
39

Chapter 3

Waiting and Notification

Java provides a small API that supports communication between threads. Using this API,
one thread waits for a condition (a prerequisite for continued execution) to exist. In the
future, another thread will create the condition and then notify the waiting thread. In this
chapter, I introduce you to this API.

Wait-and-Notify API Tour
The java.lang.Object class provides a Wait-and-Notify API that consists of three wait()
methods, one notify() method, and one notifyAll() method. The wait() methods
wait for a condition to exist; the notify() and notifyAll() methods notify waiting
threads when the condition exists:

•	 void wait(): Cause the current thread to wait until another
thread invokes the notify() or notifyAll() method for this
object, or for some other thread to interrupt the current thread
while waiting.

•	 void wait(long timeout): Cause the current thread to wait until
another thread invokes the notify() or notifyAll() method for
this object, or for the specified amount of time measured in
milliseconds (identified by timeout) to pass, or for some other
thread to interrupt the current thread while waiting. This method
throws java.lang.IllegalArgumentException when timeout is
negative.

•	 void wait(long timeout, int nanos): Cause the current
thread to wait until another thread invokes the notify() or
notifyAll() method for this object, or for the specified amount
of time measured in milliseconds (identified by timeout) plus
nanoseconds (identified by nanos) to pass, or for some other
thread to interrupt the current thread while waiting. This method
throws IllegalArgumentException when timeout is negative,
nanos is negative, or nanos is greater than 999999.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notifyAll--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notifyAll--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notifyAll--

Chapter 3 ■ Waiting and Notification

40

•	 void notify(): Wake up a single thread that’s waiting on this
object’s monitor. If any threads are waiting on this object, one of
them is chosen to be awakened. The choice is arbitrary and
occurs at the discretion of the implementation. The awakened
thread will not be able to proceed until the current thread
relinquishes the lock on this object. The awakened thread will
compete in the usual manner with any other threads that might
be actively competing to synchronize on this object; for example,
the awakened thread enjoys no reliable privilege or disadvantage
in being the next thread to lock this object.

•	 void notifyAll(): Wake up all threads that are waiting on this
object’s monitor. The awakened threads will not be able to
proceed until the current thread relinquishes the lock on this
object. The awakened threads will compete in the usual manner
with any other threads that might be actively competing to
synchronize on this object; for example, the awakened threads
enjoy no reliable privilege or disadvantage in being the next
thread to lock this object.

The three wait() methods throw java.lang.InterruptedException when any
thread interrupted the current thread before or while the current thread was waiting for
a notification. The interrupted status of the current thread is cleared when this exception
is thrown.

■■ Note A thread releases ownership of the monitor associated with the object whose
wait() method is called.

This API leverages an object’s condition queue, which is a data structure that stores
threads waiting for a condition to exist. The waiting threads are known as the wait set.
Because the condition queue is tightly bound to an object’s lock, all five methods must be
called from within a synchronized context (the current thread must be the owner of the
object’s monitor); otherwise, java.lang.IllegalMonitorStateException is thrown.

The following code/pseudocode fragment demonstrates the noargument wait()
method:

synchronized(obj)
{
 while (<condition does not hold>)
 obj.wait();
 
 // Perform an action that's appropriate to condition.
}

Chapter 3 ■ Waiting and Notification

41

The wait() method is called from within a synchronized block that synchronizes on
the same object as the object on which wait() is called (obj). Because of the possibility
of spurious wakeups (a thread wakes up without being notified, interrupted, or timing
out), wait() is called from within a while loop that tests for the condition holding and
reexecutes wait() when the condition still doesn’t hold. After the while loop exits, the
condition exists and an action appropriate to the condition can be performed.

■■ Caution N ever call a wait() method outside of a loop. The loop tests the condition
before and after the wait() call. Testing the condition before calling wait() ensures
liveness. If this test was not present, and if the condition held and notify() had been
called prior to wait() being called, it’s unlikely that the waiting thread would ever wake
up. Retesting the condition after calling wait() ensures safety. If retesting didn’t occur, and
if the condition didn’t hold after the thread had awakened from the wait() call (perhaps
another thread called notify() accidentally when the condition didn’t hold), the thread
would proceed to destroy the lock’s protected invariants.

The following code fragment demonstrates the notify() method, which notifies the
waiting thread in the previous example:

synchronized(obj)
{
 // Set the condition.
 
 obj.notify();
}

Notice that notify() is called from a critical section guarded by the same object
(obj) as the critical section for the wait() method. Also, notify() is called using the
same obj reference. Follow this pattern and you shouldn’t get into trouble.

■■ Note T here has been much discussion about which notification method is better:
notify() or notifyAll(). For example, check out “Difference between notify() and
notifyAll()” (http://stackoverflow.com/questions/14924610/difference-between-
notify-and-notifyall). If you’re wondering which method to use, I would use notify() in
an application where there are only two threads, and where either thread occasionally waits
and needs to be notified by the other thread. Otherwise, I would use notifyAll().

http://stackoverflow.com/questions/14924610/difference-between-notify-and-notifyall
http://stackoverflow.com/questions/14924610/difference-between-notify-and-notifyall

Chapter 3 ■ Waiting and Notification

42

Producers and Consumers
A classic example of thread communication involving conditions is the relationship
between a producer thread and a consumer thread. The producer thread produces data
items to be consumed by the consumer thread. Each produced data item is stored in a
shared variable.

Imagine that the threads are running at different speeds. The producer might
produce a new data item and record it in the shared variable before the consumer
retrieves the previous data item for processing. Also, the consumer might retrieve the
contents of the shared variable before a new data item is produced.

To overcome those problems, the producer thread must wait until it’s notified that
the previously produced data item has been consumed, and the consumer thread must
wait until it’s notified that a new data item has been produced. Listing 3-1 shows you how
to accomplish this task via wait() and notify().

Listing 3-1.  The Producer-Consumer Relationship Version 1

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}
 
class Shared
{
 private char c;
 private volatile boolean writeable = true;
 
 synchronized void setSharedChar(char c)
 {
 while (!writeable)
 try
 {
 wait();
 }
 catch (InterruptedException ie)
 {
 }
 this.c = c;
 writeable = false;
 notify();
 }
 

Chapter 3 ■ Waiting and Notification

43

 synchronized char getSharedChar()
 {
 while (writeable)
 try
 {
 wait();
 }
 catch (InterruptedException ie)
 {
 }
 writeable = true;
 notify();
 return c;
 }
}
 
class Producer extends Thread
{
 private final Shared s;
 
 Producer(Shared s)
 {
 this.s = s;
 }
 
 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 s.setSharedChar(ch);
 System.out.println(ch + " produced by producer.");
 }
 }
}
class Consumer extends Thread
{
 private final Shared s;
 
 Consumer(Shared s)
 {
 this.s = s;
 }
 

Chapter 3 ■ Waiting and Notification

44

 @Override
 public void run()
 {
 char ch;
 do
 {
 ch = s.getSharedChar();
 System.out.println(ch + " consumed by consumer.");
 }
 while (ch != 'Z');
 }
}

This application creates a Shared object and two threads that get a copy of the
object’s reference. The producer calls the object’s setSharedChar() method to save each
of 26 uppercase letters; the consumer calls the object’s getSharedChar() method to
acquire each letter.

The writeable instance field tracks two conditions: the producer waiting on the
consumer to consume a data item and the consumer waiting on the producer to produce
a new data item. It helps coordinate execution of the producer and consumer. The
following scenario, where the consumer executes first, illustrates this coordination:

	 1.	 The consumer executes s.getSharedChar() to retrieve a
letter.

	 2.	 Inside of that synchronized method, the consumer calls
wait() because writeable contains true. The consumer now
waits until it receives notification from the producer.

	 3.	 The producer eventually executes s.setSharedChar(ch);.

	 4.	 When the producer enters that synchronized method (which
is possible because the consumer released the lock inside of
the wait() method prior to waiting), the producer discovers
writeable’s value to be true and doesn’t call wait().

	 5.	 The producer saves the character, sets writeable to
false (which will cause the producer to wait on the next
setSharedChar() call when the consumer has not consumed
the character by that time), and calls notify() to awaken the
consumer (assuming the consumer is waiting).

	 6.	 The producer exits setSharedChar(char c).

	 7.	 The consumer wakes up (and reacquires the lock), sets
writeable to true (which will cause the consumer to wait
on the next getSharedChar() call when the producer has not
produced a character by that time), notifies the producer to
awaken that thread (assuming the producer is waiting), and
returns the shared character.

Chapter 3 ■ Waiting and Notification

45

Compile Listing 3-1 as follows:

javac PC.java

Run the resulting application as follows:

java PC

You should observe output such as the following excerpt during one run:

W produced by producer.
W consumed by consumer.
X produced by producer.
X consumed by consumer.
Y produced by producer.
Y consumed by consumer.
Z produced by producer.
Z consumed by consumer.

Although the synchronization works correctly, you might observe multiple
producing messages before multiple consuming messages:

A produced by producer.
B produced by producer.
A consumed by consumer.
B consumed by consumer.

Also, you might observe a consuming message before a producing message:

V consumed by consumer.
V produced by producer.

Either strange output order doesn’t mean that the producer and consumer threads
aren’t synchronized. Instead, it’s the result of the call to setSharedChar() followed by
its companion System.out.println() method call not being synchronized, and by the
call to getSharedChar() followed by its companion System.out.println() method
call not being synchronized. The output order can be corrected by wrapping each of
these method call pairs in a synchronized block that synchronizes on the Shared object
referenced by s. Listing 3-2 presents this enhancement.

Chapter 3 ■ Waiting and Notification

46

Listing 3-2.  The Producer-Consumer Relationship Version 2

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}
 
class Shared
{
 private char c;
 private volatile boolean writeable = true;
 
 synchronized void setSharedChar(char c)
 {
 while (!writeable)
 try
 {
 wait();
 }
 catch (InterruptedException ie)
 {
 }
 this.c = c;
 writeable = false;
 notify();
 }
 
 synchronized char getSharedChar()
 {
 while (writeable)
 try
 {
 wait();
 }
 catch (InterruptedException ie)
 {
 }
 writeable = true;
 notify();
 return c;
 }
}
 

Chapter 3 ■ Waiting and Notification

47

class Producer extends Thread
{
 private final Shared s;
 
 Producer(Shared s)
 {
 this.s = s;
 }
 
 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 synchronized(s)
 {
 s.setSharedChar(ch);
 System.out.println(ch + " produced by producer.");
 }
 }
 }
}
class Consumer extends Thread
{
 private final Shared s;
 
 Consumer(Shared s)
 {
 this.s = s;
 }
 
 @Override
 public void run()
 {
 char ch;
 do
 {
 synchronized(s)
 {
 ch = s.getSharedChar();
 System.out.println(ch + " consumed by consumer.");
 }
 }
 while (ch != 'Z');
 }
}

Chapter 3 ■ Waiting and Notification

48

Compile Listing 3-2 (javac PC.java) and run this application (java PC). Its output
should always appear in the same alternating order as shown next (only the first few lines
are shown for brevity):

A produced by producer.
A consumed by consumer.
B produced by producer.
B consumed by consumer.
C produced by producer.
C consumed by consumer.
D produced by producer.
D consumed by consumer.

EXERCISES

The following exercises are designed to test your understanding of Chapter 3’s
content:

1.	 Define condition.

2.	 Describe the API that supports conditions.

3.	 True or false: The wait() methods are interruptible.

4.	 What method would you call to wake up all threads that are
waiting on an object’s monitor?

5.	 True or false: A thread that has acquired a lock doesn’t release
this lock when it calls one of Object’s wait() methods.

6.	 Define condition queue.

7.	 What happens when you call any of the API’s methods outside
of a synchronized context?

8.	 Define spurious wakeup.

9.	 Why should you call a wait() method in a loop context?

10.	 Create an Await application that demonstrates a higher-level
concurrency construct known as a gate. This construct permits
multiple threads to arrive at a synchronization point (the gate)
and wait until the gate is unlocked by another thread so that
they can all proceed.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3

Chapter 3 ■ Waiting and Notification

49

The main() method first creates a runnable for the threads that will wait at the
gate. The runnable prints a message stating that the thread is waiting, increments
a counter, sleeps for 2 seconds, and waits (make sure to account for spurious
wakeups). Upon wakeup, the thread outputs a message stating that the thread is
terminating. main() then creates three Thread objects and starts three threads to
execute the runnable. Next, main() creates another runnable that repeatedly sleeps
for 200 milliseconds until the counter equals 3, at which point it notifies all waiting
threads. Finally, main() creates a Thread object for the second runnable and starts
the thread.

Summary
Java provides an API that supports communication between threads. This API consists of
Object’s three wait() methods, one notify() method, and one notifyAll() method.
The wait() methods wait for a condition to exist; notify() and notifyAll() notify
waiting threads when the condition exists.

The wait(), notify(), and notifyAll() methods are called from within a
synchronized block that synchronizes on the same object as the object on which they are
called. Because of spurious wakeups, wait() is called from a while loop that reexecutes
wait() while the condition doesn’t hold.

A classic example of thread communication involving conditions is the relationship
between a producer thread and a consumer thread. The producer thread produces data
items to be consumed by the consumer thread. Each produced data item is stored in a
shared variable.

To overcome problems such as consuming a data item that hasn’t been produced,
the producer thread must wait until it’s notified that the previously produced data item
has been consumed, and the consumer thread must wait until it’s notified that a new data
item has been produced.

Chapter 4 presents additional thread capabilities.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

	Chapter 3: Waiting and Notification
	 Wait-and-Notify API Tour
	 Producers and Consumers
	 Summary

