2
Transformation and Viewing

Chapter objectives:

e Understand basic transformation and viewing methods
e Understand 3D hidden-surface removal and collision detection

e Design and implement 3D models (cone, cylinder, and sphere) and their
animations in OpenGL

2.1 Geometric Transformation

In Chapter 1, we discussed creating and scan-converting primitive models. After a
computer-based model is generated, it can be moved around or even transformed into
a completely different shape. To do this, we need to specify the rotation axis and
angle, translation vector, scaling vector, or other manipulations to the model. The
ordinary geometric transformation is a process of mathematical manipulations of all
the vertices of the model through matrix multiplications, where the graphics system
then displays the final transformed model. The transformation can be predefined, such
as moving along a planned trajectory; or interactive, depending on the user input. The
transformation can be permanent — the coordinates of the vertices are changed and
we have a new model replacing the original one; or just temporary — the vertices
return to their original coordinates. In many cases a model is transformed in order to
be displayed at a different position or orientation, and the graphics system discards the
transformed model after scan-conversion. Sometimes all the vertices of a model go
through the same transformation and the shape of the model is preserved; sometimes
different vertices go through different transformations, and the shape is dynamic.

A model can be displayed repetitively with each frame going through a small
transformation step. This causes the model to be animated on display.

J.X. Chen, Guide to Graphics Software Tools, doi: 10.1007/978-1-84800-901-1 2, 29
© Springer-Verlag London Limited 2008

30 2 Transformation and Viewing

2.2 2D Transformation

Translation, rotation, and scaling are the basic and essential transformations. They
can be combined to achieve most transformations in many applications. To simplify
the discussion, we will first introduce 2D transformation, and then generalize it into
3D.

2.2.1 2D Translation

A point(x, y) is translated to(x', ') by a distance vector (d,, dy) :

x' = x+dx, (EQ 12)

y' =y+dy. (EQ 13)

In the homogeneous coordinates, we represent a point(x, y) by a column vector

X
P =1yl Similarly, P' = |- Then, translation can be achieved by matrix
1 1
multiplication:
¥ 10d/||y
Y| = OIdy K (EQ 14)
g loo 1)U
10d,
Let's assume 7(d,, dy) = 10 1 d |- We can denote the translation matrix equation as:
Y
00 1

P =T, dy)P. (EQ 15)

2.2 2D Transformation 31

If a model is a set of vertices, all vertices of the model can be translated as points by
the same translation vector (Fig. 2.1). Note that translation moves a model through a
distance without changing its orientation.

y ‘ dx P

v P’

] .

Fig. 2.1 Basic transformation: translation

2.2.2 2D Rotation
A pointP(x, y) is rotated counter-clockwise toP'(x',y') by an angle 6 around the

origin (0,0). If the rotation is clockwise, the rotation angle 0 is then negative. The
rotation axis is perpendicular to the 2D plane at the origin:

x' = xcosO —ysin0, (EQ 16)

\

V' = xsin® + ycos0. (EQ17)

In the homogeneous coordinates, rotation can be achieved by matrix multiplication:

X cosO —sinb 0] |x
y'| = |sin® cosO Of|y|- (EQ 18)
1 0 0 1|1

cos® —sin@ 0
Let's assume R(0) = |4in® cos® 0| The simplified rotation matrix equation is:

0 0 1

P = R(0)P. (EQ 19)

32 2 Transformation and Viewing

If a model is a set of vertices, all vertices of y .

the model can be rotated as points by the \

same angle around the same rotation axis

(Fig. 2.2). Rotation moves a model around

the origin of the coordinates. The distance 0 P
of each vertex to the origin is not changed

. : x
during rotation. >

Fig. 2.2 Basic transformation: rotatio

2.2.3 2D Scaling
A pointP(x, y) is scaled to P'(x', y') by a scaling vector (s, sy) :

x (EQ 20)

Il
)
=

Y= sy (EQ 21)

In the homogeneous coordinates, again, scaling can be achieved by matrix
multiplication:

' sXOOx

1| =) EQ 22
¥ 0 s, 0]y ()
1 00 1|

s, 00
Let's assume S(s , 5,) = |0 s, 0| Wecan denote the scaling matrix equation as:
y
001
P = S8(sy,5,)P. (EQ 23)

If a model is a set of vertices, all vertices of the model can be scaled as points by the
same scaling vector (Fig. 2.3). Scaling amplifies or shrinks a model around the origin
of the coordinates. Note that a scaled vertex will move unless it is at the origin.

2.2 2D Transformation

33

Before scaling
Y

After scaling by (2, 2)

y

Fig. 2.3 Basic transformation: scaling

2.2.4 Composition of 2D Transformations

A complex transformation is often achieved by a series of simple transformation steps.
The result is a composition of translations, rotations, and scalings. We will study this
through the following three examples.

Example 2.1: finding the coordinates of a moving clock hand in 2D

Consider a single clock hand. The center of rotation is given at c¢(x,, y,), and the end
rotation point is at a(x;, y,). If we know the rotation angle is 6, can we find the new
end point /4’ after the rotation? As shown in Fig. 2.4, we can achieve this by a series of

transformations.

Initial position: h
Destination: h'

y h(x;y1)
h/

[\

Step 1. translate:
h[= T(_x())_y(ﬂh

y

hixppyi)

Step 2. rotate:
h2 = R(—G)hl

y

0
ho(x12y12)

Fig. 2.4 Moving the clock hand by matrix multiplications

X

Step 3. translate:
h'=T(xpyh;

y h
h(x'py'y)

/N

1. Translate the hand so that the center of rotation is at the origin. Note that we only
need to find the new coordinates of the end point /:

34 2 Transformation and Viewing

X 10 —x,||x;

Vi =101 Vol ¥ - (EQ 24)
1 00 1|1

That is, h; = T(-xy-yy)h. (EQ 25)

2. Rotate 0 degrees around the origin. Note that the positive direction of rotation is
counter-clockwise:

h,=R(-0)h,. (EQ 26)

3. After the rotation. We translate again to move the clock back to its original posi-
tion:

h'=T(xpyp)ho. (EQ 27)

Therefore, putting Equations 19 to 21 together, the combination of transformations to
achieve the clock hand movement is:

h' = T(xpy0)R(-6)T(xy,-yo)h. (EQ 28)
X'y 10 xp|| cos® sin® 0f[1 0 —xg||x;
Thatis: |y | = 10 1 y,||-sin® cos® 0|0 1 —y,||v,|" (EQ 29)
i oo 1|L 0O 0 Lo 1]|1

In the future, we will write matrix equations concisely using only symbol notations
instead of full matrix expressions. However, we should always remember that the
symbols represent the corresponding matrices.

Let’s assume M=T(x,,y,)R(-0)T(-x,-y,). We can further simplify the equation:

h' = Mh. (EQ 30)

2.2 2D Transformation 35

The order of the matrices in a matrix expression matters. The sequence represents the
order of the transformations. For example, although matrix M in Equation 30 can be
calculated by multiplying the first two matrices first [7(x,,yo)R(-0)]1T(-x,-y,) or by
multiplying the last two matrices first T(x,,y,)[R(-8)T(-xy,-y,)], the order of the
matrices cannot be changed.

When we analyze a model’s transformations, we should remember that, logically
speaking, the order of transformation steps are from right to left in the matrix
expression. In this example, the first logical step is: T(-x,,-yy)h; the second step is: R(-

0)[T(-xy-vy)h]; and the last step is: T(xp V) [R(-O)T(-xp,-y)1]-

Example 2.2: reshaping a rectangular area

In OpenGL, we can use the mouse to reshape the display area. In the Reshape callback
function, we can use gl/Viewport() to adjust the size of the drawing area accordingly.
The system makes corresponding adjustments to the models through the same
transformation matrix. Viewport transformation will be discussed later in Viewing.

Here, we discuss a similar problem: a transformation that allows reshaping a
rectangular area directly. Let's assume the coordinate system of the screen is as in
Fig. 2.5. After reshaping, the rectangular area (and all the vertices of the models) go
through the following transformations: translate so that the lower-left corner of the
area is at the origin, scale to the size of the new area, and then translate to the scaled
area location. The corresponding matrix expression is:

T(PZ)S(SX,S),)T(—PJ. (EQ 31)
Before reshaping After reshaping
s, =b/a
s, =d/c
Translate Scale Translate
a
P/ b
| ! - » v

Fig. 2.5 Scaling an arbitrary rectangular area

36 2 Transformation and Viewing

Example 2.3: drawing a 2D robot arm with three moving segments

A 2D robot arm has 3 segments rotating at the joints in a 2D plane (Fig. 2.6). Given an
arbitrary initial posture (4, B, (), let’s find the transformation matrix expressions for
another posture (4; B, C)) with respective rotations (o, B3, y) around the joints. Here
we specify (4, B, C) on the x axis, which is used to simplify the visualization. (4, B, C)
can be initialized arbitrarily. There are many different methods to achieve the same
goal. Here, we elaborate three methods to achieve the same goal.

Initial position: (A, B, C) Final position
! Vi I«‘ ’ (¢} ! A‘{—\/
y,

Method I:

Step 1

Method I1:

Step 1

Method III:

Fig. 2.6 A 2D robot arm rotates (0., 3, y) degrees at the 3 joints, respectively

Method I.

1. Rotate 04BC around the origin by o degrees:

A, = R(0)4; B’ = R(o)B; C’ = R(a)C. (EQ 32)

2.2 2D Transformation 37

2. Consider 4B’C’ to be a clock hand like the example in Fig. 2.4. Rotate 4,8°C’
around A4, by B degrees. This is achieved by first translating the hand to the origin,
rotating, then translating back:

By = T(A)RB)T(-A)B’; C” = T(AY)RB)T(-4,)C". (EQ 33)
3. Again, consider B,C" to be a clock hand. Rotate B,C” around B, by y degrees:
Cy=T(BY)RWT(-B)C". (EQ 34)

Method II.

1. Consider BC to be a clock hand. Rotate BC around B by 7 degrees:
C’ =T(B)RM)T(-B)C. (EQ 35)
2. Consider ABC’ to be a clock hand. Rotate ABC” around A by [degrees:
B’ =T(A)RMPB)T(-A)B; C” = T(A)RPB)T(-4)C". (EQ 36)

3. Again, consider 0o4B’C” to be a clock hand. Rotate 04B’C " around the origin by o
degrees:

Ap= R(o)A; (EQ 37)
B;= R()B’ = R(0)T(A)R(B)T(-4)B; (EQ 38)
C/=R(0)C” = R()T(A)RB)T(-A)T(B)R(N)T(-B)C. (EQ 39)

Method III.

1. Consider 04, AB, and BC as clock hands with the rotation axes at o, 4, and B,
respectively. Rotate 04 by o degrees, 4B by (0+f) degrees, and BC by (o+B+Y)
degrees:

A= R()A; B’ = T(A)R(0+P)T(-4)B; C* = T(B)R(0AB+YT(-B)C. (EQ 40)

38 2 Transformation and Viewing

2. Translate AB’ to A (B

By=T(A)T(-A)B’ =T(A)R(0+B)T(-A)B. (EQ 41)
100

Note that 7(-4)T(A) = I, which is the identity matrix: / = | 7 (| . Any matrix
001

multiplied by the identity matrix does not change. The vertex is translated by
vector A4, and then reversed back to its original position by translation vector -A4.

3. Translate BC’ to B,C,i

Cy=T(B)T(-B)C" =T(B)R(a+B+Y)T(-B)C. (EQ 42)

2.3 3D Transformation and Hidden-surface Removal

2D transformation is a special case of 3D y
transformation where z=0. For example, a 2D P
point (x, y) is (x, » 0) in 3D, and a 2D <

rotation around the origin R(®) is a 3D 0
rotation around the z axis R.(0) (Fig.2.7).
The z axis is perpendicular to the display with
the arrow pointing towards the viewer. We
can assume the display to be a view of a 3D
drawing box, which is projected along the z
axis direction onto the 2D drawing area at z=0.

Fig. 2.7 A 3D rotation around z axi

2.3.1 3D Translation, Rotation, and Scaling

In 3D, for translation and scaling, we can translate or scale not only along the x and
the y axis, but also along the z axis. For rotation, in addition to rotating around the z
axis, we can also rotate around the x axis and the y axis. In the homogeneous
coordinates, the 3D transformation matrices for translation, rotation, and scaling are as
follows:

2.3 3D Transformation and Hidden-surface Removal 39

100 d,
Translation: T(d,, dy, d) = 010 dy ; (EQ 43)
00 1 d,
000 1 |
s. 000
Scaling: S(s,, Sy s) = 0 Sy 00 ; (EQ 44)
0 0s,0
10 0 0 1]
70 0 0
Rotation around x axis: Rx(G) — |0 cos6 —sin® 0 N (EQ 45)
0 sin® cos6 0
0 0 0 1]

cose 0 sin® 0
Rotation around y axis: R (0) = 0 1 00 K (EQ 46)
Y —sin® 0 cos6 0

0 0 0 1

cos0 —sin® 0 0
Rotation around z axis: R (8) = sin® cos® 0 0 . (EQ 47)
0 0 10

0 0 01

For example, the 2D transformation Equation 37 can be replaced by the corresponding
3D matrices:

Ap=R.()A4, (EQ 48)

40 2 Transformation and Viewing

!
b

X fx
A A
where 4 = | V|, Af = |"/¥], and 4,=0. We can show that Ap=0 as well.
AZ Afz
(.]_ (. I —

2.3.2 Transformation in OpenGL

As an example, we will implement in OpenGL the robot arm transformation Method 11
in Fig. 2.6. We consider the transformation to be a special case of 3D at z=0.

In OpenGL, all the vertices of a model are multiplied by the matrix on the top of the
MODELVIEW matrix stack and then by the matrix on the top of the PROJECTION
matrix stack before the model is scan-converted. Matrix multiplications are carried out
on the top of the matrix stack automatically in the graphics system. The
MODELVIEW matrix stack is used for geometric transformation. The PROJECTION
matrix stack is used for viewing, which will be discussed later. Here, we explain how
OpenGL handles the geometric transformations in the following example (Example
2.4, which implements Method Il in Fig. 2.6.)

1. Specify that current matrix multiplications are carried out on the top of the MOD-
ELVIEW matrix stack:

glMatrixMode (GL_MODELVIEW) ;

2. Load the current matrix on the matrix stack with the identity matrix:

glLoadIdentity () ;

1000
0100
0010
0001

The identity matrix for 3D homogeneous coordinates is: / =

2.3 3D Transformation and Hidden-surface Removal 41

3. Specify the rotation matrix R.(o), which will be multiplied by whatever matrix is
on the current matrix stack already. The result of the multiplication replaces the
matrix currently on the top of the stack. If the identity matrix is on the stack, then
IR.(0)=R_(0):

glRotatef (alpha, 0.0, 0.0, 1.0);

4. Draw a robot arm — a line segment between point O and 4. Before the model is
scan-converted into the frame buffer, O and 4 will first be transformed by the
matrix on the top of the MODELVIEW matrix stack, which is R (o). That is,
R_(0)O and R_(0r)4 will be used to scan-convert the line (Equation 37):

drawArm (O, A);

5. In the following code section, we specify a series of transformation matrices,
which in turn will be multiplied by whatever is already on the current matrix stack:
I, [NR(@), [[NR@ITA), [NROITAIR®), [[IINRO)IT(AIRB)T(-A). Before
drawArm (4, B), we have M = R(o))T(4)R(B)T(-4) on the matrix stack, which cor-
responds to Equation 38:

glPushMatrix () ;
glLoadIdentity () ;
glRotatef (alpha, 0.0, 0.0, 1.0);
drawArm (O, A);

glTranslatef (A[0], A[1l], 0.0);
glRotatef (beta, 0.0, 0.0, 1.0);
glTranslatef (-A[0], -A[1], 0.0);
drawArm (A, B);

glPopMatrix () ;

The matrix multiplication is always carried out on the top of the matrix stack.
glPushMatrix() will move the stack pointer up one slot, and duplicate the previous
matrix so that the current matrix on the top of the stack is the same as the matrix
immediately below it. glPopMatrix() will move the stack pointer down one slot.
The obvious advantage of this mechanism is to separate the transformations of the
current model between glPushMatrix() and glPopMatrix() from the
transformations of models later.

42 2 Transformation and Viewing

Let’s look at the function drawRobot() in Example 2.4 below. Fig. 2.8 shows what
is on the top of the matrix stack, when drawRobot() is called once and then again.
At drawArm(B, C) right before g/lPopMatrix(), the matrix on top of the stack is M =
R()T(A)R(B)T(-4)T(B)R(y)T(-B), which corresponds to Equation 39.

Status of the OpenGL MODELVIEW matrix stack

S [M
o 7 Ji 1 — 1
a) Before b) After ¢) Before d) After
glPushMatrix() glPushMatrix() glPopMatrix() glPopMatrix()

Fig. 2.8 Matrix stack manipulations with g/lPushMatrix() and glPopMatrix()

6. Suppose we remove glPushMatrix() and glPopMatrix() from drawRobot(), if we
call drawRobot() once, it appears fine. If we call it again, you will see that the
matrix on the matrix stack is not an identity matrix. It is the previous matrix on the

stack already (Fig. 2.9).

Status of the OpenGL MODELVIEW matrix stack

a) Call DrawRobot() b) Call DrawRobot() the 2nd time b) Call DrawRobot() the 3rd time
the first time M=R(0) T(A)R(B) T(-A)T(B)R()T(-B) N=MM

Fig. 2.9 Matrix stack manipulations without using glPushMatrix() and glPopMatrix()

For beginners, it is a good idea to draw the state of the current matrix stack while you
are reading the sample programs or writing your own programs. This will help you
clearly understand what the transformation matrices are at different stages.

2.3 3D Transformation and Hidden-surface Removal 43

Methods I and III (Fig.2.6) cannot be achieved using OpenGL transformations
directly, since OpenGL provides matrix multiplications, but not the vertex coordinates
after a vertex is transformed by the matrix. This means that all vertices are always
fixed at their original locations. This method avoids floating point accumulation
errors. We can use glGetDoublev(GL MODELVIEW MATRIX, M]]) to get the
current 16 values of the matrix on the top of the MODELVIEW stack, and multiply
the coordinates by the matrix to achieve the transformations for Methods I and III. Of
course, you may implement your own matrix multiplications to achieve all the
different transformation methods.

[* Example 2.4.robot2d.c: 2D three segments arm transformation */

float 0O[3]

{0.0, 0.0, 0.0}, A[3]
B[3] 0.0,

0.0}, CI[3]

{0.0, 0.0, 0.0}
0.0, }

~e =

o
o

float alpha, beta, gama, aalpha=.1, abeta=.3, agama=0.7;

void drawArm(float *Endl, float *End2)
{
glBegin (GL_LINES) ;
glvVertex3fv (Endl) ;
glVertex3fv (End2) ;
glEnd () ;

void drawRobot (float *A, float *B, float*C,
float alpha, float beta, float gama)

glPushMatrix () ;

glColor3f (1, 0, 0);
glRotatef (alpha, 0.0, 0.0, 1.0);

// R_z(alpha) is on top of the matrix stack
drawArm (O, A);

glColor3f (0, 1, 0);

glTranslatef (A[0], A[1], 0.0);
glRotatef (beta, 0.0, 0.0, 1.0);
glTranslatef (-A[O0], -A[1], 0.0);

// R_z(alpha)T(A)R _z(beta)T(-A) is on top of the stack
drawArm (A, B);

44 2 Transformation and Viewing

glColor3f (0, 0, 1

) i
glTranslatef (B[0], B[1], 0.0);
glRotatef (gama, 0.0, 0.0, 1.0);
glTranslatef (-B[0], -B[1], 0.0);

// R_z(alpha)T(A)R_z(beta)T(-A)T(B)R_z(gama)T(-B)
drawArm (B, C);

glPopMatrix () ;

void display (void)
if (rand() % 10000 == 0) aalpha = -aalpha;

// arm rotation angles
alpha+= aalpha; beta+= abeta; gama+= agama;

glClear (GL_COLOR_BUFFER BIT) ;
drawRobot (A, B, C, alpha, beta, gama);

glutSwapBuffers () ;

void Reshape (int w, int h)

{

glClearColor (0.0, 0.0, 0.0, 1.0);

//initialize robot arm end positions

A[0] = (float) w/7;
B[0] = (float) w/5;
C[0] = (float) w/4;

Width = w; Height = h;
glviewport (0, 0, Width, Height) ;

// hardware set to use PROJECTION matrix stack
glMatrixMode (GL_PROJECTION) ;

// initialize the current top of matrix stack to identity
glLoadIdentity () ;

glortho (-Width/2, Width/2, -Height/2, Height/2, -1.0, 1.0);

// hardware set to use model transformation matrix stack
glMatrixMode (GL_MODELVIEW) ;

// initialize the current top of matrix stack to identity
glLoadIdentity () ;

2.3 3D Transformation and Hidden-surface Removal 45

2.3.3 Hidden-surface Removal

Bounding volumes. We first introduce a simple method, called bounding volume or
minmax testing, to determine visible 3D models without using a time-consuming
hidden-surface removal algorithm. Here we assume that the viewpoint of our eye is at
the origin and the models are in the negative z axis. If we render the models in the
order of their distances to the viewpoint of the eye along z axis from the farthest to the
closest, we will have correct overlapping of the models. We can build up a rectangular
box (bounding volume) with the faces perpendicular to the x, y, or z axis to bound a
3D model, and compare the minimum and maximum bounds in the z direction
between boxes to decide which model should be rendered first. Using bounding
volumes to decide the priority of rendering is also known as minmax testing.

The z-buffer (depth-buffer) algorithm. In OpenGL, to enable the hidden-surface
removal (or visible-surface determination) mechanism, we need to enable the depth
test once and then clear the depth buffer whenever we redraw a frame:

// enable zbuffer (depthbuffer) once
glEnable (GL_DEPTH TEST) ;

// clear both framebuffer and zbuffer
glClear (GL_COLOR BUFFER _BIT | GL_DEPTH BUFFER BIT) ;

Corresponding to a frame buffer, the graphics system also has a z-buffer, or depth
buffer, with the same number of entries. After g/Clear(), the z-buffer is initialized to
the z value farthest from the view point of our eye, and the frame buffer is initialized
to the background color. When scan-converting a model (such as a polygon), before
writing a pixel color into the frame buffer, the graphics system (the z-buffer
algorithm) compares the pixel’s z value to the corresponding xy coordinates’ z value in
the z-buffer. If the pixel is closer to the view point, its z value is written into the z-
buffer and its color is written into the frame buffer. Otherwise, the system moves on to
considering the next pixel without writing into the buffers. The result is that, no matter
what order the models are scan-converted, the image in the frame buffer only shows
the pixels on the models that are not blocked by other pixels. In other words, the
visible surfaces are saved in the frame buffer, and all the hidden surfaces are removed.

A pixel’s z value is provided by the model at the corresponding xy coordinates. For
example, given a polygon and the xy coordinates, we can calculate the z value
according to the polygon’s plane equation z=f{x,y). Therefore, although scan-

46 2 Transformation and Viewing

conversion is drawing in 2D, 3D calculations are needed to decide hidden-surface
removal and others (as we will discuss in the future: lighting, texture mapping, etc.).

A plane equation in its general form is ax + by + ¢z + I = 0, where (a, b, ¢
corresponds to a vector perpendicular to the plane. A polygon is usually specified by a
list of vertices. Given three vertices on the polygon, they all satisfy the plane equation
and therefore we can find (a, b, ¢) and z=-(ax + by + 1)/c. By the way, because the
cross-product of two edges of the polygon is perpendicular to the plane, it is
proportional to (a, b, c) as well.

2.3.4 Collision Detection

In addition to visible-model determination, bounding volumes are also used for
collision detection. To avoid two models in an animation penetrating each other, we
can use their bounding volumes to decide their physical distances and collision. Of
course, the bounding volume can be in a different shape other than a box, such as a
sphere. If the distance between the centers of the two spheres is bigger than the
summation of the two radii of the spheres, we know that the two models do not collide
with each other. We may use multiple spheres with different radii to more accurately
bound a model, but the collision detection would be more complex. Of course, we
may also detect collisions directly without using bounding volumes, which is likely
much more complex and time consuming.

2.3.5 3D Models: Cone, Cylinder, and Sphere

Approximating a cone. In Example 1.5, we approximated
a circle with subdividing triangles. If we raise the center
of the circle along the z axis, we approximate a cone, as
shown in Fig. 2.10. We need to make sure that our model
is contained within the defined coordinates (i.e., the
viewing volume):

glOrtho (-Width/2, Width/2, -Height/2,
Height/2, -Width/2, Width/2) ;

Fig. 2.10 A cone

[* Example 2.5.cone: draw a cone by subdivision */
int depth=5, circleRadius=200, cnt=1;

2.3 3D Transformation and Hidden-surface Removal 47

static float vdatal[4] [3] = {
{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0},
{-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}

void subdivideCone (float *vl, float *v2, int depth)

{
float v0[3] = {0, 0, 0}, v12[3];
int 1i;
if (depth == 0)
glColor3f (vi[0]*v1[0], v1[1]l*v1[1], vi1[2]*v1[2]);

drawtriangle(vl, v2, v0); // bottom cover of the cone
v0[2] = 1; // height of the cone, the tip on z axis
drawtriangle(vl, v2, v0); // side cover of the cone
return;

}

for (i=0; 1i<3; 1i4+) v12[i] = v1[i]+v2I[i];

normalize (v12) ;
subdivideCone (vl, v12, depth - 1);
subdivideCone (v12, v2, depth - 1);

void drawCone (void)
// draw a unit cone: center at origin and bottom in xy plane

subdivideCone (vdata [0], vdata[l], depth);
subdivideCone (vdata[l], vdatal[2], depth);
subdivideCone (vdata[2], vdatal[3], depth);
subdivideCone (vdata[3], vdata[0], depth);

void display(void)

// clear both framebuffer and zbuffer
glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

glRotatef (1.1, 1., 0., 0.); // rotate 1.1 deg. alone x axis
glPushMatrix () ;
glScaled(circleRadius, circleRadius, circleRadius) ;
drawCone () ;
glPopMatrix() ;

glutSwapBuffers () ;

48 2 Transformation and Viewing

static void Reshape(int w, int h)
glClearColor (0.0, 0.0, 0.0, 1.0);

// enable zbuffer (depthbuffer) for hidden-surface removal
glEnable (GL_DEPTH TEST) ;

Width = w; Height = h;
glviewport (0, 0, Width, Height);

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

// make sure the cone is within the viewing volume
glOrthO(—Width/2, Width/2 —Height/2,
Height/2, -Width/2, Width/2);

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

Approximating a cylinder. I[f we can draw a circle at
z=0, then we can draw another circle at z=/. If we
connect the rectangles of the same vertices on the edges

of the two circles, we have a cylinder, as shown in
Fig. 2.11. Fig. 2.11 A cylinder

I* Example 2.6.cylinder.c: draw a cylinder by subdivision */
void subdivideCylinder (float *vl, float *v2, int depth)

{

float v11[3], v22[3], v00[3] = {0, 0, 0}, v12I[3];
float v01[3], v02[3];

int 1i;

if (depth == 0)

glColor3f(v1[0]*v1[0], v1[1]*v1[1l], v1[2]*v1[2]);

for (i=0; i<3; i++) |
v01[i] v11[i]
v02[1i] v22[1]

v1[i];
v2[i];

// the height of the cone along z axis
v0l[2] = v02[2] = 1;

2.3 3D Transformation and Hidden-surface Removal 49

// draw the side rectangles of the cylinder
glBegin (GL_POLYGON) ;

glvertex3fv(vll) ;

glVertex3fv(v22) ;

glvVertex3fv(v02) ;

glvertex3fv(v01l) ;
glEnd () ;

return;

}

for (i=0; 1i<3; i++)
v12[i] = v1[i]l+v2[i];
normalize (v12) ;

subdivideCylinder (vl, v12, depth - 1);

subdivideCylinder (v1l2, v2, depth - 1);

Approximating a sphere. Let’s assume that we have an equilateral triangle with its
three vertices (v;, v,, v;) on a sphere and |v,|=|v,|=|v;|=1. That is, the three vertices are
unit vectors from the origin. We can see that v,, = normalize(v,+v,) is also on the
sphere. We can further subdivide the triangle into four equilateral triangles, as shown
in Fig. 2.12(a). Example 2.7 uses this method to subdivide an octahedron
(Fig. 2.12(b)) into a sphere.

y y
V2

| Vi2

V23 | vy X
= — X
V3 /s
z
Vi3
z
a) Subdivision b) Front view of an octahedron

Fig. 2.12 Drawing a sphere through subdivision

50 2 Transformation and Viewing

I* Example 2.7.sphere.c: draw a sphere by subdivision */

static float vdata[6][3] = {
1.0, o}, {o 1.0, 0.0}, .0, 0.0, 1.0},
-1.0, o.o, o 0}, {o , -1.0, 0.0}, {0.0, 0.0, -1.0
void subdivideSphere (float *v1,
float *v2, float *v3, long depth)
{
float v12[3], v23[3], v31[3];
int 1i;
if (depth == 0)
glColor3f (v1[0]*v1[0], v2[1l]*v2([1l], v3[2]*v3[2]);
drawtriangle(vl, v2, v3);
return;
}
for (1 = 0; 1 < 3; i++) {
v12[i] = v1[i]l+v2[i];
v23[1i] = v2[1i]+v3[i];
v31[i] = v3[i]l+v1[i];
normalize (v12) ;
normalize (v23) ;
normalize (v31) ;
subdivideSphere(v12, v31l, depth - 1);
subdivideSphere (v2, v23, v12, depth - 1);
subdivideSphere (v3, v31l, v23, depth - 1);
subdivideSphere(vlz v23, v31l, depth - 1);
}
void drawSphere (void)
// draw eight triangles to cover the octahedron
subdivideSphere (vdata[0], vdatal[l], vdatal[2], depth
subdivideSphere (vdata [0], vdatal[2], vdatal[4], depth
subdivideSphere (vdata[0], vdatal4], vdatal[5], depth
subdivideSphere (vdata[0], vdatal[5], vdatal[l]l, depth
subdivideSphere (vdata[3], vdatal[l], vdatal[5], depth
subdivideSphere (vdata[3], vdatal[5], vdatal[4], depth
subdivideSphere (vdata[3], vdatal[4], vdatal[2], depth
subdivideSphere (vdata[3], vdatal[2], vdata[l], depth

2.3 3D Transformation and Hidden-surface Removal 51

2.3.6 Composition of 3D Transformations

Example 2.8 implements the robot arm in Example 2.4 with 3D cylinders, as shown in
Fig. 2.13. We also add one rotation around the y axis, so the robot arm moves in 3D.

Fig. 2.13 A 3-segment robot arm

[* Example 2.8.robot3d.c: 3D 3-segment arm transformation */

drawArm (float Endl, float End2) {

float scale;

scale = End2-Endl;

glPushMatrix() ;
// the cylinder lies in the z axis;
// rotate it to lie in the x axis
glRotatef (90.0, 0.0, 1.0, 0.0);
glScalef (scale/5.0, scale/5.0, scale);

drawCylinder () ;
glPopMatrix() ;

static void drawRobot (float alpha, float beta, float gama)

{

// the robot arm is rotating around the y axis
glRotatef (1.0, 0.0, 1.0, 0.0);

52 2 Transformation and Viewing

Example 2.9 is a simplified solar system. The earth rotates around the sun and the
moon rotates around the earth in the xz plane. Given the center of the earth at E(x,, y,,
z,) and the center of the moon at M(x,,, y,. z,,), let’s find the new centers after the earth
rotates around the sun e degrees, and the moon rotates around the earth m degrees. The
moon also revolves around the sun with the earth (Fig. 2.14).

This problem is exactly like the clock problem in Fig. 2.4, except that the center of the
clock is revolving around y axis as well. We can consider the moon rotating around the
earth first, and then the moon and the earth as one object rotating around the sun.

The moon rotates first:
M’ = T(E) R(m) T(-E) M;
Er=Ry(e) E;
My = Ryfe) M;
The earth-moon rotates first:
Ep=Ry(e) E;
M’ =R (&) M;
M= T(E;) R,(m) T(-E;) M’

Fig. 2.14 Simplified solar system: a 2D problem in 3D

In OpenGL, since we can draw a sphere at the center of the coordinates, the
transformation would be simpler.

[* Example 2.9.solar.c: draw a simplified solar system */

void drawSolar (float E, float e, float M, float m)

glPushMatrix () ;
glRotatef(e, 0.0, 1.0, 0.0); // rotate around the "sun"
glTranslatef(E, 0.0, 0.0);
drawSphere(); // Ry(e)Tx(E)
glRotatef(m, 0.0, 1.0,0.0); // rotate around the "earth"
glTranslatef (M, 0.0, 0.0);
drawSphere (); // Ry(e)Tx(E)R(m)Tx (M)

glPopMatrix () ;

2.3 3D Transformation and Hidden-surface Removal 53

Next, we change the above solar system into a more complex system, which we call
the generalized solar system. Now the earth is elevated along the y axis, and the moon
is elevated along the axis from the origin towards the center of the earth, and the moon
rotates around this axis as in Fig. 2.15. In other words, the moon rotates around the
vector E. Given E and M and their rotation angles e and m respectively, can we find
the new coordinates of £,and M,?

r= S‘I”(xzﬂ/Z*ZZ)i E¢=R(e) E; // the earth rotate around the y axis
o =arc cos (V/r); B = arctg (z/x);

M; = Ry(B) M; // the center of rotation OE is in the xy plane
M, =R (o) M, // OF is along the y axis

M3 = R\(m) My; // the moon rotates along the y axis

My = R, (-a) M3; //OE returns to the xy plane

Ms = Ry(-B) My, // OF returns to its original orientation
My = R(e) Ms; // the moon proceeds with the earth

M;=R (R (-B) R.(-0) R\(m) R (0) R\(B) M;

Fig. 2.15 Generalized solar system: a 3D problem

We cannot come up with the rotation matrix for the moon, M, immediately. However,
we can consider £ and M as one object and create the rotation matrix by several steps.
Note that for M’s rotation around £, we do not really need to rotate £, but we use it as
a reference to explain the rotation.

1. As shown in Fig. 2.15, the angle between the y axis and E is oo = arc cos (y/r), the
angle between the projection of E on the xz plane and the x axis is B = arc tg (z/x);
r = sqrt(x?+y*+z?%).

2. Rotate M around the y axis by B degrees so that the new center of rotation E| is in
the xy plane:

M, =R,B)M; E, =R (B)E. (EQ 49)

3. Rotate M, around the z axis by o degrees so that the new center of rotation £, is
coincident with the y axis:

54

2 Transformation and Viewing

M; = R.()M,; E; = R(0)E). (EQ 50)

. Rotate M, around the y axis by m degree:

M; = R,(m)M,. (EQ 51)

. Rotate M; around the z axis by -a degree so that the center of rotation returns to the

xz plane:

M, =R(-0)M;; E; = R(-0)E}. (EQ 52)

. Rotate M, around y axis by - degree so that the center of rotation returns to its

original orientation:

M; =R,(-B)M,, E =R (-B)E,. (EQ 53)

. Rotate M; around y axis e degree so that the moon proceeds with the earth around

the y axis:

M, = R,(e)Ms; E;= R,(e)E. (EQ 54)

. Putting the transformation matrices together, we have:

Mf: Ry(e)Ry(_B) RZ(_O(’) Ry(m) RZ(O(’) Ry(B) M (EQ 55)

Again, in OpenGL, we start with the sphere at
the origin. The transformation is simpler. The

solar system. The result is as shown in

following code demonstrates the generalized v
‘Q

Fig. 2.16. Incidentally, g/Rotatef(m, x, y, z)
specifies a single matrix that rotates a point
along the vector (x, y, z) by m degrees. Now,
we know that the matrix is equal to R,(-B)

Rz(_a’) Ry(m) RZ(O(’) Ry(B)

Fig. 2.16 Generalized solar system

2.3 3D Transformation and Hidden-surface Removal

55

[* Example 2.10.gensolar.c: draw a generalized solar system */

void drawSolar (float E, float e, float M, float m)
float alpha=30;

glPushMatrix () ;

glRotatef (e, 0.0, 1.0, 0.0); // rotate around the "sun"

glRotatef (alpha, 0.0, 0.0, 1.0); // tilt angle
glTranslatef (0., E, 0.0);

drawSphere () ; // the earth

glRotatef(m, 0.0, 1.0, 0.); // rotate around the "earth"
glTranslatef (M, 0., 0.);

drawSphere () ; // the moon

glPopMatrix() ;

The generalized solar system corresponds to a top that rotates and proceeds as shown
in Fig. 2.17(b). The rotating angle is m and the proceeding angle is e. The earth £ is a
point along the center of the top and the moon M can be a point on the edge of the top.
We learned to draw a cone in OpenGL. We can transform the cone to achieve the
motion of a top. In the following example (Example 2.11), we have a top that rotates

and proceeds, and a sphere that rotates around the top (Fig. 2.17(c)).

y
y m
X ~ 4B X
z ~ 1
a) A top b) Rotating and proceeding ¢) Example 2.11

Fig. 2.17 Generalized solar system: a top rotates and proceeds

56 2 Transformation and Viewing

I* Example 2.11.conesolar.c: draw a cone solar system */
void drawSolar (float E, float e, float M, float m)

float alpha=30;

glbPushMatrix () ;
// rotating around the "sun"; proceed angle
glRotatef (e, 0.0, 1.0, 0.0);
glRotatef (alpha, 0.0, 0.0, 1.0); // tilt angle
glTranslatef (0., E, 0.0);
glbPushMatrix () ;
glScalef (E/8,E,E/8) ;
glRotatef (90, 1.0, 0.0, 0.0); // orient the cone
drawCone () ;
glPopMatrix() ;

glRotatef(m, 0.0, 1.0, 0.); // rotate around the "earth"
glTranslatef (M, 0., 0.);
glScalef (E/8,E/8,E/8) ;
drawSphere () ;
glPopMatrix() ;

2.4 Viewing

The display has its device coordinate system in pixels, and our model has its (virtual)
modeling coordinate system in which we specify and transform our model. We need to
consider the relationship between the modeling coordinates and the device
coordinates so that our virtual model will appear as an image on the display.
Therefore, we need a viewing transformation — the mapping of an area or volume in
the modeling coordinates to an area in the display device coordinates.

2.4.1 2D Viewing

In 2D viewing, we specify a rectangular area called the modeling window in the
modeling coordinates and a display rectangular area called the viewport in the device
coordinates (Fig. 2.18). The modeling window defines what is to be viewed; the
viewport defines where the image appears. Instead of transforming a model in the
modeling window to a model in the display viewport directly, we can first transform
the modeling window into a square with the lower left corner at (-1,-1) and the upper

2.4 Viewing 57

right corner at (1,1). The coordinates of the square are called the normalized
coordinates. Clipping of the model is then calculated in the normalized coordinates
against the square. After that, the normalized coordinates are scaled and translated to
the device coordinates. We should understand that the matrix that transforms the
modeling window to the square will also transform the models in the modeling
coordinates to the corresponding models in the normalized coordinates. Similarly, the
matrix that transforms the square to the viewport will also transform the models
accordingly. The process (or pipeline) in 2D viewing is shown in Fig. 2.18. Through
normalization, the clipping algorithm avoid dealing with the changing sizes of the
modeling window and the device view port.

Y odelin)4

normalized device

X

normalized
Xmodeling Xdevice
Specify a window Transform the window Transform the square
in the modeling » and the models to the > and the models to the
coordinates: normalized coordinates. device coordinates in the
area to be displayed Clip against the square display viewport.

Fig. 2.18 2D viewing pipeline

2.4.2 3D Viewing

The display is a 2D viewport, and our model can be in 3D. In 3D viewing, we need to
specify a viewing volume, which determines a projection method (parallel or
perspective) — for how 3D models are projected into 2D. The projection lines go
from the vertices in the 3D models to the projected vertices in the projection plane —
a 2D view plane that corresponds to the viewport. A parallel projection has all the
projection lines parallel. A perspective projection has all the projection lines
converging to a point named the center of projection. The center of projection is also
called the view point. You may consider that your eye is at the view point looking into
the viewing volume. Viewing is analogous to taking a photograph with a camera. The
object in the outside world has its own 3D coordinate system, the film in the camera

58 2 Transformation and Viewing

has its own 2D coordinate system. We specify a viewing volume and a projection
method by pointing and adjusting the zoom.

As shown in Fig. 2.19, the viewing volume for the parallel projection is like a box.
The result of the parallel projection is a less realistic view, but can be used for exact
measurements. The viewing volume for the perspective projection is like a truncated
pyramid, and the result looks more realistic in many cases, but does not preserve sizes
in the display — objects further away are smaller.

left right top

— view
point _
A/ | -=_
—— — 1 - =

bottom

near near
! &
far o P
a) Parallel projection b) Perspective projection

Fig. 2.19 View volumes and projection methods

In the following, we use the OpenGL system as an example to demonstrate how 3D
viewing is achieved. The OpenGL viewing pipeline includes normalization, clipping,
perspective division, and viewport transformation (Fig. 2.20). Except for clipping, all
other transformation steps can be achieved by matrix multiplications. Therefore,
viewing is mostly achieved by geometric transformation. In the OpenGL system,
these transformations are achieved by matrix multiplications on the PROJECTION
matrix stack.

3D Modeling 2D Display
Coordinates Device
Normalize the Clip against Divide by w Transform | Coordinates
=B icwing volume | the normalized (Jgm{for perspective (gl into the —f—Jg
viewing volume projection viewport

Fig. 2.20 3D viewing pipeline

2.4 Viewing 59

Specifying a viewing volume. A parallel projection is called an orthographic projection
if the projection lines are all perpendicular to the view plane. glOrtho(left, right,
bottom, top, near, far) specifies an orthographic projection as shown in Fig. 2.19(a).
2l0rtho() also defines six plane equations that cover the orthographic viewing
volume: x=left, x=right, y=bottom, y=top, z=-near, and z=-far. We can see that (left,
bottom, -near) and (right, top, -near) specify the (x, y, z) coordinates of the lower-left
and upper-right corners of the near clipping plane. Similarly, (left, bottom, -far) and
(right, top, -far) specify the (x, y, z) coordinates of the lower-left and upper-right
corners of the far clipping plane.

glFrustum(left, right, bottom, top, near, far) specifies a perspective projection as
shown in Fig. 2.19(b). glFrustum() also defines six planes that cover the perspective
viewing volume. We can see that (left, bottom, -near) and (right, top, -near) specify
the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping
plane. The far clipping plane is a cross section at z=-far with the projection lines
converging to the view point, which is fixed at the origin looking down the negative z
axis.

Normalization. Normalization transformation is achieved by matrix multiplication on
the PROJECTION matrix stack. In the following code section, we first load the
identity matrix onto the top of the matrix stack. Then, we multiply the identity matrix
by a matrix specified by glOrtho().

// hardware set to use projection matrix stack
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
glOrtho (-Width/2, Width/2, -Height/2, Height/2,-1.0, 1.0);

In OpenGL, glOrtho() actually specifies a x
matrix that transforms the specified
viewing volume into a normalized viewing
volume, which is a cube with six clipping
planes as shown in Fig. 2.21 (x=1, x=-1,
y=1, y=-1, z=1, and z=-1). Therefore,
instead of calculating the clipping and
projection directly, the normalization
transformation is carried out first to
simplify the clipping and the projection.

Z

Fig. 2.21 Normalized viewing volume
— a cube with (-7 to) along each axis

60 2 Transformation and Viewing

Similarly, glFrustum() also specifies a matrix that transforms the perspective viewing
volume into a normalized viewing volume as in Fig. 2.21. Here a division is needed to
map the homogeneous coordinates into 3D coordinates. In OpenGL, a 3D vertex is

represented by (x, y, z, w) and transformation matrices are 4 X 4 matrices. When w=1,

(x, v, z) represents the 3D coordinates of the vertex. If w=0, (x,), z) represents a
direction. Otherwise, (x/w, y/w, z/w) represents the 3D coordinates. A perspective

division is needed simply because after the glFrustum() matrix transformation, w # I .
In OpenGL, the perspective division is carried out after clipping.

Clipping. Since g/Ortho() and glFrustum() both transform their viewing volumes into
a normalized viewing volume, we only need to develop one clipping algorithm.
Clipping is carried out in homogeneous coordinates to accomodate certain curves.
Therefore, all vertices of the models are first transformed into the normalized viewing
coordinates, clipped against the planes of the normalized viewing volume (x=-w, x=w,
y=-w, y=w, z=-w, z=w), and then transformed and projected into the 2D viewport.

Perspective Division. The perspective normalization transformation glFrustum()
results in homogenous coordinates with w=# /. Clipping is carried out in

homogeneous coordinates. However, a division for all the coordinates of the model (x/
w, y/w, z/w) is needed to transform homogeneous coordinates into 3D coordinates.

Viewport transformation. All vertices are kept in 3D. We need the z values to calculate
hidden-surface removal. From the normalized viewing volume after dividing by w, the
viewport transformation calculates each vertex’s (x, y, z) corresponding to the pixels in
the viewport, and invokes scan-conversion algorithms to draw the model into the
viewport. Projecting into 2D is nothing more than ignoring the z values when scan-
converting the model’s pixels into the frame buffer. It is not necessary but we may
consider that the projection plane is at z=0. In Fig. 2.19, the shaded projection planes
are arbitrarily specified.

Summary of the viewing pipeline. Before scan-conversion, an OpenGL model will go
through the following transformation and viewing processing steps:

e Modeling: each vertex of the model will be transformed by the current matrix on
the top of the MODELVIEW matrix stack

e Normalization: after the MODELVIEW transformation, each vertex will be
transformed by the current matrix on the top of the PROJECTION matrix stack

2.4 Viewing 61

e Clipping: each primitive (point, line, polygon, etc.) is clipped against the clipping
planes in homogeneous coordinates

e Perspective division: all primitives are transformed from homogeneous
coordinates into cartesian coordinates

e Viewport transformation: the model is scaled and translated into the viewport for
scan-conversion

2.4.3 3D Clipping Against a Cube

Clipping a 3D point against a cube can be done in six comparisons. If we represent a
point by its six comparisons in six bits, we can easily decide a 3D line clipping.

Bit
Bit
Bit
Bit
Bit
Bit

RN WD U0

el

if
if
if
if
if
if

x<left;
x>right;
y<bottom;
y>top;
z<near;
z>far;

If the two end points of a line’s 6 bits are 000000 (the logic OR is equal to zero), then
the end points of the line are inside the cube. If there is a same bit in the two end
points is not equal to zero (the logic AND is not equal to zero), then the two end points
are outside the viewing volume. Otherwise, we can find the lines intersections with
the cube. Given two end points (x,, vy, z,) and (x;, v,, z;), the parametric line equation
can be represented as:

X = x)ttx;—xp) (EQ 56)
Yy =yotty; =y (EQ 57)
z=zytUz;—2p) (EQ 58)

Now if any bit is not equal to zero, say Bit 2 = 1, then z=near, and we can find ¢ in
Equation 58. and therefore find the intersection point (x, y, z) according to Equation 56
and Equation 57.

62 2 Transformation and Viewing

For a polygon in 3D, we can extend the above line clipping algorithm to walk around
the edges of the polygon against the cube. If a polygon’s edge lies inside the clipping
volume, the vertices are accepted for the new polygon. Otherwise, we can throw out
all vertices outside a volume boundary plane, cut the two edges that go out of and into
a boundary plane, and generate new vertices along a boundary plane between the two
edges to replace the vertices that are outside a boundary plane. The clipped polygon
has all vertices in the viewing volume after the six boundary planes are processed.

Clipping against the viewing volume is part of OpenGL view pipeline discussed
earlier. Actually, clipping against an arbitrary plane can be calculated similarly as
discussed below.

2.4.4 Clipping Against an Arbitrary Plane

A plane equation in general form can be expressed as follows:
ax+by+cz+d = 0. (EQ 59)

We can clip a point against the plane equation. Given a point (x, V, zy), if
ax,+by,+czy,+d=0, then the point is accepted. Otherwise it is clipped. For an

edge, if the two end points are not accepted or clipped, we can find the intersection of
the edge with the plane by putting Equation 56, Equation 57, and Equation 58 into
Equation 59. Again, we can walk around the vertices of a polygon to clip against the
plane.

OpenGL has a function g/ClipPlane() that allows specifying and clipping plane. You
can enable the corresponding clipping plane so that objects below the clipping plane
will be clipped.

2.4.5 An Example of Viewing in OpenGL

Viewing transformation is carried out by the OpenGL system automatically. For
programmers, it is more practical to understand how to specify a viewing volume
through glOrtho() or glFrustum() and to make sure that your models are in the
viewing volume after being transformed by the MODELVIEW matrix. The following
descriptions explain Example 2.12.

2.4 Viewing 63

. glutlnitWindowSize() in main() specifies the display window on the screen in pix-
els.

. glViewport() in Reshape() specifies the rendering area within the display window.
The viewing volume will be projected into the viewport area. When we reshape the
drawing area, the viewport aspect ratio (w/h) changes accordingly.

. glOrtho() or glFrustum() specify the viewing volume. The models in the viewing
volume will appear in the viewport area on the display.

. The first matrix we multiply on the MODELVIEW matrix stack, after loading the
identity matrix, is a translation along the z axis. This translation can be viewed as
the last transformation in modeling coordinates. That is, after finishing all model-
ing and transformation, we move the origin of the modeling coordinates (and all
the models after being transformed in the modeling coordinates) along z axis into
the center of the viewing volume.

. When we analyze a model’s transformations, logically speaking, the order of trans-
formation steps are bottom-up from the closest transformation above the drawing
command to where we specify the viewing volume.

. In display(), you may think that a robot arm is calculated at the origin of the model-
ing coordinates. Actually, the robot arm is translated along z axis -(zNear+zFar)/2
in order to put the arm in the middle of the viewing volume.

. Another way of looking at the MODELVIEW matrix is that the matrix transforms
the viewing method instead of the model. Translating a model along the negative z
axis is like moving the viewing volume along the positive z axis. Similarly, rotating
a model along an axis by a positive angle is like rotating the viewing volume along
the axis by a negative angle.

. When we analyze a model’s transformation by thinking about transforming its
viewing, the order of transformation steps are topdown from where we specify the
viewing volume to where we specify the drawing command. We should remember
that the signs of the transformation are logically negated in this perspective.

I* Example 2.12.robotSolar.c: 3D transformation/viewing */

void display(void)

64

2 Transformation and Viewing

glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT) ;

// draw a robot arm from the origin
drawRobot (A, B, C, alpha, beta, gama);

glutSwapBuffers () ;

static void Reshape (int w, int h)

float zNear=w, zFar=3*w;

glClearColor (0.0, 0.0, 0.0, 1.0);
glEnable (GL_DEPTH TEST) ;

// viewport lower left corner (0,0), aspect ratio w/h
glviewport (0, 0, w, h);

// hardware set to use projection matrix stack
glMatrixMode (GL_PROJECTION) ;

glLoadIdentity () ;

//glortho(-w/2, w/2, -h/2, h/2, zNear, zFar);
glFrustum(-w/2, w/2, -h/2, h/2, zNear, zFar);

// hardware set to use model transformation matrix stack
glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity () ;

// the origin is at the center between znear and zfar
glTranslatef (0., 0., -(zNear+zFar)/2);

2.5 Review Questions 65

2.5 Review Questions

1. An octahedron has v1=(1,0,0), v2=(0,1,0), v3=(0,0,1), v4=(-1,0,0), v5=(0,-1,0), v6=(0,0,—1). Please
choose the triangles that face the outside of the octahedron.

a. (v1v2v3, v1v3v5, viv5vo,vlv2vo) b. (v2v3vl, v2v1lv6, v2vov4, v2v4v3)
c. (v3v2vl, v3vSvl, v3v4v2, v3v4vs) d. (v4v2vl, v4v5vl, v3vav2, v3v4vs)

2. If we subdivide the above octahedron 8 times (depth=8), how many triangles we will have in the
final sphere.

No. of triangles:

3. Choose the matrix expression that %

would transform square ABCD into A D(2,2,0) YA

square A’B’C’D’ in 3D as shown in the s

figure below. A(0.1,0)
a. T(=1,-1, 0)R(~90) B(I,1,0) “&L0 B (0.L1D) D(0.0.0)
b. Ry(-90) T(=1,-1, 0) — '
c. T(=2,-2, 0)R (-90)R(90) C(0,0,1) X

d. Ry(90)R,(~90)T(~2,-2, 0) z

4. myDrawTop() will draw a top below on the
left. Write a section of OpenGL code so that the
top will appear as specified on the right with tip
at A(x1, yl, z1), tilted ¢, and proceeded 0 around
an axis parallel to y axis.

o

A(x1, y1, z1)

5. myDrawTop() will draw an object in oblique pro-
jection as in the question above with height equals 1

and radius equals 0.5. Please draw two displays in glLoadIdentity () ;
orthographic projection according to the pro- glRotatef (-90, 0.0, 1.0, 0.0);
gram on the right (as they will appear on the screen myDrawTop () ; // left
where the z axis is perpendicular to the plane). glRotatef (-90, 0.0, 0.0, 1.0);
y y glPushMatrix () ;
glTranslatef (0.0, 0.0, 1.0);
1 1 myDrawTop () ; //right
X X glPopMatrix () ;

1 1

66 2 Transformation and Viewing

6. In the scan-line algorithm for filling polygons, if z-buffer is used, when should the program call
the z-buffer algorithm function?

a. at the beginning of the program b. at the beginning of each scan-line
c. at the beginning of each pixel d. at the beginning of each polygon

7. Collision detection avoids two models in an animation penetrating each other; which of the fol-
lowing is FALSE:

a. bounding boxes are used for efficiency purposes in collision detection

b. both animated and stationary objects are covered by the bounding boxes

c. animated objects can move whatever distance between frames of calculations

d. collision detection can be calculated in many different ways

8. After following transformations, what is on top of the matrix stack at drawObject2 () ?

glLoadlIdentity(); glPushMatrix(); giMultMatrixf(S); glRotatef(a,1,0,0); glTranslatef(t,0,0);
drawObjectl (), glGetFloatv(GL_ MODELVIEW_ MATRIX, &tmp); glPopMatrix();
glPushMatrix(); gMultMatrixf(S); glMultMatrixf(&tmp);drawObject2(); glPopMatrix();

a. SSR_(a)T,(t) b. ST,(R,(a)S c. T(OR,(a)SS
d. R,(a)SST,(t) e. SR (a)T,(t)

9. Given glViewport (u, v, w, h) and gluOrtho2D(xmin,
Xmax, ymin, ymax), choose the 2D transformation

matrix expression that maps a point in the mod- . .
eling (modelview) coordinates to the device (viewport) modeling + viewport | h

coordinates.

(xmax, ymax) W

a. S(1/(xmax — xmin),1/(ymax — ymin)) min, ymin) (u,v)

T(—xmin,—ymin)T(u,v)S(w,h)
b. S(1/(xmax — xmin),1/(ymax — ymin))S(w,h) T(—xmin,—ymin)T(u,v)
c. T(u,v)S(w,h)S(1/(xmax — xmin),1/(ymax — ymin))T(—xmin,—ymin)
d. T(=xmin,—ymin)T(u,v)S(1/(xmax — xmin),1/(ymax — ymin))S(w,h)

10. Given a 2D model and a modeling window, please draw the object in normalized coordinates
after clipping and in the device as it appears on a display.

Yyodeiing *Ynormalized Yievice

P x

normalized

’ Xmodeling Xdevice

11. In the OpenGL graphics pipeline, please order the following according to their order of opera-
tions:

(_) clipping (_) viewport transformation
(__) modelview transformation (__) normalization

2.6 Programming Assignments 67

(__) perspective division (__) scan conversion

12. Please implement the following viewing command: gmuPerspective (fx, fy, 4, s),
where the viewing direction is from the origin looking down the negative z axis. fx is the field of
view angle in the x direction; fy is the field of view angle in the y direction; d is the distance from the
viewpoint to the center of the viewing volume, which is a point on the negative 7 axis; s is the dis-
tance from d to the near or far clipping planes.

gmuPerspective(fx, fy, d, s) {

glFrustum(l, r, b, t, n, f);

2.6 Programming Assignments

1. Implement myLoadldentity, myRotatef, myTranslatef, myScalef, myPushMatrix, and myPop-
Matrix just like their corresponding OpenGL commands. Then, in the rest of the programming
assignments, you can interchange them with OpenGL commands.

2. Check out online what is polarview transformation; implement your own polarview with a dem-
onstration of the function.

3. As shown in the figure on the right, use 2D transforma-
tion to rotate the stroke font and the star.

4. The above problem can be extended into 3D: the outer
circle rotates along y axis, the inner circle rotates around x
axis, and the star rotates around z axis.

5. Draw a cone, a cylinder, and a sphere that bounce back
and forth along a circle, as shown in the figure. When the
objects meet, they change their directions of movement.
The program must be in double-buffer mode and have hid-
den surface removal.

68 2 Transformation and Viewing

6. Draw two circles with the same animation as above. At the same time, —\
one circle rotates around x axis, and the other rotates around y axis.

7. Implement a 3D robot arm animation as in the book, and put the \
above animation system on the palm of the robot arm. The system on the
palm can change its size periodically, which is achieved through scaling.

8. Draw a cone, a cylinder, and a sphere that move and

collide in the moon’s trajectory in the generalized solar
system. When the objects meet, they change their direc-
tions of movement.

9. Put the above system on the palm of the robot arm.

10. Implement myPerspective and myLookAt just like
gluPerspective and gluLookAt. Then, use them to look
from the cone to the earth or cylinder in the system above.

11. Display different perspectives or direction of viewing
in multiple viewports.

