
February 2012 6www.drdobbs.com

Welcome to the Jungle
The free lunch is over. Welcome to the hardware jungle

n the twilight of Moore’s Law, the transitions to multicore proces-
sors, GPU computing, and hardware or infrastructure as a service
(HaaS) cloud computing are not separate trends, but aspects of a sin-
gle trend — mainstream computers from desktops to smartphones

are being permanently transformed into heterogeneous supercomputer
clusters. Henceforth, a single compute-intensive application will need to
harness different kinds of cores, in immense numbers, to get its job done.

The free lunch is over. Welcome to the hardware jungle.
From 1975 to 2005, our industry accomplished a phenomenal mis-

sion: In 30 years, we put a personal computer on every desk, in every
home, and in every pocket.

In 2005, however, mainstream computing hit a wall. In “The Free
Lunch Is Over (A Fundamental Turn Toward Concurrency in Software)”
(http://is.gd/RHSOzm), I described the reasons for the then-upcoming
industry transition from single-core to multicore CPUs in mainstream
machines, why it would require changes throughout the software stack
from operating systems to languages to tools, and why it would per-
manently affect the way we as software developers have to write our
code if we want our applications to continue exploiting Moore’s tran-
sistor dividend.

In 2005, our industry undertook a new mission: to put a personal
parallel supercomputer on every desk, in every home, and in every
pocket. 2011 was special: It’s the year that we completed the transi-
tion to parallel computing in all mainstream form factors, with the ar-
rival of multicore tablets (such as iPad 2, Playbook, Kindle Fire, Nook
Tablet) and smartphones (for example, Galaxy S II, Droid X2, iPhone
4S). 2012 will see the continued build out of multicore with main-
stream quad- and eight-core tablets (as Windows 8 brings a modern
tablet experience to x86 as well as ARM), and the last single-core gam-
ing console holdout will go multicore (as Nintendo’s Wii U replaces
Wii; http://is.gd/sBuPtr).

It took us just six years to deliver mainstream parallel computing in
all popular form factors. And we know the transition to multicore is per-
manent, because multicore delivers compute performance that single-
core cannot and there will always be mainstream applications that run
better on a multicore machine. There’s no going back.

For the first time in the history of computing, mainstream hardware
is no longer a single-processor von Neumann machine, and never will
be again.

That was the first act.

By Herb Sutter

[COVER STORY]

IDownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

www.drdobbs.com

Overview: Trifecta
It turns out that multicore is just the first of three related permanent
transitions that layer on and amplify each other; as the timeline in Fig-
ure 1 illustrates.

1. Multicore (2005-). As explained previously.
2. Heterogeneous cores (2009-). A single computer already typi-

cally includes more than one kind of processor core, as mainstream
notebooks, consoles, and tablets all increasingly have both CPUs and
compute-capable GPUs. The open question in the industry today is not
whether a single application will be spread across different kinds of
cores, but only “how different” the cores should be. That is, whether
they should be basically the same with similar instruction sets but in
a mix of a few big cores that are best at sequential code plus many
smaller cores best at running parallel code (the Intel MIC
(http://is.gd/I2iB09) model slated to arrive in 2012-2013, which is easier
to program). Or should they be cores with different capabilities that may

only support subsets of general-purpose languages like C and C++ (the
current Cell and GPGPU model, which requires more complexity in-
cluding language extensions and subsets).

Heterogeneity amplifies the first trend (multicore), because if some
of the cores are smaller, then we can fit more of them on the same chip.
Indeed, 100x and 1,000x parallelism is already available today on many
mainstream home machines for programs that can harness the GPU.

We know the transition to heterogeneous cores is permanent be-
cause different kinds of computations naturally run faster and/or use
less power on different kinds of cores — and different parts of the
same application will run faster and/or cooler on a machine with sev-
eral different kinds of cores.

3. Elastic compute cloud cores (2010-). For our purposes, “cloud”
means specifically HaaS — delivering access to more computational
hardware as an extension of the mainstream machine. This trend
started to hit the mainstream with commercial compute cloud offer-
ings from Amazon Web Services (AWS), Microsoft Azure, Google App
Engine (GAE), and others.

Cloud HaaS again amplifies both of the first two trends, because it’s
fundamentally about deploying large numbers of nodes where each
node is a mainstream machine containing multiple and heteroge-
neous cores. In the cloud, the number of cores available to a single ap-
plication is scaling fast. In mid-2011, Cycle Computing delivered a
30,000-core cloud for under $1,300/hour (http://is.gd/WnqVTu) using
AWS. The same heterogeneous cores are available in compute nodes
For example, AWS already offers “Cluster GPU” nodes with dual nVIDIA
Tegra M2050 GPU cards, enabling massively parallel and massively dis-
tributed CUDA applications.

[COVER STORY]

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 7

DownloadDownload

Previous Next JUNGLE

Figure 1.

In short, parallelism is not just in full bloom, but increasingly in full
variety. In this article, I develop four key points:

1. Moore’s End. We can observe clear evidence that Moore’s Law
is ending because we can point to a pattern that precedes the
end of exploiting any kind of resource. But there’s no reason to
panic, because Moore’s Law limits only one kind of scaling, and
we have already started another kind.

2. Mapping one trend, not three. Multicore, heterogeneous cores,
and HaaS cloud computing are not three separate trends, but as-
pects of a single trend: putting a personal heterogeneous super-
computer cluster on every desk and in every pocket.

3. The effect on software development. As software developers,
we will be expected to enable a single application to exploit a
jungle of enormous numbers of cores that are increasingly dif-
ferent in kind (specialized for different tasks) and different in lo-
cation (from local to very remote; on-die, in-box, on-premises, in-
cloud). The jungle of heterogeneity will continue to spur deep
and fast evolution of mainstream software development, but we
can predict what some of the changes will be.

4. Three distinct near-term stages of Moore’s End. And why
“smartphones” aren’t, really.

Let’s begin with the end of Moore’s Law.

Mining Moore’s Law
We’ve been hearing breathless “Moore’s Law is ending” announce-
ments for years. That Moore’s Law would end was never news; every
exponential progression must. Although it didn’t end when some
prognosticators expected, its end is possible to forecast — we just have
to know what to look for, and that is diminishing returns.

A key observation is that exploiting Moore’s Law is like exploiting a
gold mine or any other kind of resource. Exploiting a gold ore deposit
never just stops abruptly; rather, running a mine goes through phases
of increasing costs and diminishing returns until finally the gold that’s
left in that patch of ground is no longer commercially exploitable and
operating the mine is no longer profitable.

Mining Moore’s Law has followed the same pattern. Let’s consider its
three major phases, where we are now in transition from Phase II to
Phase III. And throughout this discussion, never forget that the only
reason Moore’s Law is interesting at all is because we can transform its
raw resource (more transistors) into a useful form (either greater com-
putational throughput or lower cost).

Phase I, Moore’s Motherlode = Unicore “Free Lunch” (1975-2005)
When you first find an ore deposit and open a mine, you focus your ef-
forts on the motherlode, where everybody gets to enjoy a high yield
and a low cost per pound of gold extracted.

www.drdobbs.com

[COVER STORY]

February 2012 8

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

JUNGLE

For 30 years, mainstream processors mined Moore’s motherlode
by using their growing transistor budgets to make a single core
more and more complex so that it could execute a single thread
faster. This was wonderful because it meant the performance was
easily exploitable — compute-bound software would get faster with
relatively little effort. Mining this motherlode in mainstream micro-
processors went through two main subphases as the pendulum
swung from simpler to increasingly complex cores:

• In the 1970s and 1980s, each chip generation could use most of
the extra transistors to add One Big Feature (such as on-die float-
ing point unit, pipelining, out of order execution) that would
make single-threaded code run faster.

• In the 1990s and 2000s, each chip generation started using the
extra transistors to add or improve two or three smaller features

that would make single-threaded code run faster, and then five
or six smaller features, and so on.

Figure 2 shows how the pendulum swung toward increasingly com-
plex single cores, with three sample chips: the 80286, 80486, and Pen-
tium Extreme Edition 840. Note that the chips’ boxes are to scale by
number of transistors.

By 2005, the pendulum had swung about as far as it could go toward
the complex single-core model. Although the motherlode has been
mostly exhausted, we’re still scraping ore off its walls in the form of
some continued improvement in single-threaded code performance,
but no longer at the historically delightful exponential rate.

Phase II, Secondary Veins = Homogeneous Multicore (2005-)
As a motherlode gets used up, miners concentrate on secondary veins
that are still profitable but have a more moderate yield and higher cost
per pound of extracted gold. So when Moore’s unicore motherlode
started getting mined out, the industry turned to mining Moore’s sec-
ondary veins — using the additional transistors to make more cores per
chip. Multicore let us continue to deliver exponentially increasing com-
pute throughput in mainstream computers, but in a form that was less
easily exploitable because it placed a greater burden on software devel-
opers who had to write parallel programs that could use the hardware.

Moving into Phase II took a lot of work in the software world. We’ve
had to learn to write “new free lunch” applications — ones that have
lots of latent parallelism and so can once again ride the wave to run
the same executable faster on next year’s hardware, hardware that
still delivers exponential performance gains but primarily in the form
of additional cores. Today, there are parallel runtimes and libraries like

www.drdobbs.com

[COVER STORY]

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 9

DownloadDownload

Previous Next JUNGLE

Figure 2.

www.drdobbs.com

Intel Threading Building Blocks (TBB) and Microsoft Parallel Patterns
Library (PPL), parallel debuggers and parallel profilers, and updated
operating systems to run them all.

But this time the phase didn’t last 30 years. We barely have time to
catch our breath, because Phase III is already beginning.

Phase III, Tertiary Veins = Heterogeneous Cores (2011-)
As our miners are forced to move into smaller and smaller veins, yields
diminish and costs rise. The miners are turning to Moore’s tertiary
veins: Using Moore’s extra transistors to make not just more cores, but
also different kinds of cores — and in very large numbers because the
different cores are often smaller and swing the pendulum back toward
the left.

There are two main categories of heterogeneity, see Figure 3.

Big/fast vs. small/slow cores. The smallest amount of heterogeneity
is when all the cores are general-purpose cores with the same instruc-
tion set, but some cores are beefier than others because they contain
more hardware to accelerate execution (notably by hiding memory la-
tency using various forms of internal concurrency). In this model, some
cores are big complex ones that are optimized to run the sequential
parts of a program really fast, while others are smaller cores that are
optimized to get better total throughput for the scalably parallel parts
of the program. However, even though they use the same instruction
set, the compiler will often want to generate different code; this differ-
ence can become visible to the programmer if the programming lan-
guage must expose ways to control code generation. This is Intel’s ap-
proach with Xeon (big/fast) and MIC (small/slow) which both run
approximately the x86 instruction set.

General vs. specialized cores. Beyond that, we see systems with
multiple cores having different capabilities, including some cores that
may not be able to support all of a mainstream language like C or C++.
In 2006-2007, with the arrival of the PlayStation 3, the IBM Cell proces-
sor led the way by incorporating different kinds of cores on the same
chip, with a single general-purpose core assisted by eight or more spe-
cial-purpose SPU cores. Since 2009, we have begun to see mainstream
use of GPUs to perform computation instead of just graphics. Special-
ized cores like SPUs and GPUs are attractive when they can run certain
kinds of code more efficiently, both faster and more cheaply, which is
a great bargain if your workload fits it.

GPGPU is especially interesting because we already have an un-
derutilized installed base: A significant percentage of existing main-
stream machines already have compute-capable GPUs just waiting
to be exploited. With the June 2011 introduction of AMD Fusion and

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 10

Figure 3.

www.drdobbs.com

the November 2011 launch of NVIDIA Tegra 3, systems with CPU and
GPU cores on the same chip is becoming a new norm. That installed
base is a big carrot, and creates an enormous incentive for compute-
intensive mainstream applications to leverage that patiently waiting
hardware. To date, a few early adopters have been using technolo-
gies like CUDA, OpenCL, and more recently C++ AMP to harness
GPUs for computation. Mainstream application developers who care
about performance need to learn to do the same; see Table 1.

But that’s pretty much it — we currently know of no other major
ways to exploit Moore’s Law for compute performance, and once these
veins are exhausted, it will be largely mined out.

We’re still actively mining for now, but the writing on the wall is clear:
“mene mene diminishing returns” demonstrate that we’ve entered the
endgame.

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 11

SHRINKWRAP
YOUR APP
WITH AWARD-WINNING VERISIGN® CODE SIGNING

You developed the software. Now, deliver it with the same care and vigilance by using
VeriSign® Code Signing. Why? Code signing not only protects the identity and reputation
of the author, but it also verifies the authenticity and version of your software. Then, go
a step further. VeriSign Code Signing can create a unique digital signature every time the
code is signed. Plus, we support more certification programs and development platforms
than any other Certificate Authority. Leverage the reputation of the most recognized and
trusted name in online security.

Learn how VeriSign Code Signing can help make sure
your applications are more trusted and adopted at
www.VeriSign.com/CodeSigning or call 1-866-893-6565.

Copyright © 2011 Symantec Corporation. All rights reserved. Symantec, the Symantec Logo, and the Checkmark Logo are trademarks or registered trademarks of

Symantec Corporation or its affiliates in the U.S. and other countries. VeriSign and other related marks are the trademarks or registered trademarks of VeriSign, Inc.

or its affiliates or subsidiaries in the U.S. and other countries and licensed to Symantec Corporation. Other names may be trademarks of their respective owners.

Now from VeriSign
Authentication Services

SC MAGAZINE

AWARDS

2010
WINNER

BEST SECURITY
SOFTWARE

DEVELOPMENT
SOLUTION

Table 1.

www.drdobbs.com

On The Charts: Not Three Trends, But One Trend
Next, let’s put all of this in perspective by showing that multicore, het-
ero-core, and cloud-core are not three trends, but aspects of a single
trend. To show that, we have to show that they can be plotted on the
same map. Figure 4 shows an appropriate map that lets us chart out
where processor core architectures are going, where memory archi-
tectures are going, and visualize just where we’ve been digging
around in the mine so far.

First, I describe each axis, then map out past and current hardware
to spot trends, and finally draw some conclusions about where hard-
ware is likely to concentrate.

Processor Core Types
The vertical axis shows processor core architectures. As shown in Fig-
ure 5, from bottom to top, they form a continuum of increasing per-
formance and scalability, but also of increasing restrictions on pro-
grams and programmers in the form of additional performance issues
(yellow) or correctness issues (red) added at each step.

Complex cores are the “big” traditional ones, with the pendulum
swung far to the right in the “habitable zone.” These are best at run-
ning sequential code, including code limited by Amdahl’s Law.

Simpler cores are the “small” traditional ones, toward the left of the
“habitable zone.” These are best at running parallelizable code that
still requires the full expressivity of a mainstream programming lan-
guage.

Specialized cores like those in GPUs, DSPs, and Cell’s SPUs are more
limited, and often do not yet fully support all features of mainstream lan-
guages (such as exception handling). These are best for running highly
parallelizable code that can be expressed in a subset of a language like

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 12

Figure 4.

Figure 5.

www.drdobbs.com

C or C++. For example, XBox Kinect skeletal tracking requires using the
CPU and the GPU cores on the console, and would be impossible other-
wise.

The farther you move upward on the chart (to the right in the blown-
up figure), the better the performance throughput and/or the less power
you need, but the more the application code is constrained as it has to
be more parallel and/or use only subsets of a mainstream language.

Future mainstream hardware will likely contain all three basic kinds

of cores, because many applications have all these kinds of code in the
same program, and so naturally will run best on a heterogeneous com-
puter that has all these kinds of cores. For example, most PS3 games,
all Kinect games, and all CUDA/OpenCL/C++AMP applications avail-
able today could not run well or at all on a homogeneous machine,
because they rely on running parts of the same application on the
CPU(s) and other parts on specialized cores. Those applications are just
the beginning.

Memory Architectures
The horizontal axis shows six common memory architectures. From
left to right, they form a continuum of increasing performance and
scalability, but (except for one important discontinuity) also increasing
work for programs and programmers to deal with performance issues
(yellow) or correctness issues (red). In Figure 6, triangles represent
cache and lower boxes represent RAM. A processor core (ALU) sits at
the top of each cache “peak.”

Unified memory is tied to the unicore motherlode and the mem-
ory hierarchy is wonderfully simple — a single mountain with a core
sitting on top. This describes essentially all mainstream computers
from the dawn of computing until the mid-2000s. This delivers a simple
programming model: Every pointer (or object reference) can address

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 13

Figure 6.

www.drdobbs.com

every byte, and every byte is equally “far away” from the core. Even
here, programmers need to be conscious of at least two basic cache
effects: locality, or how well “hot” data fits into cache; and access order,
because modern memory architectures love sequential access pat-
terns (for more on this, see my “Machine Architecture” talk at
http://is.gd/1Fe99o).

NUMA cache retains a single chunk of RAM, but adds multiple
caches. Now instead of a single mountain, we have a mountain range
with multiple peaks, each with a core on top. This describes today’s
mainstream multicore devices. Here, we still enjoy a single address
space and pretty good performance as long as different cores access
different memory, but programmers now have to deal with two main
additional performance effects:

• locality matters in new ways because some peaks are closer to
each other than others (two cores that share an L2 cache vs. two
cores that share only L3 or RAM),

• layout matters because we have to keep data physically close
together if it’s used together (on the same cache line), and apart
if it’s not (for example, to avoid the ping-pong game of false
sharing).

NUMA RAM further fragments memory into multiple physical chunks
of RAM, but still exposes a single logical address space. Now, the per-
formance valleys between the cores get deeper, because accessing
RAM in a chunk not local to this core incurs a trip across the bus. Exam-
ples include bladed servers, symmetric multiprocessor (SMP) desktop
computers with multiple sockets, and newer GPU architectures that
provide a unified address space view of the CPU’s and GPU’s memory,

but leave some memory physically closer to the CPU and other memory
closer to the GPU. Now we add another item to the list of what a per-
formance-conscious programmer needs to think about: copying. Just
because we can form a pointer to anything doesn’t mean we always
should, if it means reaching across an expensive chasm on every access.

Incoherent and weak memory makes memory be by default unsyn-
chronized, in the hope that allowing each core to have its own divergent
view of the state of memory can make them run faster, at least until
memory must inevitably be synchronized again. As of this writing, the
only remaining mainstream CPUs with weak memory models are cur-
rent PowerPC and ARM processors (popular despite their memory mod-
els rather than because of them; more on this below). This model still
has the simplicity of a single address space, but now the programmer
further has to take on the burden of synchronizing memory himself.

Disjoint (tightly coupled) memory bites the bullet and lets differ-
ent cores see different memory, typically over a shared bus, while still
running as a tightly coupled unit that has low latency and whose re-
liability is still evaluated as a single unit. Now the model turns into a
tightly clustered group of mountainous islands, each with core-tipped
mountains of cache overlooking square miles of memory, and con-
nected by bridges with a fleet of trucks expediting goods from point
to point — bulk transfer operations, message queues, and similar. In
the mainstream, we see this model used by 2009-2011 vintage GPUs
whose on-board memory is not shared with the CPU or with each
other. True, programmers no longer enjoy having a single address
space and the ability to share pointers But in exchange, they have re-
moved the entire set of programmer burdens accumulated so far and
replaced them with a single new responsibility: copying data between
islands of memory.

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 14

www.drdobbs.com

Disjoint (loosely coupled) is the cloud where cores spread out-of-
box into different rooms and buildings and datacenters. This moves
the islands farther apart, and replaces the bus “bridges” with network
“speedboats” and “tankers.” In the mainstream, we see this model in

HaaS cloud computing offerings; this is the commoditization of the
compute cluster. Programmers now have to arrange to deal with two
additional concerns, which often can be abstracted away by libraries
and runtimes: reliability as nodes can come and go, and latency as the
islands are farther apart.

Charting the Hardware
All three trends are just aspects of a single trend: filling out the chart
and enabling heterogeneous parallel computing. Figure 7 shows that
the chart wants to be filled out because there are workloads that are
naturally suited to each of these boxes, though some boxes are more
popular than others.

To help visualize the filling-out process more concretely, why not
check to see how mainstream hardware has progressed on this chart?
The easiest place to start is the long-standing mainstream CPU and
more recent GPU:

• From the 1970s to the 2000s, CPUs started with simple single
cores and then moved downward as the pendulum swung to in-
creasingly complex cores. They hugged the left side of the chart
by staying single-core as long as possible, but in 2005 they ran
out of room and turned toward multicore NUMA cache architec-
tures; see Figure 8.

• Meanwhile, in the late 2000s, mainstream GPUs started to be ca-
pable of handling computational workloads. But because they
started life in an add-on discrete GPU card format where graph-
ics-specific cores and memory were physically located away from
the CPU and system RAM, they started further upward and to
the right (Specialized / Disjoint (local)). GPUs have been moving
leftward to increasingly unified views of memory, and slightly

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 15

Figure 7.

Figure 8.

www.drdobbs.com

downward to try to support full mainstream languages (such as
adding exception handling support).

• Today’s typical mainstream computer includes both a CPU and
a discrete or integrated GPU. The dotted line in the graphic de-
notes cores that are available to a single application because
they are in the same device, but not on the same chip.

Now we are seeing a trend to use CPU and specialized (currently GPU)
cores with very tightly coupled memory, and even on the same die:

• In 2005, the XBox 360 sported a multicore CPU and GPU that could
not only directly access the same RAM, but had the very unusual
feature that they could share even L2 cache.

• In 2006 and 2007, the Cell-based PS3 console sported a single
processor having both a single general-purpose core and eight
special-purpose SPU cores. The solid line in Figure 9 denotes
cores that are on the same chip, not just in the same device.

• In June 2011 and November 2011, respectively, AMD and NVIDIA
launched the Fusion and Tegra 3 architectures, multicore CPU
chips that sported a compute-class GPU (hence extending ver-
tically) on the same die (hence well to the left).

• Intel has also shipped the Sandy Bridge line of processors,
which includes an integrated GPU that is not yet as compute-
capable. Intel’s main focus has been the MIC effort of more than
50 simple, general-purpose x86-like cores on the same die, ex-
pected to be commercially available in the near future.

Finally, we complete the picture with cloud HaaS; Figure 10:

• In 2008 and 2009, Amazon, Microsoft, Google, and other vendors
began rolling out their cloud compute offerings. AWS, Azure, and
GAE support an elastic cloud of nodes each of which is a tradi-
tional computer (“big-core” and loosely coupled, therefore on

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 16

Figure 9. Figure 10.

www.drdobbs.com

the bottom right corner of the chart) where each node in the
cloud has a single core or multiple CPU cores (the two lower-left
boxes). As before, the dotted line denotes that all of the cores are
available to a single application, and the network is just another
bus to more compute cores.

• Since November 2010, AWS also supports compute instances
that contain both CPU cores and GPU cores, indicated by the H-
shaped virtual machine where the application runs on a cloud
of loosely coupled nodes with disjoint memory (right column)
each of which contains both CPU and GPU cores (currently not
on the same die, so the vertical lines are still dotted).

The Jungle
Putting it all together, we get a noisy profusion of life and color as in
Figure 11. This may look like a confused mess, so let’s notice two things
that help make sense of it.

First, every box has a workload that it’s best at, but some boxes (par-
ticularly some columns) are more popular than others. Two columns
are particularly less interesting:

• Fully unified memory models are only applicable to single-core,
which is being essentially abandoned in the mainstream.

• Incoherent/weak memory models are a performance experi-
ment that is in the process of failing in the marketplace. On the
hardware side, the theoretical performance benefits that come
from letting caches work less synchronously have already been
largely duplicated in other ways by mainstream processors
having stronger memory models. On the software side, all of
the mainstream general-purpose languages and environments
(C, C++, Java, .NET) have largely rejected weak memory models,
and require a coherent model that is technically called “se-
quential consistency for data race free programs”
(http://is.gd/EmpCDn [PDF]) as either their only supported
memory model (Java, .NET) or their default memory model (ISO
C++11, ISO C11). Nobody is moving toward the middle vertical
incoherent/weak memory strip of the chart; at best they’re
moving through it to get to the other side, but nobody wants
to stay there.

But all other boxes, including all rows (processors), continue to be
strongly represented, and we realize why that’s true — because differ-
ent parts of even the same application naturally want to run on differ-
ent kinds of cores.

Second, let’s clarify the picture by highlighting and labeling the two
regions that hardware is migrating toward in Figure 12.

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 17

Figure 11.

www.drdobbs.com

In Figure 12 again we see the first and fourth columns being de-
emphasized, as hardware trends have begun gradually coalescing
around two major areas. Both areas extend vertically across all kinds
of cores — and the most important thing to note is that these rep-
resent two mines, where the area to the left is the Moore’s Law mine.

• Mine #1: “Scale in” = Moore’s Law. Local machines will con-
tinue to use large numbers of heterogeneous local cores, either
in-box (such as CPU with discrete GPU) or on-die (Sandy Bridge,
Fusion, Tegra 3). We’ll see core counts increase until Moore’s Law
ends, and then stabilize core counts for individual local devices.

• Mine #2: “Scale out” = distributed cloud. Much more impor-
tantly, we will continue to see a cornucopia of cores delivered

via compute clouds, either on-premises (cluster, private cloud)
or in public clouds. This is a brand new mine directly enabled by
the lower coupling of disjoint memory, especially loosely cou-
pled distributed nodes.

The good news is that we can heave a sigh of relief at having found
another mine to open. The even better news is that the new mine has a
far faster growth rate than even Moore’s Law. Notice the slopes of the
lines when we graph the amount of parallelism available to a single ap-
plication running on various architectures; see Figure 13. The bottom
three lines are mining Moore’s Law for “scale-in” growth, and their com-
mon slope reflects Moore’s wonderful exponent, just shifted upward or
downward to account for how many cores of a given size can be packed
onto the same die. The top two lines are mining the cloud (with CPUs
and GPUs, respectively) for “scale-out” growth — and it’s even better.

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 18

Figure 12.

Figure 13.

www.drdobbs.com

If hardware designers merely use Moore’s Law to deliver more big
fat cores, on-device hardware parallelism will stay in double digits for
the next decade, which is very roughly when Moore’s Law is due to
sputter, give or take about a half decade. If hardware follows Niagara’s
and MIC’s lead to go back to simpler cores, we’ll see a one-time jump
and then stay in triple digits. If we all learn to leverage GPUs, we already
have 1,500-way parallelism in modern graphics cards (I’ll say “cores”
for convenience, though that word means something a little different
on GPUs) and likely reach five digits in the decade timeframe.

But all of that is eclipsed by the scalability of the cloud, whose growth
line is already steeper than Moore’s Law because we’re better at quickly
deploying and using cost-effective networked machines than we’ve
been at quickly jam-packing and harnessing cost-effective transistors.
It’s hard to get data on the current largest cloud deployments because
many projects are private, but the largest documented public cloud apps
(which don’t use GPUs) are already harnessing over 30,000 cores for a
single computation. I wouldn’t be surprised if some projects are exceed-
ing 100,000 cores today. And that’s general-purpose cores; if you add
GPU-capable nodes to the mix, add two more zeroes.

Such massive parallelism, already available for rates of under
$1,300/hour for a 30,000-core cloud, is game-changing. If you doubt
that, here is a boring example that doesn’t involve advanced aug-
mented reality or spook-level technomancery: How long will it take
someone who’s stolen a strong password file (which we’ll assume is
correctly hashed and salted and contains no dictionary passwords) to
retrieve 90% of the passwords by brute force using a publicly available
GPU-enabled compute cloud? Hint: An AWS dual-Tegra node can test
on the order of 20 billion passwords per second, and clouds of 30,000
nodes are publicly documented (of course, Amazon won’t say if it has

that many GPU-enabled nodes for hire; but if it doesn’t now, it will
soon). To borrow a tired misquote (http://is.gd/PJGnVM), 640 trillion
affordable attempts per second should be enough for anyone. But if
that’s not enough for you, not to worry; just wait a small number of
years and it’ll be 640 quadrillion affordable attempts per second.

What It Means For Us: A Programmer’s View
How will all of this change the way we write our software, if we care
about harnessing mainstream hardware performance? The basic con-
clusions echo and expand upon ones that I proposed in “The Free
Lunch is Over”:

• Applications will need to be at least massively parallel, and
ideally able to use non-local cores and heterogeneous cores,
if they want to fully exploit the long-term continued exponential
growth in compute throughput being delivered both in-box and
in-cloud. After all, soon the vast majority of compute cores avail-
able to a mainstream application will be non-local.

• Efficiency and performance optimization will get more,
not less, important. We’re being asked to do more (new ex-
periences like sensor-based UIs and augmented reality) with
less hardware (constrained mobile form factors and the even-
tual plateauing of scale-in when Moore’s Law ends). In Decem-
ber 2004 I wrote: “Those languages that already lend them-
selves to heavy optimization will find new life; those that don’t
will need to find ways to compete and become more efficient
and optimizable. Expect long-term increased demand for per-
formance-oriented languages and systems.” This is still true;
witness the resurgence of interest in C++ in 2011 and onward,

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 19

www.drdobbs.com

primarily because of its expressive flexibility and performance
efficiency. A program that is twice as efficient has two advan-
tages:

• It will be able to run twice as well on a local discon-
nected device especially when Moore’s Law can no longer
deliver local performance improvements in any form;
• It will always be able to run at half the power and cost
on an elastic compute cloud even as those continue to
expand for the indefinite future.

• Programming languages and systems will increasingly be
forced to deal with heterogeneous distributed parallelism. As
previously predicted, just basic homogeneous multicore has
proved to be a far bigger event for languages than even object-
oriented programming was, because some languages (notably C)
could get away with ignoring objects while still remaining com-
mercially relevant for mainstream software development. No
mainstream language, including the just-ratified C11 standard,
could ignore basic concurrency and parallelism and stay relevant
in even a homogeneous-multicore world. Now expect all main-
stream languages and environments, including their standard li-
braries, to develop explicit support for at least distributed paral-
lelism and probably also heterogeneous parallelism; they cannot
hope to avoid it without becoming marginalized for mainstream
app development.

Expanding on that last bullet, what are some basic elements we will
need to add to mainstream programming models (think: C, C++, Java,
and .NET)? Here are a few basics I think will be unavoidable, that must
be supported explicitly in one form or another.

• Deal with the processor axis’ lower section by supporting
compute cores with different performance (big/fast,
slow/small). At minimum, mainstream operating systems and
runtimes will need to be aware that some cores are faster than
others, and know which parts of an application want to run on
which of those cores.

• Deal with the processor axis’ upper section by supporting
language subsets, to allow for cores with different capabilities
including that not all fully support mainstream language features.
In the next decade, a mainstream operating system (on its own,
or augmented with an extra runtime like the Java/.NET VM or the
ConcRT runtime underpinning PPL) will be capable of managing
cores with different instruction sets and running a single appli-
cation across many of those cores. Programming languages and
tools will be extended to let the developer express code that is
restricted to use just a subset of a mainstream programming lan-
guage (as with the restrict() qualifiers in C++ AMP). I am op-
timistic that for most mainstream languages such a single lan-
guage extension will be sufficient while leveraging existing
language rules for overloading and dispatch, and thus minimizing
the impact on developers.

• Deal with the memory axis for computation, by providing dis-
tributed algorithms that can scale not just locally but also
across a compute cloud. Libraries and runtimes like OpenCL and
TBB and PPL will be extended or duplicated to enable writing loops
and other algorithms that run on large numbers of local and non-
local parallel cores. Today we can write a parallel_for_each call
that can run with 1,000x parallelism on a set of local discrete GPUs
and ship the right data shards to the right compute cards and the

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 20

www.drdobbs.com

results back; tomorrow we need to be able to write that same call
that can run with 1,000,000,000x parallelism on a set of cloud-based
GPUs and ship the right data shards to the right nodes and the re-
sults back. This is a “baby step” example in that it just uses local data
(that can fit in a single machine’s memory), but distributed compu-
tation; the data subsets are simply copied hub-and-spoke.

• Deal with the memory axis for data, by providing distributed
data containers, which can be spread across many nodes. The
next step is for the data itself to be larger than any node’s memory,
and (preferably automatically) move the right data subsets to the
right nodes of a distributed computation. For example, we need
containers like a distributed_array or distributed_table
that can be backed by multiple and/or redundant cloud storage,
and then make those the target of the same distributed paral-
lel_for_each call. After all, why shouldn’t we write a single par-
allel_for_each call that efficiently updates a 100 petabyte
table? Hadoop (http://hadoop.apache.org/) enables this today for
specific workloads and with extra work; this will become a stan-
dard capability available out-of-the-box in mainstream language
compilers and their standard libraries.

• Enable a unified programming model that can handle the
entire chart with the same source code. Since we can map the
hardware on a single chart with two degrees of freedom, the
landscape is unified enough that it should be able to be served
by a single programming model in the future. Any solution will
have at least two basic characteristics: First, it will cover the
Processor axis by letting the programmer express language sub-
sets in a way integrated holistically into the language. Second, it
will cover or hide the Memory axis by abstracting the location
of data, and copying data subsets on demand by default, while
also providing a way to take control of the copying for advanced
users who want to optimize the performance of a specific com-
putation.

Perhaps our most difficult mental adjustment, however, will be to
learn to think of the cloud as part of the mainstream machine — to
view all these local and non-local cores as being equally part of the
target machine that executes our application, where the network is
just another bus that connects us to more cores. That is, in a few years
we will write code for mainstream machines assuming that they have
million-way parallelism, of which only thousand-way parallelism is
guaranteed to always be available (when out of WiFi range).

Five years from now, we want to be delivering apps that run well on
an isolated device, and then just run faster or better when they are in
WiFi range and have dynamic access to many more cores. The makers
of our operating systems, runtimes, libraries, programming languages,
and tools need to get us to a place where we can create compute-
bound applications that run well in isolation on disconnected devices
with 1,000-way local parallelism…and when the device is in WiFi range

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 21

“Our most difficult mental adjustment, however, will be to

learn to think of the cloud as part of the mainstream ma-

chine — to view all these local and non-local cores as

being equally part of the target machine that executes

our application, where the network is just another bus

that connects us to more cores”

www.drdobbs.com

just run faster, handle much larger data sets, and/or light up with ad-
ditional capabilities. We have a very small taste of that now with cloud-
based apps like Shazam (which function only when online), but yet a
long way to go to realize this full vision.

Exit Moore, Pursued by a Dark Silicon Bear
Finally, let’s return one more time to the end of Moore’s Law to see
what awaits us in our near future (Figure 14), and why we will likely
pass through three distinct stages as we navigate Moore’s End.

Eventually, the tired miners will reach the point where it’s no longer
economically feasible to operate the mine. There’s still gold left, but
it’s no longer commercially exploitable. Recall that Moore’s Law has
been interesting only because of the ability to transform its raw re-
source of “more transistors” into one of two useful forms:

• Exploit #1: Greater throughput. Moore’s Law lets us deliver
more transistors, and therefore more complex chips, at the same
cost. That’s what will let processors continue to deliver more

computational performance per chip — as long as we can find
ways to harness the extra transistors for computation.

• Exploit #2: Lower cost/power/size. Alternatively, Moore’s Law
enables delivery of the same number of transistors at a lower
cost, including in a smaller area and at lower power. That’s what
will let us continue to deliver powerful experiences in increas-
ingly compact and mobile and embedded form factors.

The key thing to note is that we can expect these two ways of ex-
ploiting Moore’s Law to end, not at the same time, but one after the
other and in that order.

Why? Because Exploit #2 only relies on the basic Moore’s Law effect,
whereas the first relies on Moore’s Law and the ability to use all the
transistors at the same time.

Which brings me to one last problem down in our mine…

The Power Problem: Dark Silicon
Sometimes you can be hard at work in a mine, still productive, when a
small disaster happens: a cave-in, or striking water. Such disasters can
render entire sections of the mine unreachable. We are now starting
to hit exactly those kinds of problems.

One particular problem we have just begun to encounter is known
as “dark silicon.” Although Moore’s Law is still delivering more transis-
tors, we are losing the ability to power them all at the same time. For more
details, see Jem Davies’ talk “Compute Power With Energy-Efficiency”
(http://is.gd/Lfl7iz [PDF]) and the ISCA’11 paper “Dark Silicon and the
End of Multicore Scaling” (http://is.gd/GhGdz9 [PDF]).

This “dark silicon” effect is like a Shakespearian bear chasing our
doomed character offstage. Even though we can continue to pack more

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 22

Figure 14.

www.drdobbs.com

cores on a chip, if we cannot use them at the same time ,we have failed
to exploit Moore’s Law to deliver more computational throughput (Ex-
ploit #1). When we enter the phase where Moore’s Law continues to
give us more transistors per die area, but we are no longer able to
power them all, we will find ourselves in a transitional period where Ex-
ploit #1 has ended while Exploit #2 continues and outlives it for a time.

This means that we will likely see the following major phases in the
“scale-in” growth of mainstream machines. (Note that these apply to
individual machines only, such as your personal notebook and smart-
phone or an individual compute node; they do not apply to a compute
cloud, which we saw belongs to a different “scale-out” mine.)

• Exploit #1 + Exploit #2: Increasing performance (compute
throughput) in all form factors (1975 — mid-2010s?). For a
few years yet, we will see continuing increases in mainstream
computer performance in all form factors from desktop to smart-
phone. As of today, the bigger form factors still have more paral-
lelism, just as today’s desktop CPUs and GPUs are routinely more
capable than those in tablets and smartphones — as long as Ex-
ploit #1 lives, and then…

• Exploit #2 only: Flat performance (compute throughput) at
the top end, and mid and lower segments catching up (late
2010s — early 2020s?). Next, if problems like dark silicon are not
solved, we will enter a period where mainstream computer per-
formance levels out, starting at the top end with desktops and
game consoles and working its way down through tablets and
smartphones. During this period we will continue to use Moore’s
Law to lower cost, power, and/or size — delivering the same com-
plexity and performance already available in bigger form factors

also in smaller devices. Assuming Moore’s Law continues long
enough beyond the end of Exploit #1, we can estimate how long
it will take for Exploit #2 to equalize personal devices by observ-
ing the difference in transistor counts between current main-
stream desktop machines and smartphones; it’s roughly a factor
of 20, which will take Moore’s Law about eight years to cover.

• Democratization (early 2020s? — onward). Finally, this democ-
ratization will reach the point where a desktop computer and
smartphone have roughly the same computational perform-
ance. In that case, why buy a desktop ever again? Just dock your
tablet or smartphone. You might think that there are still two im-
portant differences between the desktop and the mobile device:
power, because the desktop is plugged in, and peripherals, be-
cause the desktop has easier access to a bigger screen and a real
keyboard/mouse — but once you dock the smaller device, it has
the same access to power and peripherals.

Speaking of Smartphones Pocket Tablets and Democratization
Note that the word “smartphone” is already a major misnomer, be-
cause a pocket device that can run apps is not primarily a phone at
all. It’s primarily a general-purpose personal computer that happens
to have a couple of built-in radios for cell and WiFi service — making
the “traditional cell phone” capability just an app that happens to
use the cell radio, and the Skype “IP phone” capability on the same
device just another similar app that happens to use the WiFi radio
instead.

The right way to think about even today’s mobile landscape is that
there are not really “tablets” and “smartphones”; there are just page-
sized tablets and pocket-sized tablets, both already available with or

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 23

www.drdobbs.com

without cellular radios. That they run different operating systems today
is just a point-in-time effect.

This is why those people who said an iPad is just a big iPhone without
the cellular radio had it exactly backwards — the iPhone (3G or later,
which allows apps) is a small iPad that fits in your pocket and happens
to have a cellular radio in order to obsolete another pocket-sized device.
Both devices are primarily tablets — they minimize hardware chrome
and “turn into” the full-screen immersive app, and that’s the closest thing
you can get today to a morphing device that turns into a special-pur-
pose device on demand. Many of us routinely use our “phones” mostly
as a small tablet — spending most of our time on the device running
apps to read books, browse news, watch movies, play games, update so-
cial networks, and surf the Internet. I already use my phone as a small
tablet far more often than I use it as a phone, and if you have an app-ca-
pable phone then I’ll bet you already do that, too.

Well before the end of this decade, I expect the most likely dominant
mainstream form factor to be “page-sized and pocket-sized tablets, plus
docking” — where “docking” means any means of attaching peripher-
als like keyboards and big screens on demand, which today already en-
compasses physical docks and Bluetooth and “Play To” connections,
and will only continue to get more wireless and more seamless.

This future shouldn’t be too hard to imagine, because many of us have
already been working that way for a while now: For the past decade I’ve
routinely worked from my notebook as my primary and only environ-
ment. Usually, I’m in my home office or work office where I use a real key-
board and big screens by docking the notebook and/or using it via a re-
mote-desktop client, and when I’m mobile I use it as a notebook. In 2012,
I expect to replace my notebook with an x86-based modern tablet and
use it exactly the same way. We’ve seen it play out many times:

• Many of us used to carry around both a PalmPilot and a cell phone,
but then the smartphone took over the job of the dedicated
PalmPilot and eliminated a device with the same form factor.

• Lots of kids (or their parents) carry a hand-held gaming device and
a pocket tablet (aka “smartphone”), and we are seeing the decline
of the dedicated hand-held gaming device (http://is.gd/yVBCLb)
as the pocket tablet is taking over more and more of that job.

• Similarly, today many of us carry around a notebook and a dedi-
cated tablet, and convergence will again let us eliminate a device
with the same form factor.

Computing loves convergence. In general-purpose personal comput-
ing (like notebooks and tablets, not special-purpose appliances like
microwaves and automobiles that may happen to use microproces-
sors), convergence always happily dooms special-purpose devices in
the long run, as each device either evolves to take over the others job
or gets taken over. We will continue to have distinct pocket-sized
tablets and page-sized tablets for a time because they are different
form factors with different mobile uses, but even that may last only
until we find a way to unify the form factors (fold them?) so that they
too can converge.

Summary and Conclusions
Mainstream hardware is becoming permanently parallel, heterogeneous,
and distributed. These changes are permanent, and so will permanently
affect the way we have to write performance-intensive code on main-
stream architectures.

The good news is that Moore’s “local scale-in” transistor mine isn’t
empty yet. It appears the transistor bonanza will continue for about

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 24

www.drdobbs.com

another decade, give or take five years or so, which should be long
enough to exploit the lower-cost side of the Law to get us to parity
between desktops and pocket tablets. The bad news is that we can
clearly observe the diminishing returns as the transistors are decreas-
ingly exploitable — with each new generation of processors, software
developers have to work harder and the chips get more difficult to
power. And with each new crank of the diminishing-returns wheel,
there’s less time for hardware and software designers to come up with
ways to overcome the next hurdle; the motherlode free lunch lasted
30 years, but the homogeneous multicore era lasted only about six
years, and we are now already overlapping the next two eras of het-
ero-core and cloud-core.

But all is well: When your mine is getting empty, you don’t panic, you
just open a new mine at a new motherlode. As usual, in this case the
end of one dominant wave overlaps with the beginning of the next,
and we are now early in the period of overlap where we are standing
with a foot in each wave, a crew in each of Moore’s mine and the cloud
mine. Perhaps the best news of all is that the cloud wave is already
scaling enormously quickly — faster than the Moore’s Law wave that
it complements, and that it will outlive and replace.

If you haven’t done so already, now is the time to take a hard look at
the design of your applications, determine what existing features —
or better still, what potential and currently unimaginable demanding
new features — are CPU-sensitive now or are likely to become so soon,
and identify how those places could benefit from local and distributed
parallelism. Now is also the time for you and your team to grok the re-
quirements, pitfalls, styles, and idioms of hetero-parallel (e.g., GPGPU)
and cloud programming (e.g., Amazon Web Services, Microsoft Azure,
Google App Engine).

To continue enjoying the free lunch of shipping an application that
runs well on today’s hardware and will just naturally run faster or better
on tomorrow’s hardware, you need to write an app with lots of latent
parallelism expressed in a form that can be spread across a machine
with a variable number of cores of different kinds — local and distrib-
uted cores, and big/small/specialized cores. The throughput gains now
cost extra — extra development effort, extra code complexity, and ex-
tra testing effort. The good news is that for many classes of applications
the extra effort will be worthwhile, because concurrency will let them
fully exploit the exponential gains in compute throughput that will
continue to grow strong and fast long after Moore’s Law has gone into
its sunny retirement, as we continue to mine the cloud for the rest of
our careers.

Acknowledgments
I would like to particularly thank Jeffrey Barr, David Callahan, Olivier
Giroux, Yossi Levanoni, Henry Moreton, and James Reinders, who
graciously made themselves available to answer questions to pro-
vide background information, and who shared their feedback on
appropriately mapping their companies’ products on the proces-
sor/memory chart.

— Herb Sutter is a bestselling author and consultant on software development topics,
and a software architect at Microsoft. A version of this article is posted on his website at
http://herbsutter.com/welcome-to-the-jungle/.

[COVER STORY]JUNGLE

DownloadDownload

Previous Next

IN THIS ISSUE

Editorial >>
Jungle >>
Lambda Expressions >>
8 Simple Rules >>
Links >>
Table of Contents >>

February 2012 25

http://drdobbs.com/parallel/232400273

