.util.*;

public class J2_9_Solar extends J2_8_Robot3d {

 public void display(GLDrawable glDrawable) {

 depth = (cnt/100)%6;
 cnt++;

 gl.glClear(GL.GL_COLOR_BUFFER_BIT|
 GL.GL_DEPTH_BUFFER_BIT);

 drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);

 try {
 Thread.sleep(10);
 } catch (Exception ignore) {}
 }

 public void drawColorCoord(float xlen, float ylen,
 float zlen) {
 GLUT glut = new GLUT();

 gl.glBegin(GL.GL_LINES);

 gl.glColor3f(1, 0, 0);

 gl.glVertex3f(0, 0, 0);
 gl.glVertex3f(0, 0, zlen);

 gl.glColor3f(0, 1, 0);

 gl.glVertex3f(0, 0, 0);
 gl.glVertex3f(0, ylen, 0);

96 2 Transformation and Viewing

 gl.glColor3f(0, 0, 1);

 gl.glVertex3f(0, 0, 0);
 gl.glVertex3f(xlen, 0, 0);

 gl.glEnd();

 // coordinate labels: X, Y, Z
 gl.glPushMatrix();
 gl.glTranslatef(xlen, 0, 0);
 gl.glScalef(xlen/WIDTH, xlen/WIDTH, 1);
 glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'X');
 gl.glPopMatrix();

 gl.glPushMatrix();
 gl.glColor3f(0, 1, 0);
 gl.glTranslatef(0, ylen, 0);
 gl.glScalef(ylen/WIDTH, ylen/WIDTH, 1);
 glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Y');
 gl.glPopMatrix();

 gl.glPushMatrix();
 gl.glColor3f(1, 0, 0);
 gl.glTranslatef(0, 0, zlen);
 gl.glScalef(zlen/WIDTH, zlen/WIDTH, 1);
 glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Z');
 gl.glPopMatrix();

 }

 void drawSolar(float E, float e, float M, float m) {

 drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

 gl.glPushMatrix();

 gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
 // rotating around the "sun"; proceed angle

 gl.glTranslatef(E, 0.0f, 0.0f);

 gl.glPushMatrix();
 gl.glScalef(WIDTH/20f, WIDTH/20f, WIDTH/20f);
 drawSphere();
 gl.glPopMatrix();

 gl.glRotatef(m, 0.0f, 1.0f, 0.0f);

2.3 3D Transformation and Hidden-Surface Removal 97

 // rotating around the "earth"
 gl.glTranslatef(M, 0.0f, 0.0f);
 drawColorCoord(WIDTH/8f, WIDTH/8f, WIDTH/8f);
 gl.glScalef(WIDTH/40f, WIDTH/40f, WIDTH/40f);
 drawSphere();

 gl.glPopMatrix();
 }

 public static void main(String[] args) {
 J2_9_Solar f = new J2_9_Solar();

 f.setTitle("JOGL J2_9_Solar");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

Next, we change the above solar system into a more complex system, which we call
the generalized solar system. Now the earth is elevated along the y axis, and the moon
is elevated along the axis from the origin toward the center of the earth, and the moon
rotates around this axis as in Fig. 2.17. In other words, the moon rotates around the
vector E. Given E and M and their rotation angles e and m, respectively, can we find
the new coordinates of Ef and Mf?

We cannot come up with the rotation matrix for the moon, M, immediately. However,
we can consider E and M as one object and create the rotation matrix by several steps.
Note that for M’s rotation around E, we do not really need to rotate E itself, but we use
it as a reference to explain the rotation.

1. As shown in Fig. 2.17, the angle between the y axis and E is α = arc cos (y/r); the
angle between the projection of E on the xz plane and the x axis is β = arc tg (z/x);
r = sqrt(x2 + y2 + z2).

2. Rotate M around the y axis by β degrees so that the new center of rotation E1 is in
the xy plane:

M1 = Ry(β)M; E1 = Ry(β)E. (EQ 53)

98 2 Transformation and Viewing

 Fig. 2.17 Generalized solar system: a 3D problem

3. Rotate M1 around the z axis by α degrees so that the new center of rotation E2 is
coincident with the y axis:

M2 = Rz(α)M1; E2 = Rz(α)E1. (EQ 54)

4. Rotate M2 around the y axis by m degree:

M3 = Ry(m)M2. (EQ 55)

5. Rotate M3 around the z axis by −α degree so that the center of rotation returns to
the xz plane:

M4 = Rz(−α)M3; E1 = Rz(−α)E2. (EQ 56)

6. Rotate M4 around y axis by −β degree so that the center of rotation returns to its
original orientation:

M5 = Ry(−β)M4; E = Ry(−β)E1. (EQ 57)

x

y

z

E M

me

β

α

α = arc cos (y/r); β = arc tg (z/x);

M1 = Ry(β) M; // the center of rotation OE is in the xy plane

M2 = Rz(α) M1 // OE is along the y axis
M3 = Ry(m) M2; // the moon rotates along the y axis

M4 = Rz(−α) M3; //OE returns to the xy plane

M5 = Ry(−β) M4; // OE returns to its original orientation

Mf = Ry(e)Ry(−β) Rz(−α) Ry(m) Rz(α) Ry(β) M;

r
Mf = Ry(e) M5; // the moon proceeds with the earth

Ef = Ry(e) E; // the earth rotates around the y axis

O

r = sqrt(x2 + y2 + z2);

2.3 3D Transformation and Hidden-Surface Removal 99

7. Rotate M5 around y axis e degree so that the moon proceeds with the earth around
the y axis:

Mf = Ry(e)M5; Ef = Ry(e)E. (EQ 58)

8. Putting the transformation matrices together, we have

Mf = Ry(e)Ry(−β) Rz(−α) Ry(m) Rz(α) Ry(β) M. (EQ 59)

Again, in OpenGL, we start with the sphere at
the origin. The transformation is simpler. The
following code demonstrates the generalized
solar system. The result is shown in Fig. 2.18.
Incidentally, glRotatef(m, x, y, z) specifies a
single matrix that rotates a point along the
vector (x, y, z) by m degrees. Now, we know
that the matrix is equal to Ry(−β) Rz(−α) Ry(m)
Rz(α) Ry(β).

/* draw a generalized solar system */

import net.java.games.jogl.*;

public class J2_10_GenSolar extends J2_9_Solar {
 static float tiltAngle = 40;

 void drawSolar(float earthDistance,
 float earthAngle,
 float moonDistance,
 float moonAngle) {

 // Global coordinates
 gl.glLineWidth(6);
 drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

 gl.glPushMatrix();

 Fig. 2.18 Generalized solar
system [See Color Plate 2]

100 2 Transformation and Viewing

 gl.glRotatef(earthAngle, 0.0f, 1.0f, 0.0f);
 // rotating around the "sun"; proceed angle
 gl.glRotatef(tiltAngle, 0.0f, 0.0f, 1.0f);
 // tilt angle, angle between the center line and y axis
 gl.glBegin(GL.GL_LINES);
 gl.glVertex3f(0.0f, 0.0f, 0.0f);
 gl.glVertex3f(0.0f, earthDistance, 0.0f);
 gl.glEnd();

 gl.glTranslatef(0.0f, earthDistance, 0.0f);
 gl.glLineWidth(2);

 gl.glPushMatrix();
 drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);
 gl.glScalef(WIDTH/20, WIDTH/20, WIDTH/20);
 drawSphere();
 gl.glPopMatrix();

 gl.glRotatef(moonAngle, 0.0f, 1.0f, 0.0f);
 // rotating around the "earth"
 gl.glTranslatef(moonDistance, 0.0f, 0.0f);
 gl.glLineWidth(3);
 drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
 gl.glScalef(WIDTH/40, WIDTH/40, WIDTH/40);
 drawSphere();

 gl.glPopMatrix();
 }

 public static void main(String[] args) {

 J2_10_GenSolar f = new J2_10_GenSolar();

 f.setTitle("JOGL J2_10_GenSolar");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

The generalized solar system corresponds to a top that rotates and proceeds as shown
in Fig. 2.19b. The rotating angle is m and the proceeding angle is e. The earth E is a
point along the center of the top, and the moon M can be a point on the edge of the top.
We learned to draw a cone in OpenGL. We can transform the cone to achieve the
motion of a top. In the following example (J2_11_ConeSolar.java), we have a top that
rotates and proceeds and a sphere that rotates around the top (Fig. 2.19c).

2.3 3D Transformation and Hidden-Surface Removal 101

 Fig. 2.19 A top rotates and proceeds [See Color Plate 2]

/* draw a cone solar system */

public class J2_11_ConeSolar extends J2_10_GenSolar {

 void drawSolar(float E, float e, float M, float m) {

 // Global coordinates
 gl.glLineWidth(6);
 drawColorCoord(WIDTH / 4, WIDTH / 4, WIDTH / 4);

 gl.glPushMatrix();
 gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
 // rotating around the "sun"; proceed angle
 gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
 gl.glTranslatef(0.0f, E, 0.0f);
 gl.glPushMatrix();
 gl.glScalef(WIDTH / 20, WIDTH / 20, WIDTH / 20);
 drawSphere();
 gl.glPopMatrix();
 gl.glPushMatrix();
 gl.glScalef(E / 8, E, E / 8);
 gl.glRotatef(90, 1.0f, 0.0f, 0.0f); // orient the cone
 drawCone();
 gl.glPopMatrix();

 gl.glRotatef(m, 0.0f, 1.0f, 0.0f);

x

y

e

α

m

x

y

z z β

(c) A Top in generalized solar system(a) A top (b) Rotating and proceeding

102 2 Transformation and Viewing

 // rotating around the "earth"
 gl.glTranslatef(M, 0.0f, 0.0f);
 gl.glLineWidth(4);
 drawColorCoord(WIDTH / 8, WIDTH / 8, WIDTH / 8);
 gl.glScalef(E / 8, E / 8, E / 8);
 drawSphere();
 gl.glPopMatrix();
 }

 public static void main(String[] args) {

 J2_11_ConeSolar f = new J2_11_ConeSolar();

 f.setTitle("JOGL J2_11_ConeSolar");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

2.3.6 Collision Detection

To avoid two models in an animation penetrating
each other, we can use their bounding volumes to
decide their physical distances and collision. Of
course, the bounding volume can be in a different
shape other than a box, such as a sphere. If the
distance between the centers of the two spheres
is bigger than the summation of the two radii of
the spheres, we know that the two models do not
collide with each other. We may use multiple
spheres with different radii to more accurately
bound a model, but the collision detection would
be more complex. Of course, we may also detect
collisions directly without using bounding
volumes, which is likely much more complex
and time consuming.

We can modify the above example to have three moons (a cylinder, a sphere, and a
cone) that rotate around the earth in different directions and collide with one another
changing the directions of rotation (Fig. 2.20). If we use a sphere as a bounding

 Fig. 2.20 Collision detection
[See Color Plate 2]

2.3 3D Transformation and Hidden-Surface Removal 103

volume, the problem becomes how to find the centers of the bounding spheres. We
know that each moon is transformed from the origin. If we know the current matrix on
the matrix stack at the point we draw a moon, we can multiply the matrix with the
origin (0, 0, 0, 1) to find the center of the moon. Because at the origin x, y, and z are 0s,
we only need to retrieve the last column in the matrix, which is shown in the following
example (J2_11_coneSolarCollision.java). Collision detection is then decided by the
distances among the moons’ centers. If a distance is shorter than a predefined
threshold, the two moons will change their directions of rotation around the earth.

/* draw a cone solar system with collisions of the moons */

import java.lang.Math;
import net.java.games.jogl.*;

public class J2_11_ConeSolarCollision extends
 J2_11_ConeSolar {
 //direction and speed of rotation
 static float coneD = WIDTH/110;
 static float sphereD = -WIDTH/64;
 static float cylinderD = WIDTH/300f;
 static float spherem = 120, cylinderm = 240;
 static float tmpD = 0, conem = 0;

 // centers of the objects
 static float[] coneC = new float[3];
 static float[] sphereC = new float[3];
 static float[] cylinderC = new float[3];

 // current matrix on the matrix stack
 static float[] currM = new float[16];

 void drawSolar(float E, float e, float M, float m) {

 // Global coordinates
 gl.glLineWidth(8);
 drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

 gl.glPushMatrix(); {
 gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
 // rotating around the "sun"; proceed angle
 gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
 gl.glTranslatef(0.0f, E, 0.0f);

104 2 Transformation and Viewing

 gl.glPushMatrix();
 gl.glScalef(WIDTH/20, WIDTH/20, WIDTH/20);
 drawSphere();
 gl.glPopMatrix();

 gl.glPushMatrix();
 gl.glScalef(E/8, E, E/8);
 gl.glRotatef(90, 1.0f, 0.0f, 0.0f);

 // orient the cone
 drawCone();
 gl.glPopMatrix();

 gl.glPushMatrix();
 cylinderm = cylinderm+cylinderD;
 gl.glRotatef(cylinderm, 0.0f, 1.0f, 0.0f);
 // rotating around the "earth"
 gl.glTranslatef(M*2, 0.0f, 0.0f);
 gl.glLineWidth(4);
 drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
 gl.glScalef(E/8, E/8, E/8);
 drawCylinder();
 // retrieve the center of the cylinder
 // the matrix is stored column major left to right
 gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
 cylinderC[0] = currM[12];
 cylinderC[1] = currM[13];
 cylinderC[2] = currM[14];
 gl.glPopMatrix();

 gl.glPushMatrix();
 spherem = spherem+sphereD;
 gl.glRotatef(spherem, 0.0f, 1.0f, 0.0f);
 // rotating around the "earth"
 gl.glTranslatef(M*2, 0.0f, 0.0f);
 drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
 gl.glScalef(E/8, E/8, E/8);
 drawSphere();
 // retrieve the center of the sphere
 gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
 sphereC[0] = currM[12];
 sphereC[1] = currM[13];
 sphereC[2] = currM[14];
 gl.glPopMatrix();

 gl.glPushMatrix();
 conem = conem+coneD;
 gl.glRotatef(conem, 0.0f, 1.0f, 0.0f);
 // rotating around the "earth"

2.3 3D Transformation and Hidden-Surface Removal 105

 gl.glTranslatef(M*2, 0.0f, 0.0f);
 drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
 gl.glScalef(E/8, E/8, E/8);
 drawCone();
 // retrieve the center of the cone
 gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
 coneC[0] = currM[12];
 coneC[1] = currM[13];
 coneC[2] = currM[14];
 gl.glPopMatrix();
 }
 gl.glPopMatrix();

 if (distance(coneC, sphereC)<E/5) {
 // collision detected, swap the rotation directions
 tmpD = coneD;
 coneD = sphereD;
 sphereD = tmpD;
 }

 if (distance(coneC, cylinderC)<E/5) {
 // collision detected, swap the rotation directions
 tmpD = coneD;
 coneD = cylinderD;
 cylinderD = tmpD;
 }

 if (distance(cylinderC, sphereC)<E/5) {
 // collision detected, swap the rotation directions
 tmpD = cylinderD;
 cylinderD = sphereD;
 sphereD = tmpD;
 }
 }

 // distance between two points
 float distance(float[] c1, float[] c2) {
 float tmp = (c2[0]-c1[0])*(c2[0]-c1[0])+
 (c2[1]-c1[1])*(c2[1]-c1[1])+
 (c2[2]-c1[2])*(c2[2]-c1[2]);

 return ((float)Math.sqrt(tmp));
 }

 public static void main(String[] args) {
 J2_11_ConeSolarCollision f =
 new J2_11_ConeSolarCollision();

106 2 Transformation and Viewing

 f.setTitle("JOGL J2_11_ConeSolarCollision");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

2.4 Viewing

The display has its device coordinate system in pixels, and our model has its (virtual)
modeling coordinate system in which we specify and transform our model. We need to
consider the relationship between the modeling coordinates and the device
coordinates so that our virtual model will appear as an image on the display.
Therefore, we need a viewing transformation — the mapping of an area or volume in
the modeling coordinates to an area in the display device coordinates.

2.4.1 2D Viewing

In 2D viewing, we specify a rectangular area called the modeling window in the
modeling coordinates and a display rectangular area called the viewport in the device
coordinates (Fig. 2.21). The modeling window defines what is to be viewed; the
viewport defines where the image appears. Instead of transforming a model in the
modeling window to a model in the display viewport directly, we can first transform
the modeling window into a square with the lower-left corner at (−1, −1) and the
upper-right corner at (1, 1). The coordinates of the square are called the normalized
coordinates. Clipping of the model is then calculated in the normalized coordinates
against the square. After that, the normalized coordinates are scaled and translated to
the device coordinates.

We should understand that the matrix that transforms the modeling window to the
square will also transform the models in the modeling coordinates to the
corresponding models in the normalized coordinates. Similarly, the matrix that
transforms the square to the viewport will also transform the models accordingly. The
process (or pipeline) in 2D viewing is shown in Fig. 2.21. Through normalization, the
clipping algorithm avoids dealing with the changing sizes of the modeling window
and the device viewport.

2.4 Viewing 107

 Fig. 2.21 2D viewing pipeline

2.4.2 3D Viewing

The display is a 2D viewport, and our model can be in 3D. In 3D viewing, we need to
specify a viewing volume, which determines a projection method (parallel or
perspective) — for how 3D models are projected into 2D. The projection lines go
from the vertices in the 3D models to the projected vertices in the projection plane —
a 2D view plane that corresponds to the viewport. A parallel projection has all the
projection lines parallel. A perspective projection has all the projection lines
converging to a point named the center of projection. The center of projection is also
called the viewpoint. You may consider that your eye is at the viewpoint looking into
the viewing volume. Viewing is analogous to taking a photograph with a camera. The
object in the outside world has its own 3D coordinate system, the film in the camera
has its own 2D coordinate system. We specify a viewing volume and a projection
method by pointing and adjusting the zoom.

As shown in Fig. 2.22, the viewing volume for the parallel projection is like a box.
The result of the parallel projection is a less realistic view but can be used for exact
measurements. The viewing volume for the perspective projection is like a truncated
pyramid, and the result looks more realistic in many cases, but does not preserve sizes
in the display — objects further away are smaller.

Xmodeling

Ymodeling

Xnormalized

Ynormalized

Xdevice

Ydevice

in the modeling
coordinates:

Specify a window Transform the window
and the models to the

area to be displayed
normalized coordinates.
Clip against the square

Transform the square
and the models to the
device coordinates in the
display viewport.

W

H
w

h

S(2/W, 2/H);
T(-Center); //Window
Transform(models);
// nomralized models

Clipping();
// clipped models

T(center); //viewport
S(w/2, h/2);
Transform(models);
// device models

108 2 Transformation and Viewing

 Fig. 2.22 View volumes and projection methods

In the following, we use the OpenGL system as an example to demonstrate how 3D
viewing is achieved. The OpenGL viewing pipeline includes normalization, clipping,
perspective division, and viewport transformation (Fig. 2.23). Except for clipping, all
other transformation steps can be achieved by matrix multiplications. Therefore,
viewing is mostly achieved by geometric transformation. In the OpenGL system,
these transformations are achieved by matrix multiplications on the PROJECTION
matrix stack.

Specifying a viewing volume. A parallel projection is called an orthographic projection
if the projection lines are all perpendicular to the view plane. glOrtho(left, right,
bottom, top, near, far) specifies an orthographic projection as shown in Fig. 2.22a.
glOrtho() also defines six plane equations that cover the orthographic viewing
volume: x=left, x=right, y=bottom, y=top, z=−near, and z=−far. We can see that (left,
bottom, −near) and (right, top, −near) specify the (x, y, z) coordinates of the lower-left
and upper-right corners of the near clipping plane. Similarly, (left, bottom, −far) and
(right, top, −far) specify the (x, y, z) coordinates of the lower-left and upper-right
corners of the far clipping plane.

glFrustum(left, right, bottom, top, near, far) specifies a perspective projection as
shown in Fig. 2.22b. glFrustum() also defines six planes that cover the perspective
viewing volume. We can see that (left, bottom, −near) and (right, top, −near) specify
the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping
plane. The far clipping plane is a cross section at z=−far with the projection lines
converging to the viewpoint, which is fixed at the origin looking down the negative z
axis.

bottom

toptop

bottom

right

near
far

left

view
point

near
far

right
left

(a) Parallel projection (b) Perspective projection

2.4 Viewing 109

 Fig. 2.23 3D viewing pipeline

As we can see, both glOrtho() and glFrustum() specify viewing volumes oriented with
left and right edges on the near clipping plane parallel to y axis. In general, we use a
vector up to represent the orientation of the viewing volume, which when projected on
to the near clipping plane is parallel to the left and right edges.

Normalization. Normalization transformation is achieved by matrix multiplication on
the PROJECTION matrix stack. In the following code section, we first load the
identity matrix onto the top of the matrix stack. Then, we multiply the identity matrix
by a matrix specified by glOrtho().

// hardware set to use projection matrix stack
gl.glMatrixMode (GL.GL_PROJECTION);

 gl.glLoadIdentity ();
gl.glOrtho(-Width/2,Width/2,-Height/2,Height/2,-1.0, 1.0);

In OpenGL, glOrtho() actually specifies a matrix that transforms the specified
viewing volume into a normalized viewing volume, which is a cube with six clipping
planes as shown in Fig. 2.24 (x=1, x=−1, y=1, y=−1, z=1, and z=−1). glOrtho(l, r, b, t,
n, f) is equivalent to the following matrix expression:

S(-2/(r-l), -2/(t-b), -2/(f-n))T(-(r+l)/2, -(t+b)/2, (f+n)/2); (EQ 60)

Clip against
the normalized

Divide by w
for perspective

Transform
into the

viewing volume

Normalize the

viewport
viewing volume

projection

3D Modeling
Coordinates

2D Display
Device
Coordinates

glFrustum();
//glOrtho();
Transform(models);
// nomralized models

Clipping();
// clipped models

glViewport();
Transform(models);
// device models

110 2 Transformation and Viewing

Therefore, instead of calculating the clipping and projection directly, the
normalization transformation is carried out first to simplify the clipping and the
projection. Similarly, glFrustum() also specifies a matrix that transforms the
perspective viewing volume into a normalized viewing volume as in Fig. 2.24. Here a
division is needed to map the homogeneous coordinates into 3D coordinates. In
OpenGL, a 3D vertex is represented by (x, y, z, w) and transformation matrices are

 matrices. When w=1, (x, y, z) represents the 3D coordinates of the vertex. If
w=0, (x, y, z) represents a direction. Otherwise, (x/w, y/w, z/w) represents the 3D
coordinates. A perspective division is needed simply because after the glFrustum()
matrix transformation, . In OpenGL, the perspective division is carried out after
clipping.

Clipping. Because glOrtho() and
glFrustum() both transform their
viewing volumes into a normalized
viewing volume, we only need to
develop one clipping algorithm.
Clipping is carried out in homogeneous
coordinates. Therefore, all vertices of
the models are first transformed into the
normalized viewing coordinates, clipped
against the planes of the normalized
viewing volume (x=−w, x=w, y=−w, y=w,
z=−w, z=w), and then transformed and
projected into the 2D viewport.

Perspective division. The perspective normalization transformation glFrustum() results
in homogenous coordinates with . Clipping is carried out in homogeneous
coordinates. However, a division for all the coordinates of the model (x/w, y/w, z/w) is
needed to transform homogeneous coordinates into 3D coordinates.

Viewport transformation. All vertices are kept in 3D. We need the z values to calculate
hidden-surface removal. From the normalized viewing volume after dividing by w, the
viewport transformation calculates each vertex’s (x, y, z) corresponding to the pixels in
the viewport and invokes scan-conversion algorithms to draw the model into the
viewport. Projecting into 2D is nothing more than ignoring the z values when

4 4×

w 1≠

x

y

z

 Fig. 2.24 Normalized viewing volume
— a cube with (−1 to 1) along each axis

w 1≠

2.4 Viewing 111

scan-converting the model’s pixels into the frame buffer. It is not necessary but we
may consider that the projection plane is at z=0. In Fig. 2.22, the shaded projection
planes are arbitrarily specified.

Summary of the viewing pipeline. Before scan-conversion, an OpenGL model will go
through the following transformation and viewing processing steps:

• Modeling: Each vertex of the model will be transformed by the current matrix on
the top of the MODELVIEW matrix stack.

• Normalization: After the above MODELVIEW transformation, each vertex will
be transformed by the current matrix on the top of the PROJECTION matrix
stack.

• Clipping: Each primitive (point, line, polygon, etc.) is clipped against the clipping
planes in homogeneous coordinates.

• Perspective division: All primitives are transformed from homogeneous
coordinates into Cartesian coordinates.

• Viewport transformation: The model is scaled and translated into the viewport for
scan-conversion.

2.4.3 3D Clipping Against a Cube

Clipping a 3D point against a cube can be done in six comparisons. If we represent a
point by its six comparisons in six bits, we can easily decide a 3D line clipping.

Bit 6 = 1 if x<left;
Bit 5 = 1 if x>right;
Bit 4 = 1 if y<bottom;
Bit 3 = 1 if y>top;
Bit 2 = 1 if z<near;
Bit 1 = 1 if z>far;

If the two end points of a line’s 6 bits are 000000 (the logic OR is equal to zero), then
the end points of the line are inside the cube. If there is a same bit in the two end
points is not equal to zero (the logic AND is not equal to zero), then the two end points
are outside the viewing volume. Otherwise, we can find the lines intersections with
the cube. Given two end points (x0, y0, z0) and (x1, y1, z1), the parametric line equation
can be represented as:

112 2 Transformation and Viewing

(EQ 61)

(EQ 62)

(EQ 63)

Now if any bit is not equal to zero, say Bit 2 = 1, then z=near, and we can find t in
Equation 63. and therefore find the intersection point (x, y, z) according to Equation 61
and Equation 62.

For a polygon in 3D, we can extend the above line clipping algorithm to walk around
the edges of the polygon against the cube. If a polygon’s edge lies inside the clipping
volume, the vertices are accepted for the new polygon. Otherwise, we can throw out
all vertices outside a volume boundary plane, cut the two edges that go out of and into
a boundary plane, and generate new vertices along a boundary plane between the two
edges to replace the vertices that are outside a boundary plane. The clipped polygon
has all vertices in the viewing volume after the six boundary planes are processed.

Clipping against the viewing volume is part of OpenGL view pipeline discussed
earlier. Actually, clipping against an arbitrary plane can be calculated similarly as
discussed below.

2.4.4 Clipping Against an Arbitrary Plane

A plane equation in general form can be expressed as follows:

(EQ 64)

We can clip a point against the plane equation. Given a point (x0, y0, z0), if
, then the point is accepted. Otherwise it is clipped. For an

edge, if the two end points are not accepted or clipped, we can find the intersection of
the edge with the plane by putting Equation 61, Equation 62, and Equation 63 into
Equation 64. Again, we can walk around the vertices of a polygon to clip against the
plane.

x x0 t x1 x0–()+=

y y0 t y1 y0–()+=

z z0 t z1 z0–()+=

ax by cz d+ + + 0=

ax0 by0 cz0 d 0≥+ + +

2.4 Viewing 113

OpenGL has a function glClipPlane() that allows specifying and clipping plane. You
can enable the corresponding clipping plane so that objects below the clipping plane
will be clipped.

/* clipping against an arbitrary plane.*/

import java.lang.Math; // import net.java.games.jogl.*;
import javax.media.opengl.*;

public class J2_12_Clipping extends J2_11_ConeSolarCollision {

static double[] eqn = new double[4];
// plane equation ax+by+cz+d = 0

public void display(GLAutoDrawable glDrawable) {

//1. specify plane equation x = 0;
eqn[0] = 1;
//2. tell OpenGL system eqn is a clipping plane
gl.glClipPlane(GL.GL_CLIP_PLANE0, eqn, 0);
//3. Enable clipping of the plane.
gl.glEnable(GL.GL_CLIP_PLANE0);

super.display(glDrawable);
 }

public static void main(String[] args) {
J2_12_Clipping f = new J2_12_Clipping();

f.setTitle("JOGL J2_12_Clipping");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

2.4.5 The Logical Orders of Transformation Steps

Modeling and viewing transformations are carried out by the OpenGL system
automatically. For programmers, it is more practical to understand how to specify a

114 2 Transformation and Viewing

viewing volume through glOrtho() or glFrustum() on the PROJECTION matrix stack
and to make sure that the model is in the viewing volume after being transformed by
the current matrix on the MODELVIEW matrix stack. The PROJECTION matrix is
multiplied with the MODELVIEW matrix, and the result is used to transform
(normalize) the original model’s vertices. The final matrix, if you view it from how it
is constructed, represents an expression or queue of matrices from left-most where
you specify normalization matrix to right-most where you specify a vertex in drawing.

When we analyze a model’s transformation steps, logically speaking, the order of
transformation steps is from right to left in the matrix expression. However, we can
look at the matrix expression from left to right if our logical is transforming the
projection (camera) instead of the model. We will discuss these two different logical
reasoning orders here.

The following demonstrates how to specify the
modelview and projection matrices on the two
stacks in the example J2_12_RobotSolar.java, as
shown in Fig. 2.25. Here the logical reasoning is
from where we specify the model to where we
specify the projection matrix.

1. In display(), a robot arm is calculated at the
origin of the modeling coordinates.

2. As we discussed before, although the matrices
are multiplied from the top-down
transformation commands, when we analyze a
model’s transformations, logically speaking,
the order of transformation steps are bottom-up
from the closest transformation above the drawing command on the MODELVIEW
matrix stack to where we specify the viewing volume on the PROJECTION matrix
stack.

3. OpenGL provides PROJECTION and MODELVIEW matrix stacks to facilitate
viewing and transformation separately, which is a nice separation and logical
structure. Theoretically, we do not have to require two pieces of hardware, because
the matrix on top of the PROJECTION matrix stack and the matrix on top of the
MODELVIEW matrix stack are multiplied together to transform the models into

 Fig. 2.25 Viewing in 3D [See
Color Plate 2]

2.4 Viewing 115

the canonical viewing volume. Therefore, we can view these two matrices as one
matrix expression, and some of the transformations can be on either of the matrix
stacks. The following transformation step is an example.

4. In Reshape(), the robot arm is translated along z axis −(zNear + zFar)/2 in order to
be put in the middle of the viewing volume. This translation here can be the first
matrix in the MODELVIEW matrix expression or the last matrix in the
PROJECTION matrix expression.

5. glOrtho() or glFrustum() specify the viewing volume. The models in the viewing
volume will appear in the viewport area on the display.

6. glViewport() in Reshape() specifies the rendering area within the display window.
The viewing volume will be projected into the viewport area. When we reshape the
drawing area, the viewport aspect ratio (w/h) changes accordingly. We may specify
a different viewport using glViewport() and draw into that area. In other words, we
may have multiple viewports with different renderings in each display, which will
be discussed later.

/* 3D transformation and viewing */

import net.java.games.jogl.*;

public class J2_12_RobotSolar extends
 J2_11_ConeSolarCollision {

 public void reshape(
 GLDrawable glDrawable,
 int x,
 int y,
 int w,
 int h) {

 WIDTH = w;
 HEIGHT = h;

 // enable zbuffer for hidden-surface removal
 gl.glEnable(GL.GL_DEPTH_TEST);

 // specify the drawing area within the frame window
 gl.glViewport(0, 0, w, h);

116 2 Transformation and Viewing

 // projection is carried on the projection matrix
 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();
 // specify perspective projection using glFrustum
 gl.glFrustum(-w/4, w/4, -h/4, h/4, w/2, 4*w);

 // put the models at the center of the viewing volume
 gl.glTranslatef(0, 0, -2*w);

 // transformations are on the modelview matrix
 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 public void display(GLDrawable glDrawable) {

 cnt++;
 depth = (cnt/100)%6;

 gl.glClear(GL.GL_COLOR_BUFFER_BIT|
 GL.GL_DEPTH_BUFFER_BIT);

 if (cnt%60==0) {
 aalpha = -aalpha;
 abeta = -abeta;
 agama = -agama;
 }
 alpha += aalpha;
 beta += abeta;
 gama += agama;

 drawRobot(O, A, B, C, alpha, beta, gama);

 try {
 Thread.sleep(15);
 } catch (Exception ignore) {}
 }

 void drawRobot (float O, float A, float B, float C,
 float alpha, float beta, float gama) {

 gl.glLineWidth(8);
 drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

 gl.glPushMatrix();

 gl.glRotatef(cnt, 0, 1, 0);

2.4 Viewing 117

 gl.glRotatef(alpha, 0, 0, 1);
 // R_z(alpha) is on top of the matrix stack
 drawArm(O, A);

 gl.glTranslatef(A, 0, 0);
 gl.glRotatef(beta, 0, 0, 1);
 // R_z(alpha)T_x(A)R_z(beta) is on top of the stack
 drawArm(A, B);

 gl.glTranslatef(B-A, 0, 0);
 gl.glRotatef(gama, 0, 0, 1);
 // R_z(alpha)T_x(A)R_z(beta)T_x(B)R_z(gama) is on top
 drawArm(B, C);

 // put the solar system at the end of the robot arm
 gl.glTranslatef(C-B, 0, 0);
 drawSolar(WIDTH/4, 2.5f*cnt, WIDTH/6, 1.5f*cnt);

 gl.glPopMatrix();
 }

 public static void main(String[] args) {
 J2_12_RobotSolar f = new J2_12_RobotSolar();

 f.setTitle("JOGL J2_12_RobotSolar");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

118 2 Transformation and Viewing

Another way of looking at the modeling and
viewing transformation is that the matrix
expression transforms the viewing method
instead of the model. Translating a model along
the negative z axis is like moving the viewing
volume (camera) along the positive z axis.
Similarly, rotating a model along an axis by a
positive angle is like rotating the viewing volume
along the axis by a negative angle. When we
analyze a model’s transformation by thinking
about transforming its viewing, the order of
transformation steps are top-down from where
we specify the viewing volume to where we
specify the drawing command. We should
remember that the signs of the transformation are logically negated in this perspective.
Example J2_12_RobotSolar.java, specifies transformation in myCamera() from the
top-down point of view. The result is shown in Fig. 2.26.

/* going backwards to the moon in generalized solar system */

import net.java.games.jogl.*;

public class J2_13_TravelSolar extends J2_12_RobotSolar {

 public void display(GLDrawable glDrawable) {

 cnt++;
 depth = (cnt/50)%6;

gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);

 if (cnt%60==0) {
 aalpha = -aalpha; abeta = -abeta; agama = -agama;
 }
 alpha += aalpha; beta += abeta; gama += agama;

 gl.glPushMatrix();
 if (cnt%1000<500) {
 // look at the solar system from the moon
 myCamera(A, B, C, alpha, beta, gama);
 }

 Fig. 2.26 Transform the viewing
[See Color Plate 2]

2.4 Viewing 119

 drawRobot(O, A, B, C, alpha, beta, gama);
 gl.glPopMatrix();

 void myCamera(float A, float B, float C,
 float alpha, float beta, float gama) {

 float E = WIDTH/4; float e = 2.5f*cnt;
 float M = WIDTH/6; float m = 1.5f*cnt;

 //1. camera faces the negative x axis
 gl.glRotatef(-90, 0, 1, 0);

 //2. camera on positive x axis
 gl.glTranslatef(-M*2, 0, 0);

 //3. camera rotates with the cylinder
 gl.glRotatef(-cylinderm, 0, 1, 0);

 // and so on reversing the solar transformation
 gl.glTranslatef(0, -E, 0);
 gl.glRotatef(-alpha, 0, 0, 1); // tilt angle
 // rotating around the "sun"; proceed angle
 gl.glRotatef(-e, 0, 1, 0);

 // and reversing the robot transformation
 gl.glTranslatef(-C+B, 0, 0);
 gl.glRotatef(-gama, 0, 0, 1);
 gl.glTranslatef(-B+A, 0, 0);
 gl.glRotatef(-beta, 0, 0, 1);
 gl.glTranslatef(-A, 0, 0);
 gl.glRotatef(-alpha, 0, 0, 1);
 gl.glRotatef(-cnt, 0, 1, 0);
 }

 public static void main(String[] args) {
 J2_13_TravelSolar f = new J2_13_TravelSolar();

 f.setTitle("JOGL J2_13_TravelSolar");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

120 2 Transformation and Viewing

2.4.6 gluPerspective and gluLookAt

The OpenGL Utility (GLU) library, which is considered part of OpenGL, contains
several groups of convenience functions that are built on top of OpenGL functions and
complement the OpenGL library. The prefix for OpenGL Utility library functions is
"glu" rather than "gl." We have only focused on the OpenGL library. For further
understanding viewing, here we discuss two GLU library functions: gluPerspective()
and gluLookAt(). More GLU library functions are discussed in Chapter 5.

gluPerspective() sets up a perspective projection matrix as follows:

void gluPerspective(
 double fovy, // the field of view angle in y-direction
 double aspect, // width/height of the near clipping plane
 double zNear, // distance from the origin to the near
 double zFar // distance from the origin to far
);

The parameters of gluPerspective() are explained in Fig. 2.27. Compared with
glFrustum(), gluPerspective() is easier to use for some programmers, but it is less
powerful. The fovy (field of view) angle is symmetric around z axis in y direction, and
its near and far clipping planes are symmetric around z axis as well. Therefore,
gluPerspective() can only specify a symmetric viewing frustum around z axis,
whereas glFrustum() has no such restriction. The following example
J2_14_Perspective.java shows an implementation of myPerspective(double fovy,
double aspect, double near, double far):

2.4 Viewing 121

 Fig. 2.27 gluPerspective specifies a viewing frustum symmetric around z axis

/* simulate gluPerspective */
import net.java.games.jogl.*;
import java.lang.Math;

public class J2_14_Perspective extends
 J2_13_TravelSolar {

 public void myPerspective(double fovy, double aspect,
 double near, double far) {
 double left, right, bottom, top;

 fovy = fovy*Math.PI/180; // convert degree to arc

 top = near*Math.tan(fovy/2);
 bottom = -top;
 right = aspect*top;
 left = -right;

 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustum(left, right, bottom, top, near, far);
 }

 public void reshape(GLDrawable glDrawable,
 int x, int y, int width, int height) {

view
point

zNear
zFar

z

width − in x axis direction

height − in y axis direction

fovy − angle along y axis

aspect = width / height;

122 2 Transformation and Viewing

 WIDTH = width;
 HEIGHT = height;

 // enable zbuffer for hidden-surface removal
 gl.glEnable(GL.GL_DEPTH_TEST);
 gl.glViewport(0, 0, width, height);

 myPerspective(45, 1, width/2, 4*width);

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glTranslatef(0, 0, -2*width);
 }

 public static void main(String[] args) {
 J2_14_Perspective f = new J2_14_Perspective();

 f.setTitle("JOGL J2_14_Perspective");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

glOrtho(), glFrustum(), and gluPerspective all specify a viewing volume oriented with
left and right edges on the near clipping plane parallel to y axis. As we mentioned
earlier, we use an up vector to represent the orientation of the viewing volume. In
other words, by default the projection of up onto the near clipping plane is always
parallel to the y axis. Because we can transform a viewing volume (camera) now as
discussed in the past section, if we specify an orientation vector (upX, upY, upZ), we
can orient the viewing volume accordingly. Here the angle between y axis and up’s
projection on the xy plane is atan(upX/upY), we just need to rotate the viewing volume
−atan(upX/upY) to achieve this. This can go further. We do not necessarily have to
look from the origin down to the negative z axis. Instead, we can specify the viewpoint
as a point eye looking down to another point center, with up as the orientation of the
viewing volume. This seems complex, but an equivalent transformation seems much
simpler. Given a triangle in 3D (eye, center, up), can we build up a transformation
matrix so that after the transformation eye will be at the origin, center will be in the
negative z axis, and up in the yz plane? The answer is shown in the method
myLookAt() in the example J2_15_LookAt.java in the next section. myLookAt() and
myGluLookAt() in the example are equivalent simulations of gluLookAt(), which

2.4 Viewing 123

defines a viewing transformation from viewpoint eye to another point center with up
as the viewing frustum’s orientation vector:

void gluLookAt (double eyeX
 , double eyeY
 , double eyeZ
 , double centerX
 , double centerY
 , double centerZ
 , double upX
 , double upY
 , double upZ
);

Here the eye and center are points, but up is a vector. This is slightly different from
our triangle example, where up is a point as well. As we can see, the up vector cannot
be parallel to the line (eye, center).

2.4.7 Multiple Viewports

glViewport(int x, int y, int width, int height) specifies the rendering area within the
frame of the display window. By default glViewport(0, 0, w, h) is implicitly called in
the reshape(GLDrawable glDrawable, int x, int y, int w, int h) with the same area as
the display window. The viewing volume will be projected into the viewport area
accordingly.

We may specify a different viewport using glViewport() with lower-left corner (x, y)
goes from (0, 0) to (w, h) and the viewport region is an area of width to height in pixels
confined in the display window. All drawing functions afterwards will draw into the
current viewport region. That is, the projection goes to the viewport. Also, we may
specify multiple viewports at different regions in a drawing area and draw different
scenes into these viewports. For example, glViewport(0, 0, width/2, height/2) will be
the lower-left quarter of the drawing area, and glViewport(width/2, height/2, width/2,
height/2) will be the upper-right quarter of the drawing area. In our example
J2_15_LookAt.java below, we also specified different projection methods to
demonstrate myLookAt(), mygluLookat(), and myPerspective() functions. If we don’t
specify different projection methods in different viewports, the same projection matrix
will be used for different viewports. Fig. 2.28 is a snapshot of the multiple viewports
rendering.

124 2 Transformation and Viewing

 Fig. 2.28 Multiple viewports with different LookAt projections [See Color Plate 3]

/* simulate gluLookAt and display in multiple viewports */
import net.java.games.jogl.*;
import java.lang.Math;
import net.java.games.jogl.util.GLUT;

public class J2_15_LookAt extends J2_14_Perspective {
 GLUT glut = new GLUT();

 public void display(GLDrawable glDrawable) {
 cnt++;
 depth = 4;
 gl.glClear(GL.GL_COLOR_BUFFER_BIT|
 GL.GL_DEPTH_BUFFER_BIT);

 viewPort1();
 drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
 // the objects' centers are retrieved from above call

2.4 Viewing 125

 viewPort2();
 drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
 viewPort3();
 drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
 viewPort4();
 drawRobot(O, A, B, C, alpha, beta, gama);

 try {
 Thread.sleep(10);
 } catch (Exception ignore) {}
 }

 public void viewPort1() {
 int w = WIDTH, h = HEIGHT;

 gl.glViewport(0, 0, w/2, h/2);

 // use a different projection
 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrtho(-w/2, w/2, -h/2, h/2, -w, w);
 gl.glRasterPos3f(-w/3, -h/3, 0); // start position
 glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
 "Viewport1 - looking down -z.");

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 public void viewPort2() {
 int w = WIDTH, h = HEIGHT;
 gl.glViewport(w/2, 0, w/2, h/2);

 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();

 // make sure the cone is within the viewing volume
 gl.glFrustum(-w/8, w/8, -h/8, h/8, w/2, 4*w);
 gl.glTranslatef(0, 0, -2*w);
 gl.glRasterPos3f(-w/3, -h/3, 0); // start position
 glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
 "Viewport2 - earth to origin.");

 // earthC retrieved in drawSolar() before viewPort2
 myLookAt(earthC[0], earthC[1], earthC[2],
 0, 0, 0, 0, 1, 0);

126 2 Transformation and Viewing

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();

 }

 public void viewPort3() {
 int w = WIDTH, h = HEIGHT;

 gl.glViewport(w/2, h/2, w/2, h/2);

 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();
 // make sure the cone is within the viewing volume
 gl.glFrustum(-w/8, w/8, -h/8, h/8, w/2, 4*w);
 gl.glTranslatef(0, 0, -2*w);

 gl.glRasterPos3f(-w/3, -h/3, 0); // start position
 glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
 "Viewport3 - cylinder to earth.");

 // earthC retrieved in drawSolar() before viewPort3
 mygluLookAt(cylinderC[0], cylinderC[1], cylinderC[2],
 earthC[0], earthC[1], earthC[2],
 earthC[0], earthC[1], earthC[2]);

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

 public void viewPort4() {
 int w = WIDTH, h = HEIGHT;

 gl.glViewport(0, h/2, w/2, h/2);

 gl.glMatrixMode(GL.GL_PROJECTION);
 gl.glLoadIdentity();
 // implemented in superclass J2_14_Perspective
 myPerspective(45, w/h, w/2, 4*w);
 gl.glTranslatef(0, 0, -1.5f*w);

 gl.glMatrixMode(GL.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glRasterPos3f(-w/2.5f, -h/2.1f, 0);
 glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
 "Viewport4 - a different scene.");
 }

2.4 Viewing 127

 public void myLookAt(
 double eX, double eY, double eZ,
 double cX, double cY, double cZ,
 double upX, double upY, double upZ) {
 //eye and center are points, but up is a vector

 //1. change center into a vector:
 // glTranslated(-eX, -eY, -eZ);
 cX = cX-eX; cY = cY-eY; cZ = cZ-eZ;

 //2. The angle of center on xz plane and x axis
 // i.e. angle to rot so center in the neg. yz plane
 double a = Math.atan(cZ/cX);
 if (cX>=0) {
 a = a+Math.PI/2;
 } else {
 a = a-Math.PI/2;
 }

 //3. The angle between the center and y axis
 // i.e. angle to rot so center in the negative z axis
 double b = Math.acos(
 cY/Math.sqrt(cX*cX+cY*cY+cZ*cZ));
 b = b-Math.PI/2;

 //4. up rotate around y axis (a) radians
 double upx = upX*Math.cos(a)+upZ*Math.sin(a);
 double upz = -upX*Math.sin(a)+upZ*Math.cos(a);
 upX = upx; upZ = upz;

 //5. up rotate around x axis (b) radians
 double upy = upY*Math.cos(b)-upZ*Math.sin(b);
 upz = upY*Math.sin(b)+upZ*Math.cos(b);
 upY = upy; upZ = upz;

 double c = Math.atan(upX/upY);
 if (upY<0) {
 //6. the angle between up on xy plane and y axis
 c = c+Math.PI;
 }
 gl.glRotated(Math.toDegrees(c), 0, 0, 1);
 // up in yz plane
 gl.glRotated(Math.toDegrees(b), 1, 0, 0);
 // center in negative z axis
 gl.glRotated(Math.toDegrees(a), 0, 1, 0);
 //center in yz plane
 gl.glTranslated(-eX, -eY, -eZ);
 //eye at the origin
 }

128 2 Transformation and Viewing

 public void mygluLookAt(
 double eX, double eY, double eZ,
 double cX, double cY, double cZ,
 double upX, double upY, double upZ) {
 //eye and center are points, but up is a vector

 double[] F = new double[3];
 double[] UP = new double[3];
 double[] s = new double[3];
 double[] u = new double[3];
 F[0] = cX-eX; F[1] = cY-eY; F[2] = cZ-eZ;
 UP[0] = upX; UP[1] = upY; UP[2] = upZ;
 normalize(F); normalize(UP);
 crossProd(F, UP, s); crossProd(s, F, u);

 double[] M = new double[16];
 M[0] = s[0]; M[1] = u[0]; M[2] = -F[0];
 M[3] = 0; M[4] = s[1]; M[5] = u[1];
 M[6] = -F[1]; M[7] = 0; M[8] = s[2];
 M[9] = u[2]; M[10] = -F[2]; M[11] = 0;
 M[12] = 0; M[13] = 0; M[14] = 0; M[15] = 1;

 gl.glMultMatrixd(M);
 gl.glTranslated(-eX, -eY, -eZ);
 }

 public void normalize(double v[]) {
 double d = Math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

 if (d==0) {
 System.out.println("0 length vector: normalize().");
 return;
 }
 v[0] /= d; v[1] /= d; v[2] /= d;
 }

 public void crossProd(double U[],
 double V[], double W[]) {
 // W = U X V
 W[0] = U[1]*V[2]-U[2]*V[1];
 W[1] = U[2]*V[0]-U[0]*V[2];
 W[2] = U[0]*V[1]-U[1]*V[0];
 }

2.5 Review Questions 129

 public static void main(String[] args) {
 J2_15_LookAt f = new J2_15_LookAt();

 f.setTitle("JOGL J2_15_LookAt");
 f.setSize(WIDTH, HEIGHT);
 f.setVisible(true);
 }
}

2.5 Review Questions

1. An octahedron has v1=(1,0,0), v2=(0,1,0), v3=(0,0,1), v4=(−1,0,0), v5=(0,−1,0), v6=(0,0,−1). Please
choose the triangles that face the outside of the octahedron.

 a. (v1v2v3, v1v3v5, v1v5v6,v1v2v6) b. (v2v3v1, v2v1v6, v2v6v4, v2v4v3)
 c. (v3v2v1, v3v5v1, v3v4v2, v3v4v5) d. (v4v2v1, v4v5v1, v3v4v2, v3v4v5)

2. If we subdivide the above octahedron 8 times (depth=8), how many triangles we will have in the
final sphere.

 No. of triangles:

3. Choose the matrix expression that
would transform square ABCD into
square A’B’C’D’ in 3D as shown in the
figure below.

 a. T(−1,−1, 0)Ry(−90)
 b. Ry(−90) T(−1,−1, 0)
 c. T(−2,−2, 0)Rz(−90)Ry(90)
 d. Ry(90)Rz(−90)T(−2,−2, 0)

4. myDrawTop() will draw a top below on the
left. Write a section of OpenGL code so that the
top will appear as specified on the right with tip
at A(x1, y1, z1), tilted α, and proceeded θ around
an axis parallel to y axis.

X

Y

Z

D(2,2,0)

B(1,1,0) C(2,1,0)

A

X

Y

Z

A’(0,1,0)

C’(0,0,1)

D’(0,0,0)
B’(0,1,1)

x

y

A(x1, y1, z1)

θ

α

θ

x

y

z z

1

6. In the scan-line algorithm for filling polygons, if z-buffer is used, when should the program call
the z-buffer algorithm function?

 a. at the beginning of the program b. at the beginning of each scan-line
 c. at the beginning of each pixel d. at the beginning of each polygon

7. Collision detection avoids two models in an animation penetrating each other; which of the fol-
lowing is FALSE:

 a. bounding boxes are used for efficiency purposes in collision detection
 b. both animated and stationary objects are covered by the bounding boxes
 c. animated objects can move whatever distance between frames of calculations
 d. collision detection can be calculated in many different ways

8. After following transformations, what is on top of the matrix stack at drawObject2()?
 glLoadIdentity(); glPushMatrix(); glMultMatrixf(S); glRotatef(a,1,0,0); glTranslatef(t,0,0);
drawObject1(); glGetFloatv(GL_MODELVIEW_MATRIX, &tmp); glPopMatrix();
glPushMatrix(); glMultMatrixf(S); glMultMatrixf(&tmp);drawObject2(); glPopMatrix();

 a. SSRx(a)Tx(t) b. STx(t)Rx(a)S c. Tx(t)Rx(a)SS
 d. Rx(a)SSTx(t) e. SRx(a)Tx(t)

9. Given glViewport (u, v, w, h) and gluOrtho2D(xmin,
xmax, ymin, ymax), choose the 2D transformation
matrix expression that maps a point in the modeling
(modelview) coordinates to the device (viewport) coor-
dinates.

 a. S(1/(xmax − xmin),1/(ymax − ymin))
T(−xmin,−ymin)T(u,v)S(w,h)

 b. S(1/(xmax − xmin),1/(ymax − ymin))S(w,h)T(−xmin,−ymin)T(u,v)
 c. T(u,v)S(w,h)S(1/(xmax − xmin),1/(ymax − ymin))T(−xmin,−ymin)
 d. T(−xmin,−ymin)T(u,v)S(1/(xmax − xmin),1/(ymax − ymin))S(w,h)

glLoadIdentity();
glRotatef (-90, 0.0, 1.0, 0.0);
myDrawTop(); // left
glRotatef(-90, 0.0, 0.0, 1.0);

glPushMatrix();
glTranslatef (0.0, 0.0, 1.0);
myDrawTop(); //right
glPopMatrix();

5. myDrawTop() will draw an object in oblique pro-
jection as in the question above with height equals 1
and radius equals 0.5. Please draw two displays in
orthographic projection according to the program
on the right (as they will appear on the screen where
the z axis is perpendicular to the plane).

x

y

1

1
x

y

1

1

(u,v)

h

w

(xmin, ymin)

(xmax, ymax)

modeling viewport

130 2 Transformation and Viewing

2.6 Programming Assignments 131

10. Given a 2D model and a modeling window, please draw the object in normalized coordinates
after clipping and in the device as it appears on a display.

11. In the OpenGL graphics pipeline, please order the following according to their order of opera-
tions:

 () clipping () viewport transformation
 () modelview transformation () normalization
 () perspective division () scan conversion

12. Please implement the following viewing command: gmuPerspective(fx, fy, d, s),
where the viewing direction is from the origin looking down the negative z axis. fx is the field of
view angle in the x direction; fy is the field of view angle in the y direction; d is the distance from the
viewpoint to the center of the viewing volume, which is a point on the negative z axis; s is the dis-
tance from d to the near or far clipping planes.

 gmuPerspective(fx, fy, d, s) {

 glFrustum(l, r, b, t, n, f);
 }

2.6 Programming Assignments

1. Implement myLoadIdentity, myRotatef, myTranslatef, myScalef, myPushMatrix, and myPop-
Matrix just like their corresponding OpenGL commands. Then, in the rest of the programming
assignments, you can interchange them with OpenGL commands.

2. Check out online what is polarview transformation; implement your own polarview with a dem-
onstration of the function.

Xmodeling

Ymodeling

Xnormalized

Ynormalized

Xdevice

Ydevice

d

f
n

s

132 2 Transformation and Viewing

3. As shown in the figure on the right, use 2D transforma-
tion to rotate the stroke font and the star.

4. The above problem can be extended into 3D: the outer
circle rotates along y axis, the inner circle rotates around x
axis, and the star rotates around z axis.

5. Draw a cone, a cylinder, and a sphere that bounce back
and forth along a circle, as shown in the figure. When the
objects meet, they change their directions of movement.
The program must be in double-buffer mode and have hid-
den surface removal.

6. Draw two circles with the same animation as above. At the same time,
one circle rotates around x axis, and the other rotates around y axis.

7. Implement a 3D robot arm animation as in the book, and put the
above animation system on the palm of the robot arm. The system on the
palm can change its size periodically, which is achieved through scaling.

8. Draw a cone, a cylinder, and a sphere that move and
collide in the moon’s trajectory in the generalized solar
system. When the objects meet, they change their direc-
tions of movement.

9. Put the above system on the palm of the robot arm.

10. Implement myPerspective and myLookAt just like
gluPerspective and gluLookAt. Then, use them to look
from the cone to the earth or cylinder in the system above.

11. Display different perspectives or direction of viewing
in multiple viewports.

Bitmap
 Stroke

x

y

α

θ

z

