
825
© Kishori Sharan, Peter Späth 2021
K. Sharan and P. Späth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_11

CHAPTER 11

Process API
In this chapter, you will learn:

•	 What the Process API is

•	 How to interact with the current process running the Java application

•	 How to create a native process

•	 How to get information about a new process

•	 How to get information about the current process

•	 How to get information about all system processes

•	 How to set permissions to create, query, and manage native processes

All example programs in this chapter are members of a jdojo.process module,

as declared in Listing 11-1.

Listing 11-1.  The Declaration of a jdojo.process Module

// module-info.java

module jdojo.process {

 exports com.jdojo.process;

}

�What Is the Process API?
The Process API consists of classes and interfaces that let you work with native processes

in Java programs. Using the API, you can

•	 Create new native processes from Java code.

•	 Get process handles for native processes, whether they were created

by Java code or by other means.

https://doi.org/10.1007/978-1-4842-7135-3_11#DOI

826

•	 Destroy running native processes.

•	 Query processes for liveness and their other attributes.

•	 Get the list of child processes and the parent process of a process.

•	 Get the process ID (PID) of native processes.

•	 Get the input, output, and error streams of newly created processes.

•	 Wait for a process to terminate.

•	 Execute a task when a process terminates.

The Process API is small. It consists of the classes and interfaces listed in Table 11-1.

I explain these classes and interfaces in detail with examples in the following sections.

Table 11-1.  Classes and Interfaces for the Process API

Class/Interface Description

Runtime It is a singleton class whose sole instance represents the runtime

environment of a Java application.

ProcessBuilder An instance of the ProcessBuilder class holds a set of

attributes for a process. Calling its start() method starts a

native process and returns an instance of the Process class that

represents the native process. You can call its start() method

multiple times; each time, it starts a new process using the

attributes held in the ProcessBuilder instance.

ProcessBuilder.Redirect It is a static nested class that represents a source of process input

or a destination of process output.

Process It is an abstract class whose instances represent native processes

started by the current Java program using the start() method of

a ProcessBuilder or the exec() method of a Runtime.

ProcessHandle It is an interface whose instances represent handles to native

processes whether they were started by the current Java program

or by any other means. You can control and query the state of the

native process using this handle.

ProcessHandle.Info An instance of the ProcessHandle.Info interface represents a

snapshot of the attributes of a process.

Chapter 11 Process API

827

In Java, you are able to start native processes and work with their input, output,

and error streams. Also, it is possible to work with native processes that you did not

start and to query the details of processes. For the latter, you use an interface named

ProcessHandle, from inside the Process API. An instance of the ProcessHandle interface

identifies a native process; it lets you query the process state and manage the process.

Compare the Process class and the ProcessHandle interface. An instance of the

Process class represents a native process started by the current Java program, whereas

an instance of the ProcessHandle interface represents a native process whether it was

started by the current Java program or by other means. The Process class contains a

toHandle() method that returns a ProcessHandle.

An instance of the ProcessHandle.Info interface represents a snapshot of the

attributes of a process. Note that processes are implemented differently by different

operating systems, so their attributes vary. The state of a process may change anytime,

for example, the CPU time used by the process increases whenever the process gets more

CPU time. To get the latest information on a process, you need to use the info() method

of the ProcessHandle interface at the time you need it, which will return a new instance

of the ProcessHandle.Info interface.

All examples in this chapter were run on Ubuntu Linux. You may get a different

output when you run these programs on your machine using Windows or any other

different operating system.

Note T he CLI code snippets can easily be converted to their Windows counterpart
by adapting the executable and argument file paths.

�Knowing the Runtime Environment
Every Java application has an instance of the Runtime class that lets you query and

interact with the runtime environment in which the current Java application is running.

The Runtime class is a singleton. You can get its sole instance using the getRuntime()

static method of this class:

// Get the instance of the Runtime

Runtime runtime = Runtime.getRuntime();

Chapter 11 Process API

828

Using the Runtime, you can know the maximum memory that the current JVM can

use, the currently allocated memory in the JVM, and the free memory in the JVM. Here

are the three methods that let you query the JVM’s memory in bytes:

•	 long maxMemory()

•	 long totalMemory()

•	 long freeMemory()

JVM allocates memory lazily. The maxMemory() method returns the maximum

amount of memory that the JVM can allocate. The method returns Long.MAX_VALUE if

there is no maximum memory limit.

The totalMemory() method returns the currently allocated memory by the JVM out

of the maximum memory it can allocate. When the JVM needs more memory, it allocates

more memory, and the totalMemory() method will return the currently allocated

memory. The JVM can allocate maximum memory up to the amount returned by the

maxMemory() method.

The freeMemory() method returns the unused memory out of the currently allocated

memory by the JVM. How do you know the memory used by the JVM? The following

formula will give you the memory used by the JVM at a specific point in time:

Used Memory = Total Memory Free Memory

Use the availableProcessors() method to get the number of available processors

to the JVM.

Use the version() method to get a Runtime.Version that represents the version

of the Java runtime environment. Refer to the Javadoc for the Runtime.Version class

for more details about the JDK/JRE versioning scheme. Listing 11-2 shows you a few

applications of the Runtime class in querying the Java runtime environment. You may get

a different output.

Listing 11-2.  Querying the Java Runtime Environment

// QueryingRuntime.java

package com.jdojo.process;

public class QueryingRuntime {

 public static void main(String[] args) {

 // Get the Runtime instance

 Runtime rt = Runtime.getRuntime();

Chapter 11 Process API

829

 // Get the JVM memory

 long maxMemory = rt.maxMemory();

 long totalMemory = rt.totalMemory();

 long freeMemory = rt.freeMemory();

 long usedMemory = totalMemory freeMemory;

 System.out.format(

 "Max memory = %d, Total memory = %d,"

 + "Free memory = %d, Used memory = %d.%n",

 maxMemory, totalMemory, freeMemory,

 usedMemory);

 // Print the number of processors available to

 // the JVM

 int processors = rt.availableProcessors();

 System.out.format("Number of processors = %d%n",

 processors);

 // Print the version of the Java runtime

 Runtime.Version version = rt.version();

 System.out.format("Version = %s%n",

 version);

 }

}

Max memory = 3126853632,

 Total memory = 201326592,

 Free memory = 198351728,

 Used memory = 2974864.

Number of processors = 8

Version = 17+01-123

You can invoke the garbage collection using the gc() method of the Runtime class. The

System.gc() static method is the convenience method for the Runtime.getRuntime().gc().

Note  Method gc() is just a hint for the OS to start garbage collection at the
next convenient time slot. You must not rely on the garbage collection to start
immediately if gc() gets called.

Chapter 11 Process API

830

You can terminate the JVM using the exit(int status) method of the

Runtime class. The System.exit() static method is a convenience method

for Runtime.getRuntime().exit(). By convention, a non-zero value for the status

indicates an abnormal termination of the JVM. You can forcibly terminate the JVM using

the halt() method of the Runtime class.

You can add and remove shutdown hooks to the JVM using the

addShutdownHook(Thread hook) and removeShutdownHook(Thread hook) methods of

the Runtime class. A shutdown hook is a thread, which is initialized, but not started. The

JVM starts the thread registered as the shutdown hook when it is terminated.

Use one of its exec() overloaded methods to start a native process. You should use

the ProcessBuilder class to start a native process. The exec() method of the Runtime

class internally uses the ProcessBuilder class.

�The Current Process
The current() static method of the ProcessHandle interface returns the handle of the

current process. Note that the current process returned by this method is always the Java

process that is executing the code:

// Get the handle of the current process

ProcessHandle current = ProcessHandle.current();

Once you get the handle of the current process, you can use methods of the

ProcessHandle interface to get details about the process. Refer to the next section for an

example on how to get information about the current process.

Note  You cannot kill the current process. Attempting to kill the current process by
using the destroy() or destroyForcibly() method of the ProcessHandle
interface results in an IllegalStateException.

�Querying the Process State
You can use methods in the ProcessHandle interface to query the state of a process.

Table 11-2 lists this interface’s commonly used methods with brief descriptions. Note

that many of these methods return the snapshot of the state of a process that was true

Chapter 11 Process API

831

when the snapshot was taken. There is no guarantee that the process will still be in the

same state when you use its attributes later because processes are created, run, and

destroyed asynchronously.

Table 11-2.  Methods in the ProcessHandle Interface

Method Description

static Stream<ProcessHandle>

allProcesses()

Returns a snapshot of all processes in the OS that are visible

to the current process.

Stream<ProcessHandle>

children()

Returns a snapshot of the current direct children of the

process. Use the descendants() method to get a list

of children at all levels, for example, child processes,

grandchild processes, great grandchild processes, etc.

static ProcessHandle

current()

Returns a ProcessHandle for the current process, which is

the Java process executing this method call.

Stream<ProcessHandle>

descendants()

Returns a snapshot of the descendants of the process.

Compare it to the children() method, which returns only

direct descendants of the process.

boolean destroy() Requests the process to be killed. Returns true if

termination of the process was successfully requested,

false otherwise. Whether you can kill a process depends

on operating system access control.

boolean destroyForcibly() Requests the process to be killed forcibly. Returns true

if termination of the process was successfully requested,

false otherwise. Killing a process forcibly terminates the

process immediately, whereas a normal termination allows a

process to shut down cleanly. Whether you can kill a process

depends on operating system access control.

ProcessHandle.Info info() Returns a snapshot of information about the process.

(continued)

Chapter 11 Process API

832

Table 11-2.  (continued)

Method Description

boolean isAlive() Returns true if the process represented by this

ProcessHandle has not yet terminated, false otherwise.

Note that this method may return true for some time after

you have successfully requested to terminate the process

because the process will be terminated asynchronously.

static

Optional<ProcessHandle>

of(long pid)

Returns an Optional<ProcessHandle> for an existing

native process. Returns an empty Optional if a process

with the specified pid does not exist.

CompletableFuture

<ProcessHandle> onExit()

Returns a CompletableFuture <ProcessHandle> for

the termination of the process. You can use the returned

object to add a task that will be executed when the process

terminates. Calling this method on the current process

throws an IllegalStateException.

Optional<ProcessHandle>

parent()

Returns an Optional<ProcessHandle>for the parent

process.

long pid() Returns the native process ID (PID) of the process, which is

assigned by the operating system. Note that a PID may be

reused by operating systems if a process terminates, so two

process handles having the same PID may not represent the

same process.

boolean

supportsNormalTermination()

Returns true if the implementation of destroy() normally

terminates the process.

Table 11-3 lists the methods and descriptions of the ProcessHandle.Info nested

interface. An instance of this interface contains snapshot information about a process.

You can obtain a ProcessHandle.Info using the info() method of the ProcessHandle

interface or the Process class. All methods in the interface return an Optional.

Chapter 11 Process API

833

Table 11-3.  Methods in the ProcessHandle.Info Interface

Method Description

Optional<String[]>

arguments()

Returns arguments of the process. The process may change the original

arguments passed to it after startup. This method returns the changed

arguments in that case.

Optional<String>

command()

Returns the executable pathname of the process.

Optional<String>

commandLine()

It is a convenience method for combining the command and arguments

of a process. It returns the command line of the process by combining the

values returned from the command() and arguments() methods if both

methods return non-empty optionals.

Optional<Instant>

startInstant()

Returns the start time of the process. If the operating system does not

return a start time, it returns an empty Optional.

Optional<Duration>

totalCpuDuration()

Returns the total CPU time used by the process. Note that a process may

run for a long time and may use very little CPU time.

Optional<String>

user()

Returns the user of the process.

It is time to see the ProcessHandle and ProcessHandle.Info interfaces in action.

Listing 11-3 contains the code for a class named CurrentProcessInfo. Its printInfo()

method takes a ProcessHandle as an argument and prints the details of the process.

We also use this method in other examples to print the details of a process. The main()

method gets the handle of the current process running the process, which is a Java

process, and prints its details. You may get a different output. The output was generated

when the program ran on Linux.

Listing 11-3.  A CurrentProcessInfo Class That Prints the Details of the Current

Process

// CurrentProcessInfo.java

package com.jdojo.process;

import java.time.Duration;

import java.time.Instant;

import java.time.ZoneId;

Chapter 11 Process API

834

import java.time.ZonedDateTime;

import java.util.Arrays;

public class CurrentProcessInfo {

 public static void main(String[] args) {

 // Get the handle of the current process

 ProcessHandle current = ProcessHandle.current();

 // Print the process details

 printInfo(current);

 }

 public static void printInfo(ProcessHandle handle) {

 // Get the process ID

 long pid = handle.pid();

 // Is the process still running

 boolean isAlive = handle.isAlive();

 // Get other process info

 ProcessHandle.Info info = handle.info();

 String command = info.command().orElse("");

 String[] args = info.arguments()

 .orElse(new String[]{});

 String commandLine = info.commandLine()

 .orElse("");

 ZonedDateTime startTime = info.startInstant()

 .orElse(Instant.now())

 .atZone(ZoneId.systemDefault());

 Duration duration = info.totalCpuDuration()

 .orElse(Duration.ZERO);

 String owner = info.user().orElse("Unknown");

 long childrenCount = handle.children().count();

 // Print the process details

 System.out.printf("PID: %d%n", pid);

 System.out.printf("IsAlive: %b%n", isAlive);

 System.out.printf("Command: %s%n", command);

 System.out.printf("Arguments: %s%n",

 Arrays.toString(args));

 System.out.printf("CommandLine: %s%n",

Chapter 11 Process API

835

 commandLine);

 System.out.printf("Start Time: %s%n", startTime);

 System.out.printf("CPU Time: %s%n", duration);

 System.out.printf("Owner: %s%n", owner);

 System.out.printf("Children Count: %d%n",

 childrenCount);

 }

}

PID: 4143

IsAlive: true

Command: /opt/jdk17/bin/java

Arguments: [-Dfile.encoding=UTF-8,

 -classpath,

 [<path-to-project>]/bin,

 -XX:+ShowCodeDetailsInExceptionMessages,

 com.jdojo.process.CurrentProcessInfo]

CommandLine: /opt/openjdk-16.36/bin/java

 -Dfile.encoding=UTF-8

 -classpath [<path-to-project>]/bin

 -XX:+ShowCodeDetailsInExceptionMessages

 com.jdojo.process.CurrentProcessInfo

Start Time: 2021-07-16T14:50:18.870+02:00

 [Europe/Berlin]

CPU Time: PT0.06S

Owner: peter

Children Count: 0

�Comparing Processes
It is tricky to compare two processes for equality or order. You cannot rely on PIDs for

equality of processes. Operating systems reuse PIDs after processes terminate. You

may check the start time of processes along with the PIDs; if they are the same, the two

processes may be the same. The equals() method of the default implementation of the

Chapter 11 Process API

836

ProcessHandle interface checks for the following three pieces of information for two

processes to be equal:

•	 The implementation class of the ProcessHandle interface must be

the same for both processes.

•	 Processes must have the same PIDs.

•	 Processes must have been started at the same time.

Note  Using the default implementation of the compareTo() method in the
ProcessHandle interface is not very useful for ordering. It compares the PIDs of
two processes.

�Creating a Process
You need to use an instance of the ProcessBuilder class to start a new native process.

A ProcessBuilder manages a collection of native process attributes. Once you set all

the attributes for the process, you can call its start() method to start a new native

process. The attributes stored in the ProcessBuilder will be used to start the new

process. You can call the start() method multiple times to start new processes using the

attributes stored in the ProcessBuilder. The start() method returns an instance of the

Process class that represents the new native process. You can use one of the following

constructors to create an instance of the ProcessBuilder class:

•	 ProcessBuilder(String... command)

•	 ProcessBuilder(List<String> command)

The constructors let you specify the operating system program and arguments.

Suppose you want to run the java program from inside /opt/jdk17/bin on Linux as

follows:

/opt/jdk17/bin/java --version

You would create a ProcessBuilder to represent this command as follows:

ProcessBuilder pb = new ProcessBuilder(

 "/opt/jdk17/bin/java", "--version");

Chapter 11 Process API

837

Using methods of the ProcessBuilder class, you can manage the following attributes

of a process:

•	 A command

•	 An environment

•	 A working directory

•	 Standard I/O (stdin, stdout, and stderr)

•	 Redirection property for the standard error stream

A command is simply a list of strings representing the external program and its

arguments. You can set the command in the constructor of the ProcessBuilder class. The

following methods let you retrieve the command strings and set more command strings:

•	 List<String> command()

•	 ProcessBuilder command(String... command)

The command() method without any arguments returns the command strings already

set in the ProcessBuilder. The command() method with a varargs argument lets you

add more command strings. The following snippet of code creates a ProcessBuilder to

launch JVM on Linux. It uses the command() method to set the command attribute:

ProcessBuilder pb = new ProcessBuilder()

 .command("/opt/jdk17/bin/java",

 "--module-path",

 "myModulePath",

 "--module",

 "myModule/className");

An environment is a list of system-dependent key-value pairs. It is initialized to a

copy of the Map<String,String> returned from the System.getEnv() static method.

You need to use the environment() method of the ProcessBuilder class to get the

Map<String,String> and add key-value pairs to the map. The following snippet of code

shows you how to set the environment attributes for a ProcessBuilder:

ProcessBuilder pb = new ProcessBuilder("mycommand");

Map<String,String> env = pb.environment();

env.put("arg1", "value1");

env.put("arg2", "value2");

Chapter 11 Process API

838

By default, the working directory for the new process would be the working directory

of the current Java process, which is usually the directory named by the system property

user.dir. The following methods in the ProcessBuilder class let you get and set the

working directory:

•	 File directory()

•	 ProcessBuilder directory(File directory)

The following snippet of code shows you how to set the working directory to /home/

USER/mydir on Linux:

ProcessBuilder pb = new ProcessBuilder("myCommand")

 .directory(new File("/home/USER/mydir"));

The new process created by the start() method of a ProcessBuilder is created as

a child process of the current process, which is the Java process running the code. In

other words, the current Java process is the parent process of the newly created process.

The new process does not own a terminal or console for standard I/O (stdin, stdout,

and stderr). By default, the I/O of the new process is connected to the parent process

over a pipe. You have an option to set the standard I/O of the new process to the same

as its parent process by calling the inheritIO() method of a ProcessBuilder. There are

several redirectXxx() methods in the ProcessBuilder class to customize the standard

I/O for the new process, for example, setting the standard error stream to a file, so all

errors are logged to a file.

Once you have configured all attributes of the process, you can call start() to start

the process:

// Start a new process

Process newProcess = pb.start();

You can call the start() method of the ProcessBuilder class multiple times to

start multiple processes with the same attributes previously stored in it. This has a

performance benefit that you can create one ProcessBuilder instance and reuse it to

launch the same process multiple times.

You can obtain the process handle of a process using the toHandle() method of the

Process class:

// Get the process handle

ProcessHandle handle = newProcess.toHandle();

Chapter 11 Process API

839

You can use the process handle to destroy the process, wait for the process to finish,

or query the process for its state and attributes such as its children, descendants, parents,

CPU time used, etc. The information you get about a process and the control you have

on a process depend on the operating system access controls.

It is tricky to come up with examples to create processes that will run on all operating

systems. If you can run other examples in this book, it means that you have JDK17

installed on your machine. You can use the java program on your machine to launch

other processes in the examples. You can use the command attribute of the current

process, which is the current running java program, to get the path of the Java program

on your machine, so the examples will work on all platforms.

Let’s look at a few examples of creating native processes using the Java program. You

can print the Java product version information to the standard output and standard error

using the –version and -version options, respectively, as follows:

/opt/jdk17/bin/java --version

openjdk 17 2021-05-16

OpenJDK Runtime Environment (build 17+1-123)

OpenJDK 64-Bit Server VM (build 17+1-123, mixed mode, sharing)

/opt/jdk17/bin/java -version

openjdk 17 2021-05-16

OpenJDK Runtime Environment (build 17+1-123)

OpenJDK 64-Bit Server VM (build 17+1-123, mixed mode, sharing)

In the previous outputs, you do not see any difference as to where the output was

printed. Both outputs are printed to the same console because, by default, both standard

output and standard error are mapped to the console. However, you will see the

difference when you try capturing the outputs from these two commands in a program.

Listing 11-4 shows a program that runs the java –version command to print the

Java product information to the standard output.

Listing 11-4.  Capturing the Output of a Native Process

// PipedIO.java

package com.jdojo.process;

import java.io.IOException;

public class PipedIO {

 public static void main(String[] args) {

Chapter 11 Process API

840

 // Get the path of the java program that started

 // this program

 String javaPath = ProcessHandle.current()

 .info()

 .command().orElse(null);

 if(javaPath == null) {

 System.out.println(

 "Could not get the java command's path.");

 return;

 }

 // Configure the ProcessBuilder

 ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version");

 try {

 // Start a new java process

 Process p = pb.start();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

When you run the program ProcessIO class, it does not print anything. Where

did the output go? The program created a new process, and the standard output of

the process was connected to the parent process over a pipe. If you want to access the

output, you need to read from the appropriate pipe. When the standard I/O of the new

process is piped to the parent process, you can use the following methods of the Process

to get the I/O streams of the new process:

•	 OutputStream getOutputStream()

•	 InputStream getInputStream()

•	 InputStream getErrorStream()

The OutputStream returned from the getOutputStream() method is connected to

the standard input stream of the new process. Writing to this output stream will be piped

to the standard input of the new process.

Chapter 11 Process API

841

The InputStream returned from the getInputStream() is connected to the standard

output of the new process. If you want to capture the standard output of the new process,

you need to read from this input stream.

The InputStream returned from the getErrorStream() is connected to the standard

error of the new process. If you want to capture the standard error of the new process,

you need to read from this input stream. Sometimes, you want to merge the output

to the standard output and standard error into one destination. It gives the exact

sequence of output and the error for easier troubleshooting issues. You can call the

redirectErrorStream(true) method of the ProcessBuilder to send the data written to

the standard error to the standard output. I show examples of this kind shortly.

Note  You have options to redirect the standard I/O of a new process to
other destinations such as a file, and in that case, the getOutputStream(),
getInputStream(), and getErrorStream() methods return null.

The program in Listing 11-5 fixes the problem of not getting any output in the

PipedIO class. It reads and prints the data written to the standard output stream in the

pipe.

Listing 11-5.  Capturing the Output of a Native Process

// CapturePipedIO.java

package com.jdojo.process;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class CapturePipedIO {

 public static void main(String[] args) {

 // Get the path of the java program that started

 // this program

 String javaPath = ProcessHandle.current()

 .info()

 .command().orElse(null);

 if (javaPath == null) {

 System.out.println(

Chapter 11 Process API

842

 "Could not get the java command's path.");

 return;

 }

 // Configure the ProcessBuilder

 ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version");

 try {

 // Start a new java process

 Process p = pb.start();

 // Read and print the standard output stream

 // of the process

 try (BufferedReader input =

 new BufferedReader(

 new InputStreamReader(

 p.getInputStream()))) {

 String line;

 while ((line = input.readLine()) != null) {

 System.out.println(line);

 }

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

openjdk 17 2021-05-16

OpenJDK Runtime Environment (build 17+1-123)

OpenJDK 64-Bit Server VM (build 17+1-123, mixed mode, sharing)

If you run the java command with a -version option, the output is written to the

standard error. If you change the option from –version to -version in Listing 11-5, you

will not get any output again because the output will be piped to the standard error

stream. You have two ways to fix this:

Chapter 11 Process API

843

•	 In the program, read from the InputStream returned from

the getErrorStream() method of the Process instead of the

InputStream from the getInputStream() method.

•	 Redirect the error stream to the standard output stream and keep

reading from the standard output.

The following snippet of code creates a ProcessBuilder with the java -version

command and redirects the error stream in the standard output:

// Configure the ProcessBuilder

ProcessBuilder pb =

 new ProcessBuilder(javaPath, "-version")

 .redirectErrorStream(true);

If you change the statement that creates the ProcessBuilder in Listing 11-5 to this

statement, your program will work fine.

A new process can also inherit the standard I/O of the parent process. If you want

to set all I/O destinations of the new process to the same as the current process, use the

inheritIO() method of the ProcessBuilder, as shown:

// Configure the ProcessBuilder inheriting parent's I/O

ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version")

 .inheritIO();

If you change the code in Listing 11-4 to match the previous snippet of code, you will

see the output.

The ProcessBuilder.Redirect nested class represents the source of the input and

destination of the outputs of the new process created by the ProcessBuilder. The class

defined the following three constants of the ProcessBuilder.Redirect type:

•	 ProcessBuilder.Redirect DISCARD: Discards the outputs of the new

process

•	 ProcessBuilder.Redirect.INHERIT: Indicates that the input source

or output destination of the new process will be the same as that of

the current process

•	 ProcessBuilder.Redirect.PIPE: Indicates that the new process will

be connected to the current process over a pipe, which is the default

Chapter 11 Process API

844

You can also redirect the input and outputs of the new process to a file using the

following methods of the Process.Redirect class:

•	 ProcessBuilder.Redirect appendTo(File file)

•	 ProcessBuilder.Redirect from(File file)

•	 ProcessBuilder.Redirect to(File file)

In the previous snippet of code, you saw how to use the inheritIO() method of the

ProcessBuilder class to let the new process have the same standard I/O as the current

process. You can rewrite that code as follows:

// Configure the ProcessBuilder inheriting parent's I/O

ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version")

 .redirectInput(ProcessBuilder.Redirect.INHERIT)

 .redirectOutput(ProcessBuilder.Redirect.INHERIT)

 .redirectError(ProcessBuilder.Redirect.INHERIT);

The following snippet of code redirects the standard output of the new process to a

file named java_product_details.txt in the current directory:

// Configure the ProcessBuilder

 ProcessBuilder pb =

 new ProcessBuilder(javaPath, "--version")

 .redirectOutput(

 ProcessBuilder.Redirect.to(

 new File("java_product_details.txt")));

Let’s look at a little complex example that will explore more information about new

native processes. Listing 11-6 contains the code for a class named Job. Its main() method

expects two arguments: sleep interval and sleep duration in seconds. If they are not

passed, the method uses 5 seconds and 60 seconds as the default values. In the first part,

the method attempts to extract first and second arguments, if specified. In the second

part, it gets the process handle of the current process executing this method using the

ProcessHandle.current() method. It reads the PID of the current process and prints a

message including the PID, sleep interval, and sleep duration. In the end, it starts a for

loop and keeps sleeping for the sleep interval until the sleep duration is reached. In

every iteration of the loop, it prints a message.

Chapter 11 Process API

845

Listing 11-6.  The Declaration of a Class Named Job

// Job.java

package com.jdojo.process;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.TimeUnit;

import java.util.stream.Collectors;

/**

 * An instance of this class is used as a job that sleeps

 * at a regular interval up to a maximum duration. The

 * sleep interval in seconds can be specified as the first

 * argument and the sleep duration as the second argument

 * while running this class. The default sleep interval

 * and sleep duration are 5 seconds and 60 seconds,

 * respectively. If these values are less than zero, zero

 * is used instead.

 */

public class Job {

 // The job sleep interval

 public static final long DEFAULT_SLEEP_INTERVAL = 5;

 // The job sleep duration

 public static final long DEFAULT_SLEEP_DURATION = 60;

 public static void main(String[] args) {

 long sleepInterval = DEFAULT_SLEEP_INTERVAL;

 long sleepDuration = DEFAULT_SLEEP_DURATION;

 // Get the passed in sleep interval

 if (args.length >= 1) {

 sleepInterval = parseArg(args[0],

 DEFAULT_SLEEP_INTERVAL);

 if (sleepInterval < 0) {

 sleepInterval = 0;

 }

 }

Chapter 11 Process API

846

 // Get the passed in the sleep duration

 if (args.length >= 2) {

 sleepDuration = parseArg(args[1],

 DEFAULT_SLEEP_DURATION);

 if (sleepDuration < 0) {

 sleepDuration = 0;

 }

 }

 long pid = ProcessHandle.current().pid();

 System.out.printf(

 "Job (pid=%d) info: Sleep Interval"

 + "=%d seconds, Sleep Duration=%d "

 + "seconds.%n",

 pid, sleepInterval, sleepDuration);

 for (long sleptFor = 0; sleptFor < sleepDuration;

 sleptFor += sleepInterval) {

 try {

 System.out.printf(

 "Job (pid=%d) is going to"

 + " sleep for %d seconds.%n",

 pid, sleepInterval);

 // Sleep for the sleep interval

 TimeUnit.SECONDS.sleep(sleepInterval);

 } catch (InterruptedException ex) {

 System.out.printf("Job (pid=%d) was "

 + "interrupted.%n", pid);

 }

 }

 }

 /**

 * Starts a new JVM to run the Job class.

 *

 * @param sleepInterval The sleep interval when the

 * Job class is run. It is passed to the JVM as the

 * first argument.

Chapter 11 Process API

847

 * @param sleepDuration The sleep duration for the

 * Job class. It is passed to the JVM as the

 * second argument.

 * @return The new process reference of the newly

 * launched JVM or null if the JVM

 * cannot be launched.

 */

 public static Process startProcess(long sleepInterval,

 long sleepDuration) {

 // Store the command to launch a new JVM in a

 // List<String>

 List<String> cmd = new ArrayList<>();

 // Add command components in order

 addJvmPath(cmd);

 addModulePath(cmd);

 addClassPath(cmd);

 addMainClass(cmd);

 // Add arguments to run the class

 cmd.add(String.valueOf(sleepInterval));

 cmd.add(String.valueOf(sleepDuration));

 // Build the process attributes

 ProcessBuilder pb = new ProcessBuilder()

 .command(cmd)

 .inheritIO();

 String commandLine = pb.command()

 .stream()

 .collect(Collectors.joining(" "));

 System.out.println(

 "Command used:\n" + commandLine);

 // Start the process

 Process p = null;

 try {

 p = pb.start();

 } catch (IOException e) {

 e.printStackTrace();

 }

Chapter 11 Process API

848

 return p;

 }

 /**

 * Used to parse the arguments passed to the JVM,

 * which in turn is passed to the main() method.

 *

 * @param valueStr The string value of the argument

 * @param defaultValue The default value of the

 * argument if the valueStr is not an integer.

 * @return valueStr as a long or the defaultValue if

 * valueStr is not an integer.

 */

 private static long parseArg(String valueStr,

 long defaultValue) {

 long value = defaultValue;

 if (valueStr != null) {

 try {

 value = Long.parseLong(valueStr);

 } catch (NumberFormatException e) {

 // no action needed

 }

 }

 return value;

 }

 /**

 * Adds the JVM path to the command list. It first

 * attempts to use the command attribute of the

 * current process; failing that it relies on the

 * java.home system property.

 *

 * @param cmd The command list

 */

 private static void addJvmPath(List<String> cmd) {

 // First try getting the command to run the

 // current JVM

Chapter 11 Process API

849

 String jvmPath = ProcessHandle.current()

 .info()

 .command().orElse("");

 if (jvmPath.length() > 0) {

 cmd.add(jvmPath);

 } else {

 // Try composing the JVM path using the

 // java.home system property

 final String FILE_SEPARATOR =

 System.getProperty("file.separator");

 jvmPath = System.getProperty("java.home")

 + FILE_SEPARATOR + "bin"

 + FILE_SEPARATOR + "java";

 cmd.add(jvmPath);

 }

 }

 /**

 * Adds a module path to the command list.

 *

 * @param cmd The command list

 */

 private static void addModulePath(List<String> cmd) {

 String modulePath

 = System.getProperty("jdk.module.path");

 if (modulePath != null

 && modulePath.trim().length() > 0) {

 cmd.add("--module-path");

 cmd.add(modulePath);

 }

 }

 /**

 * Adds class path to the command list.

 *

 * @param cmd The command list

 */

Chapter 11 Process API

850

 private static void addClassPath(List<String> cmd) {

 String classPath =

 System.getProperty("java.class.path");

 if (classPath != null

 && classPath.trim().length() > 0) {

 cmd.add("--class-path");

 cmd.add(classPath);

 }

 }

 /**

 * Adds a main class to the command list. Adds

 * module/className or just className depending on

 * whether the Job class was loaded in a named

 * module or unnamed module

 *

 * @param cmd The command list

 */

 private static void addMainClass(List<String> cmd) {

 Class<Job> cls = Job.class;

 String className = cls.getName();

 Module module = cls.getModule();

 if (module.isNamed()) {

 String moduleName = module.getName();

 cmd.add("--module");

 cmd.add(moduleName + "/" + className);

 } else {

 cmd.add(className);

 }

 }

}

The Job class contains a startProcess(long sleepInterval, long

sleepDuration) method that starts a new process. It launches a JVM with the Job class

as the main class. It passes the sleep interval and duration to the JVM as arguments. The

method attempts to build a command to launch the java command from

Chapter 11 Process API

851

the JDK_HOME\bin directory. If the Job class were loaded in a named module, it would

build a command like this:

JDK_HOME/bin/java --module-path <module-path> \

--module jdojo.process/com.jdojo.process.Job \

<sleepInterval> <sleepDuration>

If the Job class were loaded in an unnamed module, it would attempt to build a

command like this:

JDK_HOME/bin/java \

-class-path <class-path> \

com.jdojo.process.Job \

<sleepInterval> <sleepDuration>

The startProcess() method prints the command used to start a process, attempts

to start the process, and returns the process reference.

The addJvmPath() method adds the JVM path to the command list. It attempts to get

the command for the current JVM process to use as the JVM path for the new process. If

it is not available, it attempts to build it from the java.home system property.

The Job class contains several utility methods that are used to compose parts of

commands and parse the arguments passed to the main() method. Refer to their Javadoc

for descriptions.

If you want to start a new process that should run for 15 seconds and wake up every 5

seconds, you can do so using the startProcess() method of the Job class:

// Start a process that runs for 15 seconds

Process p = Job.startProcess(5, 15);

You can print the process details using the printInfo() method of the

CurrentProcessInfo class that you created in Listing 11-3:

// Get the handle of the current process

ProcessHandle handle = p.toHandle();

// Print the process details

CurrentProcessInfo.printInfo(handle);

Chapter 11 Process API

852

You can use the returned value of the onExit() method of the ProcessHandle to run

a task when the process terminates:

CompletableFuture<ProcessHandle> future = handle.onExit();

// Print a message when process terminates

future.thenAccept((ProcessHandle ph) -> {

 System.out.printf(

 "Job (pid=%d) terminated.%n", ph.pid());

});

You can wait for the new process to terminate like so:

// Wait for the process to terminate

future.get();

In this example, future.get() will return the ProcessHandle of the process. I did not

use the return value, because I already had it in the handle variable.

Listing 11-7 contains the code for a StartProcessTest class that shows you how

to create a new process using the Job class. In its main() method, it creates a new

process, prints process details, adds a shutdown task to the process, waits for the process

to terminate, and prints the process details again. Note that the process runs for 15

seconds, but it uses only 0.359375 seconds of CPU time because most of the time the

main thread of the process was sleeping. You may get a different output. The output was

generated when the program ran on Linux.

Listing 11-7.  A StartProcessTest Class That Creates New Processes

// StartProcessTest.java

package com.jdojo.process;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.ExecutionException;

public class StartProcessTest {

 public static void main(String[] args) {

 // Start a process that runs for 15 seconds

 Process p = Job.startProcess(5, 15);

 if (p == null) {

 System.out.println(

 "Could not create a new process.");

Chapter 11 Process API

853

 return;

 }

 // Get the handle of the current process

 ProcessHandle handle = p.toHandle();

 // Print the process details

 CurrentProcessInfo.printInfo(handle);

 CompletableFuture<ProcessHandle> future =

 handle.onExit();

 // Print a message when process terminates

 future.thenAccept((ProcessHandle ph) -> {

 System.out.printf(

 "Job (pid=%d) terminated.%n",

 ph.pid());

 });

 try {

 // Wait for the process to complete

 future.get();

 } catch (InterruptedException

 | ExecutionException e) {

 e.printStackTrace();

 }

 // Print process details again

 CurrentProcessInfo.printInfo(handle);

 }

}

Command used:

/opt/jdk17/bin/java

 --class-path /[<path-to-project>]/bin

 com.jdojo.process.Job 5 15

PID: 8701

IsAlive: true

Command: /opt/jdk17/bin/java

Arguments: [

 --class-path,

Chapter 11 Process API

854

 /[<path-to-project>]/bin,

 com.jdojo.process.Job,

 5, 15]

CommandLine: /opt/jdk17/bin/java

 --class-path /[<path-to-project>]/bin

 com.jdojo.process.Job

 5 15

Start Time: 2021-07-16T18:11:42.510+02:00

 [Europe/Berlin]

CPU Time: PT0.01S

Owner: peter

Children Count: 0

Job (pid=8701) info:

 Sleep Interval=5 seconds, Sleep Duration=15 seconds.

Job (pid=8701) is going to sleep for 5 seconds.

Job (pid=8701) is going to sleep for 5 seconds.

Job (pid=8701) is going to sleep for 5 seconds.

Job (pid=8701) terminated.

PID: 8701

IsAlive: false

Command:

Arguments: []

CommandLine:

Start Time: 2021-07-16T18:11:58.489975569+02:00

 [Europe/Berlin]

CPU Time: PT0S

Owner: Unknown

Children Count: 0

Chapter 11 Process API

855

�Obtaining a Process Handle
There are several ways to get the handle of a native process. For a process created by the

Java code, you can get a ProcessHandle using the toHandle() method of the Process

class. Native processes can also be created from outside the JVM. The ProcessHandle

interface contains the following methods to get the handle of a native process:

•	 static Optional<ProcessHandle> of(long pid)

•	 static ProcessHandle current()

•	 Optional<ProcessHandle> parent()

•	 Stream<ProcessHandle> children()

•	 Stream<ProcessHandle> descendants()

•	 static Stream<ProcessHandle> allProcesses()

The of() static method returns an Optional<ProcessHandle> for the specified pid. If

there is no process with this pid, an empty Optional is returned. To use this method, you

need to know the PID of the process:

// Get the process handle of the process with the pid

// of 1234

Optional<ProcessHandle> handle = ProcessHandle.of(1234L);

The current() static method returns the handle of the current process, which is

always the Java process executing the code. You have already seen an example of this in

Listing 11-3.

The parent() method returns the handle of the parent process. It returns an empty

Optional if the process does not have a parent or the parent cannot be retrieved.

The children() method returns a snapshot of all direct child processes of the

process. There is no guarantee that a process returned by this method is still alive. Note

that a process that’s not alive does not have children.

The descendants() method returns a snapshot of all child processes of the process,

direct or indirect.

The allProcesses() method returns a snapshot of all processes that are visible to

this process. There is no guarantee that the stream contains all process in the operating

system at the time the stream is processed. Processes may have been terminated or

Chapter 11 Process API

856

created after the snapshot was taken. The following snippet of code prints the PIDs of all

processes sorted by their PIDs:

System.out.printf("All processes PIDs:%n");

ProcessHandle.allProcesses()

 .map(ph -> ph.pid())

 .sorted()

 .forEach(System.out::println);

You can compute different types of statistics for all running processes. You can also

create a task manager in Java that displays a UI showing all running processes and their

attributes. Listing 11-8 shows how to get the longest running process details and the

process that used the CPU time the most. I compared the start time of the processes to

get the longest running process and the total CPU duration to get the process that used

the CPU time the most. You may get a different output. I got this output when I ran the

program on Linux.

Listing 11-8.  Computing Process Statistics

// ProcessStats.java

package com.jdojo.process;

import java.time.Duration;

import java.time.Instant;

public class ProcessStats {

 public static void main(String[] args) {

 System.out.printf("Longest CPU User Process:%n");

 ProcessHandle.allProcesses()

 .max(ProcessStats::compareCpuTime)

 .ifPresent(CurrentProcessInfo::printInfo);

 System.out.printf("%nLongest Running Process:%n");

 ProcessHandle.allProcesses()

 .max(ProcessStats::compareStartTime)

 .ifPresent(CurrentProcessInfo::printInfo);

 }

 public static int compareCpuTime(ProcessHandle ph1,

 ProcessHandle ph2) {

 return ph1.info()

Chapter 11 Process API

857

 .totalCpuDuration()

 .orElse(Duration.ZERO)

 .compareTo(ph2.info()

 .totalCpuDuration()

 .orElse(Duration.ZERO));

 }

 public static int

 compareStartTime(ProcessHandle ph1,

 ProcessHandle ph2) {

 return ph1.info()

 .startInstant()

 .orElse(Instant.now())

 .compareTo(ph2.info()

 .startInstant()

 .orElse(Instant.now()));

 }

}

Longest CPU User Process:

PID: 2323

IsAlive: true

Command: /usr/lib/tracker/tracker-miner-fs

Arguments: []

CommandLine: /usr/lib/tracker/tracker-miner-fs

Start Time: 2021-07-16T13:43:03.590+02:00[Europe/Berlin]

CPU Time: PT14M35.72S

Owner: peter

Children Count: 0

Longest Running Process:

PID: 9019

IsAlive: true

Command: /opt/openjdk-16.36/bin/java

Arguments: [

 -Dfile.encoding=UTF-8,

 -classpath,

Chapter 11 Process API

858

 [...],

 -XX:+ShowCodeDetailsInExceptionMessages,

 com.jdojo.process.ProcessStats]

CommandLine: /opt/jdk17/bin/java

 -Dfile.encoding=UTF-8

 -classpath [...]

 -XX:+ShowCodeDetailsInExceptionMessages

 com.jdojo.process.ProcessStats

Start Time: 2021-07-16T19:02:01.020+02:00[Europe/Berlin]

CPU Time: PT0.3S

Owner: peter

Children Count: 0

�Terminating Processes
You can terminate a process using the destroy() or destroyForcibly() method of the

ProcessHandle interface and the Process class. Both methods return true if the request

to terminate the process was successful, false otherwise. The destroy() method

requests a normal termination, whereas the destroyForcibly() method requests a

forced termination. It is possible for the isAlive() method to return true for a brief

period after a request to terminate the process has been made.

Note  You cannot terminate the current process. Calling the destroy()
or the destroyForcibly() method on the current process throws an
IllegalStateException. The operating system access controls may prevent a
process from being terminated.

A normal termination of a process lets the process terminate cleanly. A

forced termination of a process terminates the process immediately. Whether a

process is normally terminated is implementation dependent. You can use the

supportsNormalTermination() method of the ProcessHandle interface and the Process

class to check if a process supports normal termination. The method returns true if the

process supports normal termination, false otherwise.

Chapter 11 Process API

859

Calling one of these methods to terminate a process that has already been terminated

results in no action. The CompletableFuture<Process> returned from onExit() of the

Process class and the CompletableFuture<ProcessHandle> returned from onExit() of

the ProcessHandle interface are completed when the process terminates.

�Managing Process Permissions
When you ran the examples in the previous sections, I assumed that there was no Java

security manager installed. If a security manager is installed, appropriate permissions

need to be granted to start, manage, and query native processes:

•	 If you are creating a new process, you need to have

FilePermission(cmd,"execute") permission, where cmd is the

absolute path of the command that will create the process. If cmd

is not an absolute path, you need to have FilePermission("<<ALL

FILES>>","execute") permission.

•	 To query the state of native processes and destroy the process using

the methods in the ProcessHandle interface, the application needs to

have RuntimePermission("manageProcess") permission.

Listing 11-9 contains a program that gets a process count and creates a new process.

It repeats these two tasks without a security manager and with a security manager.

Listing 11-9.  Managing Processes with a Security Manager

// ManageProcessPermission.java

package com.jdojo.process;

import java.util.concurrent.ExecutionException;

public class ManageProcessPermission {

 public static void main(String[] args) {

 // Get the process count

 long count = ProcessHandle.allProcesses().count();

 System.out.printf("Process Count: %d%n", count);

 // Start a new process

 Process p = Job.startProcess(1, 3);

 try {

 p.toHandle().onExit().get();

Chapter 11 Process API

860

 } catch (InterruptedException

 | ExecutionException e) {

 System.out.println(e.getMessage());

 }

 // Install a security manager

 SecurityManager sm = System.getSecurityManager();

 if (sm == null) {

 System.setSecurityManager(

 new SecurityManager());

 System.out.println(

 "A security manager is installed.");

 }

 // Get the process count

 try {

 count = ProcessHandle.allProcesses().count();

 System.out.printf("Process Count: %d%n",

 count);

 } catch (RuntimeException e) {

 System.out.println(

 "Could not get a process count: " +

 e.getMessage());

 }

 // Start a new process

 try {

 p = Job.startProcess(1, 3);

 p.toHandle().onExit().get();

 } catch (InterruptedException

 | ExecutionException

 | RuntimeException e) {

 System.out.println(

 "Could not start a new process: " +

 e.getMessage());

 }

 }

}

Chapter 11 Process API

861

Try running the ManageProcessPermission class using the following command

assuming that you have not changed any Java policy files:

/opt/jdk17/bin/java \

-Dfile.encoding=UTF-8 \

-classpath /[<path-to-project>]/bin \

-XX:+ShowCodeDetailsInExceptionMessages \

com.jdojo.process.ManageProcessPermission

Process Count: 332

Command used:

/opt/jd17/bin/java

 --class-path [...] com.jdojo.process.Job 1 3

Job (pid=3858) info: Sleep Interval=1 seconds,

 Sleep Duration=3 seconds.

Job (pid=3858) is going to sleep for 1 seconds.

Job (pid=3858) is going to sleep for 1 seconds.

Job (pid=3858) is going to sleep for 1 seconds.

A security manager is installed.

Could not get a process count: access denied

 ("java.lang.RuntimePermission" "manageProcess")

Could not start a new process: access denied

 ("java.lang.RuntimePermission" "manageProcess")

You may get a different output. The output indicates that you were able to get the

process count and create a new process before a security manager was installed. After

the security manager was installed, the Java runtime threw exceptions while requesting

the process count and creating a new process. To fix the problem, you need to grant the

following permissions:

•	 The "manageProcess" RuntimePermission, which will allow the

application to query the native process and create a new process

•	 The "execute" FilePermission on the Java command path, which

will allow launching the JVM

•	 The "read" PropertyPermission on the "jdk.module.path" and

"java.class.path" system properties, so the Job class can read

these properties while building the command line to launch the JVM

Chapter 11 Process API

862

Listing 11-10 contains a script to grant these four permissions to all code. You need

to add this script to the JDK_HOME/conf/security/java.policy file on your machine.

The path to the Java launcher is /opt/jdk17/bin/java, and it is valid on Linux only if

you have installed JDK17 in the /opt/jdk17 directory. For all other platforms and JDK

installations, modify this path to point to the correct Java launcher on your machine.

Listing 11-10.  Addendum to the JDK_HOME/conf/security/java.policy File

grant {

 permission java.lang.RuntimePermission

 "manageProcess";

 permission java.io.FilePermission

 "/opt/jdk17/bin/java", "execute";

 permission java.util.PropertyPermission

 "jdk.module.path", "read";

 permission java.util.PropertyPermission

 "java.class.path", "read";

};

If you run the ManageProcessPermission class again using the same command, you

should get output similar to the following:

/opt/jdk17/bin/java \

 -Dfile.encoding=UTF-8 \

 -classpath /[<path-to-project>]/bin \

 -XX:+ShowCodeDetailsInExceptionMessages \

 com.jdojo.process.ManageProcessPermission

Process Count: 330

Command used:

/opt/jdk17/bin/java

 --class-path [...]

 com.jdojo.process.Job 1 3

Job (pid=6093) info: Sleep Interval=1 seconds,

 Sleep Duration=3 seconds.

Job (pid=6093) is going to sleep for 1 seconds.

Chapter 11 Process API

863

Job (pid=6093) is going to sleep for 1 seconds.

Job (pid=6093) is going to sleep for 1 seconds.

A security manager is installed.

Process Count: 330

Command used:

/opt/jdk17/bin/java

 --class-path [...]

 com.jdojo.process.Job 1 3

Job (pid=6114) info: Sleep Interval=1 seconds,

 Sleep Duration=3 seconds.

Job (pid=6114) is going to sleep for 1 seconds.

Job (pid=6114) is going to sleep for 1 seconds.

Job (pid=6114) is going to sleep for 1 seconds.

�Summary
The Process API consists of classes and interfaces to work with native processes. Java

SE has provided the Process API since version 1.0 through the Runtime and Process

classes. It allowed you to create new native processes, manage their I/O streams, and

destroy them. Later versions of Java SE improved the API, with an interface named

ProcessHandle that represents a process handle. You can use the process handle to

query and manage a native process.

The following classes and interfaces comprise the Process API: Runtime,

ProcessBuilder, ProcessBuilder.Redirect, Process, ProcessHandle, and

ProcessHandle.Info.

The exec() method of the Runtime class is used to start a native process. The

start() method of the ProcessBuilder class is preferred over the exec() method of

the Runtime class to start a process. An instance of the ProcessBuilder.Redirect class

represents a source of input of a process or a destination output of a process.

By default, the standard I/O of the new process is connected to the current process

over a pipe. You need to read and write the streams associated with the pipe to access

the standard I/O of the new process. You have options to set the standard I/O of the new

process to the same as that of the current process or redirect the I/O to other sources/

destinations such as a file.

Chapter 11 Process API

864

An instance of the Process class represents a native process created by a Java

program.

An instance of the ProcessHandle interface represents a process created by a

Java program or by other means; it was added in Java 9 and provides several methods

to query and manage processes. An instance of the ProcessHandle.Info interface

represents snapshot information of a process; it can be obtained using the info()

method of the Process class or ProcessHandle interface. If you have a Process instance,

use its toHandle() method to get a ProcessHandle.

The onExit() method of the ProcessHandle interface returns a CompletableFuture

<ProcessHandle> for the termination of the process. You can use the returned object to

add a task that will be executed when the process terminates. Note that you cannot use

this method on the current process.

If a security manager is installed, the application needs to have a "manageProcess"

RuntimePermission to query and manage native processes and an "execute"

FilePermission on the command file of the process that is started from the Java code.

�Exercises
Exercise 1

What is the Process API?

Exercise 2

What does an instance of the Runtime class represent?

Exercise 3

How do you get an instance of the Runtime class?

Exercise 4

How do you use the ProcessBuilder class? What method of this class is used to start

a new native process?

Exercise 5

What does an instance of the Process class represent?

Exercise 6

What does an instance of the ProcessHandle interface represent? How do you obtain

a ProcessHandle from a Process?

Exercise 7

How do you get the handle of the current process representing the running Java

program?

Chapter 11 Process API

865

Exercise 8

What does an instance of the ProcessHandle.Info interface represent?

Exercise 9

What is the default standard I/O of the new process created by the start() method

of the ProcessBuilder class?

Exercise 10

Can you terminate the current Java program using the Process API?

Chapter 11 Process API

	Chapter 11: Process API
	What Is the Process API?
	Knowing the Runtime Environment
	The Current Process
	Querying the Process State
	Comparing Processes
	Creating a Process
	Obtaining a Process Handle
	Terminating Processes
	Managing Process Permissions
	Summary
	Exercises

