
3

Chapter 1

Threads and Runnables

Java applications execute via threads, which are independent paths of execution through
an application’s code. When multiple threads are executing, each thread’s path can differ
from other thread paths. For example, a thread might execute one of a switch statement’s
cases, and another thread might execute another of this statement’s cases.

Each Java application has a default main thread that executes the main() method. The
application can also create threads to perform time-intensive tasks in the background so
that it remains responsive to its users. These threads execute code sequences encapsulated
in objects that are known as runnables.

The Java virtual machine (JVM) gives each thread its own JVM stack to prevent
threads from interfering with each other. Separate stacks let threads keep track of their next
instructions to execute, which can differ from thread to thread. The stack also provides a
thread with its own copy of method parameters, local variables, and return value.

Java supports threads primarily through its java.lang.Thread class and
java.lang.Runnable interface. This chapter introduces you to these types.

Introducing Thread and Runnable
The Thread class provides a consistent interface to the underlying operating system’s
threading architecture. (The operating system is typically responsible for creating and
managing threads.) A single operating system thread is associated with a Thread object.

The Runnable interface supplies the code to be executed by the thread that’s
associated with a Thread object. This code is located in Runnable’s void run()
method—a thread receives no arguments and returns no value, although it might throw
an exception, which I discuss in Chapter 4.

Creating Thread and Runnable Objects
Except for the default main thread, threads are introduced to applications by creating
the appropriate Thread and Runnable objects. Thread declares several constructors for
initializing Thread objects. Several of these constructors require a Runnable object as an
argument.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Chapter 1 ■ Threads and Runnables

4

There are two ways to create a Runnable object. The first way is to create an
anonymous class that implements Runnable, as follows:

Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 // perform some work
 System.out.println("Hello from thread");
 }
 };

Before Java 8, this was the only way to create a runnable. Java 8 introduced the
lambda expression to more conveniently create a runnable:

Runnable r = () -> System.out.println("Hello from thread");

The lambda is definitely less verbose than the anonymous class. I’ll use both
language features throughout this and subsequent chapters.

■■ Note A lambda expression (lambda) is an anonymous function that’s passed to a
constructor or method for subsequent execution. Lambdas work with functional interfaces
(interfaces that declare single abstract methods), such as Runnable.

After creating the Runnable object, you can pass it to a Thread constructor that receives
a Runnable argument. For example, Thread(Runnable runnable) initializes a new Thread
object to the specified runnable. The following code fragment demonstrates this task:

Thread t = new Thread(r);

A few constructors don’t take Runnable arguments. For example, Thread() doesn’t
initialize Thread to a Runnable argument. You must extend Thread and override its run()
method (Thread implements Runnable) to supply the code to run, which the following
code fragment accomplishes:

class MyThread extends Thread
{
 @Override
 public void run()
 {
 // perform some work
 System.out.println("Hello from thread");
 }
}
// ...
MyThread mt = new MyThread();

Chapter 1 ■ Threads and Runnables

5

Getting and Setting Thread State
A Thread object associates state with a thread. This state consists of a name, an indication
of whether the thread is alive or dead, the execution state of the thread (is it runnable?),
the thread’s priority, and an indication of whether the thread is daemon or nondaemon.

Getting and Setting a Thread’s Name
A Thread object is assigned a name, which is useful for debugging. Unless a name is
explicitly specified, a default name that starts with the Thread- prefix is chosen. You can
get this name by calling Thread’s String getName() method. To set the name, pass it to
a suitable constructor, such as Thread(Runnable r, String name), or call Thread’s void
setName(String name) method. Consider the following code fragment:

Thread t1 = new Thread(r, "thread t1");
System.out.println(t1.getName()); // Output: thread t1
Thread t2 = new Thread(r);
t2.setName("thread t2");
System.out.println(t2.getName()); // Output: thread t2

■■ Note  Thread’s long getId() method returns a unique long integer-based name for a
thread. This number remains unchanged during the thread’s lifetime.

Getting a Thread’s Alive Status
You can determine if a thread is alive or dead by calling Thread’s boolean isAlive()
method. This method returns true when the thread is alive; otherwise, it returns false.
A thread’s lifespan ranges from just before it is actually started from within the start()
method (discussed later) to just after it leaves the run() method, at which point it dies.
The following code fragment outputs the alive/dead status of a newly-created thread:

Thread t = new Thread(r);
System.out.println(t.isAlive()); // Output: false

Getting a Thread’s Execution State
A thread has an execution state that is identified by one of the Thread.State enum’s
constants:

•	 NEW: A thread that has not yet started is in this state.

•	 RUNNABLE: A thread executing in the JVM is in this state.

•	 BLOCKED: A thread that is blocked waiting for a monitor lock is in
this state. (I’ll discuss monitor locks in Chapter 2.)

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#Thread-java.lang.Runnable-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html#interface%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
http://dx.doi.org/10.1007/978-1-4842-1700-9_2

Chapter 1 ■ Threads and Runnables

6

•	 WAITING: A thread that is waiting indefinitely for another thread to
perform a particular action is in this state.

•	 TIMED_WAITING: A thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this state.

•	 TERMINATED: A thread that has exited is in this state.

Thread lets an application determine a thread’s current state by providing the
Thread.State getState() method, which is demonstrated here:

Thread t = new Thread(r);
System.out.println(t.getState()); // Output: NEW

Getting and Setting a Thread’s Priority
When a computer has enough processors and/or processor cores, the computer’s
operating system assigns a separate thread to each processor or core so the threads
execute simultaneously. When a computer doesn’t have enough processors and/or cores,
various threads must wait their turns to use the shared processors/cores.

■■ Note  You can identify the number of processors and/or processor cores that are available
to the JVM by calling the java.lang.Runtime class’s int availableProcessors() method.
The return value could change during JVM execution and is never smaller than 1.

The operating system uses a scheduler (http://en.wikipedia.org/wiki/
Scheduling_(computing)) to determine when a waiting thread executes. The following
list identifies three different schedulers:

•	 Linux 2.6 through 2.6.23 uses the O(1) Scheduler
(http://en.wikipedia.org/wiki/O(1)_scheduler).

•	 Linux 2.6.23 also uses the Completely Fair Scheduler
(http://en.wikipedia.org/wiki/Completely_Fair_Scheduler),
which is the default scheduler.

•	 Windows NT-based operating systems (such as NT, XP,
Vista, and 7) use a multilevel feedback queue scheduler
(http://en.wikipedia.org/wiki/Multilevel_feedback_queue).
This scheduler has been adjusted in Windows Vista and Windows 7
to optimize performance.

A multilevel feedback queue and many other thread schedulers take priority
(thread relative importance) into account. They often combine preemptive scheduling
(higher priority threads preempt—interrupt and run instead of—lower priority threads)
with round robin scheduling (equal priority threads are given equal slices of time, which
are known as time slices, and take turns executing).

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/O(1)_scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

Chapter 1 ■ Threads and Runnables

7

■■ Note T wo terms that are commonly encountered when exploring threads are
parallelism and concurrency. According to Oracle’s “Multithreading Guide”
(http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html), parallelism
is “a condition that arises when at least two threads are executing simultaneously.” In
contrast, concurrency is “a condition that exists when at least two threads are making
progress. [It is a] more generalized form of parallelism that can include time-slicing as a
form of virtual parallelism.”

Thread supports priority via its int getPriority() method, which returns the
current priority, and its void setPriority(int priority) method, which sets the
priority to priority. The value passed to priority ranges from Thread.MIN_PRIORITY
to Thread.MAX_PRIORITY—Thread.NORMAL_PRIORITY identifies the default priority.
Consider the following code fragment:

Thread t = new Thread(r);
System.out.println(t.getPriority());
t.setPriority(Thread.MIN_PRIORITY);

■■ Caution U sing setPriority() can impact an application’s portability across
operating systems because different schedulers can handle a priority change in different
ways. For example, one operating system’s scheduler might delay lower priority threads
from executing until higher priority threads finish. This delaying can lead to indefinite
postponement or starvation because lower priority threads “starve” while waiting indefinitely
for their turn to execute, and this can seriously hurt the application’s performance. Another
operating system’s scheduler might not indefinitely delay lower priority threads, improving
application performance.

Getting and Setting a Thread’s Daemon Status
Java lets you classify threads as daemon threads or nondaemon threads. A daemon thread
is a thread that acts as a helper to a nondaemon thread and dies automatically when the
application’s last nondaemon thread dies so that the application can terminate.

You can determine if a thread is daemon or nondaemon by calling Thread’s boolean
isDaemon() method, which returns true for a daemon thread:

Thread t = new Thread(r);
System.out.println(t.isDaemon()); // Output: false

http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Chapter 1 ■ Threads and Runnables

8

By default, the threads associated with Thread objects are nondaemon threads. To
create a daemon thread, you must call Thread’s void setDaemon(boolean isDaemon)
method, passing true to isDaemon. This task is demonstrated here:

Thread t = new Thread(r);
t.setDaemon(true);

■■ Note A n application will not terminate when the nondaemon default main thread
terminates until all background nondaemon threads terminate. If the background threads
are daemon threads, the application will terminate as soon as the default main thread
terminates.

Starting a Thread
After creating a Thread or Thread subclass object, you start the thread associated with
this object by calling Thread’s void start() method. This method throws
java.lang.IllegalThreadStateException when the thread was previously started and is
running or when the thread has died:

Thread t = new Thread(r);
t.start();

Calling start() results in the runtime creating the underlying thread and scheduling
it for subsequent execution in which the runnable’s run() method is invoked. (start()
doesn’t wait for these tasks to be completed before it returns.) When execution leaves
run(), the thread is destroyed and the Thread object on which start() was called is no
longer viable, which is why calling start() results in IllegalThreadStateException.

I’ve created an application that demonstrates various fundamentals from thread and
runnable creation to thread starting. Check out Listing 1-1.

Listing 1-1.  Demonstrating Thread Fundamentals

public class ThreadDemo
{
 public static void main(String[] args)
 {
 boolean isDaemon = args.length != 0;
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 Thread thd = Thread.currentThread();
 while (true)

Chapter 1 ■ Threads and Runnables

9

 System.out.printf("%s is %salive and in %s " +
 "state%n",
 thd.getName(),
 thd.isAlive() ? "" : "not ",
 thd.getState());
 }
 };
 Thread t1 = new Thread(r, "thd1");
 if (isDaemon)
 t1.setDaemon(true);
 System.out.printf("%s is %salive and in %s state%n",
 t1.getName(),
 t1.isAlive() ? "" : "not ",
 t1.getState());
 Thread t2 = new Thread(r);
 t2.setName("thd2");
 if (isDaemon)
 t2.setDaemon(true);
 System.out.printf("%s is %salive and in %s state%n",
 t2.getName(),
 t2.isAlive() ? "" : "not ",
 t2.getState());
 t1.start();
 t2.start();
 }
}

The default main thread first initializes the isDaemon variable based on whether or
not arguments were passed to this application on the command line. When at least one
argument is passed, true is assigned to isDaemon. Otherwise, false is assigned.

Next, a runnable is created. The runnable first calls Thread’s static Thread
currentThread() method to obtain a reference to the Thread object of the currently
executing thread. This reference is subsequently used to obtain information about this
thread, which is output.

At this point, a Thread object is created that’s initialized to the runnable and thread
name thd1. If isDaemon is true, the Thread object is marked as daemon. Its name, alive/
dead status, and execution state are then output.

A second Thread object is created and initialized to the runnable along with thread
name thd2. Again, if isDaemon is true, the Thread object is marked as daemon. Its name,
alive/dead status, and execution state are also output.

Finally, both threads are started.
Compile Listing 1-1 as follows:

javac ThreadDemo.java

Run the resulting application as follows:

java ThreadDemo

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#class%20in%20java.lang

Chapter 1 ■ Threads and Runnables

10

I observed the following prefix of the unending output during one run on the 64-bit
Windows 7 operating system:

thd1 is not alive and in NEW state
thd2 is not alive and in NEW state
thd1 is alive and in RUNNABLE state
thd2 is alive and in RUNNABLE state

You’ll probably observe a different output order on your operating system.

■■ Tip T o stop an unending application, press the Ctrl and C keys simultaneously on
Windows or do the equivalent on a non-Windows operating system.

Now, run the resulting application as follows:

java ThreadDemo x

Unlike in the previous execution, where both threads run as nondaemon threads, the
presence of a command-line argument causes both threads to run as daemon threads. As
a result, these threads execute until the default main thread terminates. You should
observe much briefer output.

Performing More Advanced Thread Tasks
The previous thread tasks were related to configuring a Thread object and starting the
associated thread. However, the Thread class also supports more advanced tasks, which
include interrupting another thread, joining one thread to another thread, and causing a
thread to go to sleep.

Interrupting Threads
The Thread class provides an interruption mechanism in which one thread can interrupt
another thread. When a thread is interrupted, it throws java.lang.InterruptedException.
This mechanism consists of the following three methods:

•	 void interrupt(): Interrupt the thread identified by the Thread
object on which this method is called. When a thread is blocked
because of a call to one of Thread’s sleep() or join() methods
(discussed later in this chapter), the thread’s interrupted status is
cleared and InterruptedException is thrown. Otherwise, the
interrupted status is set and some other action is taken
depending on what the thread is doing. (See the JDK
documentation for the details.)

Chapter 1 ■ Threads and Runnables

11

•	 static boolean interrupted(): Test whether the current thread
has been interrupted, returning true in this case. The interrupted
status of the thread is cleared by this method.

•	 boolean isInterrupted(): Test whether this thread has been
interrupted, returning true in this case. The interrupted status of
the thread is unaffected by this method.

I’ve created an application that demonstrates thread interruption. Check out
Listing 1-2.

Listing 1-2.  Demonstrating Thread Interruption

public class ThreadDemo
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (!Thread.interrupted())
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 while (true)
 {
 double n = Math.random();
 if (n >= 0.49999999 && n <= 0.50000001)
 break;
 }
 thdA.interrupt();
 thdB.interrupt();
 }
}

The default main thread first creates a runnable that obtains the name of the current
thread. The runnable then clears a counter variable and enters a while loop to repeatedly
output the thread name and counter value and increment the counter until the thread is
interrupted.

Next, the default main thread creates a pair of Thread objects whose threads execute
this runnable and starts these background threads.

Chapter 1 ■ Threads and Runnables

12

To give the background threads some time to output several messages before
interruption, the default main thread enters a while-based busy loop, which is a loop of
statements designed to waste some time. The loop repeatedly obtains a random value
until it lies within a narrow range.

■■ Note A busy loop isn’t a good idea because it wastes processor cycles. I’ll reveal a
better solution later in this chapter.

After the while loop terminates, the default main thread executes interrupt() on
each background thread’s Thread object. The next time each background thread executes
Thread.interrupted(), this method will return true and the loop will terminate.

Compile Listing 1-2 (javac ThreadDemo.java) and run the resulting application
(java ThreadDemo). You should see messages that alternate between Thread-0 and
Thread-1 and that include increasing counter values, as demonstrated here:

Thread-1: 67
Thread-1: 68
Thread-0: 768
Thread-1: 69
Thread-0: 769
Thread-0: 770
Thread-1: 70
Thread-0: 771
Thread-0: 772
Thread-1: 71
Thread-0: 773
Thread-1: 72
Thread-0: 774
Thread-1: 73
Thread-0: 775
Thread-0: 776
Thread-0: 777
Thread-0: 778
Thread-1: 74
Thread-0: 779
Thread-1: 75

Joining Threads
A thread (such as the default main thread) will occasionally start another thread to
perform a lengthy calculation, download a large file, or perform some other time-
consuming activity. After finishing its other tasks, the thread that started the worker
thread is ready to process the results of the worker thread and waits for the worker thread
to finish and die.

Chapter 1 ■ Threads and Runnables

13

The Thread class provides three join() methods that allow the invoking thread to
wait for the thread on whose Thread object join() is called to die:

•	 void join(): Wait indefinitely for this thread to die.
InterruptedException is thrown when any thread has
interrupted the current thread. If this exception is thrown, the
interrupted status is cleared.

•	 void join(long millis): Wait at most millis milliseconds
for this thread to die. Pass 0 to millis to wait indefinitely—
the join() method invokes join(0). java.lang.
IllegalArgumentException is thrown when millis is negative.
InterruptedException is thrown when any thread has
interrupted the current thread. If this exception is thrown, the
interrupted status is cleared.

•	 void join(long millis, int nanos): Wait at most millis
milliseconds and nanos nanoseconds for this thread to die.
IllegalArgumentException is thrown when millis is
negative, nanos is negative, or nanos is greater than 999999.
InterruptedException is thrown when any thread has
interrupted the current thread. If this exception is thrown, the
interrupted status is cleared.

To demonstrate the noargument join() method, I’ve created an application that
calculates the math constant pi to 50,000 digits. It calculates pi via an algorithm developed
in the early 1700s by English mathematician John Machin (https://en.wikipedia.org/
wiki/John_Machin). This algorithm first computes pi/4 = 4*arctan(1/5)-arctan(1/239) and
then multiplies the result by 4 to achieve the value of pi. Because the arc (inverse) tangent
is computed using a power series of terms, a greater number of terms yields a more
accurate pi (in terms of digits after the decimal point). Listing 1-3 presents the source code.

Listing 1-3.  Demonstrating Thread Joining

import java.math.BigDecimal;
 
public class ThreadDemo
{
 // constant used in pi computation
 
 private static final BigDecimal FOUR = BigDecimal.valueOf(4);
 
 // rounding mode to use during pi computation
 
 private static final int roundingMode = BigDecimal.ROUND_HALF_EVEN;
 
 private static BigDecimal result;
 

https://en.wikipedia.org/wiki/John_Machin
https://en.wikipedia.org/wiki/John_Machin

Chapter 1 ■ Threads and Runnables

14

 public static void main(String[] args)
 {
 Runnable r = () ->
 {
 result = computePi(50000);
 };
 Thread t = new Thread(r);
 t.start();
 try
 {
 t.join();
 }
 catch (InterruptedException ie)
 {
 // Should never arrive here because interrupt() is never
 // called.
 }
 System.out.println(result);
 }
 
 /*
 * Compute the value of pi to the specified number of digits after the
 * decimal point. The value is computed using Machin's formula:
 *
 * pi/4 = 4*arctan(1/5)-arctan(1/239)
 *
 * and a power series expansion of arctan(x) to sufficient precision.
 */
 
 public static BigDecimal computePi(int digits)
 {
 int scale = digits + 5;
 BigDecimal arctan1_5 = arctan(5, scale);
 BigDecimal arctan1_239 = arctan(239, scale);
 BigDecimal pi = arctan1_5.multiply(FOUR).
 subtract(arctan1_239).multiply(FOUR);
 return pi.setScale(digits, BigDecimal.ROUND_HALF_UP);
 }
 
 /*
 * Compute the value, in radians, of the arctangent of the inverse of
 * the supplied integer to the specified number of digits after the
 * decimal point. The value is computed using the power series
 * expansion for the arc tangent:
 *
 * arctan(x) = x-(x^3)/3+(x^5)/5-(x^7)/7+(x^9)/9 ...
 */
 

Chapter 1 ■ Threads and Runnables

15

 public static BigDecimal arctan(int inverseX, int scale)
 {
 BigDecimal result, numer, term;
 BigDecimal invX = BigDecimal.valueOf(inverseX);
 BigDecimal invX2 = BigDecimal.valueOf(inverseX * inverseX);
 numer = BigDecimal.ONE.divide(invX, scale, roundingMode);
 result = numer;
 int i = 1;
 do
 {
 numer = numer.divide(invX2, scale, roundingMode);
 int denom = 2 * i + 1;
 term = numer.divide(BigDecimal.valueOf(denom), scale,
 roundingMode);
 if ((i % 2) != 0)
 result = result.subtract(term);
 else
 result = result.add(term);
 i++;
 }
 while (term.compareTo(BigDecimal.ZERO) != 0);
 return result;
 }
}

The default main thread first creates a runnable to compute pi to 50,000 digits and
assign the result to a java.math.BigDecimal object named result. It uses a lambda for
brevity of code.

This thread then creates a Thread object to execute the runnable and starts a worker
thread to perform the execution.

At this point, the default main thread calls join() on the Thread object to wait
until the worker thread dies. When this happens, the default main thread outputs the
BigDecimal object’s value.

Compile Listing 1-3 (javac ThreadDemo.java) and run the resulting application
(java ThreadDemo). I observe the following prefix of the output:

3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488
204665213841469519415116094330572703657595919530921861173819326117931051185
4807446237996274956735188575272489122793818301194912983367336244065664308
6021394946395224737190702179860943702770539217176293176752384674818467669
405132000568127

Chapter 1 ■ Threads and Runnables

16

Sleeping
The Thread class declares a pair of static methods for causing a thread to sleep
(temporarily cease execution):

•	 void sleep(long millis): Sleep for millis milliseconds. The
actual number of milliseconds that the thread sleeps is subject
to the precision and accuracy of system timers and schedulers.
This method throws IllegalArgumentException when millis
is negative and InterruptedException when any thread has
interrupted the current thread. The interrupted status of the
current thread is cleared when this exception is thrown.

•	 void sleep(long millis, int nanos): Sleep for millis
milliseconds and nanos nanoseconds. The actual number of
milliseconds and nanoseconds that the thread sleeps is subject
to the precision and accuracy of system timers and schedulers.
This method throws IllegalArgumentException when millis
is negative, nanos is negative, or nanos is greater than 999999;
and InterruptedException when any thread has interrupted
the current thread. The interrupted status of the current thread is
cleared when this exception is thrown.

The sleep() methods are preferable to using a busy loop because they don’t waste
processor cycles.

I’ve refactored Listing 1-2’s application to demonstrate thread sleep. Check out
Listing 1-4.

Listing 1-4.  Demonstrating Thread Sleep

public class ThreadDemo
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (!Thread.interrupted())
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();

Chapter 1 ■ Threads and Runnables

17

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 }
 thdA.interrupt();
 thdB.interrupt();
 }
}

The only difference between Listings 1-2 and 1-4 is the replacement of the busy loop
with Thread.sleep(2000);, to sleep for 2 seconds.

Compile Listing 1-4 (javac ThreadDemo.java) and run the resulting application
(java ThreadDemo). Because the sleep time is approximate, you should see a variation
in the number of lines that are output between runs. However, this variation won’t be
excessive. For example, you won’t see 10 lines in one run and 10 million lines in another.

EXERCISES

The following exercises are designed to test your understanding of Chapter 1’s
content:

1.	 Define thread.

2.	 Define runnable.

3.	 What do the Thread class and the Runnable interface
accomplish?

4.	 Identify the two ways to create a Runnable object.

5.	 Identify the two ways to connect a runnable to a Thread object.

6.	 Identify the five kinds of Thread state.

7.	 True or false: A default thread name starts with the Thd- prefix.

8.	 How do you give a thread a nondefault name?

9.	 How do you determine if a thread is alive or dead?

10.	 Identify the Thread.State enum’s constants.

11.	 How do you obtain the current thread execution state?

12.	 Define priority.

13.	 How can setPriority() impact an application’s portability
across operating systems?

http://dx.doi.org/10.1007/978-1-4842-1700-9_1

Chapter 1 ■ Threads and Runnables

18

14.	 Identify the range of values that you can pass to Thread’s void
setPriority(int priority) method.

15.	 True or false: A daemon thread dies automatically when the
application’s last nondaemon thread dies so that the application
can terminate.

16.	 What does Thread’s void start() method do when called on a
Thread object whose thread is running or has died?

17.	 How would you stop an unending application on Windows?

18.	 Identify the methods that form Thread’s interruption
mechanism.

19.	 True or false: The boolean isInterrupted() method clears
the interrupted status of this thread.

20.	 What does a thread do when it’s interrupted?

21.	 Define a busy loop.

22.	 Identify Thread’s methods that let a thread wait for another
thread to die.

23.	 Identify Thread’s methods that let a thread sleep.

24.	 Write an IntSleep application that creates a background thread
to repeatedly output Hello and then sleep for 100 milliseconds.
After sleeping for 2 seconds, the default main thread should
interrupt the background thread, which should break out of the
loop after outputting interrupted.

Summary
Java applications execute via threads, which are independent paths of execution through
an application’s code. Each Java application has a default main thread that executes the
main() method. The application can also create threads to perform time-intensive tasks
in the background so that it remains responsive to its users. These threads execute code
sequences encapsulated in objects that are known as runnables.

The Thread class provides a consistent interface to the underlying operating system’s
threading architecture. (The operating system is typically responsible for creating and
managing threads.) A single operating system thread is associated with a Thread object.

The Runnable interface supplies the code to be executed by the thread that’s
associated with a Thread object. This code is located in Runnable’s void run()
method—a thread receives no arguments and returns no value although it might throw
an exception.

Chapter 1 ■ Threads and Runnables

19

Except for the default main thread, threads are introduced to applications by creating
the appropriate Thread and Runnable objects. Thread declares several constructors for
initializing Thread objects. Several of these constructors require a Runnable object as an
argument.

A Thread object associates state with a thread. This state consists of a name, an
indication of whether the thread is alive or dead, the execution state of the thread (is it
runnable?), the thread’s priority, and an indication of whether the thread is daemon or
nondaemon.

After creating a Thread or Thread subclass object, you start the thread associated
with this object by calling Thread’s void start() method. This method throws
IllegalThreadStateException when the thread was previously started and is running or
the thread has died.

Along with simple thread tasks for configuring a Thread object and starting the
associated thread, the Thread class supports more advanced tasks, which include
interrupting another thread, joining one thread to another thread, and causing a thread
to go to sleep.

Chapter 2 presents synchronization.

http://dx.doi.org/10.1007/978-1-4842-1700-9_2

	Chapter 1: Threads and Runnables
	 Introducing Thread and Runnable
	 Creating Thread and Runnable Objects
	 Getting and Setting Thread State
	Getting and Setting a Thread’s Name
	Getting a Thread’s Alive Status
	Getting a Thread’s Execution State
	Getting and Setting a Thread’s Priority
	Getting and Setting a Thread’s Daemon Status

	 Starting a Thread

	 Performing More Advanced Thread Tasks
	 Interrupting Threads
	 Joining Threads
	 Sleeping

	 Summary

