
© Copyright IBM Corporation 2011 Trademarks
Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 1 of 13

Multithreaded data structures for parallel computing:
Part 2, Designing concurrent data structures without
mutexes
Arpan Sen (arpansen@gmail.com)
Independent author

24 May 2011

In this second article in a two-part series on multithreaded structures, learn about design
choices for implementing a mutex based concurrent list, and discover how to design concurrent
data structures without mutexes.

View more content in this series

Introduction

This article—the concluding part in this series—discusses two things: Design choices for
implementing a mutex based concurrent list and designing concurrent data structures without
mutexes. For the latter topic, I have chosen to implement a concurrent stack and highlight some of
the issues in designing such a data structure. Designing a mutex-free data structure in C++ that is
platform independent is not a reality yet, so I chose GCC version 4.3.4 as the compiler and used
GCC-specific __sync_* functions in the code. If you're a WIndows®C++ developer, consider the
Interlocked* group of functions for similar work.

Design choices in a concurrent, singly linked list

Listing 1 shows the most basic concurrent, singly linked list interface. Is anything obviously
missing?

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:arpansen@gmail.com
http://www.ibm.com/developerworks/views/aix/libraryview.jsp?sort_by=&show_abstract=true&show_all=&search_flag=&contentarea_by=AIX+and+UNIX&search_by=Multithreaded+data+structures+for+parallel+computing&topic_by=-1&industry_by=-1&type_by=All+Types&ibm-search=Search

developerWorks® ibm.com/developerWorks/

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 2 of 13

Listing 1. A concurrent, singly linked list interface

template <typename T>
class SList {
 private:
 typedef struct Node {
 T data;
 Node *next;
 Node(T& data) : value(data), next(NULL) { }
 } Node;
 pthread_mutex_t _lock;
 Node *head, *tail;
 public:
 void push_back(T& value);
 void insert_after(T& previous, T& value); // insert data after previous
 void remove(const T& value);
 bool find(const T& value); // return true on success
 SList();
 ~SList();
};

For the expected lines, Listing 2 shows the push_back method definition.

Listing 2. Pushing data into the concurrent linked list

void SList<T>::push_back(T& data)
{
 pthread_mutex_lock(&_lock);
 if (head == NULL) {
 head = new Node(data);
 tail = head;
 } else {
 tail->next = new Node(data);
 tail = tail->next;
 }
 pthread_mutex_unlock(&_lock);
}

Now, consider a thread trying to push n integers into this list in quick succession by calling
push_back. The interface itself mandates that you acquire and release the mutex n times, even if
all data to be inserted is known before acquiring the lock for the first time. A far better approach
would be to define another method that accepts a list of integers and acquire and release the
mutex only once. Listing 3 shows the method definition.

ibm.com/developerWorks/ developerWorks®

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 3 of 13

Listing 3. Appending to the linked list intelligently
void SList<T>::push_back(T* data, int count) // or use C++ iterators
{
 Node *begin = new Node(data[0]);
 Node *temp = begin;
 for (int i=1; i<count; ++i) {
 temp->next = new Node(data[i]);
 temp = temp->next;
 }

 pthread_mutex_lock(&_lock);
 if (head == NULL) {
 head = begin;
 tail = head;
 } else {
 tail->next = begin;
 tail = temp;
 }
 pthread_mutex_unlock(&_lock);
}

Optimizing search elements
Now, let's move on to optimizing search elements in the list—that is, the find method. Here are a
few potential situations that may occur:

• Insertion or deletion requests come in while some threads are iterating over the list.
• Iteration requests come in while some threads are iterating the list.
• Iteration requests come in while some threads are inserting data into or deleting data from the

list.

Clearly, you should be able to service multiple iteration requests concurrently. For a system
where the insertion/deletion rate is minimal and the primary activity consists of searching, having
a single lock-based approach is way below par. In this context, get to know read-write locks or
pthread_rwlock_t. In the examples in this article, you'll use pthread_rwlock_t in SList instead
of pthread_mutex_t. Doing so allows for multiple threads to search the list concurrently. Insertion
and deletion would still lock the whole list, which is fine anyway. Listing 4 shows some of the list
implementation with pthread_rwlock_t followed by the code for find.

Listing 4. A concurrent, singly linked list using the read-write lock
template <typename T>
class SList {
 private:
 typedef struct Node {
 // … same as before
 } Node;
 pthread_rwlock_t _rwlock; // Not pthread_mutex_t any more!
 Node *head, *tail;
 public:
 // … other API remain as-is
 SList() : head(NULL), tail(NULL) {
 pthread_rwlock_init(&_rwlock, NULL);
 }
 ~SList() {
 pthread_rwlock_destroy(&_rwlock);
 // … now cleanup nodes
 }
};

developerWorks® ibm.com/developerWorks/

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 4 of 13

Listing 5 shows the code for the list search.

Listing 5. Searching the linked list using read-write lock
bool SList<T>::find(const T& value)
{
 pthread_rwlock_rdlock (&_rwlock);
 Node* temp = head;
 while (temp) {
 if (temp->value == data) {
 status = true;
 break;
 }
 temp = temp->next;
 }
 pthread_rwlock_unlock(&_rwlock);
 return status;
}

While Listing 6 shows push_back using the read-write lock.

Listing 6. Pushing data into the concurrent, linked list using read-write lock
void SList<T>::push_back(T& data)
{
 pthread_setschedprio(pthread_self(), SCHED_FIFO);
 pthread_rwlock_wrlock(&_rwlock);
 // … All the code here is same as Listing 2
 pthread_rwlock_unlock(&_rwlock);
}

Let's take stock of things. You have used two locking function calls—pthread_rwlock_rdlock and
pthread_rwlock_wrlock—for synchronization and a call to pthread_setschedprio to set the priority
of writer threads. If no writer threads are blocked on this lock (in other words, no insertion/deletion
requests), then multiple reader threads requesting list search can concurrently operate, because
one reader thread would not block another reader thread in such a situation. If writer threads are
waiting on this lock, then of course no new reader thread is allowed to acquire the lock, and the
threads wait until the existing reader threads have finished, followed by the writer threads. If you
don't adhere to this approach in prioritizing writer threads using pthread_setschedprio, then given
the nature of read-write lock, it is easy to see how writer threads could starve.

Here are a few things to remember with this approach:

• pthread_rwlock_rdlock may fail if the maximum number of read locks (implementation
defined) for the lock has been exceeded.

• Take care to invoke pthread_rwlock_unlockn times if there are n concurrent read locks for the
lock.

Allowing concurrent insertions
The last method you should learn is insert_after. Once again, the expected usage pattern
governs your decision to tweak the data structure. If the application begins with a pre-provided
linked list that has an almost equal number of insertions and searches but minimal deletions, then
it's not prudent to lock the entire list during insertion. Allowing for concurrent insertions at disjoint

ibm.com/developerWorks/ developerWorks®

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 5 of 13

points in the list is a good idea in such a case, and you use the read-write-lock based approach
again. Here's how you structure the list:

• Locking occurs on two levels (see Listing 7): The list has a read-write lock, while individual
nodes contain a mutex. If space-saving is what you're looking for, then consider a plan to
share mutexes—maybe maintain a map of nodes versus mutexes.

• During insertion, the writer thread makes a read lock on the list and proceeds. The individual
node, after which the new data is to be added, is locked before the insertion and released
after insertion followed by releasing the read-write lock.

• Deleting creates a write lock on the list. No node-specific lock needs to be acquired.
• Searching can be done concurrently, as earlier.

Listing 7. Concurrent, singly linked list with two-level locking
template <typename T>
class SList {
 private:
 typedef struct Node {
 pthread_mutex_lock lock;
 T data;
 Node *next;
 Node(T& data) : value(data), next(NULL) {
 pthread_mutex_init(&lock, NULL);
 }
 ~Node() {
 pthread_mutex_destroy(&lock);
 }
 } Node;
 pthread_rwlock_t _rwlock; // 2 level locking
 Node *head, *tail;
 public:
 // … all external API remain as-is
 }
};

Listing 8 shows the code for inserting data into the list.

Listing 8. Inserting data into the list with double-locking
void SList<T>:: insert_after(T& previous, T& value)
{
 pthread_rwlock_rdlock (&_rwlock);
 Node* temp = head;
 while (temp) {
 if (temp->value == previous) {
 break;
 }
 temp = temp->next;
 }
 Node* newNode = new Node(value);

 pthread_mutex_lock(&temp->lock);
 newNode->next = temp->next;
 temp->next = newNode;
 pthread_mutex_unlock(&temp->lock);

 pthread_rwlock_unlock(&_rwlock);
 return status;
}

developerWorks® ibm.com/developerWorks/

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 6 of 13

The problem with a mutex-based approach
So far, you have used a mutex or multiple mutexes included as part of the data structure for
synchronization. This approach is not without its problems, however. Consider the following
situations:

• Waiting on mutexes consumes precious time—sometimes, a lot of time. This delay has
negative effects on system scalability.

• Lower-priority threads could acquire a mutex, thus halting higher-priority threads that require
the same mutex to proceed. This problem is known as priority inversion (see Resources for
links to more information).

• A thread holding a mutex can be de-scheduled, perhaps because it was the end of its time-
slice. For other threads waiting on the same mutex, this has a negative effect, because the
wait time is now even longer. This problem is known as lock convoying (see Resources for
links to more information).

The issues with mutexes don't end here. In recent times, solutions that don't use mutexes have
been coming up. That said, although mutexes are tricky to use, they are definitely worth your
attention if you're looking for better performance.

The compare and swap instruction
Before we move on to solutions that don't involve mutexes, let's pause for a moment and look into
the CMPXCHG assembly instruction available on all Intel® processors starting with 80486. From a
conceptual standpoint, Listing 9 shows what the instruction does.

Listing 9. Compare and swap instruction behavior
int compare_and_swap (int *memory_location, int expected_value, int new_value)
{
 int old_value = *memory_location;
 if (old_value == expected_value)
 *memory_location = new_value;
 return old_value;
}

What's happening here is that the instruction is checking whether a memory location has an
expected value; if it does, then the new value is copied into the location. From an assembly
language perspective, Listing 10 provides the pseudo-code.

Listing 10. The compare and swap instruction assembly pseudo-code
CMPXCHG OP1, OP2
if ({AL or AX or EAX} = OP1)
 zero = 1 ;Set the zero flag in the flag register
 OP1 = OP2
else
 zero := 0 ;Clear the zero flag in the flag register
 {AL or AX or EAX}= OP1

The CPU chooses the AL, AX, or EAX register depending on the width of the operand (8, 16, or
32 bits). If the contents of the AL/AX/EAX register matches that of operand 1, then the contents
of operand 2 are copied to the first; otherwise, the AL/AX/EAX register is updated with the value

ibm.com/developerWorks/ developerWorks®

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 7 of 13

of operand 2. The Intel Pentium® 64-bit processor has a similar instruction named CMPXCHG8B
that supports 64-bit compare and exchange. Note that the CMPXCHG instruction is atomic, which
means that there is no intermediate visible state of the system before this instruction finishes.
It's either completely executed or not yet started. Equivalent instructions are available on other
platforms—for example, the Motorola MC68030 processor has an instruction named compare and
swap (CAS) that has similar semantics.

Why are we interested in CMPXCHG? Does this mean I would code
in assembly?

You need to understand CMPXCHG and related instructions like CMPXCHG8B well, because
they form the crux of lock-free solutions. However, you could do without coding in assembly.
Thankfully, GCC (GNU Compiler Collection, from version 4.1 onwards) provides atomic built-
ins (see Resources) that you can use to implement CAS operations for both x86 and x86-64
platforms. No header file need be included for this support. In this article, you use the GCC built-
ins in your implementation of lock-free data structures. Here's a look at the built-ins:

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)

The __sync_bool_compare_and_swap built-in compares oldval with *ptr. If they match, it copies
newval to *ptr,. The return value is True if oldval and *ptr match and False otherwise. The
__sync_val_compare_and_swap built-in's behavior is similar, except that it always returns the old
value. Listing 11 provides a sample usage.

Listing 11. Sample usage of GCC CAS built-ins

#include <iostream>
using namespace std;

int main()
{
 bool lock(false);
 bool old_value = __sync_val_compare_and_swap(&lock, false, true);
 cout >> lock >> endl; // prints 0x1
 cout >> old_value >> endl; // prints 0x0
}

Designing a lock-free concurrent stack

Now that you have some understanding of CAS, let's design a concurrent stack. No locks will be
included; this kind of lock-free, concurrent data structure is also referred to as a non-blocking data
structure. Listing 12 provides the code interface.

developerWorks® ibm.com/developerWorks/

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 8 of 13

Listing 12. Linked list-based implementation of a non-blocking stack

template <typename T>
class Stack {
 typedef struct Node {
 T data;
 Node* next;
 Node(const T& d) : data(d), next(0) { }
 } Node;
 Node *top;
 public:
 Stack() : top(0) { }
 void push(const T& data);
 T pop() throw (…);
};

Listing 13 shows the Push operation.

Listing 13. Pushing data in a non-blocking stack

void Stack<T>::push(const T& data)
{
 Node *n = new Node(data);
 while (1) {
 n->next = top;
 if (__sync_bool_compare_and_swap(&top, n->next, n)) { // CAS
 break;
 }
 }
}

What's going on with the Push operation? From the standpoint of a single thread, a new node is
created whose next pointer points to the top of the stack. Next, you invoke CAS and copy the new
node to the top location.

From the standpoint of multiple threads, it is entirely possible that two or more threads were
simultaneously trying to push data into the stack. Say you have Thread A trying to push 20 and
Thread B trying to push 30 into the stack, and Thread A got the time slice first. Thread A also got
de-scheduled after the instruction n->next = top finished. Now, Thread B (and a lucky thread this
is) got into action, was able to complete CAS, and finished by pushing 30 into the stack. Next,
Thread A resumes, and clearly *top and n->next do not match for this thread, because Thread B
modified the contents of the top location. So, the code loops back, points to the proper top pointer
(which was changed because of Thread B), invokes CAS, and is done with pushing 20 into the
stack. All of this was done without any locks.

Now for the Pop operation

Listing 14 shows the code for popping elements off the stack.

ibm.com/developerWorks/ developerWorks®

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 9 of 13

Listing 14. Popping data from a non-blocking stack

T Stack<T>::pop()
{
 if (top == NULL)
 throw std::string(“Cannot pop from empty stack”);
 while (1) {
 Node* next = top->next;
 if (__sync_bool_compare_and_swap(&top, top, next)) { // CAS
 return top->data;
 }
 }
}

You define Pop operation semantics along similar lines to push. The top of the stack is stored in
result, and you use CAS to update the top location with top-<next and return the appropriate
data. If there was thread preemption just before CAS, after resumption of the thread, CAS would
fail, and the looping would continue until valid data were available.

All's well that ends well

Unfortunately, there are problems with the pop implementation of the stack—both of the obvious
and the non-obvious variety. The obvious issue is that the NULL check must be part of the while
loop. If Thread P and Thread Q are both trying to pop data from a stack that has only one element
left and Thread P is de-scheduled just before CAS, by the time it regains control, there isn't
anything left to pop. Because top would be NULL, accessing &top is a sure-fire way to crash—
clearly an avoidable bug. This problem also highlights one of the fundamental design principles
when it comes to working with parallel data structures: Do not assume sequential execution of any
code, ever.

Listing 15 shows the code with the obvious bug fix.

Listing 15. Popping data from a non-blocking stack

T Stack<T>::pop()
{
 while (1) {
 if (top == NULL)
 throw std::string(“Cannot pop from empty stack”);
 Node* next = top->next;
 if (top && __sync_bool_compare_and_swap(&top, top, next)) { // CAS
 return top->data;
 }
 }
}

The next problem is somewhat more complicated, but if you understand how memory managers
work (see Resources for links to more information), this shouldn't be too difficult. Listing 16 shows
the problem.

developerWorks® ibm.com/developerWorks/

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 10 of 13

Listing 16. Recycling of memory can cause serious issues with CAS
T* ptr1 = new T(8, 18);
T* old = ptr1;
// .. do stuff with ptr1
delete ptr1;
T* ptr2 = new T(0, 1);

// We can't guarantee that the operating system will not recycle memory
// Custom memory managers recycle memory often
if (old1 == ptr2) {
 …
}

In this code, you can't guarantee that old and ptr2 will have different values. Depending on the
operating system and the custom application memory management system, it is entirely likely
that the deleted memory is recycled—that is, the deleted memory is stored in specialized pools
for the application to reuse if needed and not returned to the system. This obviously improves
performance, because you don't need to go through system calls to request additional memory.
Now, although this is generally a good thing to have, let's see why it isn't such good news to the
non-blocking stack.

Suppose you have two threads—A and B. A called pop and was de-scheduled just before CAS. B
then called pop and pushed in data, one part of which was from recycled memory from the earlier
Pop operation. Listing 17 shows the pseudo-code.

Listing 17. A sequence diagram
Thread A tries to pop
Stack Contents: 5 10 14 9 100 2
result = pointer to node containing 5
Thread A now de-scheduled

Thread B gains control
Stack Contents: 5 10 14 9 100 2
Thread B pops 5
Thread B pushes 8 16 24 of which 8 was from the same memory that earlier stored 5
Stack Contents: 8 16 24 10 14 9 100 2

Thread A gains control
At this time, result is still a valid pointer and *result = 8
But next points to 10, skipping 16 and 24!!!

The fix is reasonably simple: Don't store the next node. Listing 18 shows the code.

Listing 18. Popping data from a non-blocking stack
T Stack<T>::pop()
{
 while (1) {
 Node* result = top;
 if (result == NULL)
 throw std::string(“Cannot pop from empty stack”);
 if (top && __sync_bool_compare_and_swap(&top, result, result->next)) { // CAS
 return top->data;
 }
 }
}

ibm.com/developerWorks/ developerWorks®

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 11 of 13

With this arrangement, even if Thread B has modified the top while Thread A tries to pop, you're
sure that no elements in the stack are skipped.

Summary

This series provided insights to the world of designing data structures that are amenable to
concurrent access. You have seen that the design choices could be mutex based or lock-free.
Either way, both require ways of thinking that go beyond the traditional functionality of these
data structures—in particular, you always need to keep in mind preemption and how the thread
resumes when it is rescheduled. The solutions—particularly on the lock-free side of things—
are rather platform/compiler specific at this point. Consider looking into the Boost library for
an implementation of threads and locks and John Valois's paper on lock-free linked lists (see
Resources for links). The C++0x standard provides for an std::thread class, but support for it has
been fairly limited to downright nonexistent in most compilers to date.

developerWorks® ibm.com/developerWorks/

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 12 of 13

Resources

Learn

• MSDN provides good information on priority inversion of threads.
• Learn more about lock convoying.
• Check out Cambridge University's page on practical lock-free data structures.
• Check out John Valois's paper on lock-free linked lists.
• Learn more about memory manager for C++ (Arpan Sen and Rahul Kumar Kardam,

developerWorks, February 2008).
• AIX and UNIX developerWorks zone: The AIX and UNIX zone provides a wealth of

information relating to all aspects of AIX systems administration and expanding your UNIX
skills.

• New to AIX and UNIX? Visit the New to AIX and UNIX page to learn more.
• Technology bookstore: Browse the technology bookstore for books on this and other

technical topics.

Get products and technologies

• Check out GCC atomic built-ins.
• Learn more about and download the Boost Thread library.

Discuss

• Follow developerWorks on Twitter.
• developerWorks blogs: Check out our blogs and get involved in the developerWorks

community.
• Participate in the AIX and UNIX forums:

• AIX 5L—technical forum
• AIX for Developers Forum
• Cluster Systems Management
• IBM Support Assistant
• Performance Tools—technical
• More AIX and UNIX forums

http://msdn.microsoft.com/en-us/library/aa915356.aspx
http://en.wikipedia.org/wiki/Lock_convoy
http://www.cl.cam.ac.uk/research/srg/netos/lock-free
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.9506
http://www.ibm.com/developerworks/aix/tutorials/au-memorymanager
http://www.ibm.com/developerworks/aix/
http://www.ibm.com/developerworks/aix/newto/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://gcc.gnu.org/onlinedocs/gcc/Atomic-Builtins.html
http://www.boost.org/doc/libs/1_44_0/doc/html/thread.html
http://twitter.com/developerworks
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=747&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=905&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=907&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=935&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=749&cat=72
http://www.ibm.com/developerworks/forums/dw_auforums.jsp

ibm.com/developerWorks/ developerWorks®

Multithreaded data structures for parallel computing: Part 2,
Designing concurrent data structures without mutexes

Page 13 of 13

About the author

Arpan Sen

Arpan Sen is a lead engineer working on the development of software in the
electronic design automation industry. He has worked on several flavors of UNIX,
including Solaris, SunOS, HP-UX, and IRIX as well as Linux and Microsoft Windows
for several years. He takes a keen interest in software performance-optimization
techniques, graph theory, and parallel computing. Arpan holds a post-graduate
degree in software systems. You can reach him at arpansen@gmail.com.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

mailto:arpansen@gmail.com
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Design choices in a concurrent, singly linked list
	Optimizing search elements
	Allowing concurrent insertions

	The problem with a mutex-based approach
	The compare and swap instruction
	Why are we interested in CMPXCHG? Does this mean I would code in assembly?
	Designing a lock-free concurrent stack
	Now for the Pop operation
	All's well that ends well
	Summary
	Resources
	About the author
	Trademarks

