
may 2009 | vol. 52 | no. 5 | communications of the acm 99

Technical Perspective
Highly Concurrent
Data Structures
By Maurice Herlihy

The advent of multicore architec-
tures has produced a Renaissance in
the study of highly concurrent data
structures. Think of these shared
data structures as the ball bearings
of concurrent architectures: they
are the potential “hot spots” where
concurrent threads synchronize. Un-
der-engineered data structures, like
under-engineered ball bearings, can
prevent individually well-engineered
parts from performing well together.
Simplifying somewhat, Amdahl’s Law
states that synchronization granular-
ity matters: even short sequential sec-
tions can hamstring the scalability of
otherwise well-designed concurrent
systems.

The design and implementation
of libraries of highly concurrent data
structures will become increasingly
important as applications adapt to
multicore platforms. Well-designed
concurrent data structures illustrate
the power of abstraction: On the out-
side, they provide clients with simple
sequential specifications that can be
understood and exploited by nonspe-
cialists. For example, a data structure
might simply describe itself as a map
from keys to values. An operation such
as inserting a key-value binding in
the map appears to happen instanta-
neously in the interval between when
the operation is called and when it
returns, a property known as lineariz-
ability. On the inside, however, they
may be highly engineered by special-
ists to match the characteristics of the
underlying platform.

Scherer, Lea, and Scott’s “Scalable
Synchronous Queues” is a welcome
addition to a growing repertoire of
scalable concurrent data structures.
Communications’ Research Highlights
editorial board chose this paper for
several reasons. First, it is a useful al-
gorithm in its own right. Moreover, it
is the very model of a modern concur-
rent data structures paper. The inter-
face is simple, the internal structure,

while clever, is easily understood, the
correctness arguments are concise
and clear. It provides a small number
of useful choices, such as the ability to
time out or to trade performance for
fairness, and the experimental valida-
tion is well described and reproduc-
ible.

This synchronous queue is lock-
free: the delay or failure of one thread
cannot delay others from completing
that operation. There are three prin-
cipal nonblocking progress proper-
ties in the literature. An operation

is wait-free if all threads calling that
operation will eventually succeed.
It is lock-free if some thread will suc-
ceed, and it is obstruction-free if some
thread will succeed provided no con-
flicting thread runs at the same time.
Note that a data structure may provide
different guarantees for different op-
erations: a map might provide lock-
free insertion but wait-free lookups.
In practice, most non-blocking algo-
rithms are lock-free.

Lock-free operations are attractive
for several reasons. They are robust
against unexpected delays. In mod-
ern multicore architectures, threads
are subject to long and unpredictable
delays, ranging from cache misses
(short), signals (long), page faults (very
long), to being descheduled (very,
very long). For example, if a thread

is holding a lock when it is desched-
uled, then other, running threads that
need that lock will also be blocked.
With locks, systems with real-time
constraints may be subject to priority
inversion, where a high-priority thread
is blocked waiting for a low-priority
thread to release a lock. Care must
be taken to avoid deadlocks, where
threads wait forever for one another
to release locks.

Amdahl’s Law says that the shorter
the critical sections, the better. One
can think of lock-free synchronization
as a limiting case of this trend, reduc-
ing critical sections to individual ma-
chine instructions. As a result, how-
ever, lock-free algorithms are often
tricky to implement. The need to avoid
overhead can lead to complicated de-
signs, which may in turn make it diffi-
cult to reason (even informally) about
correctness. Nevertheless, lock-free
algorithms are not necessarily more
difficult than other kinds of highly
concurrent algorithms. Writing lock-
free algorithms, like writing device
drivers or cosine routines, requires
some care and expertise.

Given such difficulty, can lock-free
synchronization live up to its prom-
ise? In fact, lock-free synchronization
has had a number of success stories.
Widely used packages such as Java’s
java.util.concurrent, and C#’s Sys-
tem.Threading.Collections include a
variety of finely tuned lock-free data
structures. Applications that have
benefited from lock-free data struc-
tures fall into categories as diverse
as work-stealing schedulers, memory
allocation programs, operating sys-
tems, music, and games.

For the foreseeable future, con-
current data structures will lie at the
heart of multicore applications, and
the larger our library of scalable con-
current data structures, the better we
can exploit the promise of multicore
architectures.	

Maurice Herlihy is a professor of computer science at
Brown University, Providence, R.I. He is the recipient of
the 2004 Gödel Prize and the 2003 Dijkstra Prize and
is a member of the editorial board for Communications’
Research Highlights section.

© 2009 ACM 0001-0782/09/0500 $5.00

Writing lock-free
algorithms, like
writing device drivers
and cosine routines,
requires some care
and expertise.

doi:10.1145/1506409.1506430

