
© Copyright IBM Corporation 2002 Trademarks
Java theory and practice: Thread pools and work queues Page 1 of 8

Java theory and practice: Thread pools and work
queues
Thread pools help achieve optimum resource utilization

Brian Goetz July 01, 2002

One of the most common questions posted on our Multithreaded Java programming discussion
forum is some version of "How do I create a thread pool?" In nearly every server application,
the question of thread pools and work queues comes up. In this article, Brian Goetz explores
the motivations for thread pools, some basic implementation and tuning techniques, and some
common hazards to avoid.

View more content in this series

Learn more. Develop more. Connect more.

The new developerWorks Premium membership program provides an all-access pass
to powerful development tools and resources, including 500 top technical titles (dozens
specifically for Java developers) through Safari Books Online, deep discounts on premier
developer events, video replays of recent O'Reilly conferences, and more. Sign up today.

Why thread pools?

Many server applications, such as Web servers, database servers, file servers, or mail servers, are
oriented around processing a large number of short tasks that arrive from some remote source. A
request arrives at the server in some manner, which might be through a network protocol (such as
HTTP, FTP, or POP), through a JMS queue, or perhaps by polling a database. Regardless of how
the request arrives, it is often the case in server applications that the processing of each individual
task is short-lived and the number of requests is large.

One simplistic model for building a server application would be to create a new thread each time
a request arrives and service the request in the new thread. This approach actually works fine for
prototyping, but has significant disadvantages that would become apparent if you tried to deploy
a server application that worked this way. One of the disadvantages of the thread-per-request
approach is that the overhead of creating a new thread for each request is significant; a server
that created a new thread for each request would spend more time and consume more system
resources creating and destroying threads than it would processing actual user requests.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=176&cat=10
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=176&cat=10
https://www.ibm.com/developerworks/library/?series_title_by=java+theory+and+practice
https://www.ibm.com/marketplace/cloud/developerworks/us/en-us/?cm_sp=dwpremium-_-j-jtp0730-_-article
https://www.ibm.com/marketplace/cloud/developerworks/us/en-us/?cm_sp=dwpremium-_-j-jtp0730-_-article

developerWorks® ibm.com/developerWorks/

Java theory and practice: Thread pools and work queues Page 2 of 8

In addition to the overhead of creating and destroying threads, active threads consume system
resources. Creating too many threads in one JVM can cause the system to run out of memory or
thrash due to excessive memory consumption. To prevent resource thrashing, server applications
need some means of limiting how many requests are being processed at any given time.

A thread pool offers a solution to both the problem of thread life-cycle overhead and the problem of
resource thrashing. By reusing threads for multiple tasks, the thread-creation overhead is spread
over many tasks. As a bonus, because the thread already exists when a request arrives, the
delay introduced by thread creation is eliminated. Thus, the request can be serviced immediately,
rendering the application more responsive. Furthermore, by properly tuning the number of threads
in the thread pool, you can prevent resource thrashing by forcing any requests in excess of a
certain threshold to wait until a thread is available to process it.

Alternatives to thread pools
Thread pools are far from the only way to use multiple threads within a server application. As
mentioned above, sometimes it is perfectly sensible to spawn a new thread for each new task.
However, if the frequency of task creation is high and the mean task duration is low, spawning a
new thread for each task will lead to performance problems.

Another common threading model is to have a single background thread and task queue for tasks
of a certain type. AWT and Swing use this model, in which there is a GUI event thread, and all
work that causes changes in the user interface must execute in that thread. However, because
there is only one AWT thread, it is undesirable to execute tasks in the AWT thread that may take
a perceptible amount of time to complete. As a result, Swing applications often require additional
worker threads for long-running UI-related tasks.

Both the thread-per-task and the single-background-thread approaches can work perfectly well
in certain situations. The thread-per-task approach works quite well with a small number of long-
running tasks. The single-background-thread approach works quite well so long as scheduling
predictability is not important, as is the case with low-priority background tasks. However, most
server applications are oriented around processing large numbers of short-lived tasks or subtasks,
and it is desirable to have a mechanism for efficiently processing these tasks with low overhead,
as well as some measure of resource management and timing predictability. Thread pools offer
these advantages.

Work queues
In terms of how thread pools are actually implemented, the term "thread pool" is somewhat
misleading, in that the "obvious" implementation of a thread pool doesn't exactly yield the result we
want in most cases. The term "thread pool" predates the Java platform, and is probably an artifact
from a less object-oriented approach. Still, the term continues to be widely used.

While we could easily implement a thread pool class in which a client class would wait for an
available thread, pass the task to that thread for execution, and then return the thread to the
pool when it is finished, this approach has several potentially undesirable effects. What happens,
for instance, when the pool is empty? Any caller that attempted to pass a task to a pool thread

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Thread pools and work queues Page 3 of 8

would find the pool empty, and its thread would block while it waited for an available pool thread.
Often, one of the reasons we would want to use background threads is to prevent the submitting
thread from blocking. Pushing the blocking all the way to the caller, as is the case in the "obvious"
implementation of a thread pool, can end up causing the same problem we were trying to solve.

What we usually want is a work queue combined with a fixed group of worker threads, which
uses wait() and notify() to signal waiting threads that new work has arrived. The work queue
is generally implemented as some sort of linked list with an associated monitor object. Listing
1 shows an example of a simple pooled work queue. This pattern, using a queue of Runnable
objects, is a common convention for schedulers and work queues, although there is no particular
need imposed by the Thread API to use the Runnable interface.

public class WorkQueue
{
 private final int nThreads;
 private final PoolWorker[] threads;
 private final LinkedList queue;

 public WorkQueue(int nThreads)
 {
 this.nThreads = nThreads;
 queue = new LinkedList();
 threads = new PoolWorker[nThreads];

 for (int i=0; i<nThreads; i++) {
 threads[i] = new PoolWorker();
 threads[i].start();
 }
 }

 public void execute(Runnable r) {
 synchronized(queue) {
 queue.addLast(r);
 queue.notify();
 }
 }

 private class PoolWorker extends Thread {
 public void run() {
 Runnable r;

 while (true) {
 synchronized(queue) {
 while (queue.isEmpty()) {
 try
 {
 queue.wait();
 }
 catch (InterruptedException ignored)
 {
 }
 }

 r = (Runnable) queue.removeFirst();
 }

 // If we don't catch RuntimeException,
 // the pool could leak threads
 try {
 r.run();
 }
 catch (RuntimeException e) {

developerWorks® ibm.com/developerWorks/

Java theory and practice: Thread pools and work queues Page 4 of 8

 // You might want to log something here
 }
 }
 }
 }
}

You may have noticed that the implementation in Listing 1 uses notify() instead of notifyAll().
Most experts advise the use of notifyAll() instead of notify(), and with good reason: there
are subtle risks associated with using notify(), and it is only appropriate to use it under certain
specific conditions. On the other hand, when used properly, notify() has more desirable
performance characteristics than notifyAll(); in particular, notify() causes many fewer context
switches, which is important in a server application.

The example work queue in Listing 1 meets the requirements for safely using notify(). So go
ahead and use it in your program, but exercise great care when using notify() in other situations.

Risks of using thread pools
While the thread pool is a powerful mechanism for structuring multithreaded applications, it is
not without risk. Applications built with thread pools are subject to all the same concurrency risks
as any other multithreaded application, such as synchronization errors and deadlock, and a few
other risks specific to thread pools as well, such as pool-related deadlock, resource thrashing, and
thread leakage.

Deadlock
With any multithreaded application, there is a risk of deadlock. A set of processes or threads is
said to be deadlocked when each is waiting for an event that only another process in the set can
cause. The simplest case of deadlock is where thread A holds an exclusive lock on object X and
is waiting for a lock on object Y, while thread B holds an exclusive lock on object Y and is waiting
for the lock on object X. Unless there is some way to break out of waiting for the lock (which Java
locking doesn't support), the deadlocked threads will wait forever.

While deadlock is a risk in any multithreaded program, thread pools introduce another opportunity
for deadlock, where all pool threads are executing tasks that are blocked waiting for the results of
another task on the queue, but the other task cannot run because there is no unoccupied thread
available. This can happen when thread pools are used to implement simulations involving many
interacting objects, and the simulated objects can send queries to one another that then execute
as queued tasks, and the querying object waits synchronously for the response.

Resource thrashing
One benefit of thread pools is that they generally perform well relative to the alternative scheduling
mechanisms, some of which we've already discussed. But this is only true if the thread pool size
is tuned properly. Threads consume numerous resources, including memory and other system
resources. Besides the memory required for the Thread object, each thread requires two execution
call stacks, which can be large. In addition, the JVM will likely create a native thread for each Java
thread, which will consume additional system resources. Finally, while the scheduling overhead of

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Thread pools and work queues Page 5 of 8

switching between threads is small, with many threads context switching can become a significant
drag on your program's performance.

If a thread pool is too large, the resources consumed by those threads could have a significant
impact on system performance. Time will be wasted switching between threads, and having
more threads than you need may cause resource starvation problems, because the pool threads
are consuming resources that could be more effectively used by other tasks. In addition to
the resources used by the threads themselves, the work done servicing requests may require
additional resources, such as JDBC connections, sockets, or files. These are limited resources as
well, and having too many concurrent requests may cause failures, such as failure to allocate a
JDBC connection.

Concurrency errors
Thread pools and other queuing mechanisms rely on the use of wait() and notify() methods,
which can be tricky. If coded incorrectly, it is possible for notifications to be lost, resulting in threads
remaining in an idle state even though there is work in the queue to be processed. Great care
must be taken when using these facilities; even experts make mistakes with them. Better yet, use
an existing implementation that is known to work, such as the util.concurrent package discussed
below in No need to write your own.

Thread leakage
A significant risk in all kinds of thread pools is thread leakage, which occurs when a thread is
removed from the pool to perform a task, but is not returned to the pool when the task completes.
One way this happens is when the task throws a RuntimeException or an Error. If the pool
class does not catch these, then the thread will simply exit and the size of the thread pool will be
permanently reduced by one. When this happens enough times, the thread pool will eventually be
empty, and the system will stall because no threads are available to process tasks.

Tasks that permanently stall, such as those that potentially wait forever for resources that are not
guaranteed to become available or for input from users who may have gone home, can also cause
the equivalent of thread leakage. If a thread is permanently consumed with such a task, it has
effectively been removed from the pool. Such tasks should either be given their own thread or wait
only for a limited time.

Request overload
It is possible for a server to simply be overwhelmed with requests. In this case, we may not want
to queue every incoming request to our work queue, because the tasks queued for execution may
consume too many system resources and cause resource starvation. It is up to you to decide what
to do in this case; in some situations, you may be able to simply throw the request away, relying
on higher-level protocols to retry the request later, or you may want to refuse the request with a
response indicating that the server is temporarily busy.

Guidelines for effective use of thread pools
Thread pools can be an extremely effective way to structure a server application, as long as you
follow a few simple guidelines:

developerWorks® ibm.com/developerWorks/

Java theory and practice: Thread pools and work queues Page 6 of 8

• Don't queue tasks that wait synchronously for results from other tasks. This can cause a
deadlock of the form described above, where all the threads are occupied with tasks that are
in turn waiting for results from queued tasks that can't execute because all the threads are
busy.

• Be careful when using pooled threads for potentially long-lived operations. If the program
must wait for a resource, such as an I/O completion, specify a maximum wait time, and then
fail or requeue the task for execution at a later time. This guarantees that eventually some
progress will be made by freeing the thread for a task that might complete successfully.

• Understand your tasks. To tune the thread pool size effectively, you need to understand the
tasks that are being queued and what they are doing. Are they CPU-bound? Are they I/O-
bound? Your answers will affect how you tune your application. If you have different classes of
tasks with radically different characteristics, it may make sense to have multiple work queues
for different types of tasks, so each pool can be tuned accordingly.

Tuning the pool size
Tuning the size of a thread pool is largely a matter of avoiding two mistakes: having too few
threads or too many threads. Fortunately, for most applications the middle ground between too few
and too many is fairly wide.

Recall that there are two primary advantages to using threading in applications: allowing
processing to continue while waiting for slow operations such as I/O, and exploiting the availability
of multiple processors. In a compute-bound application running on an N-processor machine,
adding additional threads may improve throughput as the number of threads approaches N, but
adding additional threads beyond N will do no good. Indeed, too many threads will even degrade
performance because of the additional context switching overhead.

The optimum size of a thread pool depends on the number of processors available and the nature
of the tasks on the work queue. On an N-processor system for a work queue that will hold entirely
compute-bound tasks, you will generally achieve maximum CPU utilization with a thread pool of N
or N+1 threads.

For tasks that may wait for I/O to complete -- for example, a task that reads an HTTP request from
a socket -- you will want to increase the pool size beyond the number of available processors,
because not all threads will be working at all times. Using profiling, you can estimate the ratio of
waiting time (WT) to service time (ST) for a typical request. If we call this ratio WT/ST, for an N-
processor system, you'll want to have approximately N*(1+WT/ST) threads to keep the processors
fully utilized.

Processor utilization is not the only consideration in tuning the thread pool size. As the thread pool
grows, you may encounter the limitations of the scheduler, available memory, or other system
resources, such the number of sockets, open file handles, or database connections.

No need to write your own
Doug Lea has written an excellent open-source library of concurrency utilities, util.concurrent,
which includes mutexes, semaphores, collection classes like queues and hash tables that perform

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Thread pools and work queues Page 7 of 8

well under concurrent access, and several work queue implementations. The PooledExecutor
class from this package is an efficient, widely used, correct implementation of a thread pool based
on a work queue. Rather than try and write your own, which is easy to get wrong, you might
consider using some of the utilities in util.concurrent.

The util.concurrent library also serves as the inspiration for JSR 166, a Java Community
Process (JCP) working group that will be producing a set of concurrency utilities for inclusion in the
Java class library under the java.util.concurrent package, and which should be ready for the
Java Development Kit 1.5 release.

Conclusion

The thread pool is a useful tool for organizing server applications. It is quite straightforward in
concept, but there are several issues to watch for when implementing and using one, such as
deadlock, resource thrashing, and the complexities of wait() and notify(). If you find yourself
in need of a thread pool for your application, consider using one of the Executor classes from
util.concurrent, such as PooledExecutor, rather than writing one from scratch. If you find
yourself creating threads to handle short-lived tasks, you should definitely consider using a thread
pool instead.

developerWorks® ibm.com/developerWorks/

Java theory and practice: Thread pools and work queues Page 8 of 8

Related topics

• See IBM Bluemix in action
• Concurrent Programming in Java
• Overview of package util.concurrent Release 1.3.4
• JSR 166: Concurrency Utilities
• Writing multithreaded Java applications

© Copyright IBM Corporation 2002
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/developerworks/cloud/library/cl-bluemix-dbarnes-ny/index.html
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69/104-1464220-8871162
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
https://www.jcp.org/en/jsr/detail?id=166
http://www.ibm.com/developerworks/java/library/j-thread.html
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Why thread pools?
	Alternatives to thread pools
	Work queues
	Risks of using thread pools
	Deadlock
	Resource thrashing
	Concurrency errors
	Thread leakage
	Request overload

	Guidelines for effective use of thread pools
	Tuning the pool size
	No need to write your own
	Conclusion
	Trademarks

