
Inter-Process Communication

First, remember what a process is. A "process" is a running
instance of a program (where a "program" is an executable file
stored in your file system). We make a distinction between a
"program" and a "process" because a program, like Notepad, can
have several instances of itself running at any given time.
Each such instance is a different process (but each instance
can be said to be the same program). Notice that a process is
to a program much like an object is to a class.

In Operating Systems you learn that each process runs in its
own virtual memory space. Virtual memory spaces were invented
so that each process is purposely walled off from every other
process. You do not want a bug in one process (say an instance
of Word) to cause the crash of another process (say an instance
of Firefox). You also do not want one process (say an instance
of Firefox) to be able to look at, and read, the memory of
another process (say Word) and report back over the Internet
what you are typing in your Word documents. So for stability
and security reasons, processes are strictly isolated from each
other (each in its own virtual memory space).

But if processes are strictly isolated from each other, they cannot
communicate, or cooperate, with each other. That is too severe a
restriction (think of how useful copy and paste is, among many other
ways in which programs communicate with each other). So operating
systems provide very tightly controlled mechanisms for processes
to communicate (and therefore cooperate) with each other. These
mechanisms are referred to as Inter-Process Communication.

"Inter-Process Communication" (IPC) is when one process passes a piece
of data (a message) to another process. ALL forms of IPC involve the
operating system kernel acting as an intermediary in the passing of the
message (in order to guarantee the stability and security of the whole
system). In fact, every form of IPC involves the kernel copying a segment
of data (a buffer) from the virtual memory space of the sending process
into the virtual memory space of the receiving process.

There are six simple mechanisms for IPC (and many complicated ones).
The simple IPC mechanisms are,

1. files
2. command-line arguments
3. environment variables
4. program exit code (return value)
5. I/O redirection
6. pipes

Files can be used by any two processes to communicate with each other
(more specifically, any two processes that have access to a shared
file system). In this sense, files are a very general form of IPC
(the messages can be as large as any file, the messages can be passed
in both directions, and the communicating processes need not even be
running on the same computer or at the same time), but it is a very
slow form of IPC.

Command-line arguments can only be used by a parent process to pass
(in a one-way direction) a message to a child process (a child process
is a process that is started by the parent process). Also, this message
must be fairly small and it can only be sent at the time the child
process is created. So command-line arguments are a fairly restrictive
form of IPC (but they get used a lot).

Environment variables are similar to command-line arguments. They are
fairly small messages, they can only be passed in one direction (from
parent to descendant processes) and the messages must be sent at the
time a child process is created. The most significant difference

1

between environment variables and command-line arguments is that an
environment variable is also inherited by every descendant of the
original child process. So an environment variable can be used to send
a message to every descendant of the parent process. There are times
when this feature can be useful.

A program's exit code is a single integer value that can be used by a
child process to send a (very small) message back to its parent process.
This form of communication can only take place when the child terminates.
Exit codes are used mostly as error codes that let the parent know
something about the success or failure of a child process.

I/O redirection can be used by a parent to communicate with a child
while the child is running (not just when the child starts up). When
the parent creates the child, the parent can have the operating system
redirect one of the parent's output streams to the child's standard
input stream, and then redirect the child's standard output stream to
one of the parent's input streams. The amount of data that can be
communicated this way is unlimited and the data can be communicated
in both directions, from parent to child and from child to parent.
This is a very common and useful form of IPC.

Pipes are a way for two sibling processes to communicate. Two processes
are siblings if they were created by the same parent processes. A pipe
must be created by the parent process and it must be created at the time
the two child processes are created. But otherwise, pipes are a very general
form of communication. The most common example of a parent process creating
a pipe between two child processes is when we use a command-line shell to
run two programs and we connect the two programs on the command-line with
the pipe ('|') symbol. The shell process is the parent process and the two
programs on the command-line become the child processes. The shell process
has the operating system create a pipe object, then redirect the standard
output of the first child process (the child that can send messages) to the
input of the pipe, then redirect the standard input of the second child
process (the child that will receive messages) to the output from the pipe.
We say that pipes are a form of "stream" communication, in the sense that
once the pipe is created, the two child processes can pass an unlimited
stream of bytes through the (one-directional) pipe. Pipes are very fast
(almost as fast as writing and reading from physical memory). The biggest
restriction on pipes is that the two processes must be running on the same
computer.

Two important advanced forms of IPC are sockets and shared memory.

Sockets are a way of providing stream communication between any two
processes running on the same or different computers (but connected
together by a network). Sockets are straightforward to use, they are
very versatile, fairly fast, and they are now ubiquitous (these days,
every language running on every operating system provides sockets).

Shared memory is when the operating system arranges for two processes
(running on the same computer) to share a physical page frame in their
virtual memory page tables. This means that the two processes can both
read and write to the physical page frame. This is a fast, bidirectional,
symmetrical, form of IPC but it causes many of the same problems that
shared memory causes with threads (race conditions). Shared memory is
the basis for many other forms of IPC.

NOTE: If you want to see the parent/child relationship of all the processes
running on your computer, run either the ProcessExplorer.exe or
ProcessHacker.exe programs that are in the folder with this file
(for ProcessExplorer.exe, be sure to select the menu item
"View -> Show Process Tree").

2

1.) Creating Processes

Before talking about "inter-process communication", we should
first see how one process (i.e., a running program) can create
another process. The first process will be called the parent
process, and the second process, the one created by the first
process, will be called the child process. Our goal will be
for the two processes, the parent and its child, to communicate
with each other.

In the sub-folders there are Java, Windows, and Linux programs
that create processes. Compile and run these programs. They show
how a Java or C program can start up other programs. Notice that
some of these child processes are given command-line parameters
when they are started. For example, on Windows the Notepad.exe
editor is started and it is told to open a file. Also, the Windows
Explorer.exe program is told to open the folder "C:\Windows\System32".
This demonstrates a simple example of a parent process starting up
a child processes and communicating to the child processes a bit of
(inter-process) information.

To see the parent/child relationships created by the examples on
Windows, run either the ProcessExplorer.exe or ProcessHacker.exe
programs (for ProcessExplorer.exe, be sure to select the menu item
"View -> Show Process Tree").

3

2.) Simple Inter-process Communication

Two of the simplest forms of Inter-process Communication are
"command-line arguments" and "environment variables".

Command-line arguments are passed to a process when it is
created (i.e., started up). It is important to realize that
ALL running programs have command-line arguments (not just
programs run from a "command-line"). Here is one way to prove
that every running program has a "command-line" and also
"command-line arguments".

Run Window's "Task Manager" program. There are several ways
to run this program.
1.) Hold down the Ctrl and Shift keys and then strike the Esc key.
2.) Click on the Windows Start menu, click on the "Run..." item,

type in the program name "taskmgr.exe", and click on OK.
3.) Go to the folder "C:\Windows\System32", find the file

taskmgr.exe and double click on it.
When you have Task Manager running, click on the "View->Select Columns..."
menu item. Scroll down to the bottom of the pop-up window.
You should see a small box next to an item called "Command Line".
Click on the box to put a check-mark in the box. Click on
the OK button. In the Task Manager window you should now see
a list of all the processes you are running and there should
be a "Command Line" column for each process. This lets you see
the actual command-line used to start each of those processes.

If you start a GUI program by double-clicking on a "shortcut
icon" (for example, an item from Window's Start Menu), the
command-line for the process is stored in the icon. Right click
on a shortcut icon and click on the bottom item from the pop-up
menu (the "Properties" item). You should see a tabbed pop-up
window with a tab called "Shortcut". In that tab is a textbox
labeled "Target" and in that textbox is the process's command
line along with any command-line arguments. Since this is a
textbox, you can modify the command-line and its arguments to
change what the shortcut does when you double-click on it.

Environment variables are similar to command-line arguments in that
they are fairly small messages, they can only be passed in one
direction (from parent to descendant processes) and the messages
must be sent at the time the child process is created. Just as
ALL processes have command-line arguments, so do ALL processes
have environment variables.

You can use the ProcessExplorer.exe and ProcessHacker.exe programs
to observe the environment variables for each running process.
Start up either ProcessExplorer.exe or ProcessHacker.exe. Right
click on any process and choose the "Properties" item from the
pop-up menu. You should see a tabbed pop-up window with one tab
labeled "Environment". Click on that tab, and you will see a list
of all of the environment variables that the process inherited
from its parent process. (On a Windows computer, most of the
processes that you look at will have pretty much the exact same
environment variables. Windows programs do not usually make much
use of environment variables (other than the standard ones set by
the operating system). On Unix/Linux computers, lots of programs
make use of lots of environment variables.)

Notice that when RunProgram.java starts up the Java program
CommandLineArguments.class

(which you need to compile before it can be run) there is no
output on the console window. But if you run the program
CommandLineArguments from a command line, it always produces
output in the console window. This shows that there is a problem
with using Java to run programs that use a console window (this

4

problem does not exist when C or C++ programs run console window
programs). In the following folders, we will explore this problem
with Java and see how to solve it (Java does not handle "standard
input" and "standard output" in the correct way).

5

4.) I/O Redirection, Filters, and Pipelines

When a process is created by the operating system, the
process is always supplied with three open streams.
These three streams are called the "standard streams".
They are

standard input (stdin)
standard output (stdout)
standard error (stderr)

We can visualize a process as an object with three "connections"
where data (bytes) can either flow into the process or flow out
from the process.

process
+-----------------+
| |

---->>stdin stdout>>------
| |
| stderr>>------
| |
+-----------------+

A console application will usually have its stdin stream connected
to the computer's keyboard and its stdout and stderr streams connected
to the console window.

process
+-----------------+
| |

keyboard --->>stdin stdout>>------+---> console window
| | |
| stderr>>------+
| |
+-----------------+

It is important to realize that the above picture is independent of
the programming language used to write the program which is running
in the process. Every process looks like this. It is up to each
programming language to allow programs, written in that language, to
make use of this setup provided by the operating system.

Every operating system has its own way of giving a process access to
the internal data structures the operating system uses to keep track
of what each standard stream is "connected" to.

The Linux operating system gives every process three "file descriptors",

#define STDIN_FILENO 0, STDOUT_FILENO1, STDERR_FILENO2

Linux provides the read() and write() system calls to let a process
read from and write to these file descriptors.

The Windows operating system gives every process three "handles",
You retrieve the handles using the GetStdHandle() function with
one of these input parameters.

STD_INPUT_HANDLE, STD_OUTPUT_HANDLE,STD_ERROR_HANDLE

Windows provides the ReadFile() and WriteFile() system calls to
let a process read from and write to these handles.

Every programming language must have a way of representing the three
standard streams and every language must provide a way to read from
the standard input stream and a way to write to the standard output
and standard error streams.

6

For example, here is how the three standard streams are represented
by some common languages.

Standard C uses file objects
FILE* stdin, stdout, stderr;

C++ uses stream objects
ios std::cin, std::cout, std::cerr;

Java uses stream objects
InputStream System.in; PrintStream System.out, System.err;

.net uses stream objects
System.Console.In, System.Console.Out, System.Console.Error

The C language provides functions like getchar(), scanf(), and fscanf()
to read from stdin and it provides printf() and fprintf() to write to
stdout and stderr. On a Windows computer, C's printf() function will
be implemented using the WriteFile() system call with the STD_OUTPUT_HANDLE
handle. On a Linux computer, C's printf() function will be implemented
using the write() system call with the STDOUT_FILENOfile descriptor.

Every process is created by the operating system at the request of some
other process (the parent process). When the parent process asks the
operating system to create a child process, the parent tells the operating
system how to "connect" the child's three standard streams.

At a shell command prompt, if you type a command like this,

C:\> foo > result.txt

the shell program (cmd.exe on Windows, or bash on Linux) is the parent
process. The above command tells the shell process to ask the operating
system to create a child process from the foo program. But in addition
to asking the operating system to create the child process, the shell
process also instructs the operating system to redirect the child
process's standard output to the file result.txt. So when foo runs, it
looks like this.

foo process
+-----------------+
| |

keyboard --->>stdin stdout>>----> result.txt
| |
| stderr>>----> console window
| |
+-----------------+

Stdin and stderr have their default connections, and stdout is redirected
to the file result.txt.

If you type a command like this,

C:\> foo > result.txt < data.txt

the shell process will ask the operating system to create a child process
from the foo program and also ask the operating system to redirect the
child process's standard output to the file result.txt and redirect the
child process's standard input to the file data.txt. So when foo runs, it
looks like this.

foo process
+-----------------+
| |

data.txt --->>stdin stdout>>----> result.txt
| |
| stderr>>----> console window
| |
+-----------------+

7

If you type a command like this,

C:\> foo < data.txt | bar > result.txt

the shell process will ask the operating system to create two child
processes, one from the foo program and the other from the bar program.
In addition, the shell process will ask the operating system to create
a "pipe" object and have the stdout of the foo process redirected to the
input of the pipe, and have the stdin of the bar process redirected to
the output of the pipe. Finally, the shell process will ask the operating
system to redirect the bar process's standard output to the file result.txt
and redirect the foo process's standard input to the file data.txt. So
while this command is executing, it looks like this.

foo process bar process
+---------------+ +---------------+
| | pipe | |

data.txt-->>stdin stdout>>--========-->>stdin stdout>>----> result.txt
| | | |
| stderr>>---+ | stderr>>--+-> console window
| | | | | |
+---------------+ | +---------------+ |

| |
+---------------------------+

8

5.) A Process Redirecting Its Own Standard Streams

The examples in this folder show how a process can redirect its
own standard streams to files. By this we mean that a process might
be running with the following configuration of its standard streams

process
+------------------+
| |

keyboard--->>stdin stdout>>-----+--> console window
| | |
| stderr>>-----+
| |
+------------------+

We want to see how the process might, while it is running, change its
standard streams so that they look like the following picture, with
stdin and stdout connected to specific files chosen by the process.

process
+------------------+
| |

data.txt--->>stdin stdout>>------> result.txt
| |
| stderr>>-----> console window
| |
+------------------+

This does not, by itself, seem like a very useful thing to be able
to do. It is almost exactly the same idea as just opening new file
streams for reading or writing (as in the picture below). The main
difference between the above picture and the picture below is that
the process above can use the scanf() and printf() functions to read
and write the files data.txt and result.txt while the process below
would have to use the fscanf() and fprintf() functions to read and
write to data.txt and result.txt.

process
+-------------------+
| |

keyboard--->>stdin stdout>>-----+---> console window
| | |
| stderr>>-----+
| |

data.txt--->>stream3 stream4>>-----> result.txt
| |
+-------------------+

But seeing how a process can redirect its standard streams is a good
starting point for understanding the techniques that are used for IPC.

An important reason for a process to redirect its own stdin and stdout
streams is so that it can have a child process "inherit" those redirected
streams. We will discuss a child process "inheriting" its parent's standard
streams in the next two folders.

9

5.) A Windows Process Redirecting Its Own Standard Streams

As mentioned in the previous folder, Windows uses "handles" as the way for
processes to identify resources given to them by the operating system. In
particular, since every process is created with three standard I/O streams,
every Windows process will need to be given three "standard handles" to
those standard streams. The Windows function

SetStdHandle()
lets a Windows process change the stream that one of those "standard handles"
refers to. So if a Windows process should open a new I/O stream (by calling
the CreateFile() function), then the process can use SetStdHandle() to
substitute the new stream for one of its original standard streams.

The RedirectStandardStreams.c file demonstrates using the SetStdhandle()
function. That program calls CreateFile() two times to open a new input and
a new output stream and then is calls SetStdHandle() twice to redirect stdin
and stdout to those two new streams.

Here are a sequence of picture illustrating the sequence of streams as the
RedirectStandardStreams.exe process runs.

Suppose that initially stdin is the keyboard and stdin and stderr are the
console window.

process
+-----------------+
| |

keyboard--->>stdin stdout>>---------> console window
| |
| stderr>>------> console window
| |
+-----------------+

The process first calls CloseHandle() to close the stdin and stdout file
handles, since those two files will no longer be used.

process
+-----------------+
| |

--->>stdin stdout>>-->
| |
| stderr>>------> console window
| |
+-----------------+

The process then calls CreateFile() to open an input stream (using a
temporary input handle).

process
+------------------+
| |

--->>stdin stdout>>-->
| |
| stderr>>------> console window
| |

Readme.txt--->>hIn |
| |
+------------------+

Then the process calls CreateFile() again to open an output stream (using
a temporary output handle).

process
+------------------+
| |

--->>stdin stdout>>-->
| |
| stderr>>------> console window
| |

10

Readme.txt--->>hIn hOut>>-----> result.txt
| |
+------------------+

Now the process calls SetStdHandle() two times to redirect stdin and
stdout to the new file streams.

process
+------------------+
| |

Readme.txt-+->>stdin stdout>>--+-----> result.txt
| | | |
| | stderr>>------> console window
| | | |
+->>hIn hOut>>--+

| |
+------------------+

At this point, the two temporary handles are no longer needed and can be
set to INVALID_HANDLE_VALUE.

process
+------------------+
| |

Readme.txt--->>stdin stdout>>--------> result.txt
| |
| stderr>>------> console window
| |
| |
+------------------+

The I/O redirection is complete and the process can treat the two new files
streams as its stdin and stdout.

At this point the RedirectStandardStreams.c program acts as a simple echo
filter between stdin and stdout. But notice that the program uses the low
level Windows I/O functions ReadFile() and WriteFile(). Why not use the
higher level C functions getchar() and printf()? The answer is that they
no longer work the way you would expect them to. Remember that Standard C
functions do not use Window's handles. Instead, Standard C functions use
pointers to FILE objects. The I/O redirection done by the SetStdHandle()
function does NOT redirect the C Library's standard FILE objects (as you
would expect it to). The file

RedirectStandardStreams_broken.c
demonstrates this by using the C functions getchar() and printf() after the
calls to SetStdHandle(). These two functions still work on the original
stdin and stdout streams! They have not been redirected.

The file
RedirectStandardStreams_kind_of_broken.c

demonstrates a kind of fix for this situation. It shows how to re-sync the
C Library's standard FILE objects with the Windows standard handles. The
code used in this program "works" but it is not correct since it works by
breaking the FILE object interface (the program writes to a FILE object
pointer, which is something that should never be done).

In this folder there are also the two files
EchoFromFileToFile.c
Echo_weird.c

These two programs are there mostly to make you think about the difference
between these three command lines (which, more or less, do the same thing).

C:\> RedirectStandardStreams.exe
C:\> EchoFromFileToFile.exe
C:\> Echo_weird.exe < Readme.txt > result.txt

11

6.) A Child Inheriting (or Sharing) Streams With Its Parent

The examples in this folder (and the next) show how a parent
process can control the standard streams (stdin, stdout, stderr)
of a child process.

There are two ways that the parent can control what a child's
standard streams are connected to when the child is created.
The parent can either have the child "inherit" the parent's
standard streams or the parent can redirect the child's streams
to specific files.

The details of how a parent can redirect the child's standard
streams to specific files will be discussed in the next folder.
The details of a child "inheriting" its parent's standard streams
will be discussed in this folder.

Let us explain what we mean by a child inheriting its parent's
standard streams.

When a child inherits a standard stream from its parent, the
parent and child processes "share" that stream. For example,
if a child inherits its parent's standard output stream, then
the parent and child share that output stream. On the other
hand, if a child inherits its parent's standard input stream,
then both processes share that one input stream. We now need
to explain what it means for processes to "share" a stream.

Here is an illustration of a parent and a child process sharing
their stdin and stdout streams.

parent
+--------------+
| |

+--->>stdin stdout>>-------+
	stderr>>--	
+--------------+		

------+ +----->
| |
| child |
| +--------------+ |
| | | |
+------>>stdin stdout>>----+

| |
| stderr>>--
| |
| |
+--------------+

Input and output streams are not shared in the same way. So
we first look at shared output streams, and then consider
shared input streams.

When two processes share an output stream, what each process
writes to its output stream gets mixed together in the final
destination of the shared stream. If the shared output stream is
connected to a console window, then the lines of output from each
of the two processes will be combined in the console window, usually
in an unpredictable way. The same will happen if the shared output
stream is connected to a file.

On the other hand, if two processes share an input stream, then
both processes read data from that one stream. But two processes
cannot "simultaneously" read bytes from a stream. Instead, the
operating system must "serializes" their use of the input stream.

12

What this means is that whichever process calls the "read()" function
first, that process gets whatever bytes are in the current input
buffer for the shared stream. But the process that called "read()"
second is then in line to be the next process to get the next batch
of bytes that arrive in the stream's buffer. If both processes are
continuously reading from the stream, then they will probably end up
alternately reading input lines from whatever is the source of the
input stream. Notice that any specific byte in the input stream can
only be "read()" by one of the two processes. In the above picture
for shared input streams, incoming bytes do not get copied into
each of the two branches leading to the two processes. Any given
input byte flows down only one of the two branches (not both).

In Linux or Windows, a child process always inherits its parent's
standard streams (unless the parent redirects them; see the next
folder). In Linux or Windows, if the parent's stdin is the keyboard,
then so is the child's stdin. If the parent's stdout is the console
screen, then so is the child's stdout (and if the parent's stdout
is the file result.txt, then so is the child's stdout). This is very
convenient. In Linux or Windows, every child starts with inheriting
its parent's standard streams and if the parent chooses to, it can
redirect the child's standard streams to files.

But in Java, when a child process is created, its three standard
streams do not connect to anything! This is unlike Linux and Windows.
The fact that Java does not work this way is a real problem. See the
Java folder.

Here is the illustration of a parent and a child process sharing
stdin and stdout. In this picture stdin is connected to the (shared)
keyboard.

parent
+--------------+
| |

+--->>stdin stdout>>-------+
	stderr>>--	
+--------------+		

keyboard---+ +----->
| |
| child |
| +--------------+ |
| | | |
+------>>stdin stdout>>----+

| |
| stderr>>--
| |
| |
+--------------+

In this situation, there is a special case that we should consider.
The user at the keyboard denotes that they have no more input to type
by using the key combination ^Z on Windows (or ^D on Linux). Since only
one of the two processes can be the recipient of that character, only
one of the two processes sees an EOF condition (and probably exits).
What about the other process? The user would need to know that it is
necessary to enter a second ^Z (or ^D) from the keyboard in order to
send an EOF condition to the second process. You can actually see this
happen on Windows by using the program ParentChildShareStdin_parent.c
and Window's Task Manager. (What would happen if the two processes had
their shared stdin redirected to an input file? Would they both see the
EOF condition or just one of them?)

13

It is worth noting that usually, when two processes share a stream,
one of them is not actually using the stream. More often than not,
if a parent creates a child and has the child inherit its standard
streams, the parent will not use those streams while the child is
running. The parent will wait until the child is done (the child
process terminates) before the parent goes back to using its
standard streams.

The best, and most common, example of a parent and child sharing
streams is when we type a command at the cmd.exe (or bash) shell
prompt. For example, suppose we type the command

C:\>find "a"

The shell (cmd.exe) is the parent process and it tells the operating
system to creates a child process from the file "find.exe" (that file
is at C:\Windows\System32\find.exe) and the shell has that child process
share stdin and stdout with the shell process. Once find.exe starts,
cmd.exe stops using its (shared) copies of stdin and stdout and lets
find.exe use its copies. As you type at the keyboard, find.exe looks
for the letter "a" in stdin and echoes to stdout any input line that
contains an "a" (find is really a version of grep). When you type ^Z
at the beginning of a line, find.exe sees an EOF condition on its copy
of stdin, so it exits. But cmd.exe never sees the EOF condition (the ^Z).
When cmd.exe notices that find.exe has terminated, cmd.exe goes back to
writing and reading from stdout and stdin. It issues a new prompt on stdout,
and waits to read a new command on stdin. All in all, a very elegant way
for a user to make one program run other programs in a shared window.

14

6.) Shared Streams in Windows

Windows is similar to Unix. When a parent process creates a
child process, the child automatically inherits the parent's
standard streams (see the file CreateChildInheritStdStreams.c).

There is one exception to this. If the parent asks for the child
to have its own console window, then the child does not
automatically inherit the standard streams (the new console's
standard streams are the default ones). But it is pretty easy
to redirect the standard streams of the new console back to
the parent's standard streams.

This folder also contains two pairs of examples that demonstrate
what happens when two processes share an input or an output stream.

ParentChildShareStdout_parent.c
ParentChildShareStdout_child.c

and
ParentChildShareStdin_parent.c
ParentChildShareStdin_child.c

There are a number of experiments that you should try with these files.

Run
ParentChildShareStdin_parent.exe
ParentChildShareStdin_child.exe

with a shared keyboard as stdin. Find the two processes in the
Task Manager. Type ^Z at the shared keyboard. Use Task Manager
to see which process gets the EOF condition. Type some more at
the keyboard to see that the other process is still running.
Type ^Z again to close the second process.

Introduce random pauses (using the Sleep() function) into both
ParentChildShareStdin_parent.c and ParentChildShareStdin_child.c
so that they do not just alternate reading from the shared input
stream.

Change the keyboard from cooked input to raw input. Try changing
just one of the two processes to raw keyboard input. Try changing
both to raw input.

15

7.) A Parent Redirecting a Child's Standard Streams

The examples in this folder (and the previous folder) show how a parent
process can control the standard streams (stdin, stdout, stderr) of a
child process.

There are two ways that the parent can control what a child's standard
streams are connected to when the child is created. The parent can either
have the child "inherit" the parent's standard streams or the parent can
redirect the child's streams to specific files.

The details of a child "inheriting" its parent's standard streams were
discussed in the previous folder. This folder shows how the parent can
redirect the child's standard streams to specific files.

(Notice that we are not yet talking about pipes. That is, we do not yet
want to connect the stdout of the parent to the stdin of the child. That
would be a pipe (so would connecting the stdout of the child to the stdin
of the parent). We will discus that in the next folder.)

What we show in this folder is how a parent can create a child with the
child's standard streams redirected to files, as in this picture.

parent
+---------------+
| |

keyboard -->>stdin stdout>>-------> console
| |
| stderr>>--->
| |
+---------------+

child
+---------------+
| |

data.txt ----->>stdin stdout>>----> result.txt
| |
| stderr>>--->
| |
+---------------+

In Windows, the operating system provides a way for the parent to create
the child in exactly the above situation by using the STARTUPINFO data
structure passed to the CreateProcess() function.

In Linux, the child process is first created by fork() with inherited
streams, as in this picture.

parent
+---------------+
| |

+--->>stdin stdout>>-------+
	stderr>>--->	
+---------------+		

keyboard --+ +-----> console
| child |
| +---------------+ |
| | | |
+------>>stdin stdout>>----+

| |
| stderr>>--->
| |
+---------------+

After the fork() is complete the child will redirect its own streams
to the files (as in folder 5) before the child calls exec().

16

7.) A Parent Redirecting a Child's Standard Streams in Windows

The examples in this folder show how a parent Windows process
can redirect the standard streams (stdin, stdout, stderr) of a
child process.

In Windows it is fairly straightforward for a parent to create a
child process and redirect the child's stdin and stdout to files.
It takes quite a few Windows function calls, some of them not at
all obvious (like making the handles to the files "inheritable"),
but the individual steps are easy to understand.

Unlike in Linux, the redirection of the child's streams is done
before the child process is created (by using the STARTUPINFO
data structure passed to the operating system's CreatProcess()
function). So as soon as the child process starts running, it
is using its redirected streams.

To redirect the child's stdin and stdout streams the parent process
needs to do (at least) these six steps.

1.) Ask the OS to create an input file handle.
2.) Ask the OS to create an output file handle.
3.) Redirect the child's stdin to the input file.
4.) Redirect the child's stdout to the output file.
5.) Ask the OS to create the child process.
6.) Close the parent's handles to the input and output files.

Here are some pictures that explain the steps in redirecting the
child's stdin and stdout streams. Start with a parent process that
has the keyboard as its stdin and the console window as its stdout
and stderr.

parent
+--------------+
| |

keyboard -->>stdin stdout>>--------> console window
| |
| stderr>>-----> console window
| |
+--------------+

The parent needs to open the two files that will be used by the
child. So the parent needs to create two new streams, an input
stream and an output stream. In Windows the two new streams are
represented by "handles" and we can call these new handles hIn
and hOut.

parent
+--------------+
| |

keyboard -->>stdin stdout>>--------> console window
| |
| stderr>>-----> console window
| |

double.c -->>hIn hOut>>-----> result.txt
| |
+--------------+

Once these files have been opened, the parent can create the child
and have the child inherit these two new streams as its stdin and
stdout and inherit the parent's stderr (this is done using the
STARTUPINFO data structure). This will mean that, at least for a
short while, the parent and child will be sharing the streams to
the two files.

17

parent
+--------------+
| |

keyboard --->>stdin stdout>>-------------------------> console window
| |
| stderr>>--------------------+--> console window
|
| | |
| | |

double.c -+-->>hIn hOut>>-----+-> result.txt |
+--------------+			
child			
+---------------+			
+---->>stdin stdout>>--+ |

| | |
| stderr>>-----------------+
| |
+---------------+

But the parent does not want to use the two file streams. Those two
streams are for the child process. So the parent process should close
its two handles to the files. That gives us the configuration that we
want.

parent
+--------------+
| |

keyboard -->>stdin stdout>>----------------------> console window
| |
| stderr>>--------------------+--> console window
| | |
+--------------+ |

|
child |

+---------------+ |
| | |

double.c --->>stdin stdout>>----> result.txt |
| | |
| stderr>>-----------------+
| |
+---------------+

Be sure to run CreateChildRedirectStdinStdout.exe with its
standard input and output streams redirected to files.

C:\> CreateChildRedirectStdinStdout.exe < Readme.txt > something.txt

Notice that the redirection of the parent's streams should not
have any affect on the redirection of the child's streams.

CreateChildRedirectStdinStdout.exe
+--------------+
| |

Readme.txt -->>stdin stdout>>-------> something.txt
| |
| stderr>>--->
| |
+--------------+

double.exe
+--------------+
| |

double.c ----->>stdin stdout>>------> result.txt
| |

18

| stderr>>--->
| |
+--------------+

Exercise: A somewhat convoluted way for a parent to redirect its child's
standard streams is for the parent to first redirect its own standard
streams (as in folder 5), then have the child inherit the parent's
standard streams (as in folder 6), and then have the parent restore its
standard streams to where they originally were.

Write a Windows program that redirects its stdin to a file (say double.c),
redirects its stdout to another file (say result.txt), creates a child
(say double.exe) that inherits the redirected streams from the parent, and
then restores the parent's stdin and stdout to what they were when the
program started up. Your program will need to keep copies of the stdin and
stdout handles that the program began with and use the copies to restore the
stdin and stdout handles back to what they were. Have your program wait for
the child to end and then have your program read and write from its stdin
and stdout to make sure that they have been properly restored.

Run your program with its stdin and stdout redirected like this,

C:\> myProgram < Readme.txt > soemthing.txt

to make doubly sure that your program is redirecting the child to the files
double.c and result.txt and that your program then restores is own stdin and
stdout to their original streams.

19

8.) Creating A Parent to Child Pipeline

In this folder we show how to create a simple pipeline between
a parent process and its child process.

By "simple pipeline" we mean that the stdout of the parent is
connected by a "pipe" to the stdin of the child. So whatever
the parent writes to its stdout shows up as input to the child's
stdin. We will also assume that the parent is reading data from
its stdin and that the child's stdout is inherited from the
parent. So we want to create something that looks like this.

parent child
+---------------+ +---------------+
| | pipe | |

--->>stdin stdout>>--0========0-->>stdin stdout>>--->
| | | |
| stderr>>---> | stderr>>--->
| | | |
+---------------+ +---------------+

Notice in the above picture that there is something called a "pipe"
between the stdout of the parent and the stdin of the child. We DO
NOT draw the above picture the following way.

parent child
+---------------+ +---------------+
| | | |

--->>stdin stdout>>-------------->>stdin stdout>>--->
| | | |
| stderr>>---> | stderr>>--->
| | | |
+---------------+ +---------------+

This picture would imply that somehow the stdout of the parent is
connected directly to the stdin of the child in a way similar to
how a standard stream can be connected directly to a file. But
streams cannot be connected directly to other streams! To kind of
see why, imagine that the parent process called

printf("hello");
but the child process was busy doing something and not reading from
its stdin. What would happen? Where would the "hello" string go if the
child process was not ready to immediately consume it? One possible
answer is that the parent process gets stuck on its call to printf
because the printf function cannot return until the child reads the
"hello" string from its stdin. But this is not a good solution. It
prevents the parent from getting anything done until the child reads
all of its input. Worse, it can lead to deadlock situations where a
chain of pipelines gets permanently stuck.

A better solution is to have the "pipeline" be a buffer owned by the
operating system.

parent child
+---------------+ pipe +---------------+
| | +--------+ | |

--->>stdin stdout>>---| |--->>stdin stdout>>--->
	+--------+	
	buffer	
stderr>>--->	stderr>>--->	
+---------------+ +---------------+

When the parent process calls printf("hello") the operating system receives
the string "hello" and stores it in the pipe's buffer. (Remember that printf()
must lead to a system call to the operating system. When the operating system
gets the resulting system call, the OS notes that the destination of the
write system call is a pipe, not a file or an I/O device, and the OS stores

20

the string in the pipe's buffer which is part of the operating system.) When
the child process calls getchar() the operating system gets a character out
of the pipe's buffer and gives it to getchar. (Remember that getchar() must
result in a read() system call, and when the OS sees that the system call is
using a pipe, not a file or an I/O device, the OS reads data from the pipe's
buffer to satisfy the read system call.) This way, the parent and child do
not have to write to and read from the pipe in lockstep with each other.

If the parent process is a lot more energetic than the child process and the
parent writes far more data into the pipe's buffer than the child reads from
it, then it is possible that the pipe's buffer becomes full. If that should
happen, then the operating system would need to block the parent process
when the parent tries to write data into the full buffer. The parent process
will stay blocked until the child process frees some space in the buffer by
reading some data from it. When the operating system sees the free space in
the buffer, it would un-block the parent and allow it to write some more data
into the buffer. If the parent refills the buffer, the operating system would
need to once again block the parent if it tried to write into the full buffer.

In a similar manner, if the child process tries to read from an empty pipe
buffer, then the operating system would have to block the child process until
the parent writes some data into the pipe. After the parent puts some data
into the pipe's buffer, the operating system would un-block the child process
and let it read the data from the pipe.

Notice that the pipe's buffer is the "inter-process communication channel"
between the two virtual memory spaces that the parent and child processes
run in (the buffer is in the kernel's address space).

It is important to know that the kernel space buffer within the pipe may not
be the only buffer involved in the communication between the parent and child
processes. When the parent and child communicate through the pipe the picture
may actually look like the following. There might be a user space buffer in
the parent process (used by printf() for example) and another user space
buffer in the child process (used by scanf() for example).

parent child
+---------------+ user space +---------------+
| | +------+ | |

--->>stdin stdout>>----| |--+ +-->>stdin stdout>>--->
	+------+			
	buffer			
stderr>>--> +-------+		stderr>>--->		
+---------------+ | pipe | +---------------+

| +------+ |
+--| |--+ |

+------+ | |
buffer | |

| |
+---------+ |
| |
| user space |
| +------+ |
+--| |---+

+------+
buffer

When the parent sees the end-of-file condition on its stdin stream, the
parent closes its stdout stream (and the parent can then wait for the child
to terminate). The operating system then flushes any data in the above three
buffers and causes the end-of-file condition to become true for the child's
stdin stream (after the child has read all of the data from all the buffers).
The child process then knows that it can terminate. If the parent does not
close its stdout stream, then the child will not know that there is no more
data coming through the pipe and the child will block (forever) waiting for
the parent to write something into the pipe's buffer. And since the child will
be blocked but still running, the parent process will stay blocked (forever)
waiting for the child to terminate. So the parent and child will wait forever

21

on each other. A situation like this is called a "deadlock".

Creating a parent child pipeline is done in roughly four steps.
Step 1) Ask the OS to create a pipe object.
Step 2) Ask the OS to create the child process.
Step 3) Redirect the parent's stdout to the input of the pipe.
Step 4) Redirect the child's stdin to the output of the pipe.

However, the order of these four steps varies between Linux, Windows,
and Java. See the individual sub folders.

A simple pipeline like the one above is most often used to allow two
processes to work together (in parallel) to accomplish some task. Each
process does only part of the task. After the first process has done
its part of the task on a piece of input data from stdin, it passes its
result to the second process to do its share of processing. The final
result is written to stdout by the second process. Notice that as soon
as the first process has passed a piece of data to the second process,
the first process can read another piece of data from stdin and begin
working on it while the second process is working on the data that the
first process had just fed it (think of a small "bucket brigade" or a
short assembly line). So the two processes are working at the same time
(assuming that there is more than one CPU, which is almost always true
these days). So a pipeline becomes a way to have two CPU's work together
on a task, possibly speeding up the time to accomplish the whole task.
This is one form of "parallel processing".

Here is a real example of a (non-parallel) parent-child pipeline. In
Windows, when you execute the command

C:\> dir | find "z"

this is in fact a parent-child pipeline with cmd.exe as the parent
and find.exe as the child.

cmd.exe find.exe
+---------------+ +--------------+
| | pipe | |

keyboard-->>stdin stdout>>---0========0-->>stdin stdout>>-->console window
| | | |
| stderr>>---> | stderr>>--->
| | | |
+---------------+ +--------------+

What happened to the dir program? Well, in Windows there is no such thing
as the "dir.exe" program. The dir command is an 'internal' shell command
(the Linux bash shell also has 'internal' shell commands). This means that
the cmd.exe process itself does all the directory listing work and produces
all of the directory listing output. Since cmd.exe itself does all the dir
work, cmd.exe needs to pipe its own output into the find.exe process's
standard input.

Question: cmd.exe does not really create a pipeline as in the above picture.
Instead it would create the following parent-child pipeline.

+--------------------------------+
| |

cmd.exe | find.exe |
+---------------+ | +--------------+ |
| | | pipe | | |

keyboard-->>stdin stdout>>---+ 0=======0-->>stdin stdout>>--+-->console
window

| | | | |
| stderr>>--> | | stderr>>--->
| | | | |
| stream3>>------+ +--------------+
| |
+---------------+

22

That is, cmd.exe will first create a new output stream for itself and then
connect that stream to the input of the pipe. Why does cmd.exe create the
pipe this way? (Hint: What should happen when find.exe finishes?)

For a list of all the 'internal' commands in cmd.exe, see this web page.
https://ss64.com/nt/syntax-internal.html

Here is documentation on the bash shell's 'builtin' commands.
http://man7.org/linux/man-pages/man1/bash.1.html#SH ELL_BUILTIN_COMMANDS

Question: How would you do an experiment on Windows to verify that a
command of the form

C:\> dir | some_program.exe

is in fact a parent-child pipeline between cmd.exe and some_program.exe?
(Hint: It would help if you wrote some_program.c yourself.)

Exercise: Write a program that creates a parent-child pipeline but with
the parent and child process in the opposite order from what it is above.
That is, create the following pipeline with the stdout of the child
feeding into the stdin of the parent (and with a shared stderr).

child parent
+---------------+ +---------------+
| | pipe | |

--->>stdin stdout>>--0========0-->>stdin stdout>>------->
| | | |
| stderr>>---+ | stderr>>---+-->
| | | | | |
+---------------+ | +---------------+ |

| |
+-------------------------------+

Write another program with a pipeline that looks like this. Why is this a
better configuration for the parent-child pipeline? (Hint: What should
happen when the child terminates?)

+-------------------------------------+
| |
| child | parent
| +---------------+ | +---------------+
| | | pipe | | |

---+-->>stdin stdout>>--0========0-+ +->>stdin stdout>>------->
| | | | |
| stderr>>---+ | | stderr>>---+-->
| | | | | | |
+---------------+ | +----->>stream3 | |

| | | |
| +---------------+ |
| |
+------------------------------------+

23

8.) Creating A Parent to Child Pipeline in Windows

We want to create the following pipeline using the Windows
operating system.

parent child
+---------------+ +---------------+
| | pipe | |

--->>stdin stdout>>--0========0-->>stdin stdout>>------>
| | | |
| stderr>>-----+ | stderr>>--+-->
| | | | | |
+---------------+ | +---------------+ |

| |
+----------------------------+

To set up this pipeline, the parent process needs to do (at least) these
four steps.

1.) Ask the OS to create a pipe object.
2.) Redirect the child's stdin to the output of the pipe.
3.) Ask the OS to create the child process.
4.) Redirect the parent's stdout to the input of the pipe.

The parent also needs to do several other smaller steps that are described
below.

When the parent creates the pipe object, the operating systems returns two
handles, a handle to the input into the pipe and a handle to the output from
the pipe. One important thing to realize is that the handle to the pipe's
input is a handle to an output stream (because the parent will write to that
stream) and the handle to the pipe's output is a handle to an input stream
(because the child will read from that stream). This can be confusing. We
will use terminology like "the pipe's input handle" and "the pipe's write
handle" to mean the same thing (similarly, "the pipe's output handle" is
the same thing as "the pipe's read handle").

Notice that the child will not need the pipe's input handle and, once the
child has been created, the parent will no longer need the pipe's output
handle.

When creating the pipe, the operating system defaults to making both of the
pipe's handles not inheritable. But the child needs to inherit the pipe's
output (read) handle. So immediately after creating the pipe object, the
parent
instructs the operating system to make the pipe's output handle inheritable.

The parent then sets up the child's STARTUPINFO data structure and has the
child inherit the parent's stdout and stderr streams, and has the child's
stdin stream redirected to the (inheritable) pipe output handle.

The parent then creates the child process.

After the child has been created, the parent closes its copy of the pipe's
output handle since the parent will not read anything from this handle.
Notice that the parent's closing of this handle does not affect the child's
ability to use it's (already inherited) copy of the handle.

After the child has been created the parent also redirects its own stdout to
the pipe's input handle.

The pipeline is now in place, and the parent reads data from its stdin, does
its share of the processing of the data, writes the data to its stdout (which
is the pipe's input) where it can be read by the child, through its stdin,
who finishes processing the data and writes it to its stdout.

When the parent sees the end-of-file condition on its stdin steam, the parent
closes the pipe's input handle (and the parent can then wait for the child to

24

terminate). The operating system then causes the end-of-file condition to
become true for the child's stdin (after the child has read all the data from
the pipe's buffer), and the child process knows to terminate. If the parent
does not close the pipe's input handle, then the child will not know that
there is no more data coming through the pipe and the child will block
(forever) waiting for the parent to write something into the pipe's buffer.
And since the child will be blocked but still running, the parent process
will stay blocked (forever) waiting for the child to terminate. So the parent
and child will wait forever on each other. A situation like this is called a
"deadlock".

Here are some pictures that explain the steps in creating the pipeline.
Start with a parent process that has the keyboard as its stdin and the
console window as its stdout and stderr.

parent
+--------------+
| |

keyboard--->>stdin stdout>>--------> console window
| |
| stderr>>-----> console window
| |
+--------------+

The parent first needs to create the pipe object. Creating a pipe creates
two new streams, an input stream and an output stream.

parent
+----------------+
| |

keyboard--->>stdin stdout>>--------> console window
| |
| stderr>>-----> console window
| |

+--->>hPipeOut_Rd |
| | |
| | hPipeIn_Wr>>----+
| | | |
| +----------------+ |
| |
+---------0=======0--------+

pipe

The parent creates the child process and tells the operating
system to have the child inherit the pipe's output stream as
the child's standard input stream and also have the child
inherit (share) both of the parent's standard output and error
streams (this is all done using the STARTUPINFO data structure)..

parent
+----------------+
| |

keyboard---->>stdin stdout>>-----------+----> console window
| | |
| stderr>>-------+---|--> console window
| | | |

+-->>hPipeOut_Rd | | |
	hPipeIn_Wr>>----+			
+----------------+				
pipe				
+--------0=======0--------+				
child				
+---------------+				

25

+---->>stdin stdout>>----------+
| | |
| stderr>>------+
| |
+---------------+

Notice that the parent and child are sharing the output stream from
the pipe. But the parent has no need to read anything from the pipe,
so the parent can use the CloseHandle() function to close its handle
to that stream.

parent
+----------------+
| |

keyboard--->>stdin stdout>>-----------+----> console window
| | |
| stderr>>-------+---|--> console window
hPipeIn_Wr>>----+			
+----------------+ | | |

| | |
pipe | | |

+--------0=======0--------+ | |
child			
+---------------+			
+---->>stdin stdout>>----------+

| | |
| stderr>>------+
| |
+---------------+

Let us reorganize this picture a bit.

parent
+----------------+
| |

kbd---->>stdin stdout>>--------------------------------------+---- ->
| | |
| stderr>>----------------------------------+---|--->
| | +---------------+ | |
| | pipe | | | |
| hPipeIn_Wr>>--0=======0-->>stdin stdout>>-------+
| | | | |
+----------------+ | stderr>>---+

| |
+---------------+

Now the parent can use the SetStdHandle() function to redirect its
stdout to the input of the pipe.

parent
+----------------+
| |

kbd---->>stdin stdout>>---+
| | |
| stderr>>---|----------------------------------+--->
| | | +---------------+ |
| | | pipe | | |
| hPipeIn_Wr>>---+--0=======0-->>stdin stdout>>--------->
| | | | |
+----------------+ | stderr>>---+

| |
+---------------+

The parent no longer needs the extra handle to the input of the pipe
so it can set the handle to the value INVALID_HANDLE_VALUE (but the

26

parent should not close that handle).

parent
+----------------+
| |

kbd---->>stdin stdout>>----+
| | |
| stderr>>--+ |
| | | | +---------------+
| | | | pipe | |
| | | +--0=======0-->>stdin stdout>>--------->
| | | | |
+----------------+ | | stderr>>---+--->

| | | |
| +---------------+ |
+------------------------------------+

When we clean up the picture a bit, we see that the pipeline is now complete.

parent child
+---------------+ +---------------+
| | pipe | |

kbd----->>stdin stdout>>--0========0-->>stdin stdout>>-------->
| | | |
| stderr>>---+ | stderr>>---+-->
| | | | | |
+---------------+ | +---------------+ |

| |
+-------------------------------+

In this folder there are two files,
Microsoft_Weird_Parent_Child_Pipeline.c
Microsoft_Weird_Echo.c

copied from this URL.

https://msdn.microsoft.com/en-us/library/windows/de sktop/ms682499(v=
vs.85).aspx

These files create an unnecessarily complicated parent-child pipeline.
The pipeline also has a bug in it, caused by an incorrect comment made
in the main file. If the input file to the parent process is too large,
the parent-child pipeline will deadlock when the amount of data sent to
the child is sufficient to fill both of the pipeline buffers. When both
of the buffers are full, the parent becomes blocked on a write to the
(full) child input pipe buffer. Once the parent is blocked, it cannot
read from the child's output pipe buffer, which would be needed to free
up space in the full child input pipe buffer.

The moral of this is that overly complicated programs lead to subtle bugs
because it becomes too difficult to think about the program. There was
no reason for the author to make their pipeline example so complicated.
But the over complication lead to an easily avoided bug.

Experiment: After the parent calls CreatePipe(), the streams look like this.

parent
+-------------------+
| |

keyboard--->>stdin stdout>>--------> console window
| |
| stderr>>-----> console window
| |

+--->>hPipeOut_Rd |
| | |
| | hPipeIn_Wr>>----+
| | | |
| +-------------------+ |
| |
+----------0========0---------+

pipe

27

At this point, the parent process can use the pipe's input and output
streams to write and read data to and from the pipe's buffer. This gives
us a chance to do an interesting experiment to find out how big the pipe's
buffer is. With the streams configured as in the last picture, write a
while-loop that writes one byte of data at a time into the pipe's buffer.
Keep a running count of the number of bytes written into the pipe and print
(to stderr or stdout) the count for each byte written to the pipe. When the
pipe's buffer gets full, the loop will hang and the last number written to
stdout (or stderr) will be a count of the pipe's buffer size.

If you use fprintf(hPipeIn_Wr,...) to write to the pipe, use
fflush(hPipeIn_Wr)
after every call to fprintf() to make sure that bytes do not accumulate in a
local buffer kept by fprintf(). What happens if you don't flush the calls to
fprintf()?

28

9.) Creating A Child to Child Pipeline

In this folder we have a parent process create a two stage pipeline
between two child processes. This is exactly what a shell program
(like bash on Linux or cmd.exe on Windows) does when you use a pipe
symbol in a command line like this.

C:\ program_1 | program_2

Here are the steps that a shell program goes through to "execute"
this command line.

1.) The shell program should create a pipe object.
2.) The shell program should create two child processes,

one each from the files program_1.exe and program_2.exe,
3.) The stdin of program_1 should be inherited from the shell,
4.) The stdout of program)2 should be inherited from the shell,
5.) The stdout of program_1 should be redirected to the input

of the pipe.
6.) The stdin of program_2 should be redirected to the output

of the pipe.

The correct order of these steps depends on the operating system,
but each step is needed by each operating system.

Here is a diagram of how the parent and its two child processes should
have their streams connected together.

parent
+---------------+
| |

+--------->>stdin stdout>>---------------------------+
	stderr>>---->	

----+ +---------------+ +---->
| |
| |
| child_1 child_2 |
| +---------------+ +---------------+ |
| | | pipe | | |
+-->>stdin stdout>>--0=======0-->>stdin stdout>>---+

| | | |
| stderr>>---> | stderr>>---->
| | | |
+---------------+ +---------------+

Notice that the parent and child_1 processes share an input stream and the
parent and child_2 processes share an output stream. It will usually be the
case that the parent process will put itself to sleep until both of the child
processes are done so the parent will not interfere with the children's I/O
on the shared streams. It is important to realize that after both children
close their copies of the shared streams and then terminate, the parent can go
back to using its copies of the two shared streams. When the children close
their copies of the shared streams, that has no effect on the parent's copies
of those streams.

When child_1 sees the end-of-file condition on its stdin stream, child_1
closes its stdout stream. The operating system then causes the end-of-file
condition to become true for child_2's stdin stream (after child_2 has read
all the data from the pipe's buffer). The child_2 process then knows that it
can terminate.

If child_1 never closes its stdout stream, then child_2 (and the operating
system) will not know that there is no more data coming through the pipe and
child_2 will block (forever) waiting for child_1 to write something into the
pipe's buffer. And since the child_2 will be blocked but still running, the

29

parent process will stay blocked (forever) waiting for child_2 to terminate.
So the parent and child_2 will wait forever on each other. A situation like
this is called a "deadlock".

30

9.) Creating A Child to Child Pipeline in Windows

We want to create the following pipeline using the Windows
operating system.

parent
+---------------+
| |

+--------->>stdin stdout>>-----------------------------+---->
| | | |
| | stderr>>--------------------------+--|----->
| | | | |

----+ +---------------+ | |
child_1 child_2					
+---------------+ +---------------+					
		pipe			
+-->>stdin stdout>>--0=======0-->>stdin stdout>>-----+

| | | | |
| stderr>>---+ | stderr>>--+
| | | | | |
+---------------+ | +---------------+ |

| |
+-----------------------------+

To set up this pipeline, the parent process needs to do (at least)
these seven steps.

1.) Ask the OS to create a pipe object.
2.) The stdin of the 1st child should be inherited from the parent.
3.) Redirect the stdout of the 1st child to the input of the pipe.
4.) Ask the OS to create the 1st child processes,
5.) The stdout of the 2nd child should be inherited from the parent,
6.) Redirect the stdin of the 2nd child to the output of the pipe.
7.) Ask the OS to create the 2nd child processes,

The parent also needs to do several other smaller steps that are described
below.

Here are some pictures that explain the steps in creating the pipeline.
Start with a parent process that has the keyboard as its stdin and the
console window as its stdout and stderr.

parent
+--------------+
| |

keyboard--->>stdin stdout>>--------> console window
| |
| stderr>>-------> console window
| |
+--------------+

31

The parent first needs to create the pipe object. Creating a pipe creates
two new streams, an input stream and an output stream.

parent
+----------------+
| |

keyboard--->>stdin stdout>>--------> console window
| |
| stderr>>-------> console window
| |

+--->>hPipeOut_Rd |
| | |
| | hPipeIn_Wr>>----+
| | | |
| +----------------+ |
| |
| |
+---------0=======0--------+

pipe

The parent creates the child_1 process and tells the operating
system to have child_1 inherit the pipe's input stream as the
child's standard output stream and also have child_1 inherit
(share) both of the parent's standard input and error streams
(this is all done using the child's STARTUPINFO data structure)..

parent
+----------------+
| |

kbd--+------>>stdin stdout>>--------------> console window
| | |
| | stderr>>---------+--> console window
+-->>hPipeOut_Rd				
		hPipeIn_Wr>>----+		
	+----------------+			
	pipe			
+--------0=======0--------+				
child_1				
+---------------+				
+-------->>stdin stdout>>---+ |

| | |
| stderr>>--------+
| |
+---------------+

Notice that the parent and child are sharing the input stream into
the pipe. But the parent has no need to write anything to the pipe,
so the parent can close its copy of that stream.

32

parent
+----------------+
| |

kbd--+------>>stdin stdout>>--------------> console window
| | |
| | stderr>>---------+--> console window
+-->>hPipeOut_Rd			
	+----------------+		
	pipe		
+--------0=======0--------+			
child_1			
+---------------+			
+-------->>stdin stdout>>---+ |

| | |
| stderr>>--------+
| |
+---------------+

Let us reorganize this picture a bit.

parent
+----------------+
| |

kbd--+----->>stdin stdout>>---------------------> console window
| | |
| | stderr>>------------------+--> console window
	hPipeOut_Rd<<--------------+		
+----------------+			
child_1			
+---------------+			
		pipe	
+-------->>stdin stdout>>---0=======0--+ |

| | |
| stderr>>-----------------+
| |
+---------------+

33

Now the parent creates the child_2 process and tells the operating
system to have child_2 inherit the pipe's output stream as the child's
standard input stream and also have child_2 inherit (share) both of
the parent's stdout and stderr streams (this is all done using the
child's STARTUPINFO data structure)..

parent
+----------------+
| |

kbd--+----->>stdin stdout>>--+ --->
| | | |
| | stderr>>---------------------------------------+--| --->
	hPipeOut_Rd<<--------------+					
+----------------+						
child_1	child_2					
+---------------+	+---------------+					
		pipe				
+-------->>stdin stdout>>---0=======0--+-->>stdin stdout>>------+

| | | | |
| stderr>>--------+ | stderr>>---+
| | | | | |
+---------------+ | +---------------+ |

| |
+-----------------------------+

Notice that the parent and child are sharing the output stream from
the pipe. But the parent has no need to read anything from the pipe,
so the parent can close its copy of that stream.

parent
+----------------+
| |

kbd--+----->>stdin stdout>>--+ -->
| | | |
| | stderr>>--------------------------------------+---| --->
+----------------+					
child_1 child_2					
+---------------+ +---------------+					
		pipe			
+-------->>stdin stdout>>---0=======0---->>stdin stdout>>-------+

| | | | |
| stderr>>--------+ | stderr>>---+
| | | | | |
+---------------+ | +---------------+ |

| |
+----------------------------+

The pipeline is now complete.

34

