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Technical Perspective
Highly Concurrent  
Data Structures 
By Maurice Herlihy

The advent of multicore architec-
tures has produced a Renaissance in 
the study of highly concurrent data 
structures. Think of these shared 
data structures as the ball bearings 
of concurrent architectures: they 
are the potential “hot spots” where 
concurrent threads synchronize. Un-
der-engineered data structures, like 
under-engineered ball bearings, can 
prevent individually well-engineered 
parts from performing well together. 
Simplifying somewhat, Amdahl’s Law 
states that synchronization granular-
ity matters: even short sequential sec-
tions can hamstring the scalability of 
otherwise well-designed concurrent 
systems.

The design and implementation 
of libraries of highly concurrent data 
structures will become increasingly 
important as applications adapt to 
multicore platforms. Well-designed 
concurrent data structures illustrate 
the power of abstraction: On the out-
side, they provide clients with simple 
sequential specifications that can be 
understood and exploited by nonspe-
cialists. For example, a data structure 
might simply describe itself as a map 
from keys to values. An operation such 
as inserting a key-value binding in 
the map appears to happen instanta-
neously in the interval between when 
the operation is called and when it 
returns, a property known as lineariz-
ability. On the inside, however, they 
may be highly engineered by special-
ists to match the characteristics of the 
underlying platform.

Scherer, Lea, and Scott’s “Scalable 
Synchronous Queues” is a welcome 
addition to a growing repertoire of 
scalable concurrent data structures. 
Communications’ Research Highlights 
editorial board chose this paper for 
several reasons. First, it is a useful al-
gorithm in its own right. Moreover, it 
is the very model of a modern concur-
rent data structures paper. The inter-
face is simple, the internal structure, 

while clever, is easily understood, the 
correctness arguments are concise 
and clear. It provides a small number 
of useful choices, such as the ability to 
time out or to trade performance for 
fairness, and the experimental valida-
tion is well described and reproduc-
ible.

This synchronous queue is lock-
free: the delay or failure of one thread 
cannot delay others from completing 
that operation. There are three prin-
cipal nonblocking progress proper-
ties in the literature. An operation 

is wait-free if all threads calling that 
operation will eventually succeed. 
It is lock-free if some thread will suc-
ceed, and it is obstruction-free if some 
thread will succeed provided no con-
flicting thread runs at the same time. 
Note that a data structure may provide 
different guarantees for different op-
erations: a map might provide lock-
free insertion but wait-free lookups. 
In practice, most non-blocking algo-
rithms are lock-free.

Lock-free operations are attractive 
for several reasons. They are robust 
against unexpected delays. In mod-
ern multicore architectures, threads 
are subject to long and unpredictable 
delays, ranging from cache misses 
(short), signals (long), page faults (very 
long), to being descheduled (very, 
very long). For example, if a thread 

is holding a lock when it is desched-
uled, then other, running threads that 
need that lock will also be blocked. 
With locks, systems with real-time 
constraints may be subject to priority 
inversion, where a high-priority thread 
is blocked waiting for a low-priority 
thread to release a lock. Care must 
be taken to avoid deadlocks, where 
threads wait forever for one another 
to release locks.

Amdahl’s Law says that the shorter 
the critical sections, the better. One 
can think of lock-free synchronization 
as a limiting case of this trend, reduc-
ing critical sections to individual ma-
chine instructions. As a result, how-
ever, lock-free algorithms are often 
tricky to implement. The need to avoid 
overhead can lead to complicated de-
signs, which may in turn make it diffi-
cult to reason (even informally) about 
correctness. Nevertheless, lock-free 
algorithms are not necessarily more 
difficult than other kinds of highly 
concurrent algorithms. Writing lock-
free algorithms, like writing device 
drivers or cosine routines, requires 
some care and expertise.

Given such difficulty, can lock-free 
synchronization live up to its prom-
ise? In fact, lock-free synchronization 
has had a number of success stories. 
Widely used packages such as Java’s 
java.util.concurrent, and C#’s Sys-
tem.Threading.Collections include a 
variety of finely tuned lock-free data 
structures. Applications that have 
benefited from lock-free data struc-
tures fall into categories as diverse 
as work-stealing schedulers, memory 
allocation programs, operating sys-
tems, music, and games.

For the foreseeable future, con-
current data structures will lie at the 
heart of multicore applications, and 
the larger our library of scalable con-
current data structures, the better we 
can exploit the promise of multicore 
architectures.	
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