
21

Chapter 2

Synchronization

Developing multithreaded applications is much easier when threads don’t interact,
typically via shared variables. When interaction occurs, various problems can arise that
make an application thread-unsafe (incorrect in a multithreaded context). In this chapter,
you’ll learn about these problems and also learn how to overcome them through the
correct use of Java’s synchronization-oriented language features.

The Problems with Threads
Java’s support for threads facilitates the development of responsive and scalable
applications. However, this support comes at the price of increased complexity. Without
care, your code can become riddled with hard-to-find bugs related to race conditions,
data races, and cached variables.

Race Conditions
A race condition occurs when the correctness of a computation depends on the relative
timing or interleaving of multiple threads by the scheduler. Consider the following code
fragment, which performs a computation as long as a certain precondition holds:

if (a == 10.0)
 b = a / 2.0;

There is no problem with this code fragment in a single-threaded context, and there
is no problem in a multithreaded context when a and b are local variables. However,
assume that a and b identify instance or class (static) field variables and that two
threads simultaneously access this code.

Suppose that one thread has executed if (a == 10.0) and is about to execute
b = a / 2.0 when suspended by the scheduler, which resumes another thread that
changes a. Variable b will not equal 5.0 when the former thread resumes its execution.
(If a and b were local variables, this race condition wouldn’t occur because each thread
would have its own copy of these local variables.)

Chapter 2 ■ Synchronization

22

The code fragment is an example of a common type of race condition that’s known
as check-then-act, in which a potentially stale observation is used to decide on what to do
next. In the previous code fragment, the “check” is performed by if (a == 10.0) and the
“act” is performed by b = a / 2.0;.

Another type of race condition is read-modify-write, in which new state is derived
from previous state. The previous state is read, then modified, and finally updated to
reflect the modified result via three indivisible operations. However, the combination of
these operations isn’t indivisible.

A common example of read-modify-write involves a variable that’s incremented to
generate a unique numeric identifier. For example, in the following code fragment,
suppose that counter is an instance field of type int (initialized to 1) and that two threads
simultaneously access this code:

public int getID()
{
 return counter++;
}

Although it might look like a single operation, expression counter++ is actually three
separate operations: read counter’s value, add 1 to this value, and store the updated value
in counter. The read value becomes the value of the expression.

Suppose thread 1 calls getID() and reads counter’s value, which happens to be 1,
before it’s suspended by the scheduler. Now suppose that thread 2 runs, calls getID(),
reads counter’s value (1), adds 1 to this value, stores the result (2) in counter, and returns
1 to the caller.

At this point, assume that thread 2 resumes, adds 1 to the previously read value (1),
stores the result (2) in counter, and returns 1 to the caller. Because thread 1 undoes
thread 2, we have lost an increment and a non-unique ID has been generated. This
method is useless.

Data Races
A race condition is often confused with a data race in which two or more threads (in a
single application) access the same memory location concurrently, at least one of the
accesses is for writing, and these threads don’t coordinate their accesses to that memory.
When these conditions hold, access order is non-deterministic. Different results may be
generated from run to run, depending on that order. Consider the following example:

private static Parser parser;
 
public static Parser getInstance()
{
 if (parser == null)
 parser = new Parser();
 return parser;
}

Chapter 2 ■ Synchronization

23

Assume that thread 1 invokes getInstance() first. Because it observes a null value in
the parser field, thread 1 instantiates Parser and assigns its reference to parser. When
thread 2 subsequently calls getInstance(), it could observe that parser contains a non-null
reference and simply return parser’s value. Alternatively, thread 2 could observe a null value
in parser and create a new Parser object. Because there is no happens-before ordering (one
action must precede another action) between thread 1’s write of parser and thread 2’s read of
parser (because there is no coordinated access to parser), a data race has occurred.

Cached Variables
To boost performance, the compiler, the Java virtual machine (JVM), and the operating
system can collaborate to cache a variable in a register or a processor-local cache, rather
than rely on main memory. Each thread has its own copy of the variable. When one
thread writes to this variable, it’s writing to its copy; other threads are unlikely to see the
update in their copies.

Chapter 1 presented a ThreadDemo application (see Listing 1-3) that exhibits this
problem. For reference, I repeat part of the source code here:

private static BigDecimal result;
 
public static void main(String[] args)
{
 Runnable r = () ->
 {
 result = computePi(50000);
 };
 Thread t = new Thread(r);
 t.start();
 try
 {
 t.join();
 }
 catch (InterruptedException ie)
 {
 // Should never arrive here because interrupt() is never
 // called.
 }
 System.out.println(result);
}

The class field named result demonstrates the cached variable problem. This field
is accessed by a worker thread that executes result = computePi(50000); in a lambda
context, and by the default main thread when it executes System.out.println(result);.

The worker thread could store computePi()’s return value in its copy of result,
whereas the default main thread could print the value of its copy. The default main thread
might not see the result = computePi(50000); assignment and its copy would remain
at the null default. This value would output instead of result’s string representation (the
computed pi value).

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_1#FPar11

Chapter 2 ■ Synchronization

24

Synchronizing Access to Critical Sections
You can use synchronization to solve the previous thread problems. Synchronization is a
JVM feature that ensures that two or more concurrent threads don’t simultaneously
execute a critical section, which is a code section that must be accessed in a serial (one
thread at a time) manner.

This property of synchronization is known as mutual exclusion because each thread
is mutually excluded from executing in a critical section when another thread is inside
the critical section. For this reason, the lock that the thread acquires is often referred to as
a mutex lock.

Synchronization also exhibits the property of visibility in which it ensures that a
thread executing in a critical section always sees the most recent changes to shared
variables. It reads these variables from main memory on entry to the critical section and
writes their values to main memory on exit.

Synchronization is implemented in terms of monitors, which are concurrency
constructs for controlling access to critical sections, which must execute indivisibly. Each
Java object is associated with a monitor, which a thread can lock or unlock by acquiring
and releasing the monitor’s lock (a token).

■■ Note A thread that has acquired a lock doesn’t release this lock when it calls one of
Thread’s sleep() methods.

Only one thread can hold a monitor’s lock. Any other thread trying to lock that
monitor blocks until it can obtain the lock. When a thread exits a critical section, it
unlocks the monitor by releasing the lock.

Locks are designed to be reentrant to prevent deadlock (discussed later). When a
thread attempts to acquire a lock that it’s already holding, the request succeeds.

■■ Tip T he java.lang.Thread class declares a static boolean holdsLock(Object o)
method that returns true when the calling thread holds the lock on object o. You will find
this method handy in assertion statements, such as assert Thread.holdsLock(o);.

Java provides the synchronized keyword to serialize thread access to a method or a
block of statements (the critical section).

Chapter 2 ■ Synchronization

25

Using Synchronized Methods
A synchronized method includes the synchronized keyword in its header. For example,
you can use this keyword to synchronize the former getID() method and overcome its
read-modify-write race condition as follows:

public synchronized int getID()
{
 return counter++;
}

When synchronizing on an instance method, the lock is associated with the object
on which the method is called. For example, consider the following ID class:

public class ID
{
 private int counter; // initialized to 0 by default
 
 public synchronized int getID()
 {
 return counter++;
 }
}

Suppose you specify the following code sequence:

ID id = new ID();
System.out.println(id.getID());

The lock is associated with the ID object whose reference is stored in id. If another
thread called id.getID() while this method was executing, the other thread would have
to wait until the executing thread released the lock.

When synchronizing on a class method, the lock is associated with the java.lang.
Class object corresponding to the class whose class method is called. For example,
consider the following ID class:

public class ID
{
 private static int counter; // initialized to 0 by default
 
 public static synchronized int getID()
 {
 return counter++;
 }
}

Chapter 2 ■ Synchronization

26

Suppose you specify the following code sequence:

System.out.println(ID.getID());

The lock is associated with ID.class, the Class object associated with ID. If another
thread called ID.getID() while this method was executing, the other thread would have
to wait until the executing thread released the lock.

Using Synchronized Blocks
A synchronized block of statements is prefixed by a header that identifies the object whose
lock is to be acquired. It has the following syntax:

synchronized(object)
{
 /* statements */
}

According to this syntax, object is an arbitrary object reference. The lock is associated
with this object.

I previously excerpted a Chapter 1 application that suffers from the cached variable
problem. You can solve this problem with two synchronized blocks:

Runnable r = () ->
 {
 synchronized(FOUR)
 {
 result = computePi(50000);
 }
 };

// …
synchronized(FOUR)
{
 System.out.println(result);
}

These two blocks identify a pair of critical sections. Each block is guarded by the
same object so that only one thread can execute in one of these blocks at a time. Each
thread must acquire the lock associated with the object referenced by constant FOUR
before it can enter its critical section.

This code fragment brings up an important point about synchronized blocks and
synchronized methods. Two or more threads that access the same code sequence must
acquire the same lock or there will be no synchronization. This implies that the same
object must be accessed. In the previous example, FOUR is specified in two places so that
only one thread can be in either critical section. If I specified synchronized(FOUR) in one
place and synchronized("ABC") in another, there would be no synchronization because
two different locks would be involved.

http://dx.doi.org/10.1007/978-1-4842-1700-9_1

Chapter 2 ■ Synchronization

27

Beware of Liveness Problems
The term liveness refers to something beneficial happening eventually. A liveness failure
occurs when an application reaches a state in which it can make no further progress. In a
single-threaded application, an infinite loop would be an example. Multithreaded
applications face the additional liveness challenges of deadlock, livelock, and starvation:

•	 Deadlock: Thread 1 waits for a resource that thread 2 is holding
exclusively and thread 2 is waiting for a resource that thread 1 is
holding exclusively. Neither thread can make progress.

•	 Livelock: Thread x keeps retrying an operation that will always
fail. It cannot make progress for this reason.

•	 Starvation: Thread x is continually denied (by the scheduler)
access to a needed resource in order to make progress. Perhaps
the scheduler executes higher-priority threads before
lower-priority threads and there is always a higher-priority thread
available for execution. Starvation is also commonly referred to as
indefinite postponement.

Consider deadlock. This pathological problem occurs because of too much
synchronization via the synchronized keyword. If you’re not careful, you might
encounter a situation where locks are acquired by multiple threads, neither thread holds
its own lock but holds the lock needed by some other thread, and neither thread can
enter and later exit its critical section to release its held lock because another thread holds
the lock to that critical section. Listing 2-1’s atypical example demonstrates this scenario.

Listing 2-1.  A Pathological Case of Deadlock

public class DeadlockDemo
{
 private final Object lock1 = new Object();
 private final Object lock2 = new Object();
 
 public void instanceMethod1()
 {
 synchronized(lock1)
 {
 synchronized(lock2)
 {
 System.out.println("first thread in instanceMethod1");
 // critical section guarded first by
 // lock1 and then by lock2
 }
 }
 }
 

Chapter 2 ■ Synchronization

28

 public void instanceMethod2()
 {
 synchronized(lock2)
 {
 synchronized(lock1)
 {
 System.out.println("second thread in instanceMethod2");
 // critical section guarded first by
 // lock2 and then by lock1
 }
 }
 }
 
 public static void main(String[] args)
 {
 final DeadlockDemo dld = new DeadlockDemo();
 Runnable r1 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 {
 dld.instanceMethod1();
 try
 {
 Thread.sleep(50);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdA = new Thread(r1);
 Runnable r2 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 {
 dld.instanceMethod2();
 try
 {
 Thread.sleep(50);
 }

Chapter 2 ■ Synchronization

29

 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdB = new Thread(r2);
 thdA.start();
 thdB.start();
 }
}

Listing 2-1’s thread A and thread B call instanceMethod1() and instanceMethod2(),
respectively, at different times. Consider the following execution sequence:

	 1.	 Thread A calls instanceMethod1(), obtains the lock assigned
to the lock1-referenced object, and enters its outer critical
section (but has not yet acquired the lock assigned to the
lock2-referenced object).

	 2.	 Thread B calls instanceMethod2(), obtains the lock assigned
to the lock2-referenced object, and enters its outer critical
section (but has not yet acquired the lock assigned to the
lock1-referenced object).

	 3.	 Thread A attempts to acquire the lock associated with lock2.
The JVM forces the thread to wait outside of the inner critical
section because thread B holds that lock.

	 4.	 Thread B attempts to acquire the lock associated with lock1.
The JVM forces the thread to wait outside of the inner critical
section because thread A holds that lock.

	 5.	 Neither thread can proceed because the other thread holds
the needed lock. You have a deadlock situation and the
program (at least in the context of the two threads) freezes up.

Compile Listing 2-1 as follows:

javac DeadlockDemo.java

Run the resulting application as follows:

java DeadlockDemo

You should observe interleaved first thread in instanceMethod1 and second
thread in instanceMethod2 messages on the standard output stream until the
application freezes up because of deadlock.

Chapter 2 ■ Synchronization

30

Although the previous example clearly identifies a deadlock state, it’s often not that
easy to detect deadlock. For example, your code might contain the following circular
relationship among various classes (in several source files):

•	 Class A’s synchronized method calls class B’s synchronized
method.

•	 Class B’s synchronized method calls class C’s synchronized
method.

•	 Class C’s synchronized method calls class A’s synchronized
method.

If thread A calls class A’s synchronized method and thread B calls class C’s
synchronized method, thread B will block when it attempts to call class A’s synchronized
method and thread A is still inside of that method. Thread A will continue to execute until
it calls class C’s synchronized method, and then block. Deadlock is the result.

■■ Note  Neither the Java language nor the JVM provides a way to prevent deadlock, and
so the burden falls on you. The simplest way to prevent deadlock is to avoid having either a
synchronized method or a synchronized block call another synchronized method/block.
Although this advice prevents deadlock from happening, it’s impractical because one of your
synchronized methods/blocks might need to call a synchronized method in a Java API, and
the advice is overkill because the synchronized method/block being called might not call any
other synchronized method/block, so deadlock would not occur.

Volatile and Final Variables
You previously learned that synchronization exhibits two properties: mutual exclusion
and visibility. The synchronized keyword is associated with both properties. Java also
provides a weaker form of synchronization involving visibility only, and associates only
this property with the volatile keyword.

Suppose you design your own mechanism for stopping a thread (because you cannot
use Thread’s unsafe stop() methods for this task). Listing 2-2 presents the source code to
a ThreadStopping application that shows how you might accomplish this task.

Listing 2-2.  Attempting to Stop a Thread

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private boolean stopped; // defaults to false
 

Chapter 2 ■ Synchronization

31

 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }
 
 void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 2-2’s main() method declares a local class named StoppableThread that
subclasses Thread. After instantiating StoppableThread, the default main thread starts
the thread associated with this Thread object. It then sleeps for one second and calls
StoppableThread’s stop() method before dying.

StoppableThread declares a stopped instance field variable that’s initialized to
false, a stopThread() method that sets this variable to true, and a run() method whose
while loop checks stopped on each loop iteration to see if its value has changed to true.

Compile Listing 2-2 as follows:

javac ThreadStopping.java

Run the resulting application as follows:

java ThreadStopping

You should observe a sequence of running messages.
When you run this application on a single-processor/single-core machine, you’ll

probably observe the application stopping. You might not see this stoppage on a
multiprocessor machine or a uniprocessor machine with multiple cores where each
processor or core probably has its own cache with its own copy of stopped. When one
thread modifies its copy of this field, the other thread’s copy of stopped isn’t changed.

Chapter 2 ■ Synchronization

32

You might decide to use the synchronized keyword to make sure that only the main
memory copy of stopped is accessed. After some thought, you end up synchronizing
access to a pair of critical sections in the source code that’s presented in Listing 2-3.

Listing 2-3.  Attempting to Stop a Thread via the synchronized Keyword

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private boolean stopped; // defaults to false
 
 @Override
 public void run()
 {
 synchronized(this)
 {
 while(!stopped)
 System.out.println("running");
 }
 }
 
 synchronized void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 2-3 is a bad idea for two reasons. First, although you only need to solve the
visibility problem, synchronized also solves the mutual exclusion problem (which isn’t
an issue in this application). More importantly, you’ve introduced a serious problem into
the application.

Chapter 2 ■ Synchronization

33

You’ve correctly synchronized access to stopped, but take a closer look at the
synchronized block in the run() method. Notice the while loop. This loop is unending
because the thread executing the loop has acquired the lock to the current StoppableThread
object (via synchronized(this)), and any attempt by the default main thread to call
stopThread() on this object will cause the default main thread to block because the default
main thread needs to acquire the same lock.

You can overcome this problem by using a local variable and assigning stopped’s
value to this variable in a synchronized block, as follows:

public void run()
{
 boolean _stopped = false;
 while (!_stopped)
 {
 synchronized(this)
 {
 _stopped = stopped;
 }
 System.out.println("running");
 }
}

However, this solution is messy and wasteful because there is a performance cost
(which is not as great as it used to be) when attempting to acquire the lock, and this task is
being done for every loop iteration. Listing 2-4 reveals a more efficient and cleaner approach.

Listing 2-4.  Attempting to Stop a Thread via the volatile Keyword

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private volatile boolean stopped; // defaults to false
 
 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }
 
 void stopThread()
 {
 stopped = true;
 }
 }

Chapter 2 ■ Synchronization

34

 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Because stopped has been marked volatile, each thread will access the main
memory copy of this variable and not access a cached copy. The application will stop,
even on a multiprocessor-based or a multicore-based machine.

■■ Caution  Use volatile only where visibility is an issue. Also, you can only use this
reserved word in the context of field declarations (you’ll receive an error if you try to make a
local variable volatile). Finally, you can declare double and long fields volatile, but
should avoid doing so on 32-bit JVMs because it takes two operations to access a double or
long variable’s value, and mutual exclusion (via synchronized) is required to access their
values safely.

When a field variable is declared volatile, it cannot also be declared final.
However, this isn’t a problem because Java also lets you safely access a final field without
the need for synchronization. To overcome the cached variable problem in DeadlockDemo,
I marked both lock1 and lock2 final, although I could have marked them volatile.

You will often use final to help ensure thread safety in the context of an immutable
(unchangeable) class. Consider Listing 2-5.

Listing 2-5.  Creating an Immutable and Thread-Safe Class with Help from final

import java.util.Set;
import java.util.TreeSet;
 
public final class Planets
{
 private final Set<String> planets = new TreeSet<>();
 
 public Planets()
 {
 planets.add("Mercury");
 planets.add("Venus");

Chapter 2 ■ Synchronization

35

 planets.add("Earth");
 planets.add("Mars");
 planets.add("Jupiter");
 planets.add("Saturn");
 planets.add("Uranus");
 planets.add("Neptune");
 }
 
 public boolean isPlanet(String planetName)
 {
 return planets.contains(planetName);
 }
}

Listing 2-5 presents an immutable Planets class whose objects store sets of planet
names. Although the set is mutable, the design of this class prevents the set from being
modified after the constructor exits. By declaring planets final, the reference stored
in this field cannot be modified. Furthermore, this reference will not be cached so the
cached variable problem goes away.

Java provides a special thread-safety guarantee concerning immutable objects. These
objects can be safely accessed from multiple threads, even when synchronization isn’t
used to publish (expose) their references provided that the following rules are observed:

•	 Immutable objects must not allow state to be modified.

•	 All fields must be declared final.

•	 Objects must be properly constructed so that “this” references
don’t escape from constructors.

The last point is probably confusing, so here is a simple example where this
explicitly escapes from the constructor:

public class ThisEscapeDemo
{
 private static ThisEscapeDemo lastCreatedInstance;
 
 public ThisEscapeDemo()
 {
 lastCreatedInstance = this;
 }
}

Check out “Java theory and practice: Safe construction techniques” at
www.ibm.com/developerworks/library/j-jtp0618/ to learn more about this
common threading hazard.

http://www.ibm.com/developerworks/library/j-jtp0618/

Chapter 2 ■ Synchronization

36

EXERCISES

The following exercises are designed to test your understanding of Chapter 2’s
content:

1.	 Identify the three problems with threads.

2.	 True or false: When the correctness of a computation depends
on the relative timing or interleaving of multiple threads by the
scheduler, you have a data race.

3.	 Define synchronization.

4.	 Identify the two properties of synchronization.

5.	 How is synchronization implemented?

6.	 True or false: A thread that has acquired a lock doesn’t release
this lock when it calls one of Thread’s sleep() methods.

7.	 How do you specify a synchronized method?

8.	 How do you specify a synchronized block?

9.	 Define liveness.

10.	 Identify the three liveness challenges.

11.	 How does the volatile keyword differ from synchronized?

12.	 True or false: Java also lets you safely access a final field
without the need for synchronization.

13.	 Identify the thread problems with the following
CheckingAccount class:

public class CheckingAccount
{
 private int balance;
 public CheckingAccount(int initialBalance)
 {
 balance = initialBalance;
 }
 public boolean withdraw(int amount)
 {
 if (amount <= balance)
 {
 try

http://dx.doi.org/10.1007/978-1-4842-1700-9_2

Chapter 2 ■ Synchronization

37

 {
 Thread.sleep((int) (Math.random() * 200));
 }
 catch (InterruptedException ie)
 {
 }
 balance -= amount;
 return true;
 }
 return false;
 }
 public static void main(String[] args)
 {
 �final CheckingAccount ca = new CheckingAccount(100);
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 �String name = Thread.currentThread().

getName();
 for (int i = 0; i < 10; i++)
 �System.out.println (name + "

withdraws $10: " +
 ca.withdraw(10));
 }
 };
 Thread thdHusband = new Thread(r);
 thdHusband.setName("Husband");
 Thread thdWife = new Thread(r);
 thdWife.setName("Wife");
 thdHusband.start();
 thdWife.start();
 }
}

14.	 Fix the thread problems in the previous CheckingAccount class.

Summary
Developing multithreaded applications is much easier when threads don’t interact,
typically via shared variables. When interaction occurs, race conditions, data races, and
cached variable problems can arise that make an application thread-unsafe.

You can use synchronization to solve race conditions, data races, and cached
variable problems. Synchronization is a JVM feature that ensures that two or more
concurrent threads don’t simultaneously execute a critical section that must be accessed
in a serial manner.

https://en.wikipedia.org/wiki/Thread_%28computer_science%29#Thread%20(computer%20science)

Chapter 2 ■ Synchronization

38

Liveness refers to something beneficial happening eventually. A liveness failure
occurs when an application reaches a state in which it can make no further progress.
Multithreaded applications face the liveness challenges of deadlock, livelock, and
starvation.

Synchronization exhibits two properties: mutual exclusion and visibility. The
synchronized keyword is associated with both properties. Java also provides a weaker
form of synchronization involving visibility only, and associates only this property with
the volatile keyword.

When a field variable is declared volatile, it cannot also be declared final.
However, this isn’t a problem because Java also lets you safely access a final field without
the need for synchronization. You will often use final to help ensure thread safety in the
context of an immutable class.

Chapter 3 presents waiting and notification.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3

	Chapter 2: Synchronization
	 The Problems with Threads
	 Race Conditions
	 Data Races
	 Cached Variables

	 Synchronizing Access to Critical Sections
	 Using Synchronized Methods
	 Using Synchronized Blocks

	 Beware of Liveness Problems
	 Volatile and Final Variables
	 Summary

